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1. Introduction 

 

Ever since the availability of time series data on advertising and sales, there have been 

discussions about the appropriate level of aggregation. A classic study is Clarke (1976) who 

shows that if the analyst considers the same model type for different levels of aggregation, 

that then the longitudinal impact of advertising is grossly overestimated, see also Russell 

(1986). This notion is again illustrated in Tellis and Franses (2006) who show that the familiar 

Koyck model for higher frequency data becomes another, and more involved, time series 

regression model for aggregated data. In brief, a by-product of aggregation is that the model 

must change too. A similar result appears for data transformations; see De Bruin and Franses 

(1999). When the higher frequency data are, say, log-transformed to mitigate the impact of 

extreme observations and to dampen the variance, a move to aggregated data may not need 

such a transformation as these extreme observations are “aggregated away”. 

  In this paper we also consider data transformation and model change in advertising 

response models. Our specific focus is on the possibility that managerial decision making 

concerns another frequency than the frequency of the available data. More precise, we 

consider the situation where the analyst has data available at the hourly level, whereas 

managers use daily or weekly forecasts for decision making. The key question is then whether 

one should model the hourly data and create hourly forecasts, and thereafter aggregate these 

forecasts to weekly forecasts or that one should first aggregate the hourly data to weekly data 

and then create an econometric time series model. To answer this key question, we first carry 

out a range of simulations using artificial data. After that, we provide a detailed analysis of a 

large database with hourly advertising and sales data.  

 The remainder of the paper is organized as follows. In Section 2, we briefly discuss 

the literature related to our topic. In Section 3, we report on a simulation experiment to 

illustratehow predictive accuracy changes under time aggregation. Section 4addresses the data 

used for the empirical application. In Section 5 the model specification for the hourly data is 

discussed. As the data show strong intra-day and intra-week seasonality, a two-level model is 

proposed where the hour in the week is the observation unit. In Section 6 we present single-

level models for hourly, daily data and weekly data. In Section 7 we summarize the 

forecasting and inference results. Finally, Section 8 contains the main conclusions and 

limitations. 
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2. Literature 

 

The advertising literature contains various studies that address the degree of aggregation to 

measure advertising effectiveness. A typical workhorse model is the familiar Koyck model, 

which correlates current sales with current advertising and past sales, and an error term with 

first order dynamics. Alternative models involve variants of the autoregressive distributed lag 

model [ADL], where no such moving average terms [MA] are included. For both types of 

models it holds that the parameter estimates can be used to infer the long-run (or cumulative) 

effect of advertising on sales, the immediate effect on sales, and the shape of the decay 

function which gives the speed at which the effects of advertising impulses eventually fade 

out to zero. 

 A key aspect of the models used in this literature is that the parameter estimates, and 

their derivative functions, can depend on the aggregation level of the data. For example, if one 

analyzes monthly data, while the underlying process works at the weekly level because 

advertising impulses are given at the weekly level, then one may make estimation errors. This 

insight goes back to Clarke (1976), and various subsequent studies such as Windal and Weiss 

(1980), Bass and Leone (1983, 1986), Tellis and Weiss (1995), and Leone (1995). 

 There are various possible responses to this phenomenon. The first is to acknowledge 

the aggregation effects and modify the estimation routine, see Weiss, Weinberg and Windal 

(1983) who propose a nonlinear GLS estimation technique which takes into account the effect 

of aggregation on estimates and on the error terms. They use simulated monthly data and 

aggregate these into half-yearly and annual data and look at how the estimates of the 

autoregressive term and autocorrelation functions change under aggregation. They report that 

the level of aggregation does not cause an upward bias of the parameter estimates, but as the 

aggregation has been applied to small samples, the probability of overestimating the lagged 

depended variable does increase. Also, they attribute the upward bias of the parameter 

estimates to misspecification of the model.  

 Second, it is recognized that aggregation can make the model to change. For example, 

when an autoregression of order 1 [AR(1)] is adequate to describe weekly data, then this 

model becomes an autoregressive moving average model of order 1,1 [ARMA(1,1)]. Russell 

(1988) argues that temporal aggregation of the data does not change the underlying 

advertising-sales relationship, but typically the model at the aggregated level is misspecified. 

To retrieve the micro-frequency parameters, one does need to know (or assume) how the 
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micro frequency model looks like. Recently, Tellis and Franses (2006) use this result to 

decide on the optimal level of aggregation, such that this retrieval is still possible.  

 A third response to aggregation issues, which has become possible given the recent 

availability of high frequency data, is to simply rely on models for the highest frequency. The 

seminal articles on high frequency models are Tellis, Chandy, and Thaivanich (2000) and 

Chandy et al. (2001). These studies indicate that high frequency models can be used as the 

basis for decision support systems in media planning as it pertains to the choice of optimal 

channels, time slots, and spot lengths. Also insights about the relative effectiveness of appeals 

and wear-in wear-out effects are obtained. Tellis and Franses (2006) use such high frequency 

data to show that the optimal data interval or aggregation level is the unit exposure time, 

which is the time interval in which consumers are typically exposed to a single advertising 

spot. These studies advocate the use of high frequency data, even if decisions have to be made 

at a more aggregated level. In our paper we will examine this issue in more detail.  

 Even though much of the literature is dedicated to the issue of aggregation and its 

effects on (functions of) parameter estimates, the focus rarely is on out-of-sample forecasting. 

As much of the use of econometric advertising models is for budgeting and strategy planning, 

most managers would require accurate forecasts for planning and decision making. Note that 

the planning and decision horizon does not necessarily match with the available data 

frequency. For example, managers may need to make budgeting plans for the next year, and 

hence require forecasts for the next year‟s sales level. Suppose a modeler has access to 

weekly data, then it is open for discussion whether a model for those weekly data is useful to 

forecast next year‟ total sales. Indeed, one may resort to aggregating the weekly data first to 

annual data, then make a model for these annual data and then create forecasts. On the other 

hand, one can also aggregate the weekly data to quarterly data, create forecasts and then 

aggregate those forecasts to annual forecasts.   

 It is the purpose of the present study to shed light on this managerially relevant issue. 

We first rely on simulations and after that we discuss at length a detailed empirical case. This 

case is actually very relevant for the company at hand who allowed us to use the data. As high 

frequency data, like hourly data, can show large variation due to potential outliers, we show 

that aggregation also impacts data transformation. Indeed, it is common to use for example 

the natural log transformation to dampen variation in, say, hourly data, but perhaps this 

transformation is less relevant for aggregated weekly or monthly data. Before we turn to an 

analysis of actual data, we first examine the outcomes of some simulation experiments.  
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3. A simulation experiment 

 

Consider an autoregressive model of order 1[AR(1)],  

 

ttt yy   1          (1)
 

 

and assume that the subscript t denotes the higher frequency level, in our artificial case, say 

this concerns months. The error term is assumed as white noise, implying that it is not 

predictable. In our simulation we assume that the error term is drawn from a standard normal 

distribution. We generate 1000 samples of 612 “months”, where the first 12 months are 

created to compensate for observations lost by start-up.  We consider three values for ρ, that 

is, 0.5, 0.8 and 0.9. The dataset is split in two parts. We have an estimation sample of size 480 

and the sample for evaluating out-of-sample forecasts consists of 120 observations. We 

consider three levels of aggregation, that is, the true micro model (monthly level) in (1), the 

quarterly level and the annual level. Aggregation is done by summing (per 3 or per 12) the 

monthly observations. As mentioned earlier, aggregation to quarters and years makes that we 

need to fit ARMA(1,1) models for the resultant quarterly and annual data. Like Windal and 

Weiss (1980), in those cases we shall use feasible generalized least squares [FGLS] for 

parameter estimation. The parameter ρ in (1) can be retrieved from the AR parameters in the 

ARMA models by taking the 3-root or 12-root of the relevant estimated autoregressive 

parameter.  

 

--- Insert Table 1 about here --- 

 

Table 1 shows the average estimated ̂  for the model in (1) for different levels of 

aggregation and true ρ values, as well as the estimated standard deviation of these estimates. 

For ρ= 0.5 and ρ = 0.8 we obtain average estimates of ̂ that are close to the true values.  As 

expected, and supported by the results for the yearly data, the reliability of the estimate for 

ρdecreases for higher aggregation levels since 12  is close to zero and thus ρ can be estimated 

with less precision.  

 

--- Insert Table 2 about here --- 
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Table 2 shows the forecasting accuracies in terms of root mean squared prediction 

error (RMSPE) for the three levels of aggregation. “Monthly Aggregated” refers to months-

ahead forecasts, aggregated to either quarters or years. These are calculated in order to 

compare with the forecasts based on longer horizons. The table includes the RMSPEs for the 

case where the parameter is not estimated but set fixed at the true value (like, ρ = 0.5 in the 

first panel), then the case where ρis estimated (“Monthly”), then the case where the monthly 

forecasts are aggregated to quarterly or yearly forecasts, and finally two sets of two forecasts 

where the data are aggregated first and then modeled, after which forecasts are made.   

Table 2 shows that the forecasting accuracy decreases with the level of aggregation. 

This can be seen from comparing the numbers across the columns with headers monthly, 

quarterly and yearly. We also see that forecasts from monthly data, and then aggregated to 

quarterly or yearly forecasts, are about equally good or sometimes even slightly better than 

the forecasts created from comparable aggregate models. For example for ρ = 0.5, consider 

the 2.50 in the row with “monthly” and the column with “quarterly data without correction”, 

and compare it with the 2.59 or 2.64 two cells down in the same column.  

The benefit of modeling at the micro frequency is clear. Further, FGLS estimation has 

little effect, and also the MA term correction is not very effective. For yearly aggregates, 

accuracy even further decreases. The MA term correction in the model for quarterly and 

yearly data improves the predictive accuracy of the forecast of the FGLS estimation only 

marginally. In sum, we would conclude that the loss in efficiency due to aggregation is larger 

than the loss in forecasting accuracy for higher frequency data 

Increasing  (0.8 or 0.9) leads to larger RMSPE values, as the variance of the data 

increases. However, the overall conclusion remains the same, and that is that models for 

higher frequency data give forecasts for aggregated data that are superior to forecasts from 

models for aggregated data. Again, applying the MA correction in the forecasts provides little 

benefit to the forecasting accuracy. So, if one has high frequency data it is better use these 

also for forecasting more aggregated data. Whether this simulated evidence gets support from 

actual empirical data will be studied in the next section.  

 

4. Actual data 

 

In this section we analyze data relating to a car repair service provided by a multinational. We 

consider three different areas where data are collected and these are Flanders (the Dutch-
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speaking part of Belgium), Wallonia (the French-speaking part of Belgium), and Spain. A 

national call center, for Belgium and Spain separately, collects all requests for information 

and service appointments from consumers. The Spanish market runs on similar principles, but 

the operations are different with respect to operating hours. Of course, media plans and 

communication channels are totally different in each of the three areas. The dependent 

variable is the number of incoming calls received by the call center. Table 3 gives an 

overview of the three datasets, where the high frequency data concern hourly data. 

 

--- Insert Table 3 about here --- 

. 

 In all cases the company relies mainly on radio advertising and only to a limited extent 

on television advertising (in Belgium, not in Spain). There is no comparable service 

advertised at the national level, and therefore the data are very well suited for the analysis of 

advertising effects. There is little or no variation in the advertising themes, but the core 

message used is framed in different formats or spot lengths.  

For the Flanders region (data set 1), the calls data cover the period from October 2004 

to June 2007. Our analysis is performed on data at hourly intervals (23880). There are a total 

of 6144 radio spots and 252 television spots. Television advertising occurs in 2006 and 2007 

only.  

For the Walloon region (data set 2), the calls data cover the period from January 2005 

to June 2007. Thus, this Data set 2 has 21672 data points, from January 2005 to June 2007. 

There are a total of 7432 radio spots and 330 television spots. Again, television advertising 

occurs in 2006 and 2007 only.For radio 20 seconds spots are used predominantly, and other 

spot lengthsare used much less. For television there is a relatively large number of 5 seconds 

spots, and these are so-called „sponsoring spots‟ associated with the weather forecasts. 

For Spain (data set 3), the available data cover the period from January, 1 2004 to 

June, 30 2006, with a two-week period missing in between, as Figure 1 shows. For this 

market we have data for 9251 hours. In the observation period, 4,827 radio commercials were 

broadcasted on twenty-five radio stations.Mostly 60 seconds commercials were used. Spots at 

8 AM were often used. The distribution of broadcasts is more or less equal over the 

weekdays.In the dataset, commercials start at 6 AM. The call centre startsto operate from8 

AMuntil 8 PM, with shorter service hours on Saturdays, wile it is closed on Sundays. As a 

result, the call centre operates 70 hours per week.  
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 The advertising strategy of the company makes use of „pulsing‟. This means that there 

are weeks in which all advertising is scheduled and these are alternated with non-active 

weeks. Table 3 shows that approximately one third of the weeks are a week with 

commercials, with average GRP levels equal to 237 for data set 1, 312 for data set 2 and 249 

for data set 3. 

 

--- Insert Figure 1 about here --- 

 

Figure 1 shows the evolution of the incoming calls (the “sales”) in the three areas. The 

number of daily incoming calls for the data sets 1 and 2 are approximately equal, while the 

market size of data set 3 is substantially higher.  

 

--- Insert Figure 2 about here --- 

 

The three panels in Figure 2 show the average incoming calls levels of the three call 

centers on hours with advertising, contrasted with hours without advertising. There is a highly 

similar intraday pattern. Peak callsoccur between 8AM and 9AM, and a smaller peak occurs 

early afternoon around 2PM. 

 

--- Insert Table 4 about here --- 

 

Table 4 provides a summary of the average radio GRPs per hour of the day. The radio 

commercials are most often broadcasted between 6AM and 8PM and average GRPs vary 

between 0.70 and 11.52. For data set 1, the GRPs are highest at 7AM. For the data sets 2 and 

3 the maximum valuesare at 8 AM. 

Next, we will analyze these hourly data using multi-level models. After that, we will 

aggregate to the daily and weekly levels and accordingly fit models and create forecasts. 

 

 

5. Two-level models for hourly data 

 

To properly capture the substantial variation of the data at the hourly level, we resort to a two-

level regression model. In short, we treat the hour within the day as the observation unit, so 
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we will deal with sales denoted as thY , , where subscript h denotes the hour and t denotes the 

week. As such, we have a panel of time series, where the panel consists of 168 units and the 

time frame covers 143, 130 and 88 weeks, respectively (see Table 3). For this panel we 

choose to consider the Linear Mixed Model [LMM] (see for example Verbeke and 

Molenbergh, 2000), where the model reads as  

 

hthh

thhthth

bWb

with

bZY









,

,,,

         (2) 

 

In words, the first level contains parameters that can possibly vary across the hour of the day 

(h), and the second level correlates those parameters to characteristics of the particular hours 

incorporated in thW , . As such, this model allows capturing the substantial variation in the data 

that is present at this highly disaggregated level.  

 After some experimentation, we fix the first level of the three models as  
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 (3) 

 

where the variables in this first-level model are defined as 

 

 )1log( ,,  thth CallsY , where h runs from 1 to 168 and where t  runs from 1 to T; 

 )1log( ,,  thth RadioGRPR  

)1log( ,,  thth TVGRPTV
 

52

2
cos,

52

2
sin

tt 

are harmonic or goniometric regressors, capturing the intra-year 

seasonality in the data 
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and where thTVD , denotes the log of the total amount of TV GRPs during the previous day. 

Note that this last variable takes the same value for 24 hours in a row.  

 The second-level equations allow for distinct specifications across the three data sets 

They include time variation in the coefficients across the hour of the week or the day. For 

example, it is found in all three samples that autocorrelation varies substantially, with a short 

cycle of one day. For the advertising coefficients the time variability is less pronounced. The 

characteristics of advertising spots, length and channel are included in order to detect 

differences in advertising effectiveness. 

 The intercept term in each dataset is given by equation (4), with the relevant samples 

identified between parentheses, that is, (1,3) for samples 1 and 3, (2) for sample 2. 
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where hd is the hour of the day (1,2,...24),.and hh is similar but becomes repetitive after 12 

hours (1,2,..12,1,2,..12,..).This cycle with 12 hour frequency is also used in a quadratic form. 

d

hD
 
is a zero-one dummy variable which takes a value 1 for day d with 1d meaning a 

Monday.  
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For the second-order autoregressive term we specify  

 

  

0,2,2

7

1

,,2

7

1

,,20,2,2

)3(

24

2
cos

24

2
sin)2,1(











 


h

d

d

hcd

d

d

hsdh

hd
D

hd
D

   (6) 

 



 

11 

 

The third-order autoregressive term is specified as constant for data sets 1 and 2. For data set 

3 it is modeled by means of harmonic regressors with a one day cycle. So, we have 
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In all three samples, the two further autoregressive terms are modeled as 

 

 hh ,20,24,24            (8) 

 

and 

 

 hh ,30,168,168            (9) 

 

For the regressors concerning the commercials on radio and television we have for all three 

data sets the following second-level equations,  
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where jhFC ,   is the fraction of radio GRPs per channel j and ihFL , is the fraction of radio 

GRPs per spot length i. For the first television variable we specify 
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where jhFTV ,  is the fraction of television GRPs per channel j and hdhD , is a zero-one dummy 

variable indicating the hour of the day within a day.   

  For the next day television variable we specify 
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where jhTVDC ,  is the fraction of television GRPs per channel j during the previous day, 

ihTVDL , is the fraction of television GRPs per spot length. 

 Finally, for the annual seasonality, we specify for data set 1 
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while for data sets 2 and 3 we simply set ss

h 0   and cc

h 0  . 

 The independent variables relate to the media schedule (time of broadcast, channel and 

length or equivalently the theme of a spot).  In principle, all equations could be specified with 

a random error. However, this makes the model too complex which makes us to run into 

estimation problems. The specific second-level equations have been set based on trial and 

error. We tried various alternative forms of these equations, but the current ones turned out to 

be most adequate in terms of in-sample fit.   

 

6. Alternative models 

 

Additional to the model in the previous section, we consider more traditional Autoregressive 

Distributed Lag (ADL) models for the data at three aggregation levels, that is, hourly, daily 

and weekly data. The preferred model for the hourly data however is the model presented in 

the previous section. This model allows for heterogeneity across hours within a week, and as 

such is very useful to capture variation in the data. 
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 In the two level (hourly) model a logarithmic specification is used. However, the 

transformation to logarithms is not necessarily appropriate for all levels of aggregation. We 

rely on the Box-Cox transformation to capture the non-stable variance in the data. This 

transformation is given by 
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For a single-level model for hourly data Y (in levels), where now h runs from 1 to the total 

number of hours as is indicated in Table 3, we specify 
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where 

 
1 hh CallsY  

 1 hh RadioGRPR  

 1,  thh TVGRPTV
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and hjRC , are the radio GRPs per channel j, hiRL , are the radio GRPs per spot length i, while 

for television the similar variables are hjTVC ,  and hiTVL , , and hdhD , is a dummy for hour hd 

of a day while khH ,  is a dummy for hour h in the week. 

 This model is similar to the model in Tellis, Chandy, and Thaivanich (2000), where 

they also have hourly data, but there they consider referrals to health care services. Model 

(18) allows a substantial degree of heterogeneity through the hourly dummies affecting the 

intercept, but also in the effect of explanatory variables. Note that the simulation results in 

Table 2 motivated us not to explicitly include MA terms. 

 The model for daily data reads as   
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where TdD , is the day of the week. Finally, the model for weekly data is    
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In the next section we will consider and compare the models in Section 5 with (18), (19) and 

(20), where we also provide the estimates for the Box-Cox parameter.  

 

 

7. Estimation Results 

 

To compare the various models of interest we consider their forecast accuracy, like in the 

simulations, and we also consider the estimates of the impact per GRP for the various models.  



 

15 

 

 

--- Insert Table 5 about here --- 

 

 We begin with the model in Section 5. The (5% significant) parameter estimates are 

displayed in Table 5, for data set 1. The estimation results for the other two data sets can be 

obtained from the authors, and are not given here to save space. Clearly, these estimation 

results show the relevance of the two levels model. The parameters show strong variation 

across the hours, in particular for the first order autoregressive parameters.   

 

--- Insert Table 6 about here --- 

 

 When we estimate the models in (18), (19) and (20), the estimated Box-Cox 

parameters obtain the values as they are presented in Table 6. As expected, the estimated 

values get closer to 0 for the higher frequency data and closer to 1 for the aggregated data, 

like weeks. This pattern is rather consistent across the three data sets.  

  

--- Insert Table 7 about here --- 

 

Table 7 shows (part of the) estimation results of the model for the hourly data in (18), 

for the logarithmic model, equivalent to the Box-Cox parameter equal to zero. The estimation 

results in this table can be compared to those in Table 5. When we compare the parameters for 

the GRP variables, we do see quite some differences across the tables. Below, we shall 

examine to what extent these differences matter for the impact of GRPs.  

 

--- Insert Table 8 about here --- 

 

To highlight some of the crucial differences across the estimated models (18), (19) and 

(20), consider the estimated parameter concerning the weekly lag in Table 8. For the model 

for hourly data this corresponds with lag 168, and for the model for daily data it concerns lag 

7. Note that this parameter is crucial for computing the decay rate of advertising impact. As 

expected, given the seminal work of Clark (1976) and others, this parameter increases with 

lower frequency. To illustrate, consider for data set 1 and no transformation the parameter 

0.090 for the hourly data. Clearly the decay rate for the hourly data is different from that for 



 

16 

 

the weekly data, where the relevant parameter is 0.371. Hence, advertising seems to last 

longer when weekly data are considered.  

 

--- Insert Tables 9, 10 and 11 about here --- 

 

The effectiveness per GRP is related to segmentation and targeting effectiveness 

across channels. We obtain one-week-ahead total impacts from simulating the process at the 

middle of each sample. Tables 9, 10 and 11 show the total incremental calls per GRP for the 

models in Section 5 and (18), (19) and (20).  The main conclusion is that these numbers can 

be strikingly different across models and aggregation levels. Most consistent results are 

obtained for the models using hourly data particularly when comparing the LMM model in 

Section 5 is used to the logarithmic ADL model in (18). 

 

--- Insert Table 12 about here --- 

 

 Finally, in Table 12 we report the predictive accuracy of the models for hourly, daily 

and weekly data, when the aim is to forecast hours, days and weeks. The first panel shows 

that the model in (18) performs best to forecast hourly data. Interestingly, the second panel 

shows that this model also performs best when forecasting days ahead. It does better across 

the models for hourly data, but it also outperforms the models for daily data. Approximately 

similar results are obtained when it comes to forecasting weeks ahead. 

 

8. Conclusion and discussion 

 

The main conclusion that we draw is this paper is that the answer to the question in the title of 

this paper is that one should not aggregate! Simulations and a detailed case study (for three 

data sets) strongly support the recommendation that it is better to fit models to high frequency 

data and to aggregate the associated forecasts rather than aggregating first. It is not 

recommended to aggregate high frequency data first, design models for these aggregated data 

and compute forecasts. A second finding is that, as the aggregation level increases, the 

specification changes from logarithmic at hourly level, to a square root transformation at the 

daily level, to approximately linear at the weekly levels.  

 The results in our paper in general support the notion that high frequency data deserve 

to be analyzed. The models for these high frequency data give parameters that provide the 
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proper interpretation in terms of decay rates and short-run effects of advertising, and, as we 

have shown, also provide better forecasts for any policy horizon of interest. In general, our 

study supports the modeling exercises in Tellis, Chandy, and Thaivanich (2000), Chandy et al. 

(2001) and Tellis and Franses (2006), where it is generally recommended to analyze at the 

most detailed level possible. Aggregation removes useful information and also provides less 

accurate forecasts.  

 The natural limitations to our study concern the simulation design and the empirical 

data at hand. More simulations can be done, also for various alternative data generating 

processes, and also more actual data sets can be analyzed. Additional further work is also 

relevant by analyzing other elements of the marketing mix, like pricing and promotions. At 

present, most models rely on weekly data, and perhaps also there one could benefit from an 

analysis of less aggregated data.  
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Table 1:  

The average estimated ̂  for the model in (1) for different levels of aggregation and true 

ρ values, as well as the estimated standard deviation of these estimates 

 

 True parameter ρ 

Estimation method 0.5 0.8 0.9 

OLS for monthly data 0.50 

(0.039) 

0.80 

(0.028) 

0.90 

(0.021) 

FGLS for quarterly data 0.42 

(0.154) 

0.79 

(0.036) 

0.90 

(0.024) 

FGLS for yearly data 0.12 

(0.283) 

0.47 

(0.407) 

0.86 

(0.167) 
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Table 2:  

Root mean squared predictions errors for various models for various levels of 

aggregation.  

True 

ρ 

Method Monthly 

Data 

Quarterly 

Data 

 Yearly 

Data 

 

 Correction MA NA Without With Without With 

0.5 ρ = 0.5 1.00 2.62 2.59 6.37 6.36 

 Monthly 1.00 2.50  6.29  

 Monthly 

Aggregated 

 1.73  3.39  

 Quarterly (OLS)  2.59 2.63 6.36  

 Quarterly (FGLS)  2.64 2.60 6.38  

 Yearly (OLS)    6.41 6.53 

 Yearly (FGLS)    6.43 6.39 

0.8 ρ = 0.8 1.00 3.54 3.46 13.50 13.30 

 Monthly 1.00 3.17  12.20  

 Monthly 

Aggregated 

 1.73  3.40  

 Quarterly (OLS)  3.50 3.49 12.63  

 Quarterly (FGLS)  3.56 3.47 12.63  

 Yearly (OLS)    13.40 13.64 

 Yearly (FGLS)    13.64 13.52 

0.9 ρ = 0.9 1.00 3.89 3.81 19.88 19.43 

 Monthly 1.00 3.44  16.82  

 Monthly 

Aggregated 

 1.73  3.42  

 Quarterly (OLS)  3.87 3.83 17.66  

 Quarterly (FGLS)  3.91 3.82 17.63  

 Yearly (OLS)    19.70 19.87 

 Yearly (FGLS)    20.13 19.71 
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Table 3:  

Characteristics of the three actual data sets 

 Datasets 

Feature 1 2 3 

 Flanders region Walloon region Spain 

Sample 01-10-2004 

22-06-2007 

01-01-2005 

22-06-2007 

01-01-2004 

30-06-2006 

Number of hours 23880 21672 9251 

Number of days 995 903 608 

Number of weeks 143 130 88 

Number of weeks with 

commercials 

48 43 37 

Number of radio spots 6144 7432 4827 

Number of TV spots 252 330 0 

Call center operating hours 168 168 70 
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Table 4: Average radio GRPs per hour of the day 

Dataset1 

Hour 6 7 8 9 10 11 12  

GRPs 6 14 7 6 6 6 11  

Spots 45 201 154 141 153 130 169  

Hour 13 14 15 16 17 18 19 20 

GRPs 3 2 4 6 3 4 2 1 

Spots 33 17 34 51 94 133 85 9 

Dataset 2 

Hour 6 7 8 9 10 11 12  

GRPs 5 15 16 11 13 10 7  

Spots 54 181 161 75 113 109 98  

Hour 13 14 15 16 17 18 19 20 

GRPs 10 12 2 4 3 3 7 0 

Spots  126 2 13 70 82 64 39 0 

Dataset 3 

Hour 6 7 8 9 10 11 12  

GRPs 9 9 36 6 2 2 2  

Spots 87 127 177 68 37 25 19  

Hour 13 14 15 16 17 18 19 20 

GRPs 4 3 1 2 1 3 1 1 

Spots  20 88 1 17 5 12 3 6 
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Table 5:  

Estimation results for LM model for data set 1 (for the other data sets the estimation 

results can be obtained from the authors) 

Second level Parameter Estimate Standard 

error 

Second level Parameter Estimate Standard 

error 

Intercept 
0  0.520 0.019 Current Radio 

GRP 

0

0  NS  

 
1  -0.290 0.017  0

2  0.050 0.018 

 
2  -0.420 0.018  0

4  0.060 0.024 

 
5,3  0.030 0.020  0

5  0.060 0.030 

 
6,3  0.030 0.020 1 hour lag 1

0  0.020 0.008 

First-order 

lag 
0,1  0.219 0.013  1

4  -0.070 0.028 

 
s,1,1  -0.132 0.044  1

5  -0.070 0.040 

 
c,1,1  -0.337 0.041     

 
s,2,1  -0.095 0.048 2 hours lags 2

0  NS  

 
c,2,1  -0.260 0.044  2

1  0.070 0.024 

 
s,4,1  -0.060 0.046 Current TV 

GRP 

0

0  0.280 0.063 

 
c,4,1  -0.280 0.042  0

1  -0.110 0.071 

 
s,5,1  -0.090 0.045 hour of day 0

2  -1.260 0.562 

 
c,5,1  -0.260 0.043  0

3  -5.470 4.577 

 
sss ,7,1,6,1,3,1  

 

-0.020 0.026  0

4  6.320 5.118 

 
ccc ,7,1,6,1,3,1  

 

-0.080 0.025  0

18  -0.210 0.133 

Second-

order lag 
0,2  0.100 0.008 1 day lag d

0  0.020 0.006 

Third-order 

lag 
0,3  0.080 0.008  d

2  -0.030 0.012 

One-day lag 
0,24  0.050 0.010 Seasonality s

0  0.030 0.017 

One-week 

lag 
0,168  NS   s

1  0.010 0.007 

     s

2  -0.001 0.001 

     c

0  0.050 0.014 

     c

1  -0.040 0.006 

     c

2  0.003 0.000 

Note: NS means “not significant”
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Table 6:  

Estimated Box-Cox parameters (with standard errors) for the models (18), (19) and (20)  

 Dataset 

Frequency 1 2 3 

Hours 0.192 

(0.005) 

0.223 

(0.006) 

0.644 

(0.009) 

Days 0.497 

(0.048) 

0.592 

(0.066) 

0.683 

(0.035) 

Weeks 1.551 

(0.010) 

0.974 

(0.272) 

1.000 

(0.029) 
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Table 7:  

Selected Estimation results of model (18) for hourly data in logarithms 

Variable Parameter estimate (standard error) 

Intercept 0.609 (0.040) 

AR term, 1 hour lag 0.236 (0.008) 

AR term, 2 hours lag 0.139 (0.008) 

AR term, 3 hours lag 0.079 (0.008) 

AR term, 24 hours lag 0.094 (0.007) 

AR term, 168 hours lag 0.092 (0.007) 

Radio GRP, current hour -0.009 (0.040) 

Radio GRP, 1 hour lag -0.077 (0.041) 

Radio GRP, 2 hours lag 0.023 (0.041) 

TV GRP, current hour -0.106 (0.264) 

TV GRP, 24 hours lag 0.018 (0.006) 

Yearly sinus function 0.080 (0.007) 

Yearly cosine function -0.039 (0.006) 
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Table 8:  

Estimates of the parameter (and associated standard error) for the weekly lag (168 for 

hourly data, 7 for daily data and 1 for weekly data), based on models (18), (19) and (20) 

  Dataset 

Transformation Frequency 1 2 3 

None 

Hours 0.090 

(0.007) 

0.084 

(0.008) 

0.237 

(0.008) 

Days 0.135 

(0.038) 

0.212 

(0.040) 

0.051 

(0.040) 

Weeks 0.371 

(0.094) 

0.736 

(0.069) 

0.683 

(0.066) 

Box – Cox 

Hours 0.092 

(0.007) 

0.089 

(0.007) 

0.208 

(0.008) 

Days 0.208 

(0.038) 

0.242 

(0.040) 

0.250 

(0.038) 

Weeks 0.684 

(0.021) 

0.719 

(0.058) 

0.769 

(0.063) 
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Table 9:  

Average total impact per GRP, the case of data set 1 

Frequency Model Channel 

  1 2 3 4 5 6 

Hours 

LMM logs 0.88 1.90 0.88 2.04 2.09 0.88 

ADL logs 0.59 1.06 0.59 0.77 0.86 0.59 

ADL linear 1.11 -0.21 -1.11 0.96 -0.10 -1.11 

ADL Box-Cox 0.38 0.94 0.38 0.82 0.86 0.38 

Days 

ADL logs 0.57 2.25 -1.31 7.15 1.20 -1.31 

ADL levels -0.93 2.47 -0.47 2.53 1.62 -0.47 

ADL Box-Cox -0.82 2.82 -1.53 4.56 2.23 -1.53 

Weeks 

ADL logs 153 -245 -264 -192 -248 -264 

ADL linear 4.52 3.71 -0.73 5.49 0.94 0.73 

ADL Box-Cox 0.43 0.85 0.05 0.77 0.37 0.05 
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Table 10:  

Average total impact per GRP, the case of data set 2 

Frequency Model Channel 

  1 2 3 4 5 

Hours 

LMM logs 3.48 3.48 2.59 3.48 3.48 

ADL logs 1.03 1.03 1.06 1.03 1.03 

ADL linear 0.63 0.63 0.24 0.63 0.63 

 ADL Box-Cox 1.04 1.04 0.97 1.04 1.04 

Days 

ADL logs 8.33 38.2 11.7 2.45 8.33 

ADL linear 3.98 32.7 0.59 -4.94 3.98 

ADL Box-Cox 41.4 61.9 38.5 35.1 41.4 

Weeks 

ADL logs 10.0 28.2 30.4 50.3 NA 

ADL linear 6.01 10.3 0.76 -4.50 6.01 

ADL Box-Cox 6.33 6.33 1.13 -4.87 6.33 
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Table 11:  

Average total impact per GRP, the case of data set 3 

Frequency Model Channel 

Hours 

LMM logs 2.59 

ADL logs -2.08 

ADL levels -17.2 

ADL Box-Cox -10.3 

Days 

ADL logs 39.9 

ADL levels 2.19 

ADL Box-Cox 6.18 

Weeks 

ADL logs 137 

ADL levels 2.35 

ADL Box-Cox 2.35 
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Table 12: 

Forecast performance, in terms of Root Mean Squared Prediction Errors (underlined 

are the smallest numbers, in the columns) 

  Dataset 

Frequency Model 1 2 3 

  Forecast horizon: hours ahead 

Hours 

LMM logs 5.07 4.62 22.24 

ADL logs 4.94 4.40 29.84 

ADL Box-Cox 4.78 4.29 23.04 

 Forecast horizon: days ahead 

Hours 

LMM logs 89.2 71.0 455 

ADL logs 69.8 56.6 303 

ADL Box-Cox 60.4 53.1 222 

Days 
ADL logs 75.3 56.0 362 

ADL Box-Cox 76.1 54.0 301 

 Forecast horizon: weeks ahead 

Hours 

LMM logs 400 301 1680 

ADL logs 328 292 1500 

ADL Box-Cox 214 266 1001 

Days 
ADL logs 338 171 1676 

ADLBox-Cox 274 172 1323 
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Figure 1: Weekly Incoming Calls 
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Figure 2: Average calls in weeks with and without commercial activity 
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