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April 1988, excess mortality of seals was observed on Anholt, a small Danish island in the 

Kattegat17. This announced the start of an epidemic that killed between 18 000 and 23 000 seals 

in European waters in 1988, mostly harbour seals (Phoca vitulina)17,28. The cause of this mortality 

was initially unknown, but through intensive research during the epidemic was shown to be a 

novel morbillivirus,  subsequently named ‘phocine distemper virus’ (PDV)13,43,48. 

May 2002, excess mortality of seals was again observed on Anholt. This time, PDV was a known 

virus, and laboratory tests were available to rapidly confirm the diagnosis34. Because PDV was 

immediately diagnosed, and both sero-monitoring of harbour seals34,67 and models14,23 had 

predicted a highly susceptible harbour seal population in 2002, decision makers were easily be 

made aware of the likely impact the disease would have on the harbour seal population and the 

need to prepare for the event and monitor it.

It turned out the Netherlands would have five weeks to prepare for the epidemic: the 1st case of 

PDV was diagnosed on June the 16th 200258. The Ministry of Agriculture, Environment and Food 

Quality took the coordination, consulting parties involved in seal conservation and care (e.g., 

Seal Research and Rehabilitation Centre SRRC, EcoMare) or wildlife health research (Department 

of Virology of the Erasmus MC, Dutch Wildlife Health Centre), as well as governmental coastal 

and island institutions (e.g., municipalities, coastguard) and others (e.g., rendering facilities) and 

taking the final decisions on the outbreak management and monitoring strategy. 

The management and monitoring strategy set out was as follows. First, all stranded seals were to 

be reported to a hotline managed by the Ministry of Agriculture, Environment and Food Quality, 

providing a daily update on numbers of seals found stranded in different locations for outbreak 

monitoring. Second, live stranded seals were to be reported to seal rehabilitation centres, and 

these could then collect them and take them into care. Third, dead seals were to be collected by 

municipalities, coast guards, SRRC and Ecomare from all coasts with exception of the protected 

nature areas Rottumeroog-Rottumerplaat. These carcasses would subsequently be destroyed in 

rendering plants using high temperatures to destroy the environmental contaminants that can 

concentrate in seal blubber. This was mainly a precautional sanitary and a touristic comforting 

measure, the Wadden Sea being an important recreational area in the summertime. 

Prior to seal carcass destruction in rendering plants, necropsy was carried out. In 1988, there 

had been no systematic necropsy of seals stranded in the Netherlands, and published data on 

the epidemiology, pathology and toxicology are scarce. Elsewhere, the 1988 epidemic had been 

better documented as summarized below.  
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Harbour seals and grey seals  

Two seal species breed in The Netherlands: the harbour seal and the grey seal (Halichoerus 

grypus). Both haul out on sandbanks and on inter-tidal flats along tidal channels of two 

estuarine ecosystems, the Dutch Wadden Sea with its islands in the North, and the Delta area in 

the Province of Zealand in the South56,74. 

Harbour seals reach sexual maturity around three to four years of age for females and around 

four to five years of age for males. They have a maximum life span of around 35 years10,74. Births 

are grouped. In the Netherlands, the first pups are born at the end of May and the whelping 

period lasts about 37 days54. Pups swim within hours of birth. The lactation period is three 

to four weeks45. The mating period starts after pups have been weaned, and fertilization is 

followed by a delayed implantation of about two and a half months10,74. Harbour seals feed 

on a variety of fish, including flatfish (Pleuronectiformes, e.g., the flounder Platichthys flesus), 

gadids (Gadiformes, e.g., whiting Merlangius merlangus), and Clupeiformes (e.g., herring Clupea 

harengus), and crustaceans74,77. Maximum recorded diving depth is 508 m7, and maximum 

recorded duration of breath-hold 31 min58.  Harbour seals moult in the summer. Usually, moult 

starts in yearlings, followed by sub-adults, then adult females and last adult males10,69,74. In 

the summer, when harbour seals breed and moult, they appear to maintain more or less site 

fidelity57,74. They haul out more frequently than in the winter, when they spend more time 

foraging in the North Sea42. Numbers are therefore counted in the summer, and the proportion 

of seals on land is thought to represent about two-thirds of the population56. 

Grey seals are sexually dimorphic. Grey seals reach sexual maturity around three to five years of 

age for females and around six years of age for males. Females show high fidelity to whelping 

sites, and give birth between September and March, depending on the site where they breed24.  

In the Dutch Wadden Sea this is December-January. The lactation period is around 18 days, 

during which the pup can quadruple in weight. After weaning, it fasts from 10 days up to one 

month, loses its lanugo and develops its diving ability24. The mating period starts after pups 

have been weaned. Fertilization is followed by delayed implantation of about four months10,24. 

Grey seals feed on a variety of fish species, including sandeel and flatfish, and cephalopods24. 

Dives greater than 300 m have been recorded24 and maximum recorded duration of breath-hold 

is 32 min7. Grey seals haul out to moult approximately around the time of implantation, and 

maximum numbers are then counted (March-April in the Netherlands). 

Worldwide, harbour seals are widespread, found over a latitudinal range of about 30°N to 80°N 

in the North Atlantic and 28°N to 62°N in the North Pacific. There are five different subspecies. 

The two subspecies present in the largest numbers in the North Atlantic are P. v. vitulina in the 

eastern Atlantic (approximately 100 000 in mid 1980s) and P. v. concolor in the Western Atlantic 

(40 000-100 000 in early 1990s), the boundary between them being unknown10.The range of 
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the grey seal is more restricted, but not its numbers: at the turn of the 21st century, there were 

around 130 000 in the mid and eastern Atlantic and Baltic, and over 150 000 in the western 

Atlantic24.

Along the Dutch coast, there were several thousands of harbour seals at the turn of the 20th 

century. Their numbers subsequently plummeted to reach minimum numbers of 450 in the 

Dutch Wadden Sea in 197851 and of 16 in the Delta area in 198152. This was a result of hunting 

(which was only banned in the Netherlands in 1962), habitat limitation, and poor reproduction 

(presumably due to environmental contaminants and human disturbance)51-53. After that, the 

population started to recover and in 1987, before the 1988 epidemic, 966 harbour seals were 

counted in the Dutch Wadden Sea17. 

Grey seals were historically present along the Dutch coast but were not observed there in 

the 20th century until the 1950s. It was only in 1985 that they established a breeding colony 

between the Wadden Sea islands of Vlieland and Terschelling55,73.  In 1987, before the 1988 

epidemic, 71 grey seals were counted in this breeding colony71. 

Morbillivirus species 

Morbillivirus species belong to the Morbillivirus genus, Paramyxovirinae sub-family, and 

Paramyxoviridae family. They are enveloped, single-stranded, negative-sense RNA viruses. The 

genome comprises six genes, which encode eight proteins: the nucleocapsid protein (N), the 

phosphoprotein (P) and the two non-structural proteins C and V encoded through alternative 

reading frames of P, the matrix protein (M), the fusion glycoprotein (F), the haemagglutinin 

glycoprotein (H), and, lastly, the large protein (L). M, H, and F form the envelope of the virion. 

H binds to cellular receptors. H elicits a neutralizing antibody response. The H gene is one of 

the most variable parts of the genome. F, activated by cleavage by cellular protease, and in 

association with H, mediates the fusion of the viral envelope with the plasma membrane. F is 

essential for viral infectivity and for direct cell-to-cell spread, and the F gene is one of the most 

stable parts of the genome. The nucleocapsid of the virion, made of N, P, and L, bound to the 

RNA, is liberated by the fusion of the viral envelope with the plasma membrane. The genome 

is transcribed progressively by the virion-associated RNA-dependent RNA polymerase into 

six discrete unprocessed mRNAs by sequential interrupted synthesis from a single promoter. 

Full genome-length positive-sense RNA is also synthesized, and serves as a template for the 

replication of negative-sense genomic RNA47. 

There are eight known morbillivirus species today: measles virus (MV), rinderpest virus (RPV), 

peste-des-petits-ruminants virus (PPRV ), canine distemper virus (CDV), phocine distemper vi-

rus (PDV), dolphin morbillivirus (DMV), porpoise morbillivirus (PMV), and pilot whale morbil-

livirus (PWMV ; Figure 1).  The latter five are known to have infected marine mammals, and the 
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latter four were discovered in the last three decades13,18,22,37,39,40,43,48,67,76. Phocine distemper virus is 

phylogenetically most closely related to CDV34. 

The potential for cross-species transmission is not uncommon for morbillivirus species. During 

RPV or CDV epidemics involving multiple hosts species, sequence data of viral gene-fragments 

obtained by reverse-transcriptase polymerase chain-reaction (RT-PCR) suggested the same 

strain was infecting the different host species4,11,33. To date, to the best of out knowledge, PDV 

has been isolated only from harbour seals49  and from mink (on a mink farm near sea in Denmark,  

presumably infected by contact with material from dead PDV-infected seals), though there was 

evidence of PDV transmission among grey seals27.

Epidemiology 

During the 1988 PDV epidemic, the seals found stranded were mainly harbour seals. Grey 

seals rarely stranded despite their large numbers in the eastern Atlantic and Baltic17,26,31. 

There was however evidence of seroconversion in some grey seal populations12 and the grey 

seal pup production in 1989 was lower by 6% to 24% compared to 19882,19,30. The greater 

susceptibility of harbour seals than grey seals to PDV infection was later confirmed 

experimentally19. 

In different areas of the North Sea, the PDV epidemic started and peaked at different times. After 

the island of Anholt,  the infection started to occur in other areas in the Kattegat in April-May 

1988; in the Skagerrak, the Danish and Dutch Wadden Sea in May; in Limfjorden, the German 

Wadden Sea and the Western Baltic in June; in Norway and the Southwestern Baltic, as well as 

in the U.K. and Ireland in August and September17. In most localities, the epidemic lasted about 

Artiodactyla
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PPRV

CDV                 

PDV

Primates

Carnivora

CetaceaMV

PWMV
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two months, but in the Netherlands it was lengthier (115 days), the index case occurring on 22 

May 1988, and the date of the median case being reached on 4 September17. These temporal 

differences in the occurrence of the local epidemics were presumed to be due to the moment of 

local introduction of the infection, as dispersal rate of the disease was inversely proportional to 

the distance between afflicted seal herds30.

The overall number of seals stranded along the European coasts in 1988 was around 18 000, 

estimated to correspond to approximately 23 000 deaths31. In the Netherlands, 417 harbour 

seals were reported dead, and no grey seals17. Estimated mortalities ranged from 10% to 60% 

among areas31. These spatial differences in mortality were hypothesized to  be due to differences 

in contact rates (exposure) or differences in susceptibility to fatal disease after infection23,31. 

The harbour seal strandings in 1988 showed particular sex and age patterns. In the eastern North 

Sea (Kattegat, Skagerrak), from June to August 1988, the proportion of males that stranded 

increased, and in total more males than females stranded30. In the U.K., from July to December 

1988, males also dominated in stranded seal samples26. In the eastern North Sea, the disease 

was assumed to have wiped out the entire 1988-year class, and among those older than eight 

months to have affected the mature seals more than the immature30. In the U.K., seals born in 

1988 were underrepresented in the stranded seal sample, possibly due to lack of exposure26,29. 

The sex-age patterns too were hypothesized to be due to differences either in exposure or in 

immunocompetence.

The source of the virus led to much speculation. Prior to the 1988 epidemic, hardly any 

harbour seals in the North Sea had antibodies to morbillivirus species50. Therefore it was assumed 

that the infection was introduced by another species. In subsequent retrospective studies, 

antibodies against morbillivirus species were commonly demonstrated in samples taken 

before 1988 from pinnipeds in the Arctic, including harp seals (Phoca groenlandica), and along 

North-west Atlantic coastline. Barents Sea harp seals had made an exceptional southward 

movement with incursion into the North Sea waters in the winter of 1987-198817. Noteworthy is 

the presence of neutralising antibodies against PDV in a third of the harbour seals and more than 

two-thirds of the grey seal sampled along the east coast of the USA in from 1980- to 199420. 

Pathology

Several pathological studies were performed on the carcasses of seals that stranded during the 

1988 epidemic in the U.K.2,38,46, Sweden3,5 and Denmark32. The seals were mostly harbour seals 

and rarely grey seals. 

At gross necropsy, consistent findings in harbour seals were congested and consolidated lungs, 

and emphysema, be it pulmonary, mediastinal, pericardial, or subcutaneous, or a combination 
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of these. Occasional findings were oedematic or suppurative lungs, enlarged tracheo-bronchial 

lymphnodes, atrophy of lymphoid organs, or congestion of other organs. 

Upon histology, the most consistent lesions were broncho-interstitial pneumonia, interstitial 

pneumonia or suppurative bronchopneumonia, and lymphocytic depletion from lymphoid 

tissues. Non-suppurative sometimes demyelinating encephalitis was found occasionally. 

Syncytial cells, intracytoplasmic and intranuclear eosinophilic inclusion bodies in various 

epithelial cells  were present in some lesions. 

Co-infections were common. These included parasites (lice, worms), bacteria (in particular 

Bordetella bronchiseptica3) and several other viruses. 

Toxicology 

Environmental contaminants tend to accumulate in seal tissues because they are at the top of 

the food chain. The high number of seal carcasses that stranded provided an opportunity to 

measure levels of organohalogens in the North Sea. Published studies include data on seals 

stranded in 1988 in Denmark65, Norway6,63, Sweden8, Northern Ireland44 and the  U.K.8 25,41,62, as 

well as from the North Sea and Baltic Sea75. The compounds examined were polychlorinated 

biphenyls (PCBs), dichloro-diphenyl-trichloroethane (DDT) and occasionally 

hexachlorocyclohexane (HCH), hexachlorobenzene (HCB), chlordane compounds, 

heptachlor epoxide and heavy metals. Levels were at the high end of the range in the Baltic and 

southern Wadden Sea, and at the low end of the range in Norway and Northern Ireland.

Environmental contaminants, in particular polychlorinated biphenyls (PCBs), had been 

associated with poor reproductive performance in harbour seals53. In addition, it was 

suspected that these contaminants may have affected the immune system, contributing to the 

severity and the extent of the epidemic.  It was subsequently demonstrated that harbour seals 

chronically exposed to environmental contaminants through their diet had vitamin A and 

thyroid hormone deficiency9, as well as impaired immunological functions16,61. In the ultimate 

stages of fasting, the levels of contaminants in liver, kidney and blood were found to increase, 

possibly exacerbating the effects of these contaminants15,75.

Host genetics

Harbour seal populations in the North Eastern Atlantic have been studied employing a number of 

methods: allozymes,  multilocus fingerprinting, randomly amplified polymorphic DNAs (RAPDs), 

on mitochondrial control region sequencing and microsatellite DNA polymorphisms21,35,36,64,66. 

Using the last technique, six harbour seal populations were identified: Wadden Sea; English 

east coast; Western Scandinavia; East Baltic; Scotland-Ireland; Iceland. The Wadden Sea popu-
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lation, as well as the East Baltic population, had significantly lower average heterozygosity at 

microsatellite loci than the Scandinavian and Scottish populations21. Lower genetic variation, 

as measured by average heterozygosity at microsatellite loci, has been associated with higher 

susceptibility to disease1. 

The scope of this thesis

Although there were several studies on the 1988 PDV epidemic, details on the epidemiological, 

pathological and toxicological findings in seals in the Netherlands were lacking. The aim of this 

thesis was to enhance our understanding of PDV infection in seals through a multidisciplinary 

analysis of the 2002 PDV epidemic in the Netherlands. 

Chapters 2.1. to 2.3. relate to PDV epidemiology. Before the epidemic in 2001, there were around 

3700 harbour seals and over 500 grey seals counted in the Netherlands70,60,71. During the 2002 

PDV epidemic, 2284 seals stranded along the Dutch coast and necropsies were performed on 

1315 of them. Chapter 2.1. presents the temporal and spatial pattern of these seal strandings, 

and the effect of animal-related and environmental variables on the dynamics of the epidemic. 

Evidence for different temporal stranding patterns among stages led to a literature study on 

factors influencing transmission in several other morbillivirus infections (Chapter 2.2.). It also 

led to the creation of models with different transmission dynamics to examine whether these 

support stage-structured transmission (Chapter 2.3.) 

Chapter 3.1. relates  to PDV infection associated pathology. The large number of necropsies 

performed during and after the epidemic provided an unique opportunity to use a quantitative 

approach to the lesions caused by and associated with PDV infection. 

Chapters 4.1. and 4.2. relate to environmental contaminant levels in seals that stranded during 

the 2002 PDV epidemic and the years before. The temporal trend of levels of different major 

environmental contaminants is examined in Chapter 4.1., while Chapter 4.2. specifically 

describes levels of polybrominated diphenyl ethers.

Chapter 5 relates to seal genetics. Samples from seals were typed for different loci, with two 

studies in mind. The first was whether there was a relation between the time of stranding in 

the PDV epidemic and homozygosity as had been observed during a dolphin morbillivirus 

outbreak72; the second was whether there was a relaionship between lungworm burden and 

homozygosity. Crude analysis of the data did not show the first, but the latter led to interesting 

findings.

Chapter 6 presents a discussion on the results and implications of these studies.  
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Phocine distemper virus (PDV) infection killed more than 22 500 seals in European              

waters in 2002. Effects of animal-related and environmental variables on the dynamics of 

the epidemic in the Netherlands were determined. Along the Dutch coast, 2284 sick and 

dead seals—99% of which were harbour seals (Phoca vitulina)—were reported stranded 

between June and November 2002. Standardized necropsies were performed on 1315 

seals. Subadults were affected earlier than juveniles and adults, and within each age 

category, males earlier in time than females. These differences may be explained by sex- 

and age-related variations in behaviour and tissue contaminant levels. Seals in Zealand 

were affected later than those in the Wadden Sea, probably because virus spread was 

slower in the smaller and dispersed Zealand population. The estimated cumulative mor-

tality in 2002 (54%) was similar to that in 1988 (53%), suggesting that pathogenicity of 

PDV for harbour seals has not changed.

Introduction 

Marine mammal morbilliviruses are among the most pathogenic infectious agents to emerge 

in wildlife. Phocine distemper virus (PDV) infection7,17,21 was held responsible for the deaths of 

about 18 000 seals in Europe in the first recorded outbreak in 19889 and of at least 22 500 seals 

in the more recent outbreak in 200226. The high mortality caused by PDV infection in harbour 

seals (Phoca vitulina) resembles that caused by other morbillivirus infections in susceptible 

populations, e.g., rinderpest virus in cattle and measles virus in humans.

Epidemiological studies of the 1988 PDV epidemic12,15 showed that the level and timing of 

mortality of seals varied with species, sex, age, and geographical area. To explain this, haul-out 

behaviour was hypothesized to influence viral transmission, which was thought to be more 

likely on land than in water12. However, these epidemiological studies were hampered by small 

sample size, and did not include the Wadden Sea. A typical characteristic of this important 

habitat for harbour seals is that many sites suitable for haul-out are exposed only during low 

tide, which influences haul-out behaviour and spatial organization.

The first objective was to determine how animal-related and environmental variables affected 

the dynamics of the 2002 PDV epidemic in the Netherlands, including the Dutch part of the 

Wadden Sea. For this, data from a large sample of stranded seals collected along the Dutch coast 

in 2002 were used. 

Prolonged interaction between infectious agents and their host has often been associated with a 

reduction in pathogenicity3. Therefore, the second objective was to compare the epidemiological 

characteristics, including overall mortality, of the 1988 and 2002 PDV epidemics, using both 

published information and our own data.
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Materials and methods

Reports of stranded seals

The general public, seal rehabilitation centres, and governmental authorities reported stranded 

seals to a central round-the-clock telephone service. Reports included date, location (recorded 

as x and y coordinates of the Dutch coordinate system “Amersfoortse Rijksdriehoeksstelsel”11), 

species (as determined by the finder), and manner of disposal.

Manner of disposal of stranded seals

Dead stranded seals were buried (a rope was tied around the body to prevent duplicate 

counting), incinerated, or necropsied. Seals for necropsy were identified by a uniquely 

numbered cattle tag and either examined directly or stored frozen for later examination. Seals 

for necropsy were obtained from the entire Dutch coast (Figure 1A), except for Rottumeroog and 

Rottumerplaat, where they were buried, and Texel and the adjacent part of mainland North 

Holland, where they were collected for a different study. Live stranded seals were treated at a 

rehabilitation centre or euthanized. 

Necropsies

Species, sex, body length, and state of decomposition of each carcass were determined at 

necropsy. Species identification was based on examination of the teeth23. Sex was based on 

examination of the gonads. Standard length was measured as the straight distance from tip of 

nose to tip of tail, with the carcass lying flat on its back2. Harbour seals were divided into three age 

categories, based on standard length: male juveniles (age ≤ 1 yr; length ≤ 95 cm), subadults (1 yr 

< age ≤ 4 yr; 95 cm < length ≤ 140 cm), or adults (age > 4 yr; length > 140 cm); female juveniles 

(age ≤ 1 yr; length ≤ 90 cm), subadults (1 yr < age ≤ 3 yr; 90 cm < length ≤ 130 cm), or adults 

(age > 3 yr; length > 130 cm)18. State of decomposition was categorized as fresh or decomposed. 

Carcasses were considered fresh when abdominal organs were not or only partially discoloured 

due to blood imbibition and had their original shape. Carcasses were considered decomposed 

when abdominal organs were diffusely discoloured due to blood imbibition and were partly 

deformed or no longer recognizable except by their position.

Of 1315 seals necropsied in total, we selected 1096 harbour seals with a full set of data                      

(Table 1), subsequently referred to as ‘necropsied seals’. It excluded three grey seals (Halichoerus 

grypus), and harbour seals with missing data. It also excluded harbour seals from Texel, 

Rottumeroog, and Rottumerplaat, and from the mainland coasts of North Holland and South 

Holland, because no or few seals from those locations were necropsied (Figure 1A).

Necropsied seals represented 56 to 73% of the stranded seals in the remaining locations (Figure 

1A), and showed a similar-shaped epidemic curve to that of stranded seals (Figure 1B). Therefore, 

they were considered to be representative of stranded seals.
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Figure 1: Spatial and temporal distribution of seal strandings in the Netherlands during the 2002 PDV epi-
demic. A: Spatial distribution of seal strandings. The diameter of each pie chart corresponds to the number 
of seals stranded at a particular location. The names of the Wadden Sea islands have been abbreviated (Tx: 
Texel; V: Vlieland; Ts: Terschelling; A: Ameland; S: Schiermonnikoog; R: Rottumeroog en Rottumerplaat) B: 
Weekly stranding rate of all recorded seals compared to that of seals necropsied.
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Table 1: Age and sex distribution of harbour seals stranded during the 2002 PDV epidemic in the 
Netherlands.

*Kilometers of coastline, derived from Camphuysen 19975

†Age category and sex for stranded seals with missing observations were imputed using those of seals that 
stranded in the same location and the same or closest weekly date.
‡Not included in the analysis of necropsied seals.

Wind and spring tide

The daily wind factor was calculated by multiplying average daily wind force (m/s) at Den Helder, 

North Holland (obtained from the Royal Netherlands Meteorological Institute) with its coefficient. 

Coefficients depended on the average angle of the wind to the WSW-ENE line, and ranged from 

0, when parallel to the line, to 4, when at right angles to it. Coefficients were considered positive 

for winds north of the line and negative for winds south of the line. To analyze the effect of 

spring tide, the number of strandings on the day of spring tide31 and the two subsequent days 

were compared to the number of strandings on other days.

Statistical analysis

Effect of age category and location (overall and per age category) on temporal distribution of 

strandings was examined with the Kruskal-Wallis (K-W) test with multiple comparisons. Effect 

of sex within each age category and of spring tide on temporal distribution of strandings 

was examined with the Mann-Whitney U test. To test whether the proportion of decomposed 

carcasses increased with time, we used the chi-square test for linear trends. Effect of age 

category, sex, and state of decomposition on spatial distribution of strandings was examined 

with Pearson’s chi-square test. Age category, sex, and state of decomposition for stranded seals 

with missing observations were imputed using those of necropsied seals that stranded in the 

same location and on the same or closest weekly date. P-values ≤ 0.05 were considered to be 

statistically significant41 (SPSS for Windows, SPSS Inc., Chicago, Ill., USA).

 1 

Stranding location  Harbour seals 

 
Name 

 
km*  

No. 
stranded 

No. 
necropsied 

Juvenile†  Subadult†  Adult† 

M F  M F  M F 
Texel 57  281 (4)‡ - -  - -  - - 

Vlieland 41  303 198 25 35  86 123  11 23 

Terschelling 67  338 190 42 36  92 134  17 17 

Ameland 49  279 156 22 22  87 96  34 18 

Schiermonnikoog 29  331 219 33 31  82 101  52 32 

Rottumeroog & -plaat 14  172 (0)‡ - -  - -  - - 

Friesland mainland 93  217 159 8 21  57 66  27 38 

Groningen mainland 80  194 138 18 34  28 50  24 40 

North Holland 124  97 (1)‡ - -  - -  - - 

South Holland 36  18 (8)‡ - -  - -  - - 

Zealand 116  51 36         

Total 706  2284 1096         
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Results

Overall

The Dutch index case was found on Vlieland on 16 June 2002. The stranding rate increased 

rapidly from the last week of July, peaked at the fourth week of August (370 stranded seals), 

subsided and peaked again at the third week of September (301 stranded seals), returned to low 

values by the second week of October, and back to pre-epidemic levels during November 2002. 

Central reporting was discontinued on 29 November 2002.  (Figure 1B, Table 2).

During the epidemic, 2284 seals (2154 dead, 130 live) were reported stranded along the Dutch 

coast. Most (2279 of 2284) were identified as harbour seals, and the remaining 5 as grey seals, 

3 of which were necropsied. The cumulative mortality was calculated as 54% (Table 2). Of the 

stranded seals, 2166 of 2284 (95%) were found on the islands or mainland bordering the Wadden 

Sea (Figure 1A).

Age category and sex

Age category and sex affected the temporal distribution of strandings. The median stranding 

date varied significantly among age categories (X2 = 44.36, df = 2, P ≤ 0.001). The median 

stranding date for subadults was significantly earlier than that for juveniles and adults (K-W 

multiple comparisons between age classes, P ≤ 0.05; Figure 2A); however, the median stranding 

dates for juveniles and adults did not differ significantly. Within each age category, the median 

stranding date for males was significantly earlier than that for females in juveniles (Z = 4.36, P ≤ 

0.001), subadults (Z = 3.91, P ≤ 0.001), and adults (Z = 5.48, P ≤ 0.001) (Figures 2B to 2D).

Table 2: Comparison of the overall characteristics of the 1988 and 2002 PDV epidemics in  the Netherlands.

*Dietz et al, 19899 
†Extrapolated from data in Reijnders & Brasseur, 200122

‡Data given in Wadden Sea Newsletters24,36

§ Reijnders et al, 199725

¶ Ries et al, 199930

#Calculated as follows: ((number of live seals counted in pre-epidemic year + average annual growth in 
pre-epidemic years) – (number of live seals counted in post-epidemic year – average annual growth in pre-
epidemic years)) / (number of live seals counted in pre-epidemic year + average annual population growth 
in pre-epidemic years).

 1 

Variable 1988 2002 

Date index case 22 May* 16 Jun 

Date median case 4 Sep* 2 Sep 

Central epoch (days) 115* 93 

No. found stranded 417* 2284 

No. counted in pre-epidemic year 966† 3595‡ 

No. counted in post-epidemic year 535† 2365‡ 

Average annual population growth in pre-epidemic years (%) 8§ 19¶ 

Estimated cumulative mortality (%)#  53 54 
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Age and, to a lesser extent, sex also affected the geographical distribution of strandings. The 

proportion of seals of each age category that stranded varied significantly among Wadden Sea 

locations (X2 = 96.34, df = 10, P ≤ 0.001). The highest proportion of juveniles and adults stranded 

at mainland Groningen; the highest proportion of subadults stranded on Vlieland (Figure 3A). 

Looking at each age category separately, the number of seals stranded per km of coastline 

varied significantly among locations for juveniles (X2 = 114.56, df = 5, P ≤ 0.001), subadults 

Figure 2:  Effect of age category and sex on 
temporal distribution of stranded harbour 
seals. A: Stranded harbour seals, by age 
category. B: Juveniles, by sex.
C: Subadults, by sex. D: Adults, by sex.
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(X2 = 396.99, df = 5, P ≤ 0.001), and adults (X2 = 141.97, df = 5, P ≤ 0.001). For all age categories, 

the greatest positive discrepancy between observed and expected values was found for 

Schiermonnikoog, where 2.2 to 3.1 (depending on age category) more seals stranded per km 

than would be expected had the seals been evenly distributed per km coast (Figures 3B to 

3D). Within each age category, the proportion of males to females varied significantly among 

locations only for adults (X2 = 20.45, df = 5, P ≤ 0.001). Ameland had the highest proportion of 

adult males, and Vlieland the lowest (Figure 3D)

Figure 3: Effect of age category and sex 
on spatial distribution of stranded harbour 
seals. The diameter of each pie chart cor-
responds to the number of harbour seals 
stranded per km coastline at a particular 
location. A: Stranded harbour seals, by age 
category. B: Juveniles, by sex. C: Subadults, 
by sex. D: Adults, by sex.

Location

Location affected the temporal distribution of strandings, overall and within age categories. 

Overall, the median stranding date varied significantly among locations (X2 = 85.46, df = 6, 

P ≤ 0.001). The median stranding week at Zealand (week 39) was significantly later than that 

for all Wadden Sea locations. Within the Wadden Sea area, the median weekly stranding date 
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Wind

Wind acted as a confounding factor on the stranding rate of seals. Periods of southerly wind 

corresponded with decreased overall stranding rates (Figure 5), and vice versa for periods of 

northerly wind. This is shown by the trough in between the two major modes of the epidemic 

curve (Figures 1B, 5) which corresponds to a 9-day-long period of continuous southerly wind 

(Figure 5).

Figure 4: Effect of location on tem-
poral distribution of stranded har-
bour seals. Strandings per location 
are expressed as a relative cumula-
tive frequency curve. The 50% value 
of each curve corresponds with the 
median stranding date for a particu-
lar location. Note that strandings at 
Zealand start about 1 month later 
than at Wadden Sea locations.

for Ameland (week 35) was significantly earlier than that for all other locations (weeks 36-37) 

except for Terschelling (also week 35, but with different temporal distribution of strandings) 

(K-W multiple comparisons between locations, P ≤ 0.05; Figure 4). Within each age category, the 

weekly median stranding dates varied significantly among locations for juveniles (X2  = 13.77, 

df = 6, P ≤ 0.05), subadults (X2 = 106.07, df = 6, P ≤ 0.001) and adults (X2 = 14.98, df = 6,

P ≤ 0.05). The most significant differences were seen in the subadult age category, where the 

trends were similar to those observed above for stranded seals overall (K-W multiple comparisons 

of subadults between locations, P ≤ 0.05). 

Figure 5: Effect of wind direc-
tion and force on temporal 
distribution of stranded seals. 
Stranding rate of seals is ex-
pressed as number of seals 
found per day. The wind coef-
ficient is a function of wind 
force and wind direction. Neg-
ative coefficients correspond 
to southerly winds.
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Spring tide

Spring tide did not act noticeably as a confounding factor on stranding rates. The stranding rate 

on the day of spring tide and the two following days was not significantly higher than that on all 

other days (Z = 0.09, P > 0.05).

State of decomposition

State of decomposition as a measure of length of time between death of a seal and its detec-

tion had a confounding effect on stranding rates, both temporally and spatially. From July to 

October, the overall proportion of decomposed seals differed significantly among months (X2 

= 28.04, df = 3, P ≤ 0.001) and increased significantly with time  (Xt
2 = 23.78, df = 1,  P ≤ 0.001) 

(Figure 6A).

Eighty-seven percent of the carcasses that stranded in the last week of October (Figure 1B) were 

decomposed. This small peak of strandings followed the most severe storm in the Netherlands 

since 12 years, with prevailing WSW wind averaging 15.7 m/s (www.knmi.nl). 

The proportion of decomposed carcasses varied significantly by location (X2 = 225.57, df = 6, 

P ≤ 0.001), with high proportions of decomposed carcasses on the mainland coasts of Friesland 

and Groningen and on Schiermonnikoog, and low proportions on the remaining Wadden Sea 

islands (Figure 6B)

Figure 6: Temporal and spatial 
variation in state of decomposi-
tion of stranded harbour seals. A: 
Proportion of decomposed seals 
per month, overall and per loca-
tion. B: Proportion of decomposed 
seals per location. The diameter of 
each pie chart corresponds to the 
number of seals stranded per km 
coastline at a particular location.
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Discussion

Several animal-related and environmental variables affected the stranding pattern of seals 

during the 2002 PDV epidemic in the Netherlands. Animal-related variables affecting the 

stranding pattern were species, age, and sex. First, the main species that stranded was the 

harbour seal. Grey seals were likely exposed to PDV because their numbers have increased 

recently in the Netherlands38 and they haul out together with harbour seals. Despite this, grey 

seals rarely stranded, confirming experimental findings that PDV infection is more pathogenic 

for harbour than for grey seals13.

Second, age significantly affected the pattern of strandings, both temporally and spatially. The 

main effect of age on temporal pattern of strandings was that the median stranding date of 

juveniles and—especially female—adults was later than that of subadults (Figure 2A). Possible 

explanations include differences in behaviour and contaminant burdens.

Behaviour of females with pups may have played a role because the timing of pupping—which 

peaks on 1 July in the Dutch Wadden Sea29 —and the subsequent 3- to 4-week-long lactation 

period19 corresponded to the beginning of the epidemic (Figure 1B). At haul-out sites, lactating 

females and their pups either form distant groups away from the main body of the seal colony20, 

or mix with other seals but keep greater distance from other seals37. Females with pups also are 

more sedentary than males or females without pups10, and reduce their range size from a few 

days before parturition until 2.5 to 3.5 weeks after parturition35. Females with pups have fewer 

new contacts with other seals than males and females without pups10, and limit their social 

play to their pups. Following weaning, pups do not interact with each other27,28,40. In contrast, 

subadults (“yearlings”, “juveniles” and “subadults” in Renouf and Lawson’s categorization) 

display considerably more social play than other age categories27,28. Together, these behavioural 

differences would have decreased the contact rates of adult females and their pups with other 

seals and lowered their risk of contacting infected seals at the beginning of the epidemic, 

resulting in later median stranding dates compared to adult males and subadults (Figures 2B 

to 2D). This corresponds to the study of Härkönen and Harding14, who found that adult females 

died later in the 1988 epidemic in Sweden than subadult females and adult males because adult 

females were less mobile at the start of the epidemic. 

We question the assumption made after the 1988 epidemic that viral transmission is more likely 

to occur on land than in the water12. Based on behaviour studies, seals have closer contact—and 

therefore more likely transmission of virus—in the water than when they are hauled-out on 

land, where there is a very low rate of social interaction10. Close contact in the water may occur 

during social play in the period before hauling out27,28,40, during fights between males, and during 

mating between adult males and adult females33. Furthermore, social interaction in the water, 

which often involves body contact and often is muzzle to muzzle33,40, is more likely to allow viral 



33

Epidemiology of the 2002 phocine distemper outbreak in the Netherlands

transmission than the social interaction on the land, which usually involves agonistic behaviour 

such as fore flipper waving and head thrusts rather than body contact10. In order to improve our 

understanding of age- and sex-related differences in behaviour on PDV transmission among 

seals, behaviour studies are required that measure the degree and type of contact required for 

viral transmission, and the rates of such contacts among seals.

In addition to differences in behaviour, differences in contaminant burdens also may have played 

a role in the later median stranding date of adult females and juveniles. The contaminant levels 

in the tissues of seals that died in the 1988 PDV epidemic were considered sufficiently high 

to cause immunosuppression and thus increase their susceptibility to PDV8,32. Because adult 

females lose part of their contaminants through pupping and lactation, their contaminant levels 

are lower overall than those in adult males1. Levels in juveniles are generally lower than those in 

older animals, because there has been no accumulation with age1. Therefore, adult females and 

juveniles may have been less immunosuppressed than adult males and subadults and may have 

succumbed more slowly after PDV infection. Since 1988, pollutant levels in seal tissues from 

the Netherlands have not been monitored. This would be required to determine whether levels 

have changed, and to investigate sex- and age-related variation.

There was a significant effect of age on spatial distribution of strandings. High proportions 

of juvenile and adult seals stranded in Groningen; Groningen includes the coastline of the 

Eemsmond, a core breeding area29. High proportions of subadults stranded in the western part 

of the Dutch Wadden Sea; this area is assumed to have an influx of migrating pups30 (Figure 3A). 

For all age categories, the density of harbour seal strandings (numbers per km coastline) were 

the highest on Schiermonnikoog (Figures 3B to 3D); this coincides with the summer distribution 

of harbour seals in the Dutch Wadden Sea, which is highly skewed towards the eastern part of 

the Wadden Sea16,30. 

The third animal-related variable, sex, had a significant effect on the temporal pattern of 

strandings. Within each age category, males consistently stranded earlier than females (Figures 

2B to 2D). These findings correspond with those for the 1988 epidemic in Denmark, where more 

males than females died during the first half of the epidemic, and more females than males in 

the second half15. A possible explanation is different behaviour between males and females. In 

individually identified seals, the turnover rate at haul-out areas is significantly higher for males 

than for females10. Adult males travel widely during the pupping period39 and have abundant 

male-to-male body contact in the water33, while adult females with pups are separated from the 

rest of the herd with little interaction and a small range (see references above). Subadult males 

have the longest and most aggressive interactions with each other34. Together, these sex-related 

differences in behaviour imply a higher contact rate for males than for females, increasing the 

risk of infection.
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Besides the animal-related variables discussed above, the environmental variables location, 

wind, and state of decomposition also affected the stranding pattern during the 2002 PDV 

epidemic. First, location had a significant effect on the temporal pattern and overall number 

of strandings. Most importantly, the median stranding date in Zealand was nearly one month 

later than those in locations in the Wadden Sea area (Figure 4). This is probably because seals in 

Zealand are fewer and more widely dispersed than in the Wadden area4, so that there is a lower 

chance of virus spread. 

Second, wind had a strong effect on stranding rate (Figure 5), probably because dead seals were 

in the top water layer, which shows parallel drift to surface winds. A similar effect of wind on 

strandings has been shown for seabirds6, and was also suspected—but not demonstrated—for 

seals in Denmark and Sweden during the 1988 PDV epidemic15. These findings show that wind 

can have a strong confounding effect on stranding rate, and needs to be considered when 

interpreting stranding patterns of carcasses on the shores of large water bodies.

Third, the proportion of decomposed seal carcasses varied both temporally and spatially. 

Temporally, the proportion of decomposed seal carcasses increased significantly during the 

course of the epidemic (Figure 6A). This is probably because recovery of seal carcasses was 

not 100% (some seals may have died at sea), so that, as the epidemic progressed, a higher 

proportion of stranded carcasses consisted of seals that had died before the previous shore 

survey. A similar trend was visible in the U.K. during the 1988 PDV epidemic12. These findings 

suggest that stranding rate became a less accurate estimate of mortality rate as the epidemic 

progressed, and thus the right-hand limb of the epidemic curve (Figures 1B and 2A-2D) needs 

to be interpreted with caution.

Spatially, the proportion of decomposed seal carcasses was highest on the mainland coasts of 

Friesland and Groningen and on Schiermonnikoog (Figure 6B). The proportion of decomposed 

carcasses may have been higher at the mainland coasts because they are lined by extensive 

mudflats, so that carcasses were more difficult to detect than on the sandy beaches of the 

Wadden Sea islands. The proportion of decomposed carcasses may have been higher on 

Schiermonnikoog because it received carcasses that floated away from the adjacent islands 

Rottumeroog and Rottumerplaat, where carcasses were not removed.

Besides determining the effects of animal-related and environmental variables on the stranding 

pattern of the 2002 PDV epidemic, the overall epidemiological characteristics of the 2002 PDV 

epidemic in the Netherlands to that in 1988 were also compared. The timing of the epidemic 

and the cumulative mortality were similar in both years (Table 2). The exception is the index 

case, which was detected about one month later in 2002 than in 1988. The similarity between 

estimated cumulative mortality in 1988 (53%) and 2002 (54%) suggests that the pathogenicity 

of PDV for the harbour seal population has not changed noticeably. Perhaps a single exposure 
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to PDV, as occurred in 1988, compared to continual exposure to a range of other pathogens, 

e.g., lungworms, is insufficient to cause changes in the inherent resistance of the population. A 

more detailed examination of the genetic composition of both the virus and the harbour seal is 

needed to exclude changes in the host-pathogen relationship. 

Acknowledgements

The authors wish to thank the volunteers who searched the Dutch coast daily for stranded seals; 

the staff at the Seal Rehabilitation and Research Centre in Pieterburen, in particular Karst van 

der Meulen for his logistical support; V.O.P. Containers for providing the location to necropsy the 

seals, in particular Fridor Boerma; the staff of the Dutch Ministry of Agriculture, Nature and Food 

Quality (LNV-Noord) for providing access to and help with the centralized seal registration data, 

in particular Bernard Baerends, Afina de Noord and At de Groot; the Common Wadden Sea Sec-

retariat and the Trilateral Seal Expert Group for international coordination of the outbreak; Fiona 

Read for her help with the geographical coordinates; Xavier Harduin for his help in entering and 

analyzing the data; Robin Huisman for his help with the Geographic Information Systems pro-

gram; and Hans Heesterbeek, Rik de Swart, and Cock van Duijn for reviewing the manuscript at 

different stages of development. This study received financial support from the Dutch Ministry 

of Agriculture, Nature and Food Quality.



36

Epidemiology of the 2002 phocine distemper outbreak in the Netherlands

Reference List

Addison RF. Organochlorines and marine mammal reproduction. 1.	 Can J Fish Aquat Sci 1989;  46:360-368.

American Society of Mammalogists. Standard measurements of seals. 2.	 J Mammal 1967; 48:459-462.

Anderson RM, May RM. Coevolution of hosts and parasites. 3.	 Parasitology 1982;85 (2):411-426.

Brasseur SMJM, Reijnders PJH. 4.	 De zeehond terug op z'n bank - een haalbaarhedisstudie voor het Brielse Gat. IBN-rapport 

208, Institute for Forestry and Nature Research, Wageningen, the Netherlands; 1996, pp 1-31.

Camphuysen CJ. Oil pollution and oiled seabirds in the Netherlands, 1969-97: signals of a cleaner sea. 5.	 Sula 1997;11:41-

156.

Camphuysen CJ, Heubeck M. Marine oil pollution and beached bird surveys: the development of a sensitive monitor-6.	

ing instrument. Environ Poll 2001;112:443-461.

Cosby SL, McQuaid S, Duffy N, Lyons C, Rima BK, Allan GM, McCullough SJ, Kennedy S, Smyth JA, McNeilly F, Craig C , 7.	

Orvell C. Characterisation of a seal morbillivirus. Nature 1988;336:115-116.

De Swart RL, Ross PS, Vedder LJ, Timmerman HH, Heisterkamp S, Van Loveren H, Vos JG, Reijnders PJH, Osterhaus 8.	

ADME. Impairment of immune function in harbor seals (Phoca vitulina) feeding on fish from polluted waters. Ambio 

1994;23:155-159.

Dietz R, Heide-Jørgensen M-P, Härkönen T. Mass deaths of harbor seals (Phoca vitulina) in Europe.  9.	 Ambio 1989;18:258-

264.

Godsell J. Herd formation and haul-out behaviour in harbour seals (10.	 Phoca vitulina). J Zool, Lond. 1988;215:83-98.

Grote Topografische Atlas van Nederland11.	 . 3rd ed. Wolters-Noordhoff Atlasprodukties, Groningen, the Netherlands; 

1998.

Hall AJ, Pomeroy PP, Harwood J. The descriptive epizootiology of phocine distemper in the UK during 1988/89. 12.	 Sci Total 

Environ 1992;115:31-44.

Harder T, Willhaus Th, Frey H-R, Liess B . Morbillivirus infections of seals during the 1988 epidemic in the Bay of Heli-13.	

goland: III. Transmission studies of cell culture-propagated phocine distemper virus in harbour seals (Phoca vitulina) 

and a grey seal (Halichoerus grypus): Clinical, virological and serological results.  J Vet Med B 1990;37:641-650.

Härkönen T, Harding KC.  Spatial structure of harbour seal populations and the implication thereof. 14.	 Can J Zool, 2001; 

79: 2115-2127.

Heide-Jørgensen MP,  Härkönen T. Epizootiology of the seal disease in the Eastern North Sea. 15.	 J Appl Ecol 1992;29:99-

107.

Leopold MF, van der Werf B, Ries EH, Reijnders PJH. The importance of the North Sea for winter dispersal of harbour 16.	

seals Phoca vitulina from the Wadden Sea. Biol Conserv 1997;81:97-102.

Mahy BMJ, Barrett T, Evans S, Anderson EC, Bostock CJ. Characterisation of a seal morbillivirus. 17.	 Nature 1988;336:115.

McLaren IA. Growth in pinnipeds. 18.	 Biol Rev 1993;68:1-79.

Muelbert MMC, Bowen WD. Duration of lactation and postweaning changes in mass and body composition of harbour 19.	

seal, Phoca vitulina, pups. Can J Zool 1993;71:1405-1414.

Newby TC. Observations on the breeding behaviour of the harbour seal in the State of Washington. 20.	 J Mammal 

1973;54:540-543.

Osterhaus AD, Vedder EJ. Identification of virus causing recent seal deaths. 21.	 Nature 1988;335:20.

Reijnders PJH, Brasseur SMJM. Populatiedynamica. In: Haydar D, ed. 22.	 Compilatie van gegevens over zeehonden en zee-



37

Epidemiology of the 2002 phocine distemper outbreak in the Netherlands

hondenopvang in de Nederlandse Waddenzee. Studie ten behoeve van het Wetenschappelijk Platform Zeehonden Wad-

denzee, Groningen, the Netherlands; 2001, pp 3-13.

Reijnders PJH. 23.	 Phoca vitulina Linnaeus, 1758 - Seehund. In: Duguy R, Robineau D, eds. Meeressäuger. AULA–Verlag, 

Wiesbaden, Germany; 1992, pp 120-137.

Reijnders PJH, Brasseur SMJM, Abt KF, Siebert U, Stede M, Tougaard S. The harbour seal population in the Wadden Sea 24.	

as revealed by aerial surveys. Wadden Sea Newsletter 2003;2:11-12.

Reijnders PJH, Ries EH, Tougaard S, Norgaard N, Heidemann G, Schwarz J, Vareschi E, Traut IM. Population development 25.	

of harbour seals Phoca vitulina in the Wadden Sea after the 1988 virus epizootic. J Sea Res 1997;38:161-168.

Reineking B. Phocine distemper epidemic amongst seals in 2002. In: Common 26.	 Wadden Sea Newsletter 2002;3-8.

Renouf D, Lawson JW. Play in Harbour seals (27.	 Phoca vitulina). J Zool, Lond. 1986;208:73-82.

Renouf D, Lawson JW. Quantitative aspects of harbour seal (28.	 Phoca vitulina) play. J Zool, Lond. 1987;212:267-273.

Ries EH. Characteristics of a core breeding area for the Wadden Sea harbour seal population: the Eems-Dollard estuary. 29.	

In: Ries EH, ed. Population biology and activity patterns of harbour seals (Phoca vitulina) in the Wadden Sea. PhD Thesis-

DLO Institute for Forestry and Nature Research, Wageningen, the Netherlands; 1999, pp 53-65.

Ries EH, Traut IM, Brinkman AG, Reijnders PJH. Net dispersal of harbour seals within the Wadden Sea before and after 30.	

the 1988 epizootic. J Sea Res 1999;41:233-244.

Rijksinstituut voor Kust en Zee.31.	  Getijtafels voor Nederland, 2002. Sdu Uitgevers BV, Den Haag, the Netherlands; 2002.

Ross PS, De Swart RL, Reijnders PJH, Van Loveren H, Vos JG, Osterhaus ADME. Contaminant-related suppression of 32.	

delayed-type hypersensitivity and antibody responses in harbor seals fed herring from the Baltic Sea. Environ Health 

Perspect 1995;103:162-167.

Sullivan RM. Aquatic displays and interactions in harbour seals 33.	 Phoca vitulina, with comments on mating systems. J 

Mammal 1981;62:825-831.

Sullivan RM. Agonistic behavior and dominance relationships in the harbor seal, 34.	 Phoca vitulina. J Mamm 1982;63:554-

569.

Thompson PM, Miller D, Cooper R, Hammond PS. Changes in the distribution and activities of female harbour seals dur-35.	

ing the breeding season: implications for their lactation strategy and mating patterns. J Anim Ecol  1994;63:24-30.

Tougaard S, Vareschi E, Siebert U, Abt K , Reijnders PJH, Brasseur S. Common Seals in the Wadden Sea in 2001. 36.	 Wadden 

Sea Newsletter 2001;3:20.

Traut IM, Ries EH, Donat B, Vareschi E. Spacing among harbour seals (37.	 Phoca vitulina vitulina) on haul-out sites in the 

Wadden Sea of Niedersachsen. Z Säugetierkunde 1999;64:51-53.

Trilateral Seal Expert Group-plus. Common and grey seals in the Wadden Sea. Evaluation of the status of the common 38.	

and grey seal populations in the Wadden Sea including an Assessment as to whether the seal mamagement plan needs 

to be revised and amended. In: Common Wadden Sea Secretariat, edn. Wadden Sea  Ecosystem  2002; 15, pp 17-20.

Van Parijs SM, Thompson PM, Tollit DJ, Mackay A. Distribution and activity of male harbour seals during the mating 39.	

season. Anim Behav 1997;54:35-43.

Wilson S. Juvenile play of the common seal 40.	 Phoca vitulina vitulina with comparative notes on the grey seal Halichoerus 

grypus. Behaviour 1974;48:37-60.

Zar JH.41.	  Biostatistical Analysis. 3 ed. Prentice-Hall, Inc., Upper Saddle River, NJ, USA; 1996.



38

Factors affecting morbillivirus transmission

2.2
Factors affecting morbillivirus transmission

Jolianne M. Rijks • Albert D.M.E. Osterhaus • Thijs Kuiken

Department of Virology, Erasmus MC, Rotterdam, the Netherlands; Dutch Wildlife Health 
Center, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands. 



39

Factors affecting morbillivirus transmission

Introduction

In the last two decades, four diseases emerged in marine mammals, each caused by novel 

viruses belonging to the morbillivirus genus30,43,81,94,103,137. High mortality was often seen in the 

host populations in which these diseases emerged. 

The emergence of these novel diseases raises questions about the maintenance and 

transmission of these morbillivirus infections in and between host populations, and leads to 

concern about the impact of these diseases on host populations. Such issues are being dealt by 

using molecular techniques to explore the origin and pathogenesis of morbillivirus species and 

strains, and by developing models to understand multiple-host epidemiology42,68 and to assess 

effects on host populations54,60. 

Nevertheless, the understanding of morbillivirus transmission among marine mammals is 

still far from complete. In order to get a better understanding of which factors are involved in 

morbillivirus transmission among marine mammals, we first reviewed eight factors 

affecting more known morbillivirus species in terrestrial mammals. We subsequently applied this 

knowledge to morbillivirus species in marine mammals, and particularly to phocine distemper 

virus (PDV) in harbour seals (Phoca vitulina). The eight factors we studied were the susceptibility, 

the infectiousness and the behaviour of the hosts. They were also the infectivity and virulence 

of the virus and its stability outside the host.  Finally, they were the routes of excretion and 

infection56,142(Figure 1). These factors are linked to aspects of the pathogenesis, such as tissue 

tropism, and these are dealt with accordingly.

Figure 1:  Factors within hosts and during transmission determining the potential for infection by 
morbilliviruses. Routes of infection are the sites (portals of entry) and modes (direct or indirect contact) of 
infection. Infectivity of the virus its ability to establish infection. Susceptibility of the host refers to its pre-
disposition to become infected. Virulence of the virus is the degree to which the virus is invasive and/or 
damaging to the host. Infectiousness of the host refers to the duration of the period that the host is infective, 
and to the amount of virus that it can transmit to another host. Routes of excretion are the sites (portals of 
exit) by which the virus leaves the infected host. Stability of the virus is the length of time for which it can 
remain infective outside the host. Behaviour of hosts influences the type and intensity of exposure (route, 
duration, dose), and may change as a result of infection. 
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The data were obtained and collated from publications describing natural or experimental 

infections in the best-documented morbillivirus-host pairs, i.e., measles virus infections in 

man (MV-human) and monkeys (MV-monkey); rinderpest virus infections, mostly in cattle 

(RPV-cattle); and canine distemper virus infections, mostly in dogs (CDV-dog) and ferrets 

(CDV-ferret). 

Routes of infection, and first infected cells

The route of infection of the virus into a susceptible host has two aspects: the site of infection 

(portal of entry) and the mode of infection, i.e., direct or indirect contact.  Direct contact includes 

infections by direct physical contact between hosts, by spread of droplets between hosts, and 

by transplacental transmission. Indirect contact includes infections by aerosols, vectors, fomites 

and infected carcasses, i.e., exposures that do not require physical nearby presence of a live 

infectious host. 

The reported efficiency of routes of infection in different virus-host pairs is summarized in 

Table 1 (MV-human19,25,48,105,106; MV-monkey144 ; RPV-cattle33,36,73,75,78,150; RPV-pigs129; CDV-dogs4,46,50,84 ; 

CDV-ferret45,58,89; PDV-harbour seals65). A distinction is made between routes identified under 

natural and experimental conditions. Natural morbillivirus infection usually involved close 

proximity exposure in which several routes could be active simultaneously. Only two 

routes could be singled out, direct transplacental (confirmed route) and indirect aerosol, 

presumably to the respiratory tract (highly probable route). The latter nearly always in-

volved closed or poorly ventilated spaces (CDV-ferret45,58), or air currents and superspreaders 

(CDV-dog46), or both (MV-measles19,48,107). Experimental studies were more successful in their 

efforts to assess the efficiency of single sites using artificial modes. The disadvantage is that 

they do not necessarily reflect natural situations of direct or indirect contact. For example, in 

some experimental studies animals were infected by injection of infectious fluid, which mimics 

infection via bites or vectors. However, these routes of infection have not been reported in real 

life for morbillivirus species.   

Another indication for the route of infection can be the first infected cells. The very first cells 

to be infected are sometimes alleged to be respiratory tract epithelial cells, but have not been 

precisely identified to date for any of the morbillivirus species. Three early pathogenesis studies 

sacrificed animals to identify organs and cells containing virus before measurable viremia, the 

routes of infection being natural by contact with infected animals or experimental by infectious 

aerosol or intranasal inoculation (RPV-cattle110,140; CDV-dogs4; CDV-ferrets89). Virus or viral antigen 

was detected in regional lymph nodes of the head and of the lower respiratory tract (Figure 2). 

In two of these studies, the infected cells in the lymph nodes were morphologically identified 

as mononuclear cells4 or reticular cells89. Two recent studies on MV suggested a new hypothesis 

for the initial spread of MV which is that CD150+ dendritic cells with DC-SIGN receptors could be 
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responsible for early transport of MV from the site of infection to lymphoid organs. One of these 

identified DCs as major target cells for MV using a recombinant MV strain expressing enhanced 

green fluorescent protein (EGFP)40 ; the other identified DC-SIGN as a new attachment receptor 

for MV that could enhance viral transmission to CD150+ lymphocytes41. If confirmed, DCs are a 

possible candidate for first infected cells.

The route of infection sometimes affected the incubation period, but did not seem to affect 

disease severity or the proportion of deaths (CDV-dogs46; CDV-ferrets89). Incubation periods 

in individuals infected by exposure to an infectious host (site-mode and dose unknown) were 

generally longer and more irregular than those in individuals inoculated by a successful route 

using a high dose of virus (MV-monkey18; RPV-cattle87,96; CDV-ferrets45,87). This may be less an 

effect of route than of dose (cf. infectivity). 

Figure 2: Schematic representation of the stages of spread of virulent morbillivirus strains in host tissues 
in relation to stages of disease and the time of appearance of neutralizing antibodies, derived from three 
pathogenesis studies (CDV-ferrets89; CDV-dogs4; RPV-cattle110). The squares (and numbers) in the horizontal 
bars indicate the days after inoculation. The stages of disease are the incubation period (light grey squares), 
the clinical period (dark grey squares; slanted hatched squares when clinical signs can become less percep-
tible) with onset of fever (black triangles), and convalescence period (period in which the virus is cleared 
from tissues, white squares). The three morbillivirus host-pairs show a consistent sequence in the spread 
of virus to different tissues, namely from regional lymph nodes of the head and of the lower respiratory 
tract(1st stage of spread), via low-grade viremia to other lymphoid tissues (2nd stage of spread), and then 
via high-grade viremia becoming widespread in numerous organs in the body (3rd stage of spread). In fer-
rets, very susceptible to CDV infection, death generally occurred before neutralizing antibodies (Nabs) ap-
peared. In dogs, NAbs appeared before the virus reached high titers in multiple organs, creating two dis-
tinct categories of dogs: those with sufficient immune response clear the infection, the others ultimately 
succumb between 3 weeks and 2 months p.i. In cattle, NAbs appeared well after the virus reached high 
titers in multiple organs, and within a few days cattle either died or recovered (cleared the infection). Cattle 
with sufficient immune response clear the infection sometimes succumbed to the severity of their lesions. 
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Infectivity, and tropism of the virus 

The infectivity of the virus is its ability to establish infection, measured by the number of virus 

particles required to instigate infection (high infectivity when few virus particles are required). 

The tropism of the virus describes its affinity for certain cells or tissues, and is linked to the 

presence of specific cellular receptors. A pre-requisite for instigating infection is exposure of the 

host to an infective dose.

In inoculation experiments, infectivity was high, e.g., 1 TCID50 of MV inoculated intra-tracheally 

was sufficient to infect a cynomolgus macaque (Macaca fascicularis) with MV144. Infectivity by 

contact exposure could not be measured, but early studies indicated humans generally required 

fairly close (same living quarters) and lengthy (hours to days) exposure to MV cases80 as did 

cattle in experimental RPV contact infections28,140. Infectivity of CDV by contact exposure in dogs 

and ferrets may be higher45,46.

Given that infectivity could be high, the effect of size of the infecting dose on infection and 

disease parameters in susceptible hosts was reviewed. Virulent strains dosed within the 

lower limits of infection caused either disease or no infection, but not sub-clinical infection 

(RPV-cattle36; CDV-ferret9,85). Virulent strains in low but infective doses led to longer latent and 

incubation periods than high doses, but did not reduce the peak level of viremia 

(MV-monkey144), and did not seem to cause a difference in disease severity or mortality 

(RPV-cattle87). However, mild RPV-strain in low doses did produce lower levels of PBMC-

associated viremia in cattle than in high doses69.

   

These experiments used single infecting doses rather than repeated doses. The higher death 

risk of within household secondary MV cases compared to the primary cases1 suggests that the 

effects of repeated exposure during one infection need further examination.

With regard to tropism, two recent studies with recombinant morbillivirus strains expressing 

EGFP stressed the crucial role of replication in lymphocytes (MV-monkey40; CDV-ferret148), the 

importance of which was not fully recognized from earlier work. Re-examination of earlier 

experimental pathogenesis studies on host-morbillivirus pairs nevertheless showed a 

consistent pattern of virus infection and replication in cells of primary and secondary lymphoid 

organs, including mucosa-associated lymphoid tissue, before other cells of organs such as 

epithelial cells of the gastro-intestinal, respiratory or uro-genital tract (MV-monkeys131; RPV-

cattle110; CDV-dogs4) (Figure 2).

This predilection of wild-type morbillivirus species for cells of lymphoid organs is in agreement 

with the high affinity of these viruses for the cellular receptor SLAM (signalling lymphocyte 
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activation molecule, also known as CD150+)158. Various cells of the human and monkey immune 

system have SLAM receptors, as do peripheral blood mononuclear cells (PBMC) of cattle and 

of dogs (MV+RPV+CDV136,158; MV-monkey40; RPV-cattle12). In contrast, epithelial, endothelial 

and neuronal cells do not have SLAM (MV-human67) and the receptors involved in infection of 

such cells have not been fully identified. There is evidence in support of the existence of other 

receptors for which the virus has less affinity (MV-human67). Furthermore, high affinity of virus 

for receptors may not be crucial for spread of virus to adjacent cells. Indeed, infected epithe-

lial cells were often grouped in foci in the skin (CDV-ferrets89) and in the gastro-intestinal mu-

cosa (RPV-cattle52,96,155); also, epithelial infection was often confluent with sites of sub-epithelial 

reticulo-endothelial or lymphocytic infection (MV-human152; MV-monkey40; RPV-cattle155). 

Sequence results of gene fragments by RT-PCR suggested that during an epidemic multiple 

host species were infected by the same strain of RPV15 or CDV23,71. Relevant to cross-species 

transmission could be the observation that MV, CDV and RPV grew most efficiently in tissue 

culture cells expressing the SLAM of their usual host (e.g., MV grew more efficiently on cells 

expressing human SLAM than on cells expressing dog SLAM or cattle SLAM), but could also use 

SLAM of non-host species as receptors (e.g., MV or RPV and Dog SLAM)136. A single amino acid 

substitution on the H-protein was enough to allow a CDV-dog strain isolated using dog SLAM to 

interact with marmoset SLAM130. 

Host susceptibility 

The susceptibility of a host is a property of the host and refers to its predisposition to be-

come infected. The predispositions to infection and to severe disease and mortality are often 

compounded in the term susceptibility in morbillivirus literature. Susceptibility varies between 

host species and between individuals, and it is modified after vaccination or the first infection.

Generally, several host species have been shown to be susceptible to infection by a given 

morbillivirus species under non-experimental conditions (Table 2; MV61,127,157; RPV2,111,112,121,123; 

CDV7,49,57,86,104,108,153,159). Sequencing of gene fragments by RT-PCR and phylogenetic analyses have 

demonstrated the transmission of strains of morbillivirus species between host species, and 

geographical clustering of strains rather than clustering per host species (RPV15; CDV23,71). 

Inversely, some host species have been shown to be susceptible to multiple morbilliviruses, e.g., 

sheep and goats to RPV and to PPRV. These two features make the origin of the emerging virus 

species uncertain, and point to the potential risk of a host species being infected by a novel 

morbillivirus species after eradication of the current one.
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Though multiple hosts may be susceptible to infection, it is thought that only one or two 

host species are the reservoir of a given morbillivirus species, e.g., humans for MV61; cattle and 

domestic water-buffalo for RPV121. This concept is corroborated in particular by the success of 

the on-going rinderpest eradication campaign which ha focused on vaccination of cattle and 

domestic buffalo121. These ‘reservoir’ host species are all highly susceptible to both infection and 

disease. 

Host species susceptibility to infection, severe disease and mortality typically clustered at the 

sub-family level for RPV infection in Artiodactyla (Figure 3, derived from Plowright (1982)112 

and Anderson (1992)2). Individual host susceptibility to severe morbillivirus-associated disease 

and mortality was particularly enhanced in three situations. First, when another pathogen was 

concurrently present, e.g., Babesia spp. (RPV-cattle109). Second, when certain immune 

deficiencies pre-existed, e.g., acute lymphoblastic leukemia (MV-human31), or when for 

some reason the immune response to morbillivirus infection was only partially sufficient. For 

example, CDV-infected dogs in which titers of neutralizing antibodies developed with delay 

evolved into neurological cases within two months of infection4, and MV-infected humans 

who did not exhibit rash often had severe giant cell pneumonia44. Third, when vitamin A was 

deficient during disease, providing a vitamin A supplement reduced disease severity and mor-

tality in two virus-host pairs, humans with MV11 and ferrets with CDV120. 

Susceptibility is modified after vaccination or the first infection. Re-infection can occur and 

boost neutralizing antibody titres, but will usually be sub-clinical. This is due to cross-pro-

tection between strains, which to date is not considered to be significantly affected by the 

immunological strain differences detected serologically (MV-measles160; RPV-cattle109; 

Table 2 : Host species susceptible to infection by the measles virus, rinderpest virus or canine distemper 
virus under non-experimental conditions

 
 
 
 
Virus  Host species 
 
Measles virus 

   
 Humans are susceptible to natural MV infection61. 
 Non-human primates are not infected with measles in the wild but are 

susceptible to natural infection following their capture by 
humans127,157. 

 
Rinderpest virus    Cattle and water-buffalo (Bovinae) are highly susceptible to natural 

RPV infection121. Some cattle breeds and populations may be more 
susceptible to RPV infection than others123. 

 Numerous other artiodactyl species are susceptible to natural RPV 
infection, albeit to different degrees2,111, 112.  

 
Canine distemper 
virus 

   Many carnivore species are susceptible to infection by CDV153. 
Whether within a given species some breeds are more susceptible to 
CDV than others is subject to discussion49,57,86, 104,108. 

 Natural CDV outbreaks have also been reported in non-carnivores, 
namely in primates (Japanese monkey - Macaca fuscata159) and 
artiodactyls (collared peccaries – Tayassu tajacu7).  
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CDV-dogs 53). Serological tests have shown that there is a threshold level of acquired immunity 

below which MV re-infection is likely to occur in humans, with no apparent relation between 

reaching this threshold and the period since immunisation or natural infection100. In an enzootic 

situation, there may also be a slot in time in which infection in some young animals with wan-

ing maternal antibodies could develop as sub-clinical or mild rather than severe disease (RPV-

cattle113). 

Virulence of the virus

The virulence of the virus is a property of the virus and is the degree to which the virus is 

invasive and/or damaging to the host. It relates to the severity of disease and the risk of death 

in the infected host.

Different strains of virus exist within each morbillivirus species and these can differ in virulence 

(MV61; RPV24,96,112; CDV5). Attenuation of virulence of strains of morbillivirus species has been 

achieved in the laboratory by multiple passages in tissue culture, eggs or animals of a different 

host species than the strain was isolated from. Ability of the virus to spread by contact may be 

lost during these procedures. Attenuation may apply only to the host of origin, and may be 

reversible(MV61; RPV121,139; CDV5,57,62).

In addition, mild wild-type strains have been documented for RPV in East Africa21,92,109,125,138,141. 

Figure 3: East African Artiodactyla grouped at sub-family level for their susceptibility to rinderpest 
virus infection and disease (“n = …” indicates how many host species of the sub-family were dis-
cussed with regards to their susceptibility to rinderpest virus112, 2).
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Cattle infected with these mild wild-type strains experienced less severe or even no clinical 

disease and there was little to no mortality95,109. Two hypotheses for the emergence of mild 

wild-type RPV strains in the field have been put forward in the literature. The first 

hypothesis bears similarity to the process of attenuation in the laboratory, advancing that the 

virulence of strains for cattle is modified by passage of RPV in non-cattle host species, e.g., 

wildlife. In multi-species RPV epidemics involving wildlife, the patterns of spread of the disease in 

wildlife suggested transmission occurred mostly among hosts of the same species82,95, allowing 

a within-species passage history before cross-species transmission events. Strains isolated from 

wildlife either stayed consistently mild118 or gradually reverted to virulence after inoculation into 

cattle22,109,118. The second hypothesis suggests that mild strains for cattle emerge in cattle them-

selves in herds with intermediate levels of immunity. Maurer observed that RPV strains isolated 

from partially immune cattle herds usually had low virulence and produced mild gross lesions96. 

Rossiter and James (1989)124 developed a model that, assuming longer incubation periods and 

less infectiousness, demonstrates that intermediate levels of immunity against RPV promote 

the establishment of endemicity of the infection and the circulation of mild rather than virulent 

strains. 

It is not fully understood how highly virulent strains of morbillivirus species cause death, though 

the predilection of morbillivirus species for lymphoid tissues suggests part of the deaths are 

linked to immune failure. To increase understanding of virulence, characteristics of virulent 

wild-type strains have been compared to those of attenuated laboratory strains (mostly vaccine 

strains) and – in the case of RPV- to mild wild-type strains. For CDV, strains were also reverted to 

virulence to compare them to their attenuated laboratory parent5,149. The results suggest that 

virulence of strains has an effect on latent and incubation periods, as well as on infectivity. First, 

in cattle, longer latent or incubation periods were observed in infections with attenuated139 

or mild109 strains of RPV than in infections with virulent strains. Second, inoculation of atten-

uated laboratory strains or mild wild-type strains produced (up to a 1000-fold) lower viremia 

titers than inoculation with virulent wild-type strains (MV-monkey8,144; RPV-cattle69,139). Third, 

virulent and mild RPV wild-type strains were both lympho- and epitheliotrophic133,156, whereas 

the Plowright RPV vaccine strain was strictly lymphotrophic and did not multiply in the mucosae 

of the respiratory and gastro-intestinal tracts139. In infections with virulent or mild RPV wild-type 

strains, tissue alteration was closely associated with the presence of virus antigen, detected by 

immunohistochemistry. However, virulent RPV strains seemed to propagate faster and more 

extensively than mild strains, causing greater damage69,133,156. Severe destruction and deple-

tion of lymphocytes was seen with virulent RPV strains, whereas hyperplastic reactions were 

observed in the B- and T-cell areas of lymphatic tissues of cattle infected by mild RPV strains133. 

Reversion to virulence of an attenuated CDV strain in dogs was paralleled by an increase in 

duration of lymphocytopenia and a reduction in lymphocyte blastogenesis5.

To understand differences in virulence at the genetic level, genotypes of virulent strains 



48

Factors affecting morbillivirus transmission

have been compared to those of attenuated or mild strains (MV-human8,61; RPV-cattle13) and 

recombinant strains have been made, e.g., CDV-ferret149. Loss or gain of virulence appears to 

involve multiple genes (RPV-cattle13; CDV-ferret149). For example, although the Plowright RPV 

vaccine strain has been shown to differ from the virulent virus from which it was derived by less 

than 0.55%14,15, the differences occur in all 6 genes of the genome13. This domain of on-going 

research is not considered further in this paper.

Infectiousness of the host, routes of excretion, and viral clearance

The infectiousness of the host refers to the duration of the period when a host is infective on the 

one hand, and to the amount of an infectious agent that an animal can transmit on the other. 

The routes of excretion are the routes (sites) by which the virus leaves the infected host. 

Consistent with the pathogenesis of morbillivirus infections, infective virus is found in blood, 

excreta –including expired air– and secreta, and skin scurf of infected hosts. Infectiousness 

varies per morbillivirus-host pair, and per individual.  To detail the patterns of infectiousness in 

MV-human, RPV-cattle, CDV-dogs and CDV-ferret, the results of studies detecting infective virus 

by virus isolation on tissue culture, or by successful passage of the infection to susceptible test 

animals, are summarized in Figure 4 and the next paragraphs. The studies generally used onset 

of fever (RPV-cattle; CDV-dogs; CDV-ferrets) or onset of rash (MV-humans, i.e., approximately 

three days after the onset of fever26) as temporal reference points for reporting the periods indi-

viduals were found to be infectious.  

MV could generally be isolated from blood, throat, nasal aspirate and urine samples of 

infected humans for a few days around the onset of rash44,76,90,126,143 (Figure 4), and individual 

infectiousness could vary by at least one order of magnitude117. Blood samples and nasal 

washings taken from human MV patients around the onset of rash induced lesions in the 

cynomolgus macaques into which they were inoculated. However, those taken four days after 

the onset of rash no longer did79, infectiousness of MV-infected hosts usually ending abruptly 

shortly after the appearance of rash either because the host died, or because the host mounted 

an immune response (including neutralizing antibodies) that cleared the virus from tissues99. 

Infectiousness lingered on in some hosts: such cases were either pregnant51, had acute 

lymphoblastic leukemia31, or developed (giant cell) pneumonia51,98 (Figure 4). Cases of subacute 

sclerosing panencephalitis (SSPE), a rare complication of a MV-infection that occurred years 

after initial infection, are not infectious. The brain contains defective virus61.

Cattle inoculated with virulent RPV were most infectious around the 3rd to 7th day of fever28,87,151 

(Figure 4). Blood, nasal exudate87,150,151 and ocular secretions101,150,151 were sometimes infectious 

before the onset of clinical signs. In cattle inoculated with mild wild-type RPV strains, the timing 

of viremia was either comparable to that of cases infected with virulent virus109 or occurred 
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as a biphasic event with an initial first peak of infected PBMC occurring around days 2-5 post 

inoculation (p.i.), and a second peak around days 9-12 p.i.69. Individuals varied in duration and 

route of excretion87,151. For example, of 24 head of cattle infected experimentally with virulent 

RPV, 18 had virus in their nasal exudate for two or more days, 4 for one day, and 2 never did; 

12 had virus in their urine for two or more days, 4 for one day, and 8 never did87. The infectious 

period of cattle infected with virulent RPV usually ended abruptly either by death or recovery, 

the  host’s immune response (including neutralizing antibodies) clearing the virus from tissues 
110,150 (Figure 2). Most cattle that died were infectious until death, shedding large quantities 

of virus87,150. A  few  were successful in clearing the virus from their tissues before death87,155 

Experimentally infected cattle that recovered 10 days p.i. and was placed into contact with 

susceptible cattle from the 11th to the 15th p.i., failed to spread RPV to these susceptible cattle28. 

The infectious period was sometimes extended in RPV-infected pregnant cows that seemingly 

recovered but then aborted: the fetus could be infectious, and the cow itself could be viremic 

(up to 21 days p.i.) or have infectious vaginal fluids (up to 34 days p.i.)78,150.

Dogs inoculated with virulent CDV generally developed fever approximately four days after 

infection and were infectious for one or a few days. Subsequently, some dogs developed 

neutralizing antibodies that reached protective titers from two weeks p.i.. These dogs rapidly 

stopped shedding virus and recovered. In contrast, the other dogs had insufficient immune 

response leading to a second bout of fever and severe respiratory and/or nervous signs. These 

severely ill dogs generally died from three weeks up to two months p.i., shedding virus, albeit 

intermittently, until their death4,17,29,119 (Figures 2 & 4). After their death, virus could be isolated 

from tissues like lung and brain27,29,84. These terminal cases could thus extend the duration 

of infectiousness, though irregular, up to two months. Cases of old dog encephalitis, a rare 

complication of a CDV-infection that occurred years after initial infection, are not infectious. 

Virus isolation is rarely successful from such cases, and although two studies report isolation of 

non-defective virus77,146, they did not exclude the possibility of recent re-infection. 

Nasal exudate of ferrets inoculated with CDV by subcutaneous injection was infectious before 

the onset of fever and other clinical signs58. In ferrets infected by aerosol, blood contained virus 

from the second day p.i. onwards32. Skin scurf of CDV-infected ferrets inoculated into a ferret 

induced infection and disease58. In one study, urine recovered around the time of onset of fever 

did not induce infection58. Ferrets were very susceptible and usually died before neutralizing 

antibodies appeared. In a related mustelid species, mink (Mustela vison), skin scurf scraped off 

an infected animal at 25 days p.i. was infectious by inoculation to a ferret. Also, the pooled nasal 

fluid from 10 infected mink was infectious by inoculation to ferrets from 5 days p.i. to 51 days 

p.i., despite the clinical recovery of the mink around day 35 p.i.58. However, of the five mink still 

alive on day 35 and seemingly recovered, all but one actually died with neurological signs within 

100 days p.i.58, which suggests that—as for dogs—immune response to CDV infection had been 

only partially sufficient. 
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Figure 4: Schematic representation of typical infections with virulent strains (MV-human61; RPV-cattle110, 
CDV-dog4, CDV-ferret58), with a compilation of study results on the duration of viremia and viral shed-
ding via different routes for the morbillivirus-host pairs (MV-human31,44,51,76,90,98,126,143; RPV-cattle75,78,87,151; 
CDV-dog17,29,119; CDV-ferret58). Each square in the horizontal bars corresponds to a day. 
The stages of disease: The dashed vertical line indicates the onset of the first clinical signs, the squares with 
the horizontal stripes days correspond to the incubation period, the grey squares and white squares the 
symptomatic period, the latter corresponding to the time period in which clinical signs start to disappear. 
The onset of fever is represented by a triangle, the appearance of rash (or time of widespread infection of 
non-lymphoid tissues) by a flower. 
Virus isolation on tissue culture or samples infectious to test animals: The horizontal solid line indicates a 
period sampled daily, and the squares the days virus was found in at least one individual. When possible, 
differentiation was made into periods in which more (dark squares) or less (light squares) of the individu-
als were infectious. The horizontal dashed line indicates a period sampled irregularly. and the squares with 
crosses, days when at least one sample was positive. Abbreviations: MK=monkey kidney; HA=human am-
nion; BK=bovine kidney; FK=ferret kidney.
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Figure 4: Schematic representation of typical infections with virulent strains (MV-human61; RPV-cattle110, 
CDV-dog4, CDV-ferret58), with a compilation of study results on the duration of viremia and viral shed-
ding via different routes for the morbillivirus-host pairs (MV-human31,44,51,76,90,98,126,143; RPV-cattle75,78,87,151; 
CDV-dog17,29,119; CDV-ferret58). Each square in the horizontal bars corresponds to a day. 
The stages of disease: The dashed vertical line indicates the onset of the first clinical signs, the squares with 
the horizontal stripes days correspond to the incubation period, the grey squares and white squares the 
symptomatic period, the latter corresponding to the time period in which clinical signs start to disappear. 
The onset of fever is represented by a triangle, the appearance of rash (or time of widespread infection of 
non-lymphoid tissues) by a flower. 
Virus isolation on tissue culture or samples infectious to test animals: The horizontal solid line indicates a 
period sampled daily, and the squares the days virus was found in at least one individual. When possible, 
differentiation was made into periods in which more (dark squares) or less (light squares) of the individu-
als were infectious. The horizontal dashed line indicates a period sampled irregularly. and the squares with 
crosses, days when at least one sample was positive. Abbreviations: MK=monkey kidney; HA=human am-
nion; BK=bovine kidney; FK=ferret kidney.
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Individuals re-infected after having had a morbillivirus infection earlier in life or after 

being vaccinated may develop clinical disease or be subclinically infected, as outlined 

under host susceptibility (MV-humans47,100,147; RPV-cattle10,114; CDV-dogs104). Cases of 

secondary MV vaccine failure (waning immunity after seroconversion) were not 

contagious47. Most MV re-infections are diagnosed by serology47,100 and virus isolation or even 

detection of viral RNA by RT-PCR from naso-pharyngeal samples or urine are generally not 

successful88,132, except in one report147. In contrast, a single study reported that wild-type RPV 

was isolated from nasal exudate of cattle that had been vaccinated two years earlier with a tissue 

culture vaccine, had neutralizing antibody titers, and had been put into contact with two 

infectious animals. The vaccinated cattle showed no clinical signs other than ocular discharge 

for a day in a few of the animals, but fatally infected a susceptible animal housed with them114. 

Although host species that are less susceptible to a particular morbillivirus species tend to have 

subclincal infections, they may still be infectious. For example, sheep and goats, which tend 

to have subclincal RPV infections are infectious and can transmit the infection to susceptible 

in-contact cattle3,93,161.  

Stability of the virus

The stability of a virus is the length of time it can remain infective outside its host, or in a dead 

host. 

Morbillivirus species, 0.15 to 0.3 µm in diameter, enter the environment in body fluids (blood, 

secreta and excreta) or in tissues of an infected carcass. The effects of temperature, pH and light 

on the stability of morbillivirus species are approximately defined by studies done in the context 

of the conditions for conservation of virus during storage and vaccine production. Deterioration 

at warm temperatures takes hours to days, whereas below freezing point morbillivirus species 

remain viable in various substrates for months to years; the very events of freezing and thawing, 

or the sequence, are detrimental (MV126; RPV111; CDV6). The pH range for survival seems to be 

broad (RPV111; CDV6). Restricted studies on the effect of visible and UV light seem to indicate 

that these have an inactivating effect on virus in substrate. The speed of this process varies per 

substrate, proteineous substances slowing the rate of inactivation by light (MV34; RPV111; 

CDV102).

The duration of virus stability in infected carcasses was examined, to our knowledge, only for 

RPV in cattle. Anecdotal evidence had suggested that RPV was inactivated in carcasses in a 

matter of hours in the tropics and of days in temperate climates33. Subsequently, a study 

measured the half-life of wild-type and vaccine strains of RPV in lymph nodes, spleen and blood 

conserved at different temperatures. Independent of virus strain, half-life in lymph nodes and 

spleen was 5 minutes at 56ºC, 105 minutes at 37ºC, 6.4 hours at 25ºC, and 2.3 days at 7ºC, and 72 
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days at -15ºC. The inactivation rate of RPV infected blood was similar to that of tissues at 56ºC and 

7ºC, but 21 hours at 37ºC, 1.5 days at 25ºC128. 

The duration of virus stability in secreta and excreta was examined, to our knowledge, only for 

CDV-ferrets. At room temperature, nasal exudate and saliva on gloves used to handle ferrets still 

contained infective CDV particles after 20 minutes, but no longer after 30 minutes58. Feces, food 

and water in uncleaned pens of ferrets removed from the cages after their death failed to convey 

CDV infection to susceptible ferrets58, but cages from which moribund CDV infected ferrets were 

removed several hours before did45, suggesting excreta from living animals remained infectious 

for at least several hours.

The duration of virus stability in the air was examined for MV and RPV. At temperatures of 

20ºC and 26ºC respectively, the stability of MV and of RPV in air is the greatest at low (20-40%) 

relative humidity, intermediate at high (90%), and the lowest at intermediate relative humidity 

(60 –70%)(MV38; RPV74). 

We note here that there is one report suggesting morbillvirus infection of mollusks83.  

Host behaviour

Host behaviour determines when conditions of sufficient exposure (route, duration, dose) are 

likely to occur in order to result in infection. Host behaviour can be altered by infection.

Knowledge of the general behaviour of a host species is useful for predicting situations that 

could favour the spread of morbillivirus infection, for example, situations in which susceptible 

hosts aggregate. Knowledge of normal host behaviour and social patterns is also useful for 

predicting situations in which latently infectious hosts may transmit morbillivirus infection. 

However, most morbillivirus-infected hosts are diseased when they are infectious. Studies 

on morbillivirus-infected hosts showed their behaviour was altered by disease. Some simply 

lost their appetite (MV-monkey97), had shortness of breath (MV-monkey97), or isolated 

themselves (RPV-wildlife141). Others became disoriented or aggressive. Disoriented behaviour 

occurred in RPV-infected kudu, transiently blinded due to corneal opacity, keratitis or both82). 

Aggressive behaviour occurred in RPV-African buffalo (Syncerus caffer) and was associated with the 

extreme dehydration resulting from severe diarrhea20. Aimless wandering, incoordination, 

aggressive behaviour and lack of fear occurred in raccoons (Procyon lotor) and grey foxes (Urocyon 

cinereoargenteus) infected with CDV37,70,122, though not systematically70,72, probably depending 

on the extent of involvement of the nervous system in the disease. Such disoriented or 

aggressive behaviour causes unusual movement patterns of severely infected hosts, and this can 

contribute to explaining introductions into new geographical areas, for example  entire herds of 
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thirsty infected buffalo deviated from their usual migration routes in search for water20. 

Very little is known about how healthy susceptible hosts react to the diseased morbillivirus 

cases. The type of reaction could range from wariness and avoidance, through indifference, to 

curiosity or aggression, or concern and intense care. 

Discussion

We used data from five morbillivirus-host pairs to examine how morbillivirus enters a host 

(the route of infection, the infectivity of the virus), develops in it (susceptibility of the host, 

virulence of the virus), and then leaves it (infectiousness of the host, routes of excretion) for 

the next host (stability of the virus, behaviour of hosts). There were elements of similarity and 

divergence among virus-host pairs for these eight factors. To conclude we use these to discuss 

possible implications for transmission of emerging marine morbillivirus diseases in general, and 

for transmission of phocine distemper virus (PDV) to and among harbour seals (Phoca vitulina) 

in particular. 

Data on routes of excretion and infection pointed out behaviour likely to be associated 

with a high risk for transmission of infection. The data suggested that infected hosts excrete 

morbillivirus mainly via nasal, ocular and oral fluids and urine, though expired air, feces, 

reproductive organ fluids, blood and skin scabs can also contain infective virus.  It supported the 

idea that the most likely site of infection for a new host is the respiratory tract including pharynx, 

be it by mode of direct contact (sniffing, droplet exposure) or indirect contact (breathing in virus 

in aerosol). Taken together, it suggested that interactive behaviour involving close contact of 

the head of the susceptible host with orifices of the infectious host, or droplets expelled from 

these is likely to be associated with a high risk of transmission of infection. Among harbour seals, 

such moments occur in the summer during breeding activities and play, mostly at water sur-

face35,55,64,115,116,134,145,154. Alternatively, infection could occur without direct interaction between 

hosts, either by sniffing up virus contained in secreta and excreta, or by aerosol inhalation, al-

though in open spaces this requires super-spreaders, or wind gusts (air movement that limits di-

lution). These events could occur on land or in water at the surface. Cetaceans expire and inspire 

with force16, and when swimming in groups could inhale virus contained in expired blowhole 

secreta as droplets and aerosol.  The data also indicated that there may be other sites of infec-

tion, in particular the intact eye (conjunctiva), the broken skin, the digestive tract and the uro-

genital tract. The latter two routes would not require the host to be on land or at the water sur-

face. Behavioural studies both under normal conditions and during epidemics can shed light on 

the frequency of occurrence of different exposure situations, and may contribute to explaining 

heterogeneities in the infected populations.

Data on infective doses and infectiousness brought up some points relating to the length 
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of the latent and length and intensity of the infectious periods, important parameters in 

disease models. Disease models have been developed for example to model the spread of PDV 

epidemics39, to evaluate the influence of epidemiological parameters and host ecology on this 

spread66, to predict the reoccurrence of PDV epidemics59,135. Regarding the latent period, its 

length for a given morbillivirus-host pair was modulated by the dose of infection. Regarding 

the infectious period, it was generally short, usually a matter of a few days. It could start while 

hosts were in the incubation period of the disease, and there was important individual variation 

in infectiousness with existence of superspreaders. A recent study suggests that by account-

ing for such superspreaders in models, disease extinction becomes more likely, outbreaks rarer 

but more explosive91. Each morbillivirus-host pair had a few infected hosts who excreted virus 

for longer, albeit intermittently, and generally not beyond two months. These were either sur-

viving pregnant individuals in which the disease spread to the foetus, individuals with certain 

pre-existing immune deficiencies, or cases in which there was a delayed or partial immune

response to the infection and which developed into prolonged pneumonia cases or cases with 

neurological complications. 

It is well-recognized that morbillivirus species target the immune system and that co-infec-

tions aggravate disease and increase mortality. In two morbillivirus host pairs, another factor 

was shown to aggravate disease and increase mortality: vitamin A deficiency. This is interest-

ing as environmental contaminants like PCBs may affect vitamin A levels in marine mammals. 

Differences in vitamin A status may contribute to explaining to differences in harbour seal 

mortality among different areas during PDV epidemics. 

One of the big questions around the emerging marine morbilliviruses is where is the virus in 

between epidemics. The data compiled showed that susceptibility to infection is different from 

susceptibility to disease, as exemplified by grey seal (Halichoerus grypus) susceptibility to PDV 

infection but not disease63, but suggests that host species important in maintaining infection 

in other morbillivirus-host pairs were susceptible to both infection and disease. As such, even 

harbour seals should not be excluded as reservoirs for PDV. Some of the data presented here 

suggests the size of the host population(s) required for maintaining the virus may be smaller 

than expected based on the characteristics of the virus during epidemics : besides the possibil-

ity of cross-species transmission, there may be virus strains of lesser virulence, individuals with 

extended infectiousness (more relevant to transmission when hosts are not aggregated in big 

groups), or an out-of-host stage. Indeed, morbillivirus species are generally considered to be 

short-lived outside of the host. However certain environments and seasons may combine condi-

tions which seem to favour virus stability. For example, during half the year the poles typically 

combine low temperatures, little UV light, and low atmospheric humidity, conditions in which 

infectiousness of substrates and carcasses could possibly be preserved for extended periods of 

time. Such scenarios could be explored experimentally.
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Heterogeneities in transmission are crucial, since these events can dictate epidemic 

dynamics. To elucidate transmission patterns of phocine distemper virus (PDV) between 

harbour seals (Phoca vitulina) during the 2002 Dutch outbreak, we created three models 

to distinguish transmission dynamics.  A model in which the host population exhibited 

strong heterogeneous mixing best described PDV dynamics (p=0.0004), indicating that 

stage-structured transmission occurs in the Dutch harbour seal population. To capture 

the stage transmission dynamics, we created a “who acquires infection from whom” 

(WAIFW) matrix solely from incidence data from seal strandings. Transmission between 

subadults and adults was very high, followed by transmission within the subadults.  We 

confirmed the transmission estimates using the next-generation formalism to estimate 

R0. The data produce quantitative transmission terms that can be used to describe roles of 

each stage class in the PDV outbreak; these findings can best be supported with harbour 

seal behavioural studies.

Introduction

Heterogeneities in transmission have long been recognized for shaping dynamics of infectious 

diseases. Heterogeneities can, for example, change invasion criteria18,32,52 and enhance 

spatial spread through superspreading28. Complex biological mechanisms usually underlie 

heterogeneities such as spatial geography, gender, age class, individual immunological 

differences in susceptibility or infectiousness, superspreading events, behavioural factors, 

genetic variation and other individual variation2,6,28,35. Several different approaches have been 

developed to account for such heterogeneities.  For example, recognition of discrete classes 

permit the use of a more refined transmission term, βi,j, which captures the rate at which an 

infectious individual of class j will infect a susceptible individual of class i6. The separate classes 

can encompass gender, age, stage, social, immunological, physiological, or behavioural 

differences. These detailed transmission rates are usually modelled using the “who acquires 

infection from whom” (WAIFW) matrix 4,5,6,15,41. 

While the WAIFW matrix has proven to be of great theoretical utility5,15,27,41, empirical 

approaches to estimation and characterization have often proven difficult because of lack of 

relevant data.  Various efforts have employed contact tracing17,19 or inferred contacts16,25,49 to 

determine how a virus is transmitted through different classes in a population. In this paper, 

we investigate whether it is possible to estimate elements in the WAIFW matrix from detailed 

age or stage incidence data. We ask three nested questions: can we test the null hypothesis of 

homogeneous mixing from such data? How well can we identify the WAIFW elements from 

such data in the absence of more detailed contact tracing? Finally, can we compare our 

estimation method with the theoretical next-generation formalism to estimate R0 in structured 

populations?
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To address these questions, we investigate a case study of phocine distemper virus (PDV) 

in harbour seals (Phoca vitulina) in the Netherlands during the 2002 epidemic40. PDV is a 

single-stranded, negative-sense RNA virus which is a member of the Morbillivirus genus, 

family Paramyxoviridae9,29,34. In each individual, disease typically spans a two-week period, 

including both the latent and infectious disease stages7,21,23,33. Mortality is high40, partly due to 

co-infections.

  

Two outbreaks of PDV have affected seal populations throughout the entire North Sea region: 

the first outbreak occurred in 1988, in which 18 000 to 23 000 harbour seals died22,24. This mass 

mortality event caused by the viral epidemic began on the Danish island of Ånholt on April 12, 

1988 and ended within the calendar year14,22,24. A second PDV outbreak occurred in 2002 with 

the same point of origin: initial cases of harbour seal stranding and mortality occurred on May 

4, 2002. In this epidemic, approximately 22 000 to 30 000 harbour seals died, resulting in the 

largest recorded mass mortality event in marine mammals22,26.

 

In the Netherlands, the first local case of PDV was found on June 16, 2002 on Vlieland and the 

local epidemic ceased at the end of November, as fully described elsewhere40. In that time 

period, 2284 seals were stranded along the Dutch coast, including 2279 harbour seals and 5 

grey seals. Interestingly, the timing of stranded seals showed age specificity. Not only was the 

index case a member of the subadult stage class, but the median stranding date of all subadults 

was significantly earlier than the median stranding date of both juvenile and adults40. Together, 

the stranding data implicate stage-structured disease transmission and heterogeneous host 

mixing in the 2002 Dutch epidemic. Previous models describing the spread of PDV throughout 

the North Sea have assumed homogeneous mixing among different harbour seal age or stage 

classes11,21,43,44. Subsequently, we inquire if it is possible to estimate the WAIFW matrix from the 

detailed incidence data and investigate the evidence for non-homogeneous mixing.

Materials and methods

Seals were classified into stages based on body length of stranded carcasses, since only some of 

the stranded seals were precisely aged by counting the cementum layers of a canine tooth. The 

juvenile class contained female seals less than 90 cm and male seals less than 95 cm. Subadults 

included females with body lengths between 90 cm and 120 cm and males with body lengths 

between 95 cm and 130 cm. Lastly, the adult category contained female seals with body lengths 

greater than 120 cm and males with body lengths greater than 130 cm.  Using these body length 

classifications, the juvenile class contained most of the pups of the year, while the subadult class 

included most of the 1- and 2-year-old females and 1- to 3-year-old males. Finally, the adult class 

included most of the females older than 2 years and males older than 3 years. 

The epidemic dynamics were captured with a susceptible-infected-removed (SIR) model, 
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Let bi,j  be the probability per unit time of disease transmission between a susceptible individual 

in demographic class i and an infected individual in demographic class j. The transmission, or 

WAIFW matrix, is then a 3 by 3 matrix, b=[ bi,j ]. We considered three different transmission 

scenarios and built three different models. For the first model, we considered homogeneous 

mixing among different stage classes and equal transmission rates ( bi,j = b for all i,j). For the 

second model, we assumed weak heterogeneous mixing among the host population: within-

stage transmission – the diagonal of the transmission matrix – was allowed to differ from 

between-stage transmission, which was designated by the off-diagonal elements. This difference 

was scaled by a coefficient, k. The transmission matrix is then:

n = ( )n n n n n n n n n1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3, , , , , , , , ,
‘ (2)

Since the lifespan of harbour seals is much longer than the duration of the PDV outbreak, we 

assumed that population size did not change during the outbreak – except for deaths due to 

infection – and fixed the initial population size (N) at 5400 based on population censuses39,47. 

For each element ni,j in the matrix, the subscript i designates the stage-structure: the number 1 

represents juveniles, the number 2 represents subadults, and the number 3 represents adults. 

Similarly, for each element ni,j in the matrix, the subscript j designates the epidemic category: 

the number 1 represents susceptible individuals, the number 2 represents infectious individuals, 

and the number 3 represents removed individuals.

The matrix N (Equation 1) was reorganized into a population vector by stacking the rows of 

the matrix. The population vector then designates all juveniles, all subadults, and all adults. 

Within each stage class, epidemic categories are designated as susceptible individuals, infected 

individuals, and removed individuals as in equation 2, where  ‘ specifies a vector transpose. 

dividing the population into three categories based on their epidemiological state. Susceptible 

individuals never experienced infection nor were exposed to the virus. Infected individuals 

harbour the virus and are able to convert susceptible individuals into infected individuals. 

Lastly, removed individuals were previously infected and either recovered from the disease with 

conferred lifelong immunity or are removed from the system due to mortality. Our model is 

defined in discrete time, with each time-step equal to one day. 

We combined the three age classes – juvenile, subadult, and adult – and the three epidemic 

classes – susceptible, infected, and removed – to capture both the population stage structure 

and the epidemic dynamics. This resulted in a model with nine total categories (Equation 1).

juveniles

subadults

adults

(1)

S I R

N
n n n
n n n
n n n

=
















1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

, , ,

, , ,

, , ,
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For the third model, we assumed strong heterogeneous mixing between stages by allowing the 

transmission term to vary with the interactions within and between stages (Equation 4). 

The transmission matrix (4) is symmetrical: bi,j = bj,i . This property captures an assumption of the 

model: each contact event between two hosts results in a bi-directional transmission process, 

where the probability of the two hosts infecting each other is equal. Moreover, this assumes that 

differences in susceptibility or infectiousness among stage classes do not significantly impact 

transmission dynamics6. 

Transmission probabilities were derived from the SIR model. The force of infection, f, is the 

probability per unit time for a susceptible to become infected12. The recovery rate, g , is the 

inverse of the average latent plus infectious periods (g = 1/14). The transitions between epidemic 

categories within a stage class is then:  

Epidemic transitions for all three stage classes were given by the transition matrix A(n) , in which 

the block diagonal matrices A1, A2 and A3 designate the epidemic transitions among juveniles, 

subadults and adults, respectively (Equation 6):.

Since we assumed that the epidemic dynamics are fast relative to demography, there are no 

transitions between stage classes, and the remaining elements of the block-diagonal matrix  

A(n) are all zero. The epidemic trajectory is given by multiplying the population vector at time t, 

n(t) , with the transition matrix A(n) : 

(3)b =
















k
k

k

b b b

b b b

b b b

β β β
β β β
β β β

b
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(7)n A n n( ) [ ( )] ( )t t t+ =1

This model (7) is a discrete time approximation to the continuous time model:
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Because of the underlying stage-structure there are three infected classes in this model. For 

models with multiple classes, R0 can be derived using the next generation method10,12,13,48, 

where R0 is given by the spectral radius, r, or the dominant eigenvalue of the next generation 

matrix, FV-1:

To find the next generation matrix of a model with s compartments out of which r are infected, 

we let n = ni, …, ns be the number of individuals in each compartment; Fi (n) be the rate at which 

newly infected individuals enter compartment i; let	  be the rate of entry of individuals 

into compartment i  (including the transfer of infected individuals from one infective compart-

ment to another); and 	  be the rate at which individuals are leaving compartment i . We 

defined 	    as	  		  . 

The rate of change of compartment i is then 		       . We then formed the next genera-

tion matrix FV-1 by:

dn
dt

ni
i i= −F V ( )

V V Vi i in n n( ) ( ) ( )= −− +Vi

Vi n− ( )

Vi n+ ( )

(9)R FV0
1=  

−ρ

where (8)
d
dt
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where i,j = 1,…,r and n0 was the disease-free equilibrium, at which the population remains in 

the absence of the disease48. The (j,k) entry of V-1 is the average amount of time an infective 

individual that was introduced into compartment k spends in compartment j during its 

lifetime.  The (i,j) entry of F is the rate at which infected individuals in compartment j produce 

new infections in compartment i. Therefore, the entry (i,k) in the generation matrix FV-1 is the 

expected number of new infections in compartment i produced by an individual originally 

introduced into compartment k.

The matrix F shows the influx of new infections to the infectious compartments. Since we 

assumed that there are no transitions between the infectious classes due to growth during this 

acute PDV outbreak, matrix V reflects the rates at which individuals are leaving the infectious 

compartments due to recovery or death. At the disease-free equilibrium the population consists 

wholly of susceptible individuals, so that  

F
n

n and V
n

ni

j

i

j

=












=












∂
∂

∂
∂

F ( ) ( )0 0
V (10)

n0 = ′[ ( ) ( ) ( ) ], , ,n n n1 1 2 1 3 10 0 0 0 0 0 0 0 0 (11)

where ‘ designates a vector transpose.
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F and V were constructed as follows:

F =
β β β
β β β
β

11 11 12 11 13 11

21 21 22 21 23 21

3

0 0 0
0 0 0

n n n
n n n

( ) ( ) ( )
( ) ( ) ( )
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The next generation matrix is thus:
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β
γ

β
γ

β
γ

β
γ

β

1 1 1 1 1 2 1 1 1 3 1 1

2 1 2 1 2 2

0 0 0

0

, , , , , ,

, , ,

( ) ( ) ( )

( )

n n n

n n22 1 2 3 2 1

3 1 3 1 3 2 2 1 3 3 3 1

0 0

0 0 0

, , ,

, , , , , ,

( ) ( )

( ) ( ) ( )
γ

β
γ

β
γ

β
γ

β
γ

n

n n n

























(13)

R0 is given by the dominant eigenvalue of the next generation matrix (13). We determined R0 

using equation 13 and our estimate of b . 

Initial model conditions for the total population size (N), recovery rate, gamma – the 

inverse of the latent period – population stage structure, and the length of the epidemic 

were derived from the literature (Table 1). The three models – homogeneous mixing, weak 

heterogeneous mixing, and strong heterogeneous mixing – were compared using the 

likelihood ratio test (LRT). Subsequently, p-values were calculated to determine which model 

best fits the data.

Parameter Value Reference

N (total population size) 5400 39

Latent and Infectious Periods 14 days 44

g (inverse of the latent and infectious periods) 1/14 44

Population Stage Structure

15% juveniles

36% subadults

49% adults

1

Length of Epidemic 180 days 40

Table 1:  Initial Model Conditions. Initial conditions for the PDV SIR model were obtained from the literature.  
Total population size (N) was estimated for the entire Dutch harbour seal population, including seals that are 
on land and in the water at any given time.

To obtain estimates for the WAIFW matrix, we used maximum likelihood techniques to find 

the values of the matrix elements which best fit the stage-specific incidence data40 and the 

probability of observing a stranded seal, p (14). The probability of observation is a compound 
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y Po pIt~ ( ) (14)

Data for this model consisted of stranded seals from the Dutch islands of Vlieland, Terschelling, 

Ameland, Schiermonnikoog, and Texel, and from the mainland provinces of Friesland, 

Groningen, and Noord Holland. Point estimates were located by minimizing the negative 

log-likelihood of the data using simulated annealing8 as implemented by the ‘optim’ function 

in R36. Strong colinearity between elements in the WAIFW matrix led to a range of near equally 

likely results, since values for elements of the WAIFW matrix can compensate for each other to 

produce the same results in disease incidence. This colinearity was investigated by inverting the 

numerical Hessian matrix and converting variance-covariance matrix into the corresponding 

correlation matrix30. If the pair-wise correlation coefficient between two elements was greater 

than 0.3, we used two-dimensional profile likelihoods to map plausible pair-wise parameter 

combinations including their two-dimensional 95% confidence intervals. We tested the 

significant deviation from homogeneous and weak heterogeneous mixing using likelihood 

ratio tests (LRTs). 

All model building and parameter estimations were performed using R version 2.3.136. The 

next-generation estimates of R0 were performed using Mathematica version 651. 

Results

The data were stratified by stage class (Figure 1). The three models created were fitted to 

the data and compared using the likelihood ratio test (LRT). The first model, homogeneous 

mixing with uniform b, implies complete lack of stage structure in the population. Results from 

the model selection tests (Table 2) show that the model with slight heterogeneous mixing 

has a better fit to the data than the model with homogeneous mixing (p = 0.001). The strong 

heterogeneous mixing model fit the data better still (p = 0.0004) (Table 2). When comparing 

the set of the three nested models, the best-fit model overall was the model with the strong 

heterogeneous mixing which permitted unique within-and between-stage interactions 

(Table 2).

Using the model with strong heterogeneous mixing, chosen by the model selection test, 

we estimated point values for each of the elements in the WAIFW matrix according to the 

maximum likelihood estimates (Table 3). For the juvenile stage, transmission with subadults 

comprised the greatest component of disease incidence (b12 = 9.09 x 10-5), closely followed by 

transmission within the juvenile stage (b11 = 5.56 x 10-5) and transmission between juveniles 

variable encompassing both the probability that a given seal, once infected by PDV, will strand 

and that the stranded seal will be encountered and observed. We assume Poisson likelihoods 

for disease incidence.
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Figure 1:  Temporal 
stranding of harbour 
seals. The total number of 
harbour seals stranded 
and number of harbour 
seals stranded stratified 
by stage class are shown 
for each week of the PDV 
epidemic. The first week 
began in mid-June 
while the last cases were 
counted at the end of 
November. 

Models
Likelihood 

Ratio

Degrees of 

Freedom
P-value Better-fit Model

Homogeneous mixing

Slight heterogeneous mixing 
5.28 1 0.00116

Slight heterogeneous 

mixing

Slight heterogeneous mixing 

Strong heterogeneous mixing
10.14 4 0.0004385

Strong heterogeneous 

mixing

Table 2:  Model selection using the likelihood ratio test (LRT). Three models, used to describe the spread 
of PDV in the Dutch Wadden Sea, were compared to see which best fit the data. These models include: 
homogeneous mixing with uniform b, slight heterogeneous mixing with bb and kbb, and the full stage-
structure model with the symmetrical b matrix. The likelihood ratio, degrees of freedom, and p-values 
are listed for each pair-wise model comparison. Overall, the model incorporating full stage structure and 
symmetrical b matrix was the best-fit model to the data.

and adults (b13 = 5.05 x 10-6) (Table 3). Intra-stage transmission (b11) and transmission between 

juveniles and subadults (b12) provided clear maximum likelihoods with targeted values; the 

point estimate for transmission between juveniles and adults (b13) was less obvious since it lies 

within a range of equally likely results. Subadults, in contrast, showed the greatest interaction 

with members of their own class (b22 = 3.74 x 10-4), followed by interactions with adults 

(b23 = 2.22 x 10-4) and then juveniles (b21 = 5.56 x 10-5) (Table 3). Again, intra-stage transmission 

(b22) and transmission between subadults and juveniles (b21) provided clear estimates; the point 

estimate for transmission between subadults and adults (b23) was more obscure due to the 

fact that it lies within a range of results with similar likelihoods. Lastly, adult transmission was 

greatest with subadults (b32 = 2.22 x 10-4) and decreased with both adults (b33 = 8.08 x 10-5) and 

juveniles (b31 = 5.05 x 10-6) (Table 3). The transmission parameters for adults demonstrated the 

greatest degree of uncertainty among the three stages: each adult transmission term falls within 

a range of equally likely values.
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Parameter Demographic Classes Value

b1,1
Juvenile – Juvenile 5.56 x 10-5

b2,2
Subadult – Subadult 3.74 x 10-4

b3,3
Adult – Adult 8.08 x 10-5

b1,2 = b2,1
Juvenile – Subadult 9.09 x 10-5

b1,3 = b3,1
Juvenile – Adult 5.05 x 10-6

b2,3 = b3,2
Subadult – Adult 2.22 x 10-4

Table 3: Parameter point estimates in the full stage structure model from one-dimensional likelihoods. 
Point estimates and 95% confidence intervals for each element in the symmetrical b matrix in the model 
incorporating full stage structure were obtained by maximum-likelihood methods. The intra-stage 
transmission terms are designated by b1,1 for juveniles, b2,2 for subadults, and b3,3 for adults. Inter-stage 
transmission is symmetrical. Interactions between juveniles and subadults are designated by b1,2=b2,1, while 
transmission between juveniles and adults are designated by b1,3= b3,1. Finally, the transmission between 
subadults and adults is designated by b2,3= b3,2. 

The ambiguity in point estimates reflects the high degree of colinearity among the 

stage-structured parameter point estimates in Table 3. In other words, the likelihood landscape 

is rugged: there are different combinations of parameter values that could result in equally 

fit likelihood values. Correlations between parameters, calculated from the unconstrained 

optimization of all parameters in the full stage-structure model, are shown in Table 4. Two 

variables are considered to be correlated if their correlation coefficient was greater than 0.3. 

Under this criterion, four sets of variables are highly correlated: intra-stage juvenile transmission 

(b1,1) and transmission between juveniles and subadults (b1,2=b2,1), intra-stage subadult 

transmission (b2,2) and transmission between juveniles and subadults (b1,2=b2,1), intra-stage 

adult transmission (b3,3) and transmission between juveniles and adults (b1,3= b3,1) and, finally, 

intra-stage adult transmission (b3,3) and transmission between subadults and adults (b2,3= b3,2) 

(Table 4).

b1,1 b2,2 b3,3 b1,2 = b2,1 b1,3 = b3,1 b2,3 = b3,2

b1,1
1.00 0.0201 0.0158 - 0.842 -0.0239 -0.00847

b2,2
0.0201 1.00 -0.00818 -0.506 0.00953 -0.00649

b3,3
0.0158 -0.00818 1.00 0.0484 -0.853 -0.312

b1,2 = b2,1
- 0.842 -0.506 0.0484 1.00 -0.0827 -0.0337

b1,3 = b3,1
-0.0239 0.00953 -0.853 -0.0827 1.00 0.0689

b2,3 = b3,2
-0.00847 -0.00649 -0.312 -0.0337 0.0689 1.00

Table 4: Correlation coefficients in the full stage structure model from the unconstrained optimization of 
all parameters. Hessian matrix and corresponding correlation matrix was calculated from the unconstrained 
optimization of all parameters in the model incorporating full stage structure simultaneously.  Both 
negative and positive correlations are identified. Correlations greater than 0.3 are highlighted.
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The basic reproductive ratio, as given by the dominant eigenvalue of the next generation matrix 

(Equation 12) using transmission estimates from the unconstrained simultaneous optimization 

of all parameters, gave an estimate of R0 = 3.08, which falls directly in the range of other R0 

estimates for PDV43.

Discussion

Age-or stage-structured behaviour dictates transmission of many diseases3,4,5,41 and evidence 

points to stage-structured PDV transmission in harbour seals. For example, harbour seals show 

characteristics of discriminate interactions based on stage class20,37,38,42,45,50 and PDV incidence 

has previously been shown to have signatures of stage dependence in the Dutch 2002 

outbreak40. In this paper, we develop a theoretical framework to incorporate stage structure 

in PDV epidemic SIR models. By creating and ranking three nested models ranging from a 

complete lack of stage structure with homogeneous mixing to strong heterogeneous mixing, 

we showed that added stage structure provided a better description of the data (Table 2). 

Overall, the model with strong heterogeneities was the best-fit model (Table 2), indicating that 

the harbour seal population in the Dutch Wadden Sea transmitted PDV in a stage-dependent 

manner during the 2002 epidemic. 

Using the full stage-structure model with the symmetrical b matrix, we were able to determine 

elements of the WAIFW matrix from incidence data alone (Table 3), illuminating both 

mechanisms of epidemic spread and harbour seal contact structure. The highest transmission 

occurs among the subadult class and between subadults and adults, while the lowest 

transmission occurs between juveniles and adults. Other combinations of stage classes show 

intermediate levels of transmission. We were able to verify our estimates by calculating R0 using 

the next-generation matrix, which resulted in a value that is acceptable for PDV (R0 = 3.08).

Among all of the classes for which elements of the WAIFW matrix have been defined, subadults 

emerge as an interesting and vital category. Since the index case and most early cases were in 

the subadult category40, it logically follows that subadult-subadult transmission would be high 

since there are many behavioural contacts that may be epidemiologically relevant.

However, the elements in the WAIFW matrix is highly correlated, so it is difficult to 

unambiguously estimate certain pairs of parameters (Table 4). For example, transmission 

between juveniles and subadults are highly correlated with both intra-stage juvenile 

transmission and intra-stage subadult transmission. This makes it difficult to distinguish 

between an intra-stage transmission chain and a “pathogen rain” that infects the juvenile 

class from many other stages. Another reason for the correlation may stem from the fact 

that the stage classes were based on a proxy for age, namely sex and body length. Exact age 

determination may have lessened the correlations. Nevertheless, correlation between elements 
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of the WAIFW matrix set limits to the identifiability of the matrix. Encouragingly, though, 

likelihood ratio tests appear to have an ability to distinguish heterogeneous from homogeneous 

mixing in stage-structured data.

The WAIFW matrix is a catalogue of “who acquires infection from whom;” therefore, it is a 

reflection of transmission events and not a direct reflection of the contact process among 

healthy or immune seals. For instance, the stage class that introduces the disease into the 

population appears to influence the strength of the transmission coefficients. Many early cases 

in the 2002 Dutch PDV epidemic were subadults40; this is reflected in the high transmission 

between juveniles and subadults, among subadults, and between adults and subadults 

(Table 3). In addition, seals may have altered their behaviour due to disease. Nevertheless, the 

resulting transmission rates also seem to a mirror harbour seal behaviour under normal 

conditions. For example, from point estimates, juvenile transmission is greatest with subadults 

and decreases with other juveniles and adults (Table 3). The juveniles stranded in September, 

and therefore generally more than two weeks after weaning. At this time they are no longer in 

relative isolation with their mothers20,31,46.

Although many insights on PDV transmission between harbour seal stage classes in the 

Dutch Wadden Sea have been gained by the incidence data and resulting WAIFW matrix, the 

ambiguity in the estimates highlights the need for additional behavioural data. To make the 

theoretical results relevant, information about the number and type of intra-stage and 

inter-stage interactions must be determined. For example, specific contact measurements 

between and among stage classes could be determined based on the distance between 

individuals from observations or aerial photographs. In particular, focusing on the behaviour of 

the subadult stage would be the most helpful since the index case fell into this category. These 

additional behavioural data will likely constrain the degree of uncertainty in the parameter 

estimates to biologically reasonable and relevant ranges. 

In conclusion, elements in the WAIFW matrix that provide information about transmission 

dynamics within and between stage classes of harbour seals can be estimated based on 

stage incidence data alone. Combining our statistical methodology with the next-generation 

formalism further allows us to estimate R0. However, identifiability and uncertainty issues still 

exist within these parameter estimates, highlighting the need for additional behavioural data to 

restrict the ranges of the theoretical parameter estimations to biologically plausible and realistic 

values. Stage structure clearly plays an important role in the dynamics of this epidemic.
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*   : in cerebrum
nt : not tested

Table 1: Tissue distribution of morbilliviral RNA and morbilliviral antigen in phocine distemper virus-
infected harbour seals stored either cooled or frozen. 

Assay Storage 
condition 

  N° of seals positive for morbillivirus in: 

Any 
tissue Lung Kidney Urinary 

bladder Brain Liver Spleen 

         
RT-PCR 

Cooled 15 9 4 8 9 nt nt 

Frozen 16 16 4 5 nt nt nt 

         

IHC 
Cooled 21 11 4 0 2* 9 13 

Frozen 24 16 10 1 nt 16 3 
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+   :  positive
 -   :  negative
(*) :  cerebrum
nt :  not tested

Table 2: Comparison of diagnostic methods for morbillivirus infection in harbour seals infected with           
phocine distemper virus. 

Seal 
Nos 

  RT-PCR   Immunohistochemistry   Serology 

  
Lung Kidney Urinary 

Bladder Brain   Lung kidney Urinary 
Bladder Brain Liver Spleen   IgM IgG 

1 
 

+ - - - 
 

+ - - - + + 
 

+ - 

2 
 

+ - + - 
 

+ - - - + + 
 

+ - 

3 
 

+ - + - 
 

- + - - + - 
 

+ + 

4 
 

+ - + - 
 

- - - - - - 
 

+ - 

5 
 

+ + + - 
 

+ + - - - - 
 

+ - 

6 
 

+ + + + 
 

+ - - - + + 
 

- + 

7 
 

+ + + + 
 

+ - - - - + 
 

- - 

8 
 

- - - + 
 

- - - +(*) - - 
 

- - 

9 
 

- - - + 
 

+ - - - + + 
 

- - 

10 
 

- - - + 
 

- - - - + - 
 

- - 

11 
 

- - - + 
 

- - - - - + 
 

- - 

12 
 

- - - - 
 

- - - - + + 
 

- - 

13 
 

- - - - 
 

- + - - + - 
 

+ - 

14 
 

- - - - 
 

- + - - - + 
 

nt + 

15 
 

- - - - 
 

+ - - - - + 
 

- - 

16 
 

- - - - 
 

+ - - - - - 
 

+ + 

17 
 

- - - - 
 

+ - - - - - 
 

+ + 

18 
 

- - - - 
 

+ - - - - - 
 

+ + 

19 
 

+ - - - 
 

nt nt nt nt nt nt 
 

+ + 

20 
 

+ + + + 
 

nt nt nt nt nt nt 
 

+ - 

21 
 

- - + + 
 

nt nt nt nt nt nt 
 

- - 

22   - - - +   nt nt nt nt nt nt   - + 
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Figure 1: Lung; harbour seal No. 17. Morbillivirus antigen in bronchial epithelial cells. Immunoperoxidase 
histochemistry and hematoxylin, 400X (colour representation on back-cover). 
Figure 2: Thoracic cavity; harbour seal No. 23. Pulmonary and mediastinal emphysema; histologically, 
there was severe broncho-interstital pneumonia, associated with combined phocine distemper virus and 
Streptococcus equi subsp. zooepidemicus infections. 
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Figure 3: The relationship 
between age and extent 
of emphysema, severity of 
pneumonia, and distribution 
of pneumonia in harbour 
seals infected with phocine 
distemper virus. 
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The two above-mentioned cases with inclusion bodies in bronchial epithelium also had 

intracytoplasmic inclusion bodies in the urinary bladder epithelium, and in one case also in

renal pelvic epithelium and bile duct epithelium. The latter case had a mild necrotizing cystitis, 

pyelitis, and cholangitis. Splenic lymphoid depletion occurred in 5/29 (17%) cases, all ≥ 3-year-

olds, splenic lymphoid hyperplasia in one case (1/29, 3%), and extramedullary erythropoiesis 

in 1 case (1/29, 3%). One seal (1/29, 3%) had marked adrenocortical atrophy. Another (1/29, 

3%) had multifocal adrenocortical necrosis and multifocal necrotizing hepatitis. No lesions were 

observed in cerebrum or cerebellum.

 

The lung sections of 52/131 frozen PDV cases were interpretable. High to very high numbers 

of neutrophil occurred in 29/52 (56%) of these, corresponding with moderate to marked 

suppurative bronchopneumonia. These neutrophils were located in bronchi and sub-bronchial 

glands, alveoli and sometimes in interlobular spaces.

Organ weights 

The consolidated lungs frequently felt heavy. To test whether PDV infection had a significant 

effect on the weight of lungs or other organs, we fitted two simple models using all the organ 

weight data available (PDV cases and non-PDV cases together). The weights of the two units of 

paired organs were summed and considered as 1. Organ weight generally increases with body 

size (growth), so the first model we created regressed organ weight (response variable) over 

body length (predictor). The correlation between organ weight and body length was positive 

for all organs examined, and the amount of variation in organ weight explained by this model 

was 68% for heart, 61% for kidneys, 55% for both lungs and liver, 48% for adrenals, 40% for brain, 

and 17% for spleen. By analysis of variance (ANOVA), we then compared this first model to a 

Figure 6: Lung; harbour seal No. 24. Seal with marked suppurative bronchopneumonia associated with 
combined phocine distemper virus and Bordetella bronchiseptica infections. There is alveolar, interstitial and 
subpleural emphysema, and marked pulmonary congestion. HE, 100X.
Figure 7: Lung; harbour seal No. 23. Histiocytic broncho-interstitial pneumonia, associated with combined 
phocine distemper virus and Streptococcus equi subsp. zooepidemicus infections, with marked congestion. 
HE, 400X.
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second model in which both body length and having PDV or not (PDV, 2 levels: 0 = other cause 

of death, 1 = PDV-case) were the predictors of organ weight. Adding PDV did not significantly 

improve the prediction of brain, heart, liver and spleen weight. However, it did significantly

improve the model for lung, adrenal, and kidney weight (lungs, F = 16.791, P < 0.001, 67% lung 

weight variability explained; adrenals, F = 14.231, P < 0.001, 62% adrenal weight variability 

explained; kidneys, F = 7.561, P = 0.008, 67% kidney weight variability explained). Both 

predictors in these second models were positively correlated with the organ weights, 

indicating that PDV significantly increased the weight of lungs and adrenals and to lesser extent 

that of kidneys (model details not shown). The plotted data showed that this effect of PDV is 

most manifest in larger and therefore older seals (Figure 8).

Figure 8: Weight of lungs, kidneys, adrenals, 
and brain of harbour seals infected with 
phocine distemper virus (closed diamonds) 
and non-infected seals (open squares) 
regressed over seal body length (cm) shows 
that the first three organs are heavier in 
infected seals, in particular the longer 
(older) seals.
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We hypothesized that suppurative bronchopneumonia would result in heavier lungs. However, 

there was no association between moderate or high numbers of neutrophils and lung weight 

in PDV cases (the ratio lung weight over body length compared between 18 PDV cases with 

high numbers of neutrophils and 13 PDV cases with no or few neutrophils; two-sample t-test 

assuming equal variances, P = 0.964).

State of nutrition 

Stomach contents were recorded for 210 PDV cases. The majority had empty stomachs (195/210, 

93%). The remaining 15 had one or more corpora aliena (9/210, 4%), fish bones (3/210, 1%), or 

fish (i.e., a recent meal, 3/210, 1%). The corpora aliena were pieces of plastic (n = 3), wire booms 

(n = 2, 1 spring boom and 1 French boom, both parts of pater noster rigs used in sea angling), a 

spring (n = 1), an iron thread (n = 1), foil (n = 1), a string (n = 1), stones (n = 2), and a piece of wood 

(n = 1). The three seals with fish in their stomach were 0, 3, and 16 years of age. The <1-year-

old was positive by RT-PCR in the brain and bladder, the 3-year-old was positive by RT-PCR in 

the lungs (only tissue tested), and the 16-year-old was the PDV-case only positive for IgG as 

previously mentioned.

For comparison, the seven non-PDV cases whose deaths were associated with worm or bacterial 

infections, and one mesenteric torsion case, had empty stomachs. The two cases whose deaths 

were associated with corpora aliena and the other mesenteric torsion case had corpora aliena. 

The five cases whose deaths were associated with by-catch had fish in their stomachs. In the 

nine cases for which the cause of death was undetermined, any of these three stomach content 

situations was found.

 

The average blubber thickness of PDV cases (n = 231) was 13.5 mm (range 0 to 26 mm). It 

differed significantly from that of the non-PDV cases whose deaths were associated with 

by-catch (31.8 mm, range 15 to 45 mm; n = 5; Mann-Whitney test, P = 0.001), and seemed more 

comparable with those of non-PDV cases that died from other causes than by-catch.

 

Blubber thickness increases with age and changes seasonally with molt and reproductive 

activities22,49,63. Therefore, we regressed blubber thickness (mm) over age (years) and then over 

date of stranding, the latter also for different sex-age classes (female <1-year-olds, female 1- to 

2-year-olds, ≥ female  3-year-olds; male <1-year-olds, male 1- to 2-year-olds, male ≥ 3-year-olds). 

There was a significant trend for blubber thickness to decrease with age (r2 = 0.039, n = 189, 

P = 0.007). Blubber thickness also decreased significantly over time during the epidemic 

(r2 = 0.089, n = 189, P ≤ 0.001) among <1-year-olds (female, y = –0.174x + 61, r2 = 0.429, n = 13, 

P = 0.015; male, y = –0.145x + 50, r2 = 0.445, n = 15, P = 0.007) and seals  ≥ 3-year-olds (female, 

y = –0.141x + 46, r2 = 0.299, n = 35, P = 0.001; male, y = –0.141x + 46, r2 = 0.185, n = 49, P = 0.002). 

There was no effect of date of stranding on blubber thickness of 1- or 2-year-olds (females, 

r2 = 0.004, n = 47, P = 0.689; males, r2 = 0.003, n = 30, P = 0.95). 
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Phocine herpes virus 1 coinfection 

Nine of 169 (5%) PDV cases tested were positive by PCR for phocine herpes virus 1 infection. 

There were five females (a 3- and a 4-year-old, two 1-year-olds, and two 100-cm-long female) 

and four males (a 5-year-old, two 4-year-olds, and a 3-year-old).

 

Bacterial coinfections 

Fourteen bacterial genera or species were cultured from the PDV cases examined (Table 3, 

Figure 9). B. bronchiseptica was the most frequently isolated bacterium (24/36, 66%). It was 

always cultured from lung tissue (24/24) and sometimes additionally from other tissues 

examined (15/24; Table 3). The seals with B. bronchiseptica infection were <1-year-old (n = 5), 

1-year-old (n = 5), ≥3 years or older (n = 6), or of undetermined age (n = 7). In 8/36 (22%) cases, B. 

bronchiseptica was cultured from the lungs (and other organs) in association with high numbers 

of other bacteria; in 4/36 (11%) cases, it was the only specific bacterium cultured from the lungs; 

and in 12/36 (33%) cases, it was the only specific bacterium cultured from all organs examined.

Table 3: Tissue distribution of bacteria isolated from harbour seals infected with phocine distemper virus.

(*): Trbrln: tracheo-bronchial lymph node
(‡): Potential postmortem contaminant.
Numbers cultured (in parentheses): ± = occasional; + = few; ++ = moderate; +++ = many; ++++ = very many; 
ND = not determined.

Bordetella bronchiseptica 24 2 (±)
1 trachea (+++),

1 hepatic lymph node (++)

Escherichia coli 

        & other coliforms
8 1 (+) 1 knee joint (+++) , 1 mesenteric 

lymph node (ND)

Streptococcus sp. 6 1 (++) 2 (+) 1 trachea (ND)

Gemella sp. 5 2 (++) 1 prefemoral lnn (++)

Clostridium sp. 5 1 (±) 1 trachea (+++)

3 1 (±) 1 (±) 1 (±) 1 (±)

Proteus sp. 2 2 (ND)
1 thoracic cavity (ND),

1 mesenteric lymph node (ND)

1 1 (+)

Enterobacter sp. 1 1 (+++)

1 1 (++)

1 1 (+)

1 1 (+)

Staphylococcus aureus 1 1 (+++) 1 (++) 1(±) 1(±)

1 1(±) 1(±)

Trbrln(*)

 (n=36)

Lung

 (n=36)

No. of seals positive in:

Kidney

 (n=22)
Bacterium

Any tissue

 (n=36)

 Spleen

 (n=36)

Liver

 (n=36)
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In the remaining 12/36 (34%) cases, B. bronchiseptica was absent. In these cases, other specific 

bacteria were isolated in significant numbers in lungs and other organs (5/36, 14%, including 

a case of Staphylococcus aureus septicemia), in small or undetermined numbers in one or few 

organs (5/12, 14%), or were absent (2/36 unspecified mixed cultures, 6%).

Six PDV cases with other gross lesions were among those from which bacteria were cul-

tured: two bronchopneumonia cases (B. bronchiseptica with Streptococcus equisimilis or with 

Clostridium perfringens, from respiratory tract); a pulmonary abscess case (S. equi subsp. 

zooepidemicus, from multiple organs); a pulmonary hematoma case (B. bronchiseptica with 

S. zooepidemicus, both from multiple organs); a generalized lymphadenopathy case (Gemella 

sp., from lung and multiple lymph nodes), and the hepatic atrophy case (Escherichia coli, from 

lung, tracheo-bronchial lymph node and liver; Enterobacter sp. from lungs, Aeromonas sp. from 

kidney).

 

When B. bronchiseptica was the only specific bacterium isolated from the tissues examined, 

there was a straightforward relationship with the number of neutrophils in lung sections: there 

were no or few neutrophils when B. bronchiseptica was isolated from lung tissue only; there 

were moderate to large numbers of neutrophils when B. bronchiseptica was isolated from the 

lungs and other tissues. However when other bacteria were isolated in moderate to large num-

bers from the lungs, with or without B. bronchiseptica, no consistent pattern was detected with 

regard to neutrophil numbers.

 

The species of bacteria isolated from the PDV cases in 2002 only partially overlapped with those 

isolated from non-PDV cases in 2000–2001 (Figure 9). Notably, B. bronchiseptica was not isolated 

Figure 9: Specific bacteria isolated from 
harbour seals infected with phocine 
distemper virus (n = 34) during 2002 (grey 
bar) compared to bacteria isolated from 
non-infected seals (n = 8) over the same 
time period in the two previous years (white 
bar). 
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from the non-PDV cases. In contrast, Corynebacterium sp. was not isolated from the PDV cases, 

whereas it was isolated from 3/8 non-PDV cases where it was twice associated with cause of 

death. Brucella sp. was not isolated.

 

Parasitic coinfections 

Macroscopically, lungworms (identified as Otostrongylus circumlitus and Parafilaroides gymnu-

rus) were observed in 25/226 (11%) of the PDV cases, heartworms (identified as Acanthotheilone-

ma spirocauda) in 42/221 (19%), and stomach worms (identified as Pseudoterranova decipiens 

and Contracaecum osculatum) in 150/227 (66%). The frequency distributions of the parasites 

were highly aggregated as expected for macroparasitic infections (Figure 10)64. The distributions 

of lung- and heartworms were quite comparable, and different from that of stomach worms 

(Figure 10).

Figure 10: The frequency distributions 
of worm burdens in harbour seals 
infected with phocine distemper virus 
(lungworms, closed diamonds, n of 
seals = 226; heartworms open squares, 
n of seals = 221; stomach worms, open 
triangles, n of seals = 227).

All three worm burdens and seal age were determined for 179/232 seals. Lungworms were 

observed in 21 of these, heartworms in 28 and stomach worms in 150. The first <1-year-old in 

this sample stranded on 14 August 2002, the first <1-year-old with lungworms on 29 August, 

with heartworms on 27 August, and with stomach worms on 8 September 2002. Lungworms 

were observed most frequently and with the highest burdens in <1-year-olds, and heartworms 

most frequently and with the highest burdens in 1- and 2-year-olds (Figure 11). Stomach worms 

were seen in all age categories, but the highest burdens occurred in seals  ≥3 years old (Figure 

11). Stomach worm burden (4 levels: no worms; 1–10 worms; 11–100 worms; >100 worms) 

increased significantly with age in males but not in females (males, r2 = 0.172, n = 87, P < 0.001; 

females, r2 = 0.007, n = 92, P = 0.420).

The presence and number of lice were reported in 212/232 cases. Lice were present in 29/212 

(14%) of the cases (16 cases with 1–10 lice, 10 with 11–100 lice, and three with  100 lice). Lice 

were most frequent and with the highest burdens in 1- and 2-year-olds. However, lice can drop 

off carcasses once the seal is dead, and therefore this may be an underestimation of the number 

of seals with lice as well as of louse numbers.
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Figure 11: The distribution of lungworm, 
heartworm and stomach worm burdens in 
harbour seals infected with phocine distemper 
virus, classified according to age. 

Discussion 

Correlating pathology findings and related laboratory diagnostic analyses in PDV cases and 

comparing these with those of non-PDV cases have provided further insight into the pathology 

of PDV infection in free-living harbour seals. Because our study was limited to seals found dead 

or moribund, these findings are not necessarily representative of the disease process as it may 

occur within the overall population. Also, although levels of contaminants occurring in seals 

may be immunosuppressive and therefore affect the disease process, we did not investigate this 

during the current study16. We sequentially discuss a number of points raised by the PDV assay 

results, the lesions, and lastly the coinfections.

 

Analysis of the PDV assay results showed differential temporal presence of virus in lung and 

brain, and age-related differences in disease course. First, the results suggested differential 

periods of presence of virus in lungs and brains. Clearance of virus from host tissues occurs in 

morbillivirus infections, but clearance from the brain is not efficient in canine distemper cases 

with brain involvement in dogs1,20,42,47. Such cases also tend to have a longer disease course than 

average1. In this study, seals positive by RT-PCR in the brains tended not to be positive by RT-PCR 
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in the lungs, which would fit with an efficient virus clearance from most tissues including the 

lungs, but not from the brains. These results indicate that both lung tissue and brain tissue need 

to be tested by RT-PCR when PDV is suspected.

 

Second, associating PDV assay results to seal age provided support for age-related differences 

in disease course. Indeed, the proportion of seals with IgG antibodies increased significantly 

with age. There was also an indication for such a trend for IgG in seals infected during the 1988 

epidemic, and evidence for such a trend for neutralizing antibodies12,56. For the latter, 4 possible 

explanations were discussed56. The first was that juvenile seals were less exposed to the virus; 

this is inconsistent with the PCR-results in the present study. The second was that older seals 

would have more anamnestic responses; this is inconsistent with the present study because 

only a few dead adult seals were old enough to have been alive during the 1988 epidemic. The 

last two explanations were greater mortality among young seals and age-related compromised 

immune responses in young seals; these are not inconsistent with the results of our study. A 

variant of the latter is a lengthier disease course in older seals.

 

Analysis of PDV-associated lesions showed influences of the seal's anatomy and physiology on 

the development of emphysema, an effect of age on disease course, evidence of dehydration, 

an effect of age on blubber thickness, and different disease characteristics in cases with severe 

gross nonrespiratory tract lesions. First, emphysema is likely to develop as a result of inflam-

mation and airway obstruction, a concept supported in this study by the positive correlation

between the occurrence of pneumonia and emphysema in the PDV cases. Pneumonia is a 

frequent feature of morbillivirus infections in all host species. However, to our knowledge, 

emphysema has been associated with morbillivirus infection in seals and cattle but not 

in dogs1,7,25,27,32,35,38. A possible explanation is that seals and cattle—but not dogs—have 

well-developed interlobular septa that prevent collateral ventilation in case of airway 

obstruction, resulting in interstitial emphysema5,13,19,46,52,61.

 

Second, linking pneumonia and emphysema to seal age suggested age-related differences in 

the development of lesions. In particular, the extent of emphysema varied significantly with age 

class rather than with severity and distribution of pneumonia: most <1-year-olds had severe 

and extensive pneumonia, but rarely had extra-thoracic emphysema. In contrast, extra-thoracic 

emphysema in older seals was common regardless of the extent and severity of the pneumonia. 

A possible explanation for this difference is a lengthier disease course in older seals. This may 

be analogous to cattle with protracted interstitial pneumonia, where emphysema also spreads 

from the lungs to the mediastinum and the skin of the back13. Another explanation could be that 

physiological diving responses and oxygen storage capacity are not fully developed in <1-year-

olds, so <1-year-olds perform shorter dives than older seals8,10. Normally pinnipeds exhale be-

fore diving, and the air that remains in the alveoli is squeezed out and into the bronchi and 

trachea as pressure causes the lungs collapse8,30. If the airways are obstructed, as in seals with 



101

Quantitative analysis of the 2002 phocine distemper epidemic in the Netherlands

PDV infection, air in the alveoli might rupture the alveolar walls during long dives, resulting in 

emphysema.

 

Third, the effect of PDV on nutritional state and organ weights suggests a role for dehydration. 

The empty stomachs of PDV cases indicate that feeding and associated water intake from prey 

was impeded. Further evidence for anorexia was that blubber reserves of PDV cases were on 

average reduced compared to those of by-caught seals (this study) or culled seals22. Presumably 

PDV cases have higher water requirements than normal, because they excrete large amounts 

of fluid via oro-nasal and lacrimal secretions and diarrhea27,39,40. Therefore, it is likely difficult for 

these seals to maintain their water and electrolyte balances. The increased kidney and adre-

nal weights that we observed in PDV cases fit with dehydration. Water-deprived rodents also 

show significantly increased renal and adrenal weights, the first possibly caused by the hyper-

trophy of the renal medulla2,9,48. Future studies of stranded seals might address the question of 

dehydration through measurement of urea nitrogen in vitreous humor fluid33.

 

Fourth, we next found that blubber thickness of the PDV-infected seals decreased with age, and 

with date of stranding in seals ≥3 years old and in <1-year-olds. In seals ≥ 3 years old, these re-

sults suggest either lengthier disease or coincidence with physiological fat loss (e.g., because of 

reproductive activities), or a combination of these11,14. In <1-year-olds, post weaning fat loss seems 

a more plausible explanation for the observed time trend than an effect of maternal antibodies 

on disease duration because antibodies to PDV were virtually absent in the population26,37,54.

 

Fifth, PDV cases with macroscopic evidence of significant nonrespiratory tract lesions were 

significantly more RT-PCR negative and IgG positive than the other PDV cases, and fewer had 

pneumonia and emphysema. These findings suggest these PDV cases had a different and 

lengthier disease course than most PDV cases.

 

Analysis of coinfections showed that bacterial pneumonia occurred frequently and provided 

evidence for an immunosuppressive effect of PDV. First, suppurative pneumonia indicative 

of bacterial coinfection was commonly diagnosed by histologic analysis of lung tissues. This 

was surprising, because macroscopic evidence of suppurative pneumonia was rare. A possible 

explanation for this discrepancy might be that a high proportion of the bacterial infections in 

the lung were peracute to acute and had not yet led to macroscopically visible changes.

 

Second, the indications for immunosuppression were the frequent presence of B. bronchiseptica 

in the lungs, and the occurrence of lungworm infections in older seals. B. bronchiseptica is often 

isolated from lungs of seals and other carnivores during PDV or canine distemper virus (CDV) 

epidemics, but not outside these epidemics4,25,32,38,50. In dogs B. bronchiseptica is often chroni-

cally present in the upper respiratory tract, infection occurring early in life and followed by a 

certain resistance to severe disease6,65. It is thought that when hosts are immunosuppressed, the 
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bacterium can invade and colonize the lower respiratory tract and cause bronchopneumonia. 

The same principle applies for lungworms, as these tend to infect and cause disease in har-

bour seals early in life, after which surviving hosts usually have a certain degree of immunity to 

reinfection and disease36. 
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Since the 1970s, policies have been implemented to decrease the burden of harmful 

anthropogenic contaminants in the environment. This initially led to downward trends of 

major organohalogens in sediment and biota of the North Sea. More recent data on trends of 

organohalogen levels in harbour seals (Phoca vitulina) as indicators of North Sea ecosystem 

health are largely lacking. Juvenile harbour seals stranded along the Dutch coast during 

the phocine distemper virus (PDV) epidemic in 2002 (n=18) and throughout the preceding 

decade (n=27) were analysed for polychlorinated biphenyls (PCBs), organochlorine 

pesticides and polybrominated diphenyl ethers (PBDEs). Hexachlorocyclohexane 

isomers (HCHs) and hexachlorobenzene (HCB) levels showed a significant decline, but 

all remaining compounds, including PCBs, dichlorodiphenyltrichloroethane and its 

metabolites (DDTs) and PBDEs, did not. PCBs remained at levels previously associated with 

immune suppression. These results indicate that, despite reduced input, certain major 

organohalogens have stabilized in harbour seal tissues at potentially harmful levels.

Harbour seals are at risk of suffering ill health from anthropogenic contaminants such as 

organohalogens. Like human beings, they are top predators in the North Sea ecosystem 

and belong to the highest trophic levels of the food chain. As a result, chemically stable 

organohalogens tend to accumulate more in their tissues than in those of species at lower 

trophic levels. In the late 1970s and early 1980s, high levels of organohalogens, particularly 

polychlorinated biphenyls (PCBs), were associated with poor reproductive performance in 

harbour seals19,20. Furthermore, when a phocine distemper virus epidemic decimated the North 

Sea harbour seal population in 19885,17,18, it was speculated that pollution-related immune 

suppression had contributed to the severity and extent of the epidemic. It was subsequently 

shown that the levels of PCBs and dichloro-diphenyl-trichloroethane and its metabolites (DDTs) 

in tissues of North Sea harbour seals from that period exceeded those associated with immune 

suppression7,22.

When a second PDV epidemic struck the North Sea harbour seal population in 2002 13 and 

caused a similar level of mortality as the previous epidemic 14 years earlier12, it was again specu-

lated that pollution had played a role. However, recent data on organohalogen levels in harbour 

seal tissues from this region are largely lacking. This prompted us evaluate trends for levels of or-

ganochlorine compounds, namely PCBs, DDTs, tris(4-chlorophenyl)methanol (TCPMOH), chlo-

rdane related compounds (CHLs), tris(4-chlorophenyl)methane (TCPMe), heptachlor epoxide 

(HP-epox), hexachlorocyclohexane isomers (HCHs) and hexachlorobenzene (HCB), as well as for 

the newly introduced flame retardant polybrominated diphenyl ethers (PBDEs) in harbour seal 

blubber. To this end, blubber samples from 45 juvenile harbour seals that had stranded along 

the Dutch coast during the 2002 epidemic (n = 18) and in the preceding decade (n = 27) were 

analysed for levels of these compounds (Materials and Methods in Annex). Blubber samples 

from juvenile seals were chosen for this study not only because they can readily be obtained for 
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monitoring, but also to limit effects of sex and duration of environmental exposure.

Organochlorines and PBDEs were detected in all the blubber samples analysed (Table 1). On a 

lipid weight basis, the highest mean values of organochlorines were found for PCBs (mean, 28 

μg/g; median, 16 μg/g; range, 2.6-270 μg/g), DDTs (mean, 3.0 μg/g; median, 1.8 μg/g; range, 

0.18-20 μg/g), and TCPMOH (mean, 0.80 μg/g; median, 0.50 μg/g; range, 0.040-7.7 μg/g) (Figure 

1, left panel). This was followed in decreasing order by CHLs (mean, 290 ng/g; median, 200 ng/g; 

range, 26-1900 ng/g), HP-epox (mean, 61 ng/g; median, 47 ng/g; range, 10-340 ng/g), TCPMe 

(mean, 32 ng/g; median, 20 ng/g; range, 3.0-260 ng/g), HCHs (mean, 18 ng/g; median, 14 ng/g; 

range, 6.0-66 ng/g), and HCB (mean, 5.0 ng/g; median, 3.6 ng/g; range, 1.0-38 ng/g) (Figure 1, 

right panel).  Levels of PBDEs were on average 380 ng/g on a lipid weight basis (median, 180 

ng/g; range, 37-2500 ng/g) with predominant contribution by BDE-47 (Figure 1, right panel). 

None of the samples analysed contained detectable amounts of BDE-209  (Table 1).

Figure 1: Average levels of organohalogen compounds in the blubber of 45 juvenile harbour seals stranded 
along the coast of the Netherlands in the period 1993-2002.

The organochlorines, including PCBs and DDTs, and PBDEs did not show a significant downward 

trend in tissue levels during the period 1993 to 2002, based on multiple regression analysis 

(in Annex). As the only exceptions, there were significant downward trends in the tissue levels 

of organochlorine pesticides HCHs (13.3% per year, p = 8 x 10-7) and HCB (12.9% per year, 

p=1 x 10-5) (Table 2). In the two models, for HCHs and HCB, in which “year” was retained as 

predictor, it explained 36% (HCHs) and 35% (HCB) of the variation in contaminant levels between 

individuals. As expected, there was a significant inverse correlation between the levels of each 

of the compounds and blubber thickness (p-values ranging from 7 x 10-4 to 0.02), with exception 

of HCB (p=0.75). The average reduction per mm blubber thickness was 2.5% for HCH and 4.3 to 

6.3% for all other correlating compounds. Body length had no significant effect on the levels of 

organohalogens observed, although female sex significantly increased the levels of TCPMOH by 

92% (p=0.03) and TCPMe by 88% (p=0.02). The interaction term between sex and body length did 

not improve the models. Overall, the models explained between 13% (PBDEs) and 42% (HCHs) of 

the variation in contaminant levels between individuals (Figure 2; Table 2).Combining the data 
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from our study with toxicological studies of juvenile harbor seals from the southern North Sea 

in the 1970s 8,9,14,20 and 198811,16,23,24 allowed us to analyze the trends in levels of PCBs, DDTs, and 

HCHs in period 1974 to 2002 (Figure 3). Although an effect of location cannot be excluded, this 

analysis suggests that, after a general decline in levels between the 1970s and 1988, the trends 

of these three organochlorines have diverged. The levels of HCHs have continued to decline. 

In contrast, the levels of PCBs and, to a lesser degree, DDTs in harbor seal tissues have leveled 

off in the last 14 years. Although the relative contribution of metabolized persistent derivates 

(p,p’-DDE) of DDT tended to increase, this trend was not significant (p = 0.07). We therefore 

cannot conclude that DDT release into the environment was reduced significantly in the decade 

studied 1.

 Figure 2: Organochlorine levels in the blubber of 45 juvenile harbour seals stranded along the coast of the 
Netherlands in the period 1993-2002 over year of stranding or blubber thickness. Lines indicate significant 
trends.
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Figure 3:  Trend of log10 transformed mean values of three organochlorine compounds in the blubber of 
juvenile harbour seals using different studies. Minimum sample size was set at 3. Juvenile seals were 
selected based on maximum age of 2 years and maximum length of 105 cm. Triangles represent seals 
stranded in the Netherlands (Wadden Sea and North Sea), plusses in Germany (Wadden Sea), diamonds 
in Denmark (Wadden Sea and Limfjord), and squares in the U.K. (The Wash and  Norfolk). Grey symbols 
represent transformed values. Prior to log-transformation, values were multiplied by 0.85 for conversion 
from lipid weight to wet weight, and by 0.65 for conversion from total PCB to 7 ICES PCB.
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The third analysis we performed was to compare mean tissue levels of PCBs, DDTs, and HCB in 

juvenile harbour seals that died in 2002 just before or during the PDV epidemic (n = 23) with 

those found at the end of a semi-field feeding experiment carried out with juvenile harbour 

seals in the early 1990s. In that experiment, several negative effects on immune function 

were observed in seals that were fed herring from the heavily polluted Baltic Sea compared 

to seals that were fed herring from the less contaminated Atlantic Ocean7. These effects could 

be attributed primarily to PCBs, even though other immunotoxic contaminants were present. 

Comparing the contaminant levels in seals from 2002 and those fed on Baltic Sea herring, there 

were no significant differences in mean levels of PCBs (p = 0.15), while mean levels of DDTs and 

HCB in 2002 seals were significantly lower than those in the Baltic Sea group (p < 0.01). These 

data suggest that PCBs in harbour seals that died during the 2002 PDV epidemic occurred at 

levels comparable to those associated with immunosuppression in the semi-field experiment.

The main origins of organohalogen pollution are industrial and agricultural sources that 

pollute the marine environment via riverine and other land or sea based discharges, as well 

as atmospheric fall-out 3. Published data on trends in organohalogen residues in the sediment 

and biota in the North Sea area are limited and fragmentary. PCB levels in sediment declined 

significantly in the period 1981 to 199615 as a result of specific measures taken from the 1970s 

onwards in the industrialized world. However, this decline has levelled off in recent years (1991-

2001)21. Also, no declining trend could be measured in mussels and fish in the late 1980s25. DDT 

levels in sediment and fish from the North Sea coastal environment also have decreased4,25,26 

following discontinuation of its production and use in the industrialized world in the early 

1970s. However, the use of DDT has long been continued in tropical areas, albeit at a smaller 

scale than before1. Our observation that the ratio of metabolized p,p’-DDE over total DDTs 

tended to increase, although not statistically significant, is in line with studies on sediment and 

fish, suggesting that exposure of the North Sea coastal environment to DDT is decreasing 4,25,26. 

HCB levels in sediment28 and HCH and HCB levels in several fish species from the North Sea 

have declined4,6 after their use was largely discontinued from the late 1980’s onward. However,g-

HCH (lindane), which is the only insecticidal isomer of HCH, is still in limited use10, and HCB is 

still produced unintentionally, under strict regulations, as a by-product of chlorinated organic 

solvents10. 

For the remaining compounds (TCPMOH, TCPMe, CHLs, HP-epox, and PBDEs), there was no 

evidence for a trend in the decade studied, and historical data for marine mammals are 

too limited for comparison. It is noteworthy that levels of  PBDE flame retardants did not 

increase, which may reflect the timely implementation of restrictions on the use of the most 

bioaccumulating compounds2.

Collectively, the results of this study show that, except for HCB and HCHs, the levels of ma-

jor organohalogen contaminants, including PCBs and DDTs, have not declined in tissues of 
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harbour seals in the last decade, and still exceed the levels at which immunosuppressive effects 

have been measured. Therefore, these contaminants may have contributed to the severity and 

extent of the PDV outbreak that caused approximately 50% mortality in the North Sea harbour 

seal population in 200212. It should be realised that only an estimated one-third of the total PCB 

burden produced had been released into the environment by 198827. Taking into account the 

large still existing stocks, the importance of the atmospheric route of input into the oceans, and 

the extreme biomagnification3, we need to take into account, both for the health of humans and 

wildlife, that PCB levels will continue to persist in the environment in the near future.
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Annex 

Materials and Methods

Samples

Harbour seals (Phoca vitulina) used in this study were found stranded on the coasts of The Neth-

erlands between 1993 and 2002. Sampling locations and biological data of 45 cases analyzed in 

the present study are given in Table S1. Blubber samples were excised from all the dead animals, 

put in polyethylene bags, and kept in a deep freezer at -20°C of the Environmental Specimen 

Bank for Global Monitoring (es-BANK) at Ehime University (S1) until chemical analysis. 

To limit the sample to juvenile seals (2 years or less), seals of 105 cm or less body length (nose 

to tail tip) were selected. In addition, for the 18 seals from the PDV epidemic age was con-

firmed using a single canine tooth removed from the lower jaw. Longitudinal, decalcified and 

haematoxylin-stained thin sections (20 µm) of each tooth were prepared following the procedure 

described by Kasuya (S2). For each tooth, all the growth layer groups (GLG) were counted in both 

dentine and cementum, three times independently, and the median value was taken as the 

GLGs. The annual accumulation of a dentinal and cemental GLG is widely accepted for pinniped 

species (e.g., S3, S4) and therefore one GLG was assumed to correspond 1 year. 

Chemical Analyses

Organochlorine compounds including PCBs, DDTs (dichlorodiphenyltrichloroethane and its 

metabolites), HCHs (hexachlorocyclohexane isomers), CHLs (chlordane related compounds), 

HCB (hexachlorobenzene), HP-epox (heptachlor epoxide), TCPMe [tris (4-chlorophenyl) 

methane] and TCPMOH [tris (4-chlorophenyl) methanol] were analyzed following the methods 

described by Kajiwara and others (S5). Briefly, approximately 2 g of blubber were homogenized 

with anhydrous sodium sulfate and extracted in a Soxhlet apparatus for 7-8 hrs using a mixture 

of diethyl ether and hexane. An aliquot of the extract was subjected to a gel permeation chro-

matography column (GPC; Bio-Beads S-X3, Bio-Rad Laboratories, CA, 2 cm id. and 50 cm length) 

for lipid removal. The GPC fraction containing organochlorines was concentrated and passed 

through an activated Florisil column for clean up and fractionation. Quantification of PCBs and 

most of organochlorine pesticides was performed using a GC (Agilent 6980N) equipped with a 

micro-electron capture detector (micro-ECD) and an auto-injection system (Agilent 7683 Series 

Injector). The GC column used for organochlorines analysis was a fused silica capillary (DB-1, 

30 m x 0.25 mm i.d. x 0.25 µm film thickness, J&W Scientific Inc.). Identification and quantifica-

tion of HP-epox, TCPMe and TCPMOH were performed using a GC-MSD (Agilent 5973N) in selec-

tive ion monitoring (SIM) mode equipped with an auto-injection system (Agilent 7683 Series 

Injector). The concentration of individual organochlorines was quantified from the peak area 

of the sample to that of the corresponding external standard. The PCB standard used for 

quantification was a mixture of sixty-two PCB isomers and congeners (BP-MS) obtained from 

Wellington Laboratories Inc., Ontario, Canada. Concentrations of individually resolved peaks of 
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PCB isomers and congeners were summed to obtain total PCB concentrations.

Analysis of PBDEs was performed following the procedure described by Ueno and others (S6) 

with slight modification. Another aliquot of the extract, after adding 5 ng of internal standards 

(13C12-labeled BDE-3, BDE-15, BDE-28, BDE-47, BDE-99, BDE-153, BDE-154, BDE-183 and BDE-

209), was added to a GPC column for lipid removal. The GPC fraction containing organohalo-

gens was concentrated and passed through 1.5 g of activated silica gel S-1 (Wako Pure Chemical 

Industries Ltd., Japan) column with 5% dichloromethane in hexane for clean up. 13C12-labeled 

BDE-139 was added to final solution prior to GC-MSD analysis. Quantification was performed 

using a GC (Agilent 6890N) equipped with MSD (Agilent 5973N) for mono- to hepta-BDEs, and 

GC (Agilent 6890N) coupled with MSD (JEOL GCmate II) for deca-BDE, having an electron impact 

with SIM mode. GC columns used for quantification were DB-1 fused silica capillary (J&W Scien-

tific Inc.) having 30 m x 0.25 mm i.d. x 0.25 µm film thickness for mono- to hepta-BDEs, and 15 m 

x 0.25 mm i.d. x 0.1 µm film thickness for deca-BDE. Ten major congeners of PBDEs (BDE-3, BDE-

15, BDE-28, BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, BDE-183 and BDE-209) were quanti-

fied in this study. All the congeners were quantified using the isotope dilution method to the 

corresponding 13C12-labeled congener. Recovery of 13C12-labeled BDE congeners added as 

recovery surrogates prior to sample clean-up ranged between 60-120%.

Procedural blanks were analyzed simultaneously with every batch of five samples to check for 

interferences or contamination from solvents and glassware. Lipid contents were determined 

by measuring the total non-volatile solvent extractable material on sub-samples taken from the 

original extracts. The concentrations of organohalogens are expressed on a lipid weight basis 

unless otherwise specified.

For quality assurance and control, our laboratory participated in the Intercomparison Exercise 

for Persistent Organochlorine Contaminants in Marine Mammals Blubber, organized by the 

National Institute of Standards and Technology (Gaithersburg, MD) and the Marine Mammal 

Health and Stranding Response Program of the National Oceanic and Atmospheric Administra-

tion’s National Marine Fisheries Service (Silver Spring, MD). Standard reference material (SRM 

1945) was analyzed for selected PCB congeners and persistent organochlorines. Data from 

our laboratory were in good agreement with those for reference materials. The average of 

percentage deviation from the certified values was 13% (range: 0.5-20%) for organochlorine 

pesticides and 28% (range: 1.3-57%) for PCB congeners.

Statistical Analyses

Analyses of were performed using EXCEL 2000, R (S7), and http://www.quantitativeskills.com/

sisa/. The criterion for significance set at p=0.05.

For the model, we assumed that in this cohort of sexually immature seals measuring <1.05 m 
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neither sex nor age affected the log10 contaminant values, but that these would be negatively 

affected by blubber thickness. Therefore, to examine the effect of time (stranding year) on con-

taminant levels we first log10 transformed these. We fitted a general linear model with the log10-

transformed values as the response value, stranding year as the predictor, and blubber thickness 

(mm) as confounder. Terms were progressively removed from the full model to achieve the mini-

mum adequate model (MAM), as judged by the Akaike Information Content (AIC) value, using 

the function STEP. 

For comparison with levels found other studies since the 1970s, log10 transformed mean values 

of three organochlorine compounds in blubber of juvenile harbour seals were used. Minimum 

sample size was set at 3. Two criteria were used to select juvenile seals only, namely a maximum 

seal age of 2 years and a maximum seal length of 105 cm. Two arbitrary conversion factors were 

used prior to log-transformation: multiplication by 0.85 for conversion from lipid weight to wet 

weight values, and multiplication by 0.65 for conversion from total PCB to 7 ICES PCB.

For comparison of the PCBs, DDTs and HCB values of the seals stranded in 2002 and those of the 

feeding study we calculated p-values using means, standard deviations and the number of seals 

in each group
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Polybrominated diphenyl ethers (PBDEs) are flame retardants, produced commercially 

as three main products, pentaBDE, octaBDE and decaBDE. PBDEs have been shown to 

accumulate in the environment since the start of their use, and adverse health effects are 

found at lower levels for pentaBDE and octaBDE than for decaBDE. To provide baseline 

information on PBDEs, 17 congeners were determined in 25 sexually immature harbour 

seals (Phoca vitulina) that stranded in the Dutch Wadden Sea between 1999 and 2002, 

seals—like humans—belonging to the higher trophic levels of the food chain. Host-

related features of potential influence on PBDE levels, i.e., sex, morphometric data, 

stranding date and location were included in the evaluation. BDE-47 was the congener 

present in the highest levels (mean/median/min/max: 122/83/17/500 ng per g wet 

weight of blubber). The levels of the other consistently detectable congeners were one 

(BDE-99, BDE-100, BDE-153, BDE-154 + BB-153) or two (BDE-28, BDE-49) orders of magnitude 

lower than BDE-47 levels, and overall values of these congeners correlated positively with 

BDE-47 values. The maximum level of BDE-183, the main component of octaBDE, was 1.1 

ng per g wet weight of blubber, and BDE-209 was below detection limits in all 25 seals. 

A significant inverse relation between BDE-47 levels and blubber thickness was found. 

Seals stranded in the Western Wadden Sea had significantly higher levels of BDE-47 than 

those stranded in the Eastern Wadden Sea, which seems to be correlated with the levels in 

the food. This study on PBDE levels in harbour seals from the Dutch Wadden Sea provides 

baseline values against which future trends can be assessed. 

Introduction

Polybrominated biphenyl ethers (PBDEs) reduce the propagation of flames1. The industrial 

production of PBDEs and their use in products began in the early 1970s28, when manufacturers 

started to add PBDEs as flame retardants to polymers in construction material, means of transport, 

electric and electronic equipment, furniture and textiles1. There are three commercial PBDE 

products. PentaBDE is a mixture of tetra- to hexa-BDE congeners, mainly BDE-99 and BDE-47. 

OctaBDE is a mixture of hexa- to nona-BDE congeners, predominantly BDE-183. Finally, decaBDE 

consists of BDE-209 and small amounts of nona-BDE congeners1,8,12. The global annual demand 

in 2001 was estimated to be 7 500 metric tons for pentaBDE (150 for Europe), 3 790 metric tons 

for octaBDE (610 for Europe), and 56 100 metric tons for decaBDE (7600 for Europe)16.

PDBEs enter the environment during the production process, and during the use and subsequent 

disposal of the products containing them25. In the decades following the start of their industrial 

production, PBDE levels increased in the environment8. Toxicology studies indicated that 

commercial pentaBDE and octaBDE caused adverse effects at lower doses than decaBDE5,12. 

Because of these monitoring and toxicological findings, the use of commercial penta- and 

octaBDE is now limited or prohibited in some geographical areas, e.g., since August 2004 the 

use of commercial pentaBDE and octaBDE is prohibited in all applications for the EU market 
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(24th amendment of the Directive 2003/11/CE of the European Parliament and of the Council of 

6 February 2003). In addition, from 2007 onwards no production of penta- and octaBDE occurs 

anymore in Japan, Canada, Australia and the USA. However, these measures are regional rather 

than global, and the production and use of decaBDE is not affected. 

Continued monitoring of PBDE levels in biota therefore remains necessary. The harbour seal 

(Phoca vitulina) is an indicator species for levels of organohalogens in the marine environment 

in Europe because, like humans, it is a top predator in the food web and a main predator in 

the Wadden Sea ecosystem. In the Dutch marine environment, levels of PBDEs have been 

measured in sediment, invertebrates, fish and birds3,7,14,27, but to our knowledge only in three 

harbour seals6. In this study, we determined the levels of 17 BDE-congeners in the blubber of 

25 harbour seals found in the Dutch Wadden Sea between 1999 and 2002. These data should 

form a suitable set of baseline values against which future trends in PBDE levels in seal tissues 

from this region may be compared. To enable such comparisons, we have included host-related 

features of potential influence on PBDE levels, i.e., sex, morphometric data, stranding date and 

location. 

Materials and methods

Sample collection

Blubber samples were taken during necropsy from carcasses of harbour seals found in the Dutch 

Wadden Sea from 1999 to 2002.  During necropsy, the seal species and sex were determined. 

The carcass was then weighed to 0.1 kg. Subsequently, the carcass was placed into dorsal 

recumbency. Body length measured as the straight distance from the tip of the nose to tip of tail 

measured alongside the carcass.  A ventral incision was made from mandible to anus, through 

the skin and the entire blubber layer. Blubber thickness was measured using a ruler graded in 

mm. A second incision was made laterally from sternum tip along the posterior end of the rib 

case and the skin with blubber was prepared away from the underlying muscle layers, taking care 

not to leave any blubber behind. Lateral (and left) to the sternum, a piece of skin and blubber 

of approximately 10 cm long and 5 cm wide was then removed, wrapped into aluminium foil 

and stored at -20°C. Further details on these and other necropsy procedures to determine of the 

cause of death of harbour seals have been recorded elsewhere15. 

The sample set

The blubber samples came from 25 sexually immature harbour seals with an average body 

length of 95 cm (males: range 72 cm to 114 cm; females: range 76 cm to 111 cm).  Sexually 

immature seals were selected because such a sample can be readily obtained in subsequent 

years for monitoring purposes, it reduces the effect of duration of environmental exposure 

to PBDEs (age) and avoids the effect of PBDE elimination through lactation (sex) on the PBDE 

levels measured. Samples were further selected to include both sexes (12 females and 13 males) 
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and the different years of stranding (2 in 1999; 5 in 2000; 5 in 2001; 13 in 2002, including 8 

animals that died during an outbreak of phocine distemper) (Table 1). The stranding locations 

are represented in Figure 1.

Figure 1: Map of the 
Netherlands indicating the 
islands or the provinces in 
which the 25 seals stranded.
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Table 1: Stranding data and characteristics of the seals in the sample and the levels of BDE-congeners 
measured in their blubber. Seals n° 13 to 20 were infected with phocine distemper virus.
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Measurement of PBDE levels

To determine levels of PBDEs in seal blubber, about 1 g of this blubber was weighed, dried with 

sodium sulphate (Merck, Darmstadt, Germany) and stored for two hours. Pressurized liquid 

extraction was performed using an ASE300 equipment (Dionex, Sunnyvale, CA, USA) with 34 

ml cells. The cells were filled from bottom to top with 33% H2SO4 deactivated silica gel (10 g), 

the dried sample, and sodium sulphate. One ml of a mixture of internal standards (BDE-58, BDE-

116, and 13C-labeled deca-BDE) was added to the cells. After addition of 1 ml of toluene, and 

evaporation with nitrogen to 1 ml, the extract was analysed with gas chromatography (GC) 

coupled to a mass spectrometer (MS). The instrument was run in ECNI mode using methane. 

A DB-5 GC column 15 m, 0.25-mm i.d., 0.1-µm film thickness (J&W Scientific Inc., Folsom, CA, 

USA) was used. Helium was used as carrier gas. Peak identification was based on the retention 

times and the bromine clusters of m/z 79, 81 and 486.7, 488.7. For more details on the GC-MS 

instrumentation see de Boer et al (2003)7. For each congener, the detection limit was defined as 

three times the noise level.

Statistical analysis

To examine the relation between BDE-congener levels in individuals, levels of the BDE-congener 

with the highest average level (i.e., the dominant congener) were log10-transformed. The values 

obtained for each individual were then plotted against the values of the log10-transformed levels 

of the remaining BDE-congeners. BDE-congeners that could not be determined with precision 

for most of the set sample because their levels were frequently below the detection limit were 

excluded from this analysis. 

Blubber thickness has been shown to affect organohalogen levels9. Therefore we regressed the 

log10-transformed dominant BDE-congener values over blubber thickness. Stranding location 

has also been shown to be relevant for PBDE levels in biota4. Therefore we regrouped the seals 

that stranded in the Wadden Sea into two categories (1 = the Western Wadden Sea, including 

Terschelling, Vlieland, and the west of mainland Friesland; 2 = the Eastern Wadden Sea, including 

Ameland, Schiermonnikoog, mainland Groningen, and the east of mainland Friesland) and 

performed a t-test over the log10-transformed dominant BDE-congener values. Subsequently, 

to determine whether there was an interaction between the effects of blubber thickness and 

stranding location, a general linear model was fitted in R with the log10-transformed values 

of the BDE-congener as the response, and blubber thickness, location of stranding (2 levels, 

1 = Western Wadden Sea, 2 = Eastern Wadden Sea), and their interaction as the predictors. Terms 

were progressively removed from the full model to achieve the minimum adequate model 

(MAM), as judged by the Akaike Information Content (AIC) value, using the function STEP. Sex 

and of age were not included as parameters in the model because we assumed no effect of 

these parameters due to the sample selection procedure. Time was not included in the model 

because of the short time period examined. All analyses were performed using EXCEL 2000 and 

R17, and the criterion for significance set at P ≤ 0.05.
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Results

PBDE values

BDE-47 had by far the highest levels, on average 122 ng/g wet weight of blubber.  This was 

followed by BDE-99 and BDE-100, and BDE-153 and BDE-154 + BB-153, with averages between 

11 and 14 ng/g wet weight of blubber. BDE-28 and BDE-49 were present in low levels, less than 

3 ng/g wet weight of blubber (Figure 2, Table 1). BDE-47 represented 42% to 75% of the sum of 

the congeners BDE-28, BDE-47, BDE-49, BDE-99, BDE-100, BDE-153, BDE- 154 + BB-153, when 

these were all determined (n=18) .The remaining 10 BDE-congeners were below their detection 

limit, either often (BDE-66, BDE-75, BDE-77, BDE-119, BDE-138, BDE-183) or always (BDE-71, 

BDE-85, BDE-190, BDE-209). The maximum value for BDE-183, the main component of commercial 

octaBDE, was 1.1 ng/g wet weight of blubber, and BDE-209, the main component of commercial 

decaBDE, was not found in harbour seal blubber (Figure 2, Table 1).

The median values of the seven BDE congeners with the highest levels were 13% to 43% below 

the average values, indicating that the majority of the seals had levels below average. Log10 

BDE-47 levels correlated significantly and positively with log10 levels for each of the other six 

BDE-congeners (n = 25; log10BDE-28, P = 2x10-5; log10BDE-49, P = 9x10-3; log10BDE-99, P = 4x10-9; 

log10BDE-100, P = 1x10-6; log10BDE-153, P = 6x10-3; log10BDE-154 + BB-153, P = 5x10-4; Figure 3). 

Host-related factors and PBDE- values

Blubber thickness in the sample was on average 17.2 mm, ranging from 6 to 30 mm. There was 

a significant inverse relation with the log10 –transformed values of the dominant congener 

and blubber thickness: as blubber thickness decreased, log10BDE-47 values increased (n = 25, 

P = 2x10-5; Figure 4).  

Figure 2: Mean ± s.e. levels of 
17 BDE-congeners in harbour 
seals that stranded along the 
Dutch coast between 1999 
and 2002 (n=25, except for 
BDE-153 where n=19). For 
the 10 congeners with levels 
often or always below the 
detection limit, marked with “*”, 
calculations were performed 
using detection limit as value. 
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Figure 3: The level of 
log10BDE-47 in harbour 
seal blubber was a good 
indicator for BDE-con-
gener levels in general: 
log10BDE-47 levels cor-
related significantly and 
positively with log10     
levels for each of the oth-
er six consistently detect-
able BDE-congeners.

Figure 4: The level of log10BDE-
47 in harbour seals decreased 
significantly as blubber thickness 
increased.

Eighteen seals stranded in the Western Wadden Sea and seven in the Eastern Wadden Sea. The 

log10BDE-47 levels in seals from the Western Wadden Sea (mean ± s.d.: 2.1 ± 0.3) were significantly 

higher than those from the Eastern Wadden Sea (mean ± s.d.: 1.6 ± 0.3; t-test assuming unequal 

variances, P = 0.004). 

The model including both blubber thickness and stranding location as explanatory variables 

for the observed log10BDE-47 levels found that both blubber thickness and stranding location 

were significant terms, both going in the directions expected from the regression and the t-test 

(blubber thickness, b = -0.036, P = 9x10-5; stranding location east compared to west, b = -0.266, 

P = 0.017). It explained 66% of the variation in log10BDE-47 levels, and was a better predictive 

model than the one which included the interaction term. This shows that the observed effects of 

blubber thickness and stranding location are not due to a relation between these two variables, 

e.g., the higher levels observed in the seals found in the Western Wadden Sea were not due to 

these seals having thinner blubber layers. 
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Discussion

Our analysis of 17 BDE-congeners in the blubber of 25 young harbour seals that stranded along 

the Dutch coast between December 1999 and July 2002 showed that BDE-47 was the dominant 

congener, representing up to 75% of the BDE-congeners, whereas BDE-209 levels were below 

the limit of detection. The congener pattern is in line with results for fish and marine mammals 

in aquatic environments in other studies7,13,16,18,23 but not with results for sediment samples. In 

sediment samples from Wadden Sea and North Sea, BDE-209 is often the dominant congener7,14,27, 

consistent with the commercial PBDE- product demand in 1999 which was far greater for 

decaBDE than for pentaBDE. A number of processes may contribute to explaining the discrepancy 

between sediment and harbour seal blubber profiles. First, there are differences in absorption 

and elimination of BDE-congeners in biota, with BDE-47 tending to be absorbed better and 

eliminated more slowly than BDE-20912,21. Second, there is the effect of debromination12,24. This 

can take place in the host species, e.g., there is evidence for debromination of BDE-99 into 

BDE-47 in common carp (Cyprinus carpio)20,21 and of BDE-209 into hexa- to nona-BDE-congeners 

in  common carp and rainbow trout (Oncorhynchus mykiss)19,22. Debromination can also take place 

in the environment, e.g., debromination of BDE-209 in sunlight8,12. However, the accumulation of 

congeners has also been shown to differ between host species26 and between the marine and 

the terrestrial environment16, and is not yet fully understood. 

The average level of BDE-47 in the seals was 122 ng/g wet weight of blubber (median 84) and 

of the BDE-99 congener 14 ng per g wet weight of blubber (median 8). In a study published 

in 1998, three juvenile harbour seals from The Netherlands had average BDE-47 levels of 893 

ng per g wet weight of blubber (median 1 200), and average BDE-99 levels of 113 ng per g 

wet weight of blubber (median 140)6. These averages are higher than in our study. This may 

have been due to the small number of seals tested. Alternatively, it could indicate the start of 

general downward trend of these congeners in the food chain. Penta-BDE-derived congeners were 

levelling off between 1995 and 1997 in sediment core of 1997 from the Dutch Wadden 

Sea28. This observation could possibly be explained by a voluntary reduction or phase-out of 

pentaBDE in Europe preceding the present ban. For example, industrial users in Germany agreed 

to phase out pentaBDE starting in 1986, and pentaBDE in Sweden was phased out in production 

and use by 19992.

Log10-transformed BDE-47 levels correlated negatively with blubber thickness and appeared 

also to be affected by stranding location. The negative correlation between blubber thickness 

(or body condition) and organohalogen levels has been documented9,10, and is explained by 

the more rapid mobilisation of fat than of pollutants in fasting harbour seals. Geographical 

differences in PBDE levels are well-documented3,4. Our small sample and the possibility that 

seals move around in the Wadden Sea does not allow us to make a firm statement. However, 

given that seals are presumed to acquire PBDEs mostly through their diet, it is worth noting that 
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in fish a trend for decrease in PBDE values from West to East Wadden Sea has been observed 

(Pim Leonards, pers. comm.). 

These host-related factors (blubber thickness and geographical variation in PBDE exposure) are 

likely to affect the values of the other lipophilic congeners in a similar manner, as exemplified 

by the positive correlation between individual log10-transformed values of BDE-47 and those 

of the other detectable BDE-congeners (BDE-28, BDE-49, BDE-99, BDE-100, BDE-153, BDE-154 

& BB-153) in individuals. Boon (2002)3 had previously shown that different congeners covary in 

the environment. The correlation was most significant between BDE-47 and the BDE-99 levels, 

possibly because these are the principal congeners of the commercial pentaBDE additive, and 

possibly also because BDE-99 may be debrominated into BDE-47.  

The question remains whether the observed levels measured in blubber affect harbour seal 

health. An indication for a possible thyroid hormone disrupting effect was found in a study 

in harbour seals from around the U.K., in which comparable tissue levels of PBDEs were 

measured (but also other pollutants)11. Other toxicology studies have shown that PBDEs can 

affect, amongst others, behavioural and embryonic development, liver and immune functions 

and thyroid hormone levels5,8. Summarizing these studies, Darnerud (2003) found a higher

 Lowest-Observed-Adverse-Effect-Levels (LOAEL) for commercial decaBDE (around 80 mg/kg 

body weight) than for commercial pentaBDE (0.6 – 0.8 mg/kg  body weight) or commercial 

octaBDE (2 mg/kg  body weight). This is reflected in the current regulations, banning the use 

of the latter two products. However, these toxicology studies measured the level of PBDEs 

ingested and are, therefore, difficult to relate to tissue levels. Also, host species vary in their 

ability to absorb, metabolize and excrete BDE-congeners and in their sensitivity to PBDE 

intoxication. Understanding whether the observed PBDE tissue levels have an effect on harbour 

seal health is further complicated by the possible interactions between PBDEs and other 

pollutants, such as polychlorinated biphenyls8, even though the distribution of PCBs and PBDEs 

in the environment do not appear to fully coincide3. Given the potential negative effect of PBDEs 

on harbour seal health, and their position at the top of the food chain, continued measures to 

decrease environmental PBDE levels are warranted, as well as continued monitoring in harbour 

seals to assess the effects of these measures. 
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In several studies, heterozygosity measured at around 10 microsatellite markers correlates 

with parasite load. Usually the effect size is small, but while this may reflect reality, it may 

also be that too few markers are used, or the measure of fitness contains too much error 

to reveal what is actually a much stronger underlying effect. Here, we analysed over 200 

stranded harbour seals (Phoca vitulina) for an association between lungworm burden 

and heterozygosity, conducting thorough necropsies on the seals and genotyping the 

samples obtained for 27 microsatellites. We found that homozygosity predicts higher 

worm burdens, but only in young animals, where the worms have the greatest impact on 

fitness. Testing each locus separately, we found that a significant majority reveals a weak 

but similar trend for heterozygosity to be protective against high lungworm burden, 

suggesting a genome-wide effect, that is, inbreeding.  This conclusion is supported by 

the fact that heterozygosity is correlated among markers in young animals but not in 

otherwise equivalent older ones.  Taken as a whole, our results support the notion that 

homozygosity increases susceptibility to parasitic infection and suggest that parasites 

can be effective in removing inbred individuals from the population.

Introduction

The publication of the measure mean d-squared, an estimator of microsatellite allele similarity, 

and the demonstration that it predicts aspects of fitness in deer and seals9,11 stimulated renewed 

interest in the link between heterozygosity and fitness12. Subsequent studies have developed 

both new and more effective measures for estimating heterozygosity4,5,10, and confirmed that 

panels of as few as 10 presumed neutral microsatellite markers often reveal statistically significant 

correlations with fitness. Over the last decade, the list of fitness traits found to be associated with 

heterozygosity has expanded greatly, from the initial analyses based on juvenile survival9, now 

to cover parasite susceptibility10, reproductive success26,40 and even behavioural traits, such as 

territory size38.  Such apparent ubiquity makes these heterozygosity-fitness correlations (HFCs) 

a potentially important component of natural selection and suggests that understanding their 

prevalence and basis could help elucidate a number of evolutionary processes.

Some of the strongest HFCs have been recorded in studies of parasite load10 and infectious 

disease.  In rehabilitating sea lions, all classes of sick animals revealed elevated homozygosity1, 

whereas in studies of infectious disease, heterozygosity has been implicated separately in both 

viral42 and bacterial1 diseases, as well as influencing the strength of the innate immune response22.  

However, the exact mechanism underlying these correlations remains obscure21,35.  On the one 

hand, many authors have invoked inbreeding depression, arguing that heterozygosity at neutral 

markers reflects genome-wide heterozygosity, which in turn varies with inbreeding coefficient.  

On the other hand, both theory and simulations suggest that individuals with detectably non-

zero inbreeding coefficients are usually too rare in nature to create HFCs, occurring only in small, 

isolated populations or species with strong polygyny6,39. 
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Here, we examine the relationship between heterozygosity and the macroscopic presence of 

lungworm infection in harbour seals (Phoca vitulina). Lungworm infection is an important cause 

of morbidity and mortality in harbour seals, in particular in young seals31,34,43. Lungworm infection 

is caused by two macro-parasites43, often found concurrently31: Otostrongylus circumlitus, a large 

species whose adults are easily visible in the principal airways and, Parafilaroides gymnurus, 

a smaller species found in the alveoli and smaller bronchioles. For the analysis, we used 27 

polymorphic loci genotyped in a sample of 204 harbour seals that stranded along the Dutch 

coast, taking into account the relationship between lungworm burden and age. In addition, to 

test whether the relationship between heterozygosity and lungworm burden is dominated by a 

genome-wide rather than a single locus effect, we first tested for a correlation in heterozygosity 

across loci, and then compared the number of homozygotes and heterozygotes at every locus 

among seals in which worms were observed and those in which they were not seen.

Materials and methods 

The sample set

The sample set was an exhaustive selection of tissue samples obtained from seals that stranded 

and died in the Dutch Wadden Sea in the period 1997-2003, whose death was associated either 

with lungworm infection (n = 26), phocine distemper virus infection (PDV; n = 169) or trauma 

or drowning in fishing nets (n = 9), and for which relevant data were available (Figure 1). The 

necropsies were performed following the procedure detailed in Kuiken and Baker (1991)30. 

This included the registration of available stranding data and clinical information, specifically: 

determination of species and sex, standard measurements including nose-to-tail body length, 

and description of gross lesions. During gross necropsy, the bronchi and lung tissue were 

incised and examined visually for the presence of lungworms and associated lesions. Where 

necessary, samples for histology, virology, bacteriology, parasitology and toxicology were 

collected and tested to determine the probable cause of death. Death from lungworm infection 

or noninfectious causes of death was established based on gross lesions, presence of and 

numbers of parasites, nutritional state and stomach contents. Death from PDV infection was 

established by gross lesions and confirmed by either reverse-transcriptase polymerase chain 

reaction or IgM serology29. 

The samples used for DNA extraction were mostly of kidney tissue, initially stored frozen at –20°C 

and –70°C, later transferred to 96% ethanol and stored at room temperature. In the absence of 

a kidney sample, lung, spleen or blood was used. A small number of kidney samples (n=13) 

were stored in lysis buffer (6 M Guanidine-HCL, 10 mM Urea, 10 mM Tris-HCl, 20 % Triton-X100 

(v/v), pH 4.4) at –20°C and at room temperature.  DNA was extracted using an adapted Chelex 

protocol44.
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Figure 1:  Spatial distribution and probable cause of death of the seals in the sample set. The 
diameter of the pie chart corresponds to the number of seals stranded at a particular location and 
the colours in the pie chart indicate the probable cause of death: death associated with lungworm 
infection (black), phocine distemper infection (grey), or trauma or by-catch (white).

Genotyping

Microsatellite genotyping, scoring and data entry were conducted as described previously25.  

Briefly, PCR reactions were carried out in 10 µl reaction volumes containing 1 µl template DNA, 

1x Thermalase buffer (10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 0.1% Tween 20, 0.1% 

gelatine, 0.1% IGEPAL), 60 mM tetramethylammonium chloride (TMAC), 2.5% formamide, 0.1 

mM dGTP, 0.1 mM dATP, 0.1 mM dTTP, 0.02 mM dCTP, 4 pmol of each primer, 0.25 units of Taq 

polymerase and 0.01 µCi [α32P]-dCTP.  Loci were amplified using the following PCR profile: one 

cycle of 120 s at 94°C, 45 s at T1, 50 s at 72°C; 10 cycles of 30 s at 94°C, 45 s at T1, 50 s at 72°C; 

25 cycles of 30 s at 89°C, 45 s at T2, 50 s at 72°C; and one final cycle of five min at 72°C.  For the 

majority of loci, T1 was 46°C and T2 was 48°C.  However, for Pv3, Hg6.1, OrrFCB7 and OrrFCB8, 

T1 and T2 were 50°C and 55°C respectively.  PCR products were resolved by electrophoresis on 

standard 6% polyacrylamide sequencing gels and detected using a phosphoimager (Fujifilm 

BAS-2500).  Genotypes were scored by two independent observers (JMR and JIH), and entered 

manually into a Microsoft Excel spreadsheet.  Genotypes were tested for deviations from Hardy-

Weinberg equilibrium and linkage disequilibrium using GENEPOP (http://genepop.curtin.edu.

au/)36.  For each test, we set the dememorization number to 10 000, the number of batches to 

1000 and the number of iterations per batch to 10 000.

Calculation of heterozygosity

Several alternative versions of heterozygosity have recently been proposed, all of which aim 

to produce a measure that correlates most strongly with F, the inbreeding coefficient. These 
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measures include methods to compensate for missing genotypes (standardised heterozygosity, 

SH10), to exploit the evolutionary similarity of different alleles (mean d-squared11) and to use allele 

frequencies to weight scores according to the alleles in the genotype (internal relatedness, IR4) 

or the diversity of the loci being scored (heterozygosity weighted by locus diversity, HL5).  Which 

of these performs best depends on several factors, including the completeness of genotyping, 

the diversity of the loci being scored and the range of inbreeding coefficients, F, represented in 

the sample. However, mean d-squared is now seen as performing relatively poorly unless two 

genetically distinct populations have recently mixed6 whereas SH tends to perform marginally 

less well than IR across a range of scenarios4,6.  Heterozygosity weighted by locus HL is a recently 

proposed method that has yet to be used widely, but simulations suggest that it can outperform 

IR, particularly at loci with higher allelic diversity5. In view of the above, we chose to use both IR 

and HL to conduct a comparison.

Data analyses

Seals were categorized as ‘infected’ or ‘uninfected’ depending on the presence or absence of 

lungworms in the respiratory tract at gross necropsy. Using sex and body length to estimate 

age33, males up to 95 cm and females up to 90 cm were considered to be up to 1-year-old, and 

categorized as ‘young’ in this paper; the remaining seals referred to as ‘older’.

The relationship between heterozygosity and lungworm burden was first analysed by comparing 

the mean of the measure of heterozygosity (HL, IR) of all infected seals (n = 54) to that of all 

uninfected seals (n = 150; t-test). Then, as infection and mortality due to high worm burden is 

most likely to occur in the first year of life, we performed the same analysis for young seals (total 

n = 43; 29 infected, 14 uninfected; t-test). To verify that the reduction to this age category was 

justified, we checked the significance of the interaction between age category (young, older) 

and lungworm burden (uninfected, infected) by performing a univariate analysis of variance on 

a model with the measure of heterozygosity (HL, IR) as dependent variable and age category 

(young, older) and lungworm status (uninfected, infected) as explanatory variables. These 

analyses were performed in SPSS.

Finally, any relationship between heterozygosity and lungworm burden could be due either to a 

genome-wide (inbreeding) effect or to a single locus effect caused by chance linkage between 

one or more of our markers and a gene experiencing balancing selection. To test which is the 

more likely mechanism in the current dataset, we tested whether heterozygosity was correlated 

across loci using the method of Balloux et al. (2004)6.  Here, the loci are divided randomly into 

two equal groups and then a correlation coefficient calculated across individuals between the 

paired heterozygosity estimates, one from each group of markers.  By repeating this process 

100 times, each time dividing the markers into different groupings, one can assess the robust-

ness of any correlation present.  A robust positive correlation suggests that one or more inbred 

individuals are present in the group, with stronger correlations suggesting greater numbers of 
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inbred individuals and higher F-values.  We applied this test to young animals (n = 43) and older 

animals (n = 161) separately.  In addition, we used a Fisher’s exact test to ask whether, at each 

locus in turn, there was a difference in heterozygosity between infected and uninfected young 

individuals.  If one or a small number of loci contribute to any effect found, these should yield an 

equivalent number of significant tests.  However, under a genome-wide effect we expect to find 

that most loci reveal similar weak trends for heterozygotes to be uninfected.

Results

Microsatellite locus selection

We considered 94 published pinniped microsatellite primers2,3,7,8,13,18-20,23,24,27,45. Of these, 38 had 

previously been tested on four harbour seals from Scotland and were dismissed because they 

were either monomorphic or failed to amplify.  The remaining 56 loci were tested on a panel of 43 

Dutch harbour seals, revealing 30 that were polymorphic (Table 1), 19 that were monomorphic 

and seven that either gave unscorable results or failed to amplify.  Three of the 30 polymorphic 

loci (Lw18, Pvc74 and ZwcF09) were subsequently excluded because they were not in Hardy-

Weinberg equilibrium.  As previously reported13, Lw18 is likely to be X chromosome-linked 

because Hardy-Weinberg equilibrium is observed in females (females, test for HWE, P = 0.5444) 

but not in males (males, test for HWE, P = 0.0000).  This left 27 loci, all but one of which carried 

six or fewer alleles in the Dutch population, the last locus (Pv3) carrying 23 alleles (four alleles 

on average).  Following sequential Bonferroni correction to compensate for multiple statistical 

tests, we found no evidence that any locus exhibited significant linkage disequilibrium with 

any other. Observed heterozygosity varied between 0.023 (M11a) and 0.905 (Pv3), (on average 

0.336), see Table 1.

Heterozygosity and lungworm burden

In the sample as a whole (n = 204 individuals), mean measures of heterozygosity did not vary 

significantly between the uninfected and infected seals, though the difference in means did 

go in the direction expected if heterozygosity increases resistance to worm infection (mean 

HL150 uninfected seals = 0.512; mean HL54 infected seals = 0.531; t–test: P = 0.314; mean IR150 uninfected seals 

= 0.014; mean IR54 infected seals   = 0.050; t–test: P = 0.313). However, lungworm burden was more 

common in young seals (29/43 infected) than in older seals (25/161 infected), and the proportion 

of deaths due to lungworm was also greater in young seals (Figure 2). When only the group of 

young seals was considered, the average heterozygosity was significantly greater in uninfected 

than in infected young seals, suggesting heterozygosity does increase resistance to lungworm 

infection (mean HL14 uninfected seals = 0.431; mean HL29 infected seals = 0.543; t–test: P = 0.006; mean 

IR14 uninfected seals = -0.114; mean IR 29 infected seals   = +0.061; t–test: P = 0.027). The interaction 

between age category and lungworm burden was significant for HL but not for IR (HL univariate 

analysis of variance, P = 0.012; IR univariate analysis of variance, P = 0.053), validating the cut-off 

between age categories for HL but not quite for IR
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-: not tested
The allele frequencies are compared to allele frequencies found in other studies or populations.
a: Hoffman et al., 2006 & Hoffman unpublished data
b: in harbour seals of the North Sea 20
c: in harbour seals of the Western Wadden Sea 20

Table 1: Number of alleles, observed heterozygosity (HO), expected heterozygosity (HE) and probability 
values for derivation from Hardy-Weinberg equilibrium (HWE P-value) at 56 microsatellite loci for har-
bour seals that stranded along the Dutch coast. 

Locus 
GenBank 
Accession 
N˚ 

Isolated from species 
(reference in superscript) 

N˚ of alleles in harbour seals 

HO HE 
HWE 
p-value 

previous 
publica- 
tions 

Scottish 
(n=4)a 

Dutch 
(n=231) 

The 27 polymorphic loci used in this study       

 Aa4 - South American fur seal 
Arctocephalus australis 18 2 18 2  2 0.028 0.028 1.000 

Hg6.1 G02091 Grey seal Halichoerus 
grypus 3 7b, 3c  20 - 3 0.249 0.271 0.031 

Hg6.3 G02092 Grey seal Halichoerus 
grypus 3 8b, 4c  20 3  3 0.383 0.421 0.297 

Hg8.9 G02094 Grey seal Halichoerus 
grypus 3 2 18 - 2 0.303 0.347 0.098 

Hg8.10 G02093 Grey seal Halichoerus 
grypus 3 4 18 - 2 0.489 0.500 0.789 

Hgdii G02095 Grey seal Halichoerus 
grypus 3 2 18 4  3 0.036 0.035 1.000 

Hl2 AF417692 Leopard seal Hydrurga 
leptonyx 13 2 13 1  2 0.419 0.437 0.535 

Hl15 AF140587 Leopard seal Hydrurga 
leptonyx 13 2 13 4  4 0.176 0.203 0.180 

Hl20 AF140589 Leopard seal Hydrurga 
leptonyx 13 4 13 4  3 0.224 0.210 0.834 

Lw7 AF140591 Weddell seal 
Leptonychotes weddellii 13 4 13 2  5 0.714 0.689 0.765 

Lw20 AF140595 Weddell seal 
Leptonychotes weddellii 13 4 13 5  3 0.343 0.345 1.000 

Lc28 AF140584 Crabeater seal Lobodon 
carcinophagus 13 3 13  4 0.096 0.102 0.432 

M11a - 
Southern elephant seal 
Mirounga leoni (Hoezel, 
unpubl. data as cited by18) 

2 18 2  2 0.023 0.023 1.000 

OrrFCB2 G34934 Walrus Odobenus 
rosmarus rosmarus 7 - 3  5 0.468 0.470 0.950 

OrrFCB7 G34928 Walrus Odobenus 
rosmarus rosmarus 7 - 3  3 0.482 0.504 0.747 

OrrFCB8 G34929 Walrus Odobenus 
rosmarus rosmarus 7 - 4  5 0.582 0.544 0.647 

Pv2 U65441 Harbour seal Phoca 
vitulina vitulina 19 3 19 - 3 0.309 0.349 0.136 

Pv3 U65442 Harbour seal Phoca 
vitulina vitulina 19 

33b, 22c 

20  - 23 0.905 0.928 0.804 

Pv9 G02096 Harbour seal Phoca 
vitulina 19 1 19 2  2 0.046 0.063 0.015 

Pv10 U65443 Harbour seal Phoca 
vitulina vitulina 19 2b, 2c 20   2 0.058 0.056 1.000 

Pv11 U65444 Harbour seal Phoca 
vitulina vitulina 19 7b, 3c 20  5  3 0.503 0.521 0.871 

Pvc30 L40986 Harbour seal Phoca 
vitulina concolor 8 2 8 - 4 0.521 0.483 0.483 

71HDZ301 - Steller sea lion Eumetopias 
jubatus 28 - 3  6 0.629 0.625 0.924 

ZcwA12 DQ836320 
Galápagos sea lion 
Zalophus californianus 
wollebaeki  27 

3 27 3  5 0.514 0.519 0.717 

ZcwD02 AM039816 
Galápagos sea lion 
Zalophus californianus 
wollebaeki 45 

- 3  2 0.126 0.155 0.027 

ZcwF07 DQ836326 
Galápagos sea lion 
Zalophus californianus 
wollebaeki 27 

3 27 3  3 0.261 0.240 0.112 

ZcCgDh1.8 AY676475 Californian sea lion 
Zalophus californianus 24 - 4  3 0.180 0.192 0.127 

 
The three (3) polymorphic loci not in Hardy-Weinberg Equilibrium  

Lw18 AF140596  Weddell seal 
Leptonychotes weddellii 13 4 13 4  4 0.382 0.642 0.000 

Pvc74 L40988 Harbour seal Phoca vituli 
concolor 8 2 8 - 2 0.000 0,018 0.000 

ZcwF09 DQ836327 
Galápagos sea lion 
Zalophus californianus 
wollebaeki 27 

3 27 3  3 0.268 0.331 0.000 
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Figure 2: Relative frequency of 
lungworm infection in the two 
age groups (total n = 204). Seals in 
which lungworms were observed 
macroscopically (infected) either 
died of lungworm infection (black 
areas) or phocine distemper virus 
infection (slanted hatched areas); 
seals in which no lungworms were 
observed macroscopically (unin-
fected) died of phocine distemper 
virus infection (white areas) or by-
catch or trauma (dotted area). Seals 
were classified into age groups 
based on sex and length. Males up 
to 95 cm and females up to 90 cm 
were classified as ‘young’, all larger 
seals as ‘older’.

Genome-wide or single locus effects

When all adults were used to test for a correlation in heterozygosity among loci, the mean 

correlation coefficient was 0.018 (± 0.06 s.d.) and did not differ significantly from zero, implying 

that this group contains few or no appreciably inbred individuals (Figure 3).  In contrast, among 

young animals the mean correlation coefficient was 0.213 (± 0.087 s.d.), much larger and 

significantly greater than zero, implying the presence of inbred individuals.  In addition, when 

each locus in turn was tested for a difference in heterozygosity between infected and uninfected 

young seals, none of the P-values were significant (Fisher’s exact test at each locus). However, 

21 of the 27 loci did reveal a tendency for greater homozygosity in the infected, a significant 

imbalance (Sign test, P = 0.019). Such a pattern is most likely to result from a slight tendency 

towards heterozygote advantage affecting every locus, that is, a genome-wide or inbreeding 

effect, rather than one or a few loci showing a big effect.

Discussion

In this paper, we examined the relationship between heterozygosity and lungworm burden 

in harbour seals that stranded on the Dutch coast and died.  Overall, there is no relationship 

between worm burden and heterozygosity.  However, lungworms exert their maximum impact 

on fitness in young animals soon after weaning.  When the analysis was repeated in this light, 

comparing affected young animals with all others, a significant difference in heterozygosity was 

found.  The pattern appears to be driven by inbreeding depression, with young animals showing 

evidence of inbreeding not found among adults and no one marker standing out as showing a 

dominant contribution.
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Figure 3: Correlation in heterozygosity among markers in older seals (black bars, n = 
161) compared with young seals (white bars, n = 43).  In each set of animals, the 27 
microsatellite markers, for which the animals were typed, were divided randomly into 
two equal groups and the correlation coefficient, R, between the estimates for each 
group calculated.  The bar chart below presents data for 100 replicates.  Values center-
ing on zero suggest that inbred individuals are rare or absent, while increasingly posi-
tive values suggest the presence of inbred individuals (strictly, a higher variance in the 
underlying inbreeding coefficients of the sample).

Our finding of a link between heterozygosity and lungworm burden in young animals but not 

in the data set analysed as a whole appears to reflect the life history of the parasite.  Lungworms 

appear to infect harbour seals early in life. The mode of infection is unknown, though it is likely 

that infective larvae develop in fish and infect seals via the oral route32,34. Some young seals 

develop higher burdens than others and, among these, some die as a result of their infections. 

Generally, in domestic animals, worm burden following primary infection depends on the 

exposure conditions, for example parasite intake, and on host immunity, first innate and then 

specific. The specific immunity that develops and helps clear the primary infection also impedes 

the development of worms in subsequent infections41, as has been shown, for example, in 

calves infected with lungworm (Dictyocaulus viviparous)16,37. The development of protective 

specific immunity against lungworms in harbour seals has not been proven, but seals do develop 

antibodies against lungworms15 and lungworms are uncommon in older seals.  Our data reflect 

this in that the strongest association between genotype and worm burden occurs early in life 

when the impact of the worms is likely to be largest.

In revealing the lungworm HFCs, we compared two measures of heterozygosity: IR, which 

weights allele sharing by the frequencies of the alleles in a genotype, and HL, which weights 

heterozygosity by the variability of each locus at which an individual is homozygous. Our results 

largely support the claim made by Aparico et al. (2006)5 that HL is often a ‘better’ measure, in 
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the sense that in most of the significant trends we find, HL generates a lower P-value than IR.  

We therefore endorse the use of HL as the measure of choice for studying heterozygosity-fitness 

correlations in natural populations, though it is still of interest to compare the two measures, 

since they are expected to perform somewhat differently depending on the variability of loci 

being used5.

There is currently considerable debate concerning whether heterozygosity-fitness correlations 

are due mainly to genome-wide changes in heterozygosity brought about by inbreeding, or 

through chance associations between markers and neighbouring genes under balancing 

selection6,14,17,21. Despite our rather small sample size of affected young animals, our analysis 

suggests that the relationship between heterozygosity and lungworm burden is dominated by a 

genome-wide effect, that is, inbreeding.  We provide two lines of evidence.  First, heterozygosity 

is essentially uncorrelated across loci among adult animals, but is rather strongly correlated 

among young animals.  Such a pattern is consistent with the young animals including some 

individuals with F-values that are high enough to detectably impact on the probability that 

any given marker is heterozygous.  Just how many inbred individuals we have sampled cannot 

be determined without deploying hundreds rather than tens of markers.  The second line of 

evidence is that, when each locus is tested separately for a relationship between heterozygosity 

and worm burden, no one locus stands out, but instead a significant majority reveal a trend 

in the direction of homozygosity conferring susceptibility.  Such a pattern is consistent with a 

genome-wide effect.

The presence of a detectable genome-wide effect, and in particular, the large difference 

between adults and juveniles, is interesting in the context of how selection acts on a population 

through parasites and disease.  It is known that harbour seals exhibit strong population sub-

structure, with significant genetic differences between populations that are easily within the 

reach of dispersing youngsters20. Such structure has the potential to allow or even promote 

some level of inbreeding. In our sample of individuals from the Dutch population we do indeed 

find evidence of inbred individuals, but only among the juveniles, not the much larger sample 

of adults.  By implication, any individuals who are born to related parents are disproportionately 

likely to suffer lethal worm burdens, which in turn remove them from the population. This 

therefore agrees with earlier studies that suggested inbred individuals carry more parasites, a 

greater diversity of parasites and may provide a weak point through which new pathogens can 

enter the population1,10,42.

In conclusion, we reveal a signal in the direction of reduced heterozygosity correlating with 

lungworm burden in young seals. Our results emphasize the importance of accurately 

quantifying fitness. Worm burden alone reveals little unless considered alongside measures of 

age and an appreciation of the age-specific effects of lungworm infection on seal morbidity and 

mortality
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In 1988, a massive die-off of seals took place in European waters, caused by a previously 

unknown morbillivirus, phocine distemper virus (PDV)13,45,53. The epidemic was both impres-

sive (more than 18 000 seal deaths17) and intriguing. Why did harbour seals die in such high 

numbers? Where had the virus come from, why did it emerge? Would the infection disappear 

from the population? If so, would such epidemics reoccur? What would the long-term impact of 

the disease be on seal populations? 

Shortly thereafter several other morbillivirus species were discovered in marine mammals. 

Dolphin morbillivirus (DMV) was first isolated during a mass die-off of striped dolphins (Stenella 

coeruleoalba) in the Mediterranean in 199018, and possibly played a role in a mass die-off of 

the Mediterranean monk seals (Monachus monachus) in 199282. Porpoise morbillivirus (PMV) 

was isolated from stranded harbour porpoises (Phocoena phocoena)47, and sequences of a 

pilot whale morbillivirus (PWMV) were identified in a stranded pilot whale (Globicephala melas)74.  

Also, canine distemper virus (CDV) emerged in marine mammals (Baikal seals Phoca sibirica in 

198725,54,85; Caspian seals Phoca caspica in 200038). The epidemics caused by these viruses raised 

questions similar to those raised during the 1988 PDV epidemic.

Between 1990 and 2001, no mortalities due to PDV were observed in seals in European 

waters and sero-surveillance showed a gradual decline in numbers of seals with antibodies to 

morbillivirus37,75. This indicated the infection was not circulating in these seal populations, and, 

as predicted by models15,26,72, harbour seal (Phoca vitulina) populations in European waters were 

largely susceptible to PDV at the time PDV infection resurfaced in 2002.  

The 2002 epidemic was the second documented PDV epidemic in seals in European waters. 

Would there be high mortality among harbour seals like in 1988, or would there be less mortality 

since more susceptible genotypes would have been removed from the population? Would there 

be less immune suppression in an apparently cleaner environment? Would the pathogenicity of 

the PDV strain differ of that of 1988? Would there be a role for co-infections? Would the infection 

cause deaths among grey seals (Halichoerus grypus) now that these were more common in the 

Dutch Wadden Sea? Since a substantial part of the harbour seal population died during the 

PDV epidemic, this offered a unique opportunity to learn more about PDV infection and other 

infectious or non-infectious diseases present in the population, feeding habits and ingestion of 

corpora aliena, exposure to environmental contaminants, and more generally the life history of 

the harbour seal population.

To address the above questions, all seal strandings during the 2002 PDV epidemic in the 

Netherlands were recorded in a central database, live seals were collected for rehabilitation 

and more than half of the carcasses were systematically necropsied. This thesis presents a 

multidisciplinary analysis of the data obtained from the above. The first three chapters deal with 

the epidemiology of PDV infection: a description of the 2002 PDV epidemic (Chapter 2.1.), a 
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review of factors affecting morbillivirus transmission (Chapter 2.2.), and a stage-structured 

model (Chapter 2.3.). The next chapter describes the pathology, using a quantitative approach 

(Chapter 3.1.). The subsequent two chapters deal with toxicological data: levels of environmental 

contaminants in seals during the outbreak and the preceding decade (Chapter 4.1.), as well 

as levels of PBDE flame retardants in seals at the turn of the century (Chapter 4.2.) were 

determined and evaluated. The last chapter deals with seal genetics (Chapter 5.1.). To this end, 

data from seals that had stranded in The Netherlands before the PDV epidemic were used in ad-

dition to data from the seals that stranded during the epidemic in Chapters 3.1. to 5.1. 

In conclusion, the first four chapters focus on describing and improving our understanding of 

PDV infection, while the later chapters have a broader scope, dealing with seal and ecosystem 

health in more general terms. Overall, we have evaluated the results obtained in the thesis with 

special emphasis on comparing the PDV epidemics of 1988 and 2002. 

Epidemiology

As in the 1988 epidemic34, harbour seals were much more likely to die from PDV infection than 

grey seals30. The seals found stranded in the Netherlands during the 2002 PDV epidemic were 

virtually all harbour seals (2279 of the 2284; Chapter 2.1.), even though 500 or more grey seals 

were living along the Dutch coast in 2002. 

As in 1988, there were striking temporal differences among stranding locations, the 2002 

PDV epidemic starting and peaking at different times in different areas. The pattern of spread 

differed from 1988, but the location of the index case on 4 May 2002 was again Anholt30,61, about 

three weeks later than in 1988 (12 April 198817). After Anholt, PDV was identified in 2002 in 

the Kattegat and the Skagerrak in May; then Southern Norway and the Dutch Wadden Sea in 

June; the southern part of the German Wadden Sea in July; the Wash (U.K.), the northern part 

of the German Wadden Sea, the Danish Wadden Sea, the Southwestern Baltic in August; the 

Western Baltic, Limfjorden and the remainder of the U.K. and Ireland in September61. In the 

Netherlands, the index case was found three weeks later in 2002 than in 1988 (16 June 2002 

versus 22 May 198817), but the date of the median case in 2002 (2 September) was similar 

to that of 1988 (4 September) and the epidemic duration was shorter than in 1988 (93 days 

instead of 11517; Chapter 2.1.). It is generally accepted that during early phases of disease 

invasion, chance events significantly influence the probability of the emergence of an 

epidemic44. That both epidemics reached their median case around the same time may be related 

to the fact that conditions optimizing transmission occurred around the same time in both years.

The observed temporal differences among locations were generally assumed to be due to 

differences in time of introduction of the PDV infection into local populations. It was more 

obvious in 2002 than in 1988 that two patterns of disease dispersal existed, one primarily to 



158

Summarizing discussion

adjacent locations, and the other to ‘far-off’ locations30. After 2002, some authors suggested grey 

seals were vectors of infection to ‘far-off’ locations30. First, because grey seals sero-converted 

during the PDV epidemics and were possibly infectious when infected11,28; second, because 

grey seals were known to swim longer distances than harbour seals30; third, because they mixed 

with harbour seals on Anholt beaches, and at the other ‘far-off’ locations’30. The location of the 

Dutch index case, Vlieland (Chapter 2.1.), does not contradict this idea, the case being found 

close to the tidal basin where the grey seal breeding colony is established. However, although 

the grey seal may be a vector, other marine or terrestrial mammals cannot be excluded at 

this time. For example, the grey seal hypothesis is based on normal host behaviour, but be-

haviour in individuals infected with morbillivirus is often altered. They may display different 

movement patterns than normal8,14,35,39,67 (Chapter 2.2.), creating the opportunity to introduce the 

infection into a ‘far-off’ area.  Altering host behaviour to infect new susceptible populations, to-

gether with cross-species jumps and variation in virulence are important persistence strategies 

for viruses of the genus Morbillivirus, which otherwise tend to drastically eliminate their pool of 

susceptible hosts by either removal or life-long immunity. Finally, regardless of the vector, locations 

do not necessarily have to be infected by individuals coming from Anholt, as is often presumed30. 

They could equally well have been infected by individuals originating from elsewhere. Possibly, 

isotope patterns in vibrissae of grey seals and harbour seals, including the first harbour seals 

that die during an epidemic, could shed some light on these issues43.

In certain situations, temporal differences among locations may also be due to 

differences in local population sizes. We assumed that this could be the reason why the temporal 

differences were observed in the Netherlands between Zealand and the Dutch Wadden Sea 

locations. Modelling of data from 1988 had shown that the disease developed in a similar way 

in herds between 80 and 1500 individuals33. However, the number of harbour seals in Zeeland 

was at the lower end of this range, with less than 100 harbour seals and only a handful of grey 

seals counted in the whole Delta area in the summer of 200165. We found that the median 

stranding date in Zealand was nearly one month later than that of locations in the Dutch 

Wadden Sea (Chapter 2.1.). We suggested that, because there were fewer seals in Zealand 

and that they were more widely dispersed than in the Wadden Sea, contact rates among them 

were lower (Chapter 2.1.), increasing the role of chance events in the start and dynamics of the 

epidemic44.

During the 2002 epidemic the calculated overall mortality in harbour seals in European waters 

was again extremely high (47%), albeit lower than in 1988 (57%)30, In 2002, there were 22 500 

stranded seals30,61, corresponding to approximately 30 000 seal deaths30. Between locations, the 

estimated cumulative mortalities in 2002 differed even more extremely than in 1988, ranging 

in 2002 from 1% in Scotland to 66% in the Skaggerrak30,34,61. We found that in the Netherlands, 

cumulative mortality was very similar in both epidemics (53% in 1988, and 54% in 2002), and at 

the high end of the range (Chapter 2.1.).
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Three factors that may cause differences in cumulative mortality among locations and 

epidemics are differences in exposure, virus virulence, or host susceptibility to fatal disease 

after infection. We discuss the factors for the PDV epidemic in the Netherlands. Exposure 

probability and frequency varies with seal behaviour and density. Exposure probability may be 

less if the infection only reaches an area when breeding and moulting activities are coming 

to an end30. In the Netherlands this was not the case, because the introduction of PDV both in 

1988 and in 2002 occurred early in the season, at the start of breeding and moulting activities 

(Chapter 2.1.). Exposure frequency may have had an effect on the severity of the disease. This 

has been suggested for measles where secondary measles cases in a household were shown to 

have a higher death risk than the primary cases (Chapter 2.2.), although this has not yet been 

explored experimentally. Data on possible differences in virus virulence among locations and 

epidemics are largely lacking: virus gene fragments have been sequenced but no comparative 

experimental study to determine virulence has been carried out. Sequencing of a P-gene 

fragment showed 99% homology between viruses of Danish and Dutch cases in 2002 and 

more than 97% homology between 1988 and 2002 isolates37, and sequencing of the H-gene 

98-99% (with 98%.amino acid identity)50. This shows that the 2002 and the 1988 PDV viruses were 

closely related, but because few changes in genes may be enough to change virus properties, no 

conclusions can be drawn from these data with regard to virus virulence (Chapter 2.2.). 

Finally, levels of cumulative mortality are a function of host susceptibility. Host susceptibility 

to fatal disease may be influenced by certain pre-existing immune suppressive conditions 

and vitamin A deficiency (Chapter 2.1.). Environmental contaminants may affect the 

immune response and reduce vitamin A levels9,16,68. In the Netherlands, we found that in 

2002, the levels of polychlorinated biphenyls (PCBs) in harbour seal tissues were still within 

the range of those associated with immune suppression, like in 1988 (Chapter 4.1.). Host 

susceptibility to fatal disease may also be influenced by co-infection with other pathogens 

(Chapter 2.2.). In the Netherlands, co-infections may not have varied significantly between 

1988 and 2002: endoparasitic co-infections were similar7(Chapter 3.1.), and the most common 

bacterial co-infection in 2002, Bordetella bronchiseptica, is considered a nasal commensal 

in healthy hosts, and therefore likely to have been prevalent in 1988. Further, host 

susceptibility is influenced by specific immunity. Seals aged 14 years or older hardly stranded in 

2002 in the Netherlands (Chapter 3.1..) and elsewhere31, presumably because they were immune 

survivors of the 1988 epidemic. However this age category represents only a small fraction of the 

population. Host susceptibility could also have been influenced by genetic changes in the harbour 

seal population. No samples from 1988 were available to address this issue. However, we did 

examine whether seals that died at the start of the epidemic were more inbred than seals that died 

later on. This had been observed with DMV in striped dolphins81. Our data on seal mortality were 

however inconclusive. Collectively these data, together with the observation that cumulative 

mortality in the Netherlands did not change between the two epidemics, suggested that no major 

genetic change in Dutch harbour seal population or PDV had occurred between the two 

epidemics.
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In both the 1988 and the 2002 epidemics, mortality patterns proved to be sex- and age-related. 

Data from elsewhere in the North Sea suggested that in contrast to subadults (1- to 3-year-olds), 

pups and mature seals suffered higher mortality, which was also more prominent in males than 

females31,32. In our description of the 2002 epidemic in the Netherlands, subadults were clearly 

well represented amongst the dead. However these data should be interpreted with caution as 

no reliable data on sex and age distribution of the population is available. 

There were significant temporal differences in stranding among sex and age categories: 

subadults were affected earlier than juveniles and adults, and within each age category, males 

earlier than females (Chapter 2.1.). Most surprising was that the disease started in June, when 

adult females and their pups were hauled out49,64, yet at the beginning of the epidemic these 

had hardly stranded. We suggested that the observed temporal differences could be explained 

by sex- and age-related variations in behaviour and tissue contaminant levels. Sex- and age-

related variations in behaviour may have influenced exposure rates. We took for granted that 

transmission would be most likely if there was close contact between the infected and the 

susceptible hosts (Chapter 2.2.) and brought forward several behaviour patterns that could 

explain the observed stranding patterns: the relative isolation and reduced mobility of adult 

females and their pups during the first weeks after whelping (June)24,52,78; social play and 

interactions among subadults (throughout summer)62,63,86; interactions among (nearly) mature 

males at the beginning of the breeding season (beginning July) and between mature males 

and females during the breeding season (July-August)71,77; and increased haul out during 

moult, moult occurring earlier in subadults than in adults76. Sex- and age-related variations in 

contaminant burdens may have influenced susceptibility. Adult females and juveniles may have 

been less immune suppressed than adult males and subadults, because adult females tend to lose 

contaminants through lactation and whelping, and juveniles have had less time to accumulate 

contaminants1. As a result, adult females and juveniles may have succumbed more slowly 

to PDV infection (Chapter 2.1.).  Ultimately, behavioural explanations seem more likely. Our 

pathology results, for example, suggest that PDV infection is not more protracted in juvenile seals 

(Chapter 3.1., cf. below Pathology).

Because we found temporal differences in stranding among sex and age categories, we 

decided to create a model to see if stage-structured transmission is supported. We used the 

stranding incidence data and a Susceptible-Infected-Removed model applying a WAIFW (« 

Who Acquires Infection From Whom ») matrix to model three situations, from a complete 

lack of stage structure with homogeneous mixing to strong heterogeneous mixing. Adding 

stage structure provided a better description of the data. Overall, the model with strong 

heterogeneities was the best-fit model, suggesting that the harbour seal population in 

the Dutch Wadden Sea transmitted PDV in a stage-dependent manner during the 2002 

epidemic. The transmission estimates generated by the model indicated that transmission 

between juveniles and adults had been the lowest, whereas transmission within subadults 
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and between adults and subadults had been the highest. Some estimates were correlated,  

and could therefore take on several values. The basic reproductive ratio R0 was estimated 

to be 3.08, thereby falling within the range of other R0 estimates for PDV15,30 (Chapter 2.3.). 

The WAIFW matrix does not distinguish between seal contact structure and mechanisms of 

epidemic spread and besides behaviour there may still be other factors affecting stranding 

pattern, as discussed previously.  

The model made use of stranding incidence data. This was possible because around three-

fourths of the seals that died stranded, and many of them could be recovered. This is a 

rather exceptional situation in wildlife die-offs87. It is probably the result of the topographical 

characteristics of the Wadden Sea, Delta area, and North Sea (all fairly enclosed water bodies), 

seal carcass buoyancy (due to the blubber layer, emphysema, and post-mortal bloating), and 

absence of large scavengers.  

In the Dutch Wadden Sea, we were also able to identify spatial differences in stranding among 

age categories, consistent with known differences in age distribution among areas. High 

proportions of juvenile and adult seals stranded in the province of Groningen, consistent with 

the presence of a core breeding area located there; high proportions of subadults stranded in 

the western part of the Dutch Wadden Sea, consistent with the migratory influx of young animals 

to this area; and the highest density of strandings occurred on Schiermonnikoog, consistent 

with the summer distribution of harbour seals in the Dutch Wadden Sea (Chapter 2.1.). The fact 

that these spatial differences could be explained well was encouraging, because there are of 

course confounding factors that affect the temporal and spatial stranding patterns observed. In 

particular, we showed that wind force and direction clearly affected the number of seals found 

stranded on a given day during the epidemic, and that the proportion of stranded carcasses that 

was decomposed increased with time during the epidemic (Chapter 2.1.). 

The questions ‘Where did the infection come from?’ and ‘Where was it in between epidemics?’ 

remain unsolved41. The original source of the epidemics is still thought to be located in the Arctic 

or the North-west Atlantic, because serological studies had indicated that over lengthy periods 

of time substantial numbers of individuals of several species of carnivores from these areas had 

antibodies against morbillivirus infections (probably PDV)17,19,22,46. In addition, there is evidence 

to suggest PDV-associated seal deaths in the western Atlantic21, although no virus has been 

isolated from these areas. 

Terrestrial virus-host pairs have shown to have one or two reservoirs, which are susceptible to 

both infection and disease. Therefore, grey seals cannot be considered a likely reservoir host, 

because they are barely susceptible to disease from PDV infection28. Population threshold levels 

for viral persistence are often difficult to determine for wildlife44. A number of factors may affect 

the threshold: a second reservoir host species, variation in virus virulence, individuals with 
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extended infectiousness, or viral persistence in the environment. Many of the characteristics of 

morbillivirus species virulence as described in Chapter 2.2. could be explained by the existence 

of quasi-species. As Vignuzzi et al (2006)84 wrote, this theory states that a virus is not just a 

collection of diverse mutants but a group of interactive variants, which together contribute 

to the characteristics of the population. With regard to the role of individuals with extended 

infectiousness, it is unclear how infectious they may be over time. With regard to persistence 

in the environment, low temperatures, low relative humidity and long dark winter season 

as observed in the Arctic may contribute to persistence of virus infectivity in substrates and 

carcasses (Chapter 2.2.). 

Pathology 

Necropsy was performed on 1315 of the 2284 seals found stranded in the Netherlands in 2002. 

To examine the effects of different factors on the pathology of phocine distemper, we used 

a sample of 369 harbour seals, namely the cases that were not decomposed. We performed 

laboratory tests on these (RT-PCR, IHC, IgG serology, IgM serology, or a combination of these), 

and used the 232 confirmed cases for describing lesions, state of nutrition, co-infections, and for 

determining correlations between assay results, lesions, age and co-infections. None of the five 

grey seals that had stranded in the Netherlands in 2002 tested positive in laboratory tests. 

During the 1988 PDV epidemic the most common lesions at gross necropsy were pneumonia and 

interstitial emphysema. These lesions were also the main gross lesions observed in PDV-infected 

harbour seals in 2002 in the Netherlands and elsewhere51 in 2002 (Chapter 3.1.). Pneumonia, 

observed in 94% of the cases, was characterised microscopically as bronchopneumonia or 

broncho-interstitial pneumonia. Emphysema occurred in 86% of the cases. We supposed that 

emphysema developed as a result of inflammation and airway obstruction, the well-developed 

interlobular septa of seals impeding collateral ventilation. As a new finding, we showed significant 

age-related differences in the extent and severity of pneumonia and emphysema: extra-thoracic 

emphysema was rare in <1-year-olds compared with older seals, even though severe pneumonia 

was more common. We found two possible explanations. The first is protracted pneumonia in 

older seals, allowing the development of extra-thoracic emphysema.  The second is limited 

diving capacity in young compared to older seals, the latter more likely to perform dives that 

exacerbate the development of interstitial emphysema. 

Another result possibly pointing towards either an age-related difference in disease length or 

an age-related difference in development, is the fact that seals ≥ 3-years-old were significantly 

more often IgG positive than younger seals. This could fit with earlier mortality among young 

seals or age-related compromised immune responses in young seals.

There were few seals with other significant gross lesions in the respiratory tract or thoracic cavity 
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(9%), and few seals with significant gross lesions in other organ systems (7%). The last group had 

significantly less pneumonia and emphysema and were significantly more IgG positive than the 

remainder of the PDV cases, which suggested that these seals had a different (lengthier) disease 

course.

As mentioned previously, the occurrence of ectoparasitic, helminthic, viral and bacterial 

(often Bordetella bronchiseptica) co-infections was common both in 1988 and 2002. In 2002 

in the Netherlands, it was striking that macroscopic evidence of suppurative pneumonia was 

rare, but it was commonly diagnosed histologically. The explanation could be that a high 

proportion of the bacterial infections in the lung were peracute to acute and had not led to 

macroscopically visible changes. In the future, it could be interesting to examine for presence 

of protozoa, because these may be latently present, evolve in immune suppressed seals, and be 

potentially zoonotic6. 

Several other points were raised by this study. First, seals positive by RT-PCR in the brains 

tended not to be positive by RT-PCR in the lungs, possibly because they were able to clear the 

virus from all tissues but the brain. These results indicate that both lung tissue and brain tissue 

need to be tested by RT-PCR when PDV is suspected. If opening the cranium to sample the 

brain poses logistical difficulties, an alternative is to obtain a brain sample by inserting a straw 

through the foramen magnum, as is done for rabies testing. Second, PDV-infected seals possibly 

suffer from severe dehydration. PDV-infected seals, especially larger ones, had significantly 

greater kidney and adrenal weights than seals that died of other causes. PDV infection is likely 

to cause seals to lose water and electrolytes excessively through the secreta and excreta, and the 

nearly consistently empty stomachs indicated PDV-infected seals were impeded in their water 

intake from prey. This question of dehydration could be addressed through measurement of 

urea nitrogen in vitreous humour fluid.  Third, we had hoped to learn more about seal diet, 

but virtually all the stomachs were empty, except for corpora aliena. With regard to the latter, a 

few seals had ingested sport fishing devices resulting in severe internal damage. Sport fishers 

should be made aware of such findings. 

Toxicology

We used blubber samples of 45 sexually immature harbour seals, that had stranded 

during the 2002 epidemic and the decade before, to evaluate trends for levels of organochlorine 

compounds (OCs),  namely polychlorinated biphenyls (PCBs), dichloro-diphenyl-trichloroethane 

(DDT), tris(4-chlorphenyl)methanol (TCPMOH), chlordane compounds (CHLs), tris(4-

chlorophenyl)methane (TCPMe), heptachlor epoxide (HP-epox), hexachlorocyclohexane 

(HCHs) and hexachlorobenzene (HCB), as well as for the newly introduced flame retardant 

polybrominated diphenyl ethers (PBDEs). Another 25 sexually immature harbour seals 

(Phoca vitulina) that stranded in the Dutch Wadden Sea between 1999 and 2002 were 
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used to get more information on PBDE levels in harbour seals from the Dutch Wadden Sea. 

Harbour seals chronically exposed to environmental contaminants through their diet have 

vitamin A and thyroid hormone deficiency9, as well as impaired immunological function16,68. 

Vitamin A deficiency was recently shown to significantly affect the mortality rate not only in 

measles-infected humans, but also in CDV-infected ferrets4,66(Chapter 2.2.). This suggests that 

vitamin A levels could be relevant to the outcome of morbillivirus infections in hosts in general; 

as previously mentioned, contaminant levels in combination with diet would then contribute to 

explaining the differences in mortality observed between locations and years.

The second point highlighted after the 1988 PDV epidemic had been that there were spatial 

differences in OC levels. OCs had been examined in harbour seals in multiple countries and had 

been at the high end of the range in the Baltic and southern Wadden Sea, and at the low end 

of the range in Norway and Northern Ireland. Surprisingly, to date there are few peer-reviewed 

articles presenting results from samples from the 2002 epidemic to determine how the levels 

of OCs evolved since 1988. For the Netherlands, it was hypothesized that the improvement in 

reproductive rate of harbour seals in the Netherlands after the 1988 epidemic was a result of 

selective mortality during the 1988 epidemic, which would have eliminated the adult females 

that had contaminant-induced sterility59. It is also generally thought that harbour seals in 2002 

suffered less from contaminant-induced immune suppression because of overall decreasing 

trends of PCBs and DDE in marine mammals in the northeastern Atlantic30. In our study, after 

correcting for blubber thickness, we found that only HCH and HCB levels showed a significant 

decline in the period 1993-2002. However, all remaining OCs, including PCBs and dichloro-

diphenyl-trichloroethane (DDT), did not decline significantly. PCBs remained at levels previously 

associated previously with immune suppression in harbour seals (Chapter 4.1.). Our results 

therefore indicated that, contrary to general belief and despite reduced input and declining 

sediment levels in the North Sea ecosystem, PCBs had stabilized in harbour seal tissues at 

potentially harmful levels30. In other species in the higher trophic levels of the North Sea food 

chain, namely the gannet Morus bassanus, studies on eggs also indicated certain PCBs had 

remained stable or even increased56. Further, there were other geographical areas were it was 

shown that PCB concentrations were not changing in seal tissues2, as predicted by Tanabe73. 

A new development since 1988 had been the realisation that polybrominated diphenyl 

ethers (PBDEs) accumulate in the environment, and if not regulated, could lead to new 

environmental problems. PBDEs are flame retardants produced and used since the early 1970s. 

There used to be three commercial products, pentaBDE, octaBDE and decaBDE, but because 

adverse health effects were found at lower levels for pentaBDE and octaBDE than for decaBDE, 

the first two have been more or less removed from production. In our second study, we 

examined 17 BDE-congeners. BDE-47, a penta-BDE, was the congener present in the highest 

levels (median level: 83 ng per g wet weight of blubber). The levels of the other consistently 

detectable congeners were one (BDE-99, BDE-100, BDE-153, BDE-154&BB-153) or two (BDE-28, 
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BDE-49) orders of magnitude lower than BDE-47 levels, and overall values of these congeners 

correlated positively with BDE-47 values. The maximum level of BDE-209 was below detection 

limits (Chapter 4.2.). The first study had showed that levels of PBDE flame retardants did not 

increase from 1993 to 2002 (Chapter 4.1.), which may reflect the timely implementation of 

restrictions on the use of the most bioaccumulating compounds.

Host genetics

The point that had been highlighted by the 1988 PDV epidemic was that harbour seals exhibit 

strong population sub-structure, with significant genetic differences between populations that 

are easily within the reach of dispersing juveniles. Such structure has the potential to allow or 

even promote some level of inbreeding. Inbred individuals may be more susceptible to disease, 

and carry more and a greater diversity of parasites. 

Two questions were addressed. The first was whether there was an association 

between the time of stranding in the PDV epidemic and heterozygosity, as had been 

previously observed in an outbreak of dolphin morbillivirus81. The second was whether 

there was an association between lungworm burden and heterozygosity. Lungworms are an 

important cause of death in between epidemics70, in particular in young seals12,48, and were 

fairly common co-infections in PDV-infected seals (in 11% of the 2002 sample, Chapter 

3.1.). The harbour seal has two lungworm species: Otostrongylus circumlitus, a large species 

whose adults are easily visible in the principal airways, and Parafilaroides gymnurus, a smaller 

species found in the alveoli and smaller bronchioles. We used samples of 204 harbour seals that 

stranded along the Dutch coast between 1997 and 2003, and genotyped them for 27 

microsatellites. 

Crude analysis of the data showed no direct association between time of stranding during the 

PDV epidemic and heterozygosity, There was however an association between heterozygosity 

and worm burden, homozygosity predicting higher worm burdens, but only in young animals, 

where the worms have the greatest impact on fitness. Testing each locus separately, we found 

that a significant majority reveals a weak but similar trend for heterozygosity to be protective 

against high lungworm burden, suggesting a genome-wide effect, that is, inbreeding. This 

conclusion is supported by the fact that heterozygosity is correlated among markers in young 

animals but not in otherwise equivalent older ones.  Taken as a whole, our results support the 

notion that homozygosity increases the susceptibility of young seals to lungworm infection 

(Chapter 5.1.). 



166

Summarizing discussion

Perspectives and conclusion

In the past decades PDV has twice caused major epidemics in harbour seals in the North 

Sea, before disappearing again from the area. No reliable historical records on PDV 

epidemics in harbour seals exist. Either PDV did not occur in the area, or alternatively the virus 

was endemic in the North Sea when harbour seal populations were larger, as it is thought to 

be now in seal populations in the Arctic and the western Atlantic19,22. It may have disappeared 

with the decline and fragmentation of the population in the first half of the 20th century due to 

hunting, habitat loss, disturbance and pollution58,59. 

What caused the introductions of PDV infection in the North Sea is unknown, but it may be 

related to human activity causing change in marine mammal environment. One of the most 

important changes is probably related to intensive fishing practices, decreasing fish stocks both 

quantitatively and qualitatively3,36,55. Another frequently cited cause is climate change induced 

by human activities5,40,42. Host species from the Arctic and Atlantic environment have to adapt 

to these changes. Given the time-scale, adaptation is largely behavioral10, for example following 

prey into new areas. This was assumed the cause of the harp seal movement into the North Sea 

in 198817,46. 

At the population level, some species adapt more easily to a changing environment than others. 

Grey seals have recently joined harbour seals in the Dutch coastal waters60, possibly becoming 

a competitor. Both species may feed on a large range of prey27,83. Both harbour and grey seals 

make use of sandbanks to haul out, but grey seals also need land that is continuously dry to 

whelp and nurse and for pups to survive27. However, grey seals are generally more robust and 

less susceptible to deleterious effects of infectious diseases, in particular phocine distemper20. 

Even though the harbour seal population in the Netherlands has recovered in numbers since 

the 2002 epidemic (3595 harbour seals counted in the Wadden Sea in 200180, 4065 in 200679), 

PDV is likely to re-occur in North European waters and affect the harbour seal population 

again. Therefore PDV infection should definitely be accounted for when making management 

decisions concerning seal populations in European waters.

The threshold at which the harbour seal population will be large enough to allow PDV to persist 

is unknown. The size of the harbour and other seal populations in the North-western Atlantic 

may level off due to other factors such as food and habitat availability, by-catch and pollution36,69, 

before being large enough to maintain PDV. Alternatively, anthropogenic influences as 

mentioned above may lead to more frequent introduction of PDV infection, with smaller 

more localized epidemics. Besides PDV, other morbillivirus infections are re-occurring in North 

European waters. For example, in 2006-2007, tens of long-finned pilot whales (Globicephala 

melas)23 and striped dolphins (Stenella coeruleoalba)57 stranded along the coast of the Spanish 

Mediterranean Sea and the Balearic Islands, DMV being the cause of the epidemic. In the summer 
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of 2007, Anholt was again the first site of a harbour seal die-off in Danish and Swedish waters. 

Most were pups and the macroscopic findings described were local increased consistency 

of the lungs with emphysema, but RT-PCR for PDV performed on lung tissue of 11 seals was 

negative and the cause remained undetermined29. Recently, an assessment on the conservation 

status of the world’s mammals by the International Union for Conservation of Nature noted that 

threat levels are higher in marine than in terrestrial mammals, and knowledge poorer69. These 

observations clearly illustrate the importance of continuous monitoring of marine mammal 

populations for infectious agents.  

Our work has largely focused on insights into transmission events. Further understanding of 

this issue could be obtained if behavioural studies were done in which contact rates and types 

before and during an epidemic would be recorded. Also, during epidemics the stability of the 

virus in secretions on sandbanks and in mucus floating in the shallows should be addressed to 

determine the risk of infection from the environment.   

Since the 1970s, we are more aware of the impact of anthropogenic environmental 

contaminants on human and ecosystem health. Measures are being taken to try to reduce the 

input of contaminants into the environment, and whenever possible to remove them from the 

environment. We found that important environmental contaminants did not significantly 

decrease in the North Sea in the 1990s. On the positive side, they did not increase either, and 

possibly measures have been implemented in a timely manner for more recently produced 

contaminants such as polybrominated-diphenyl-ethers (PBDEs). Efforts to reduce the input 

of anthropogenic environmental contaminants need to be pursued, amplified and taken to a 

global scale. 

Taken together, this thesis describes multidisciplinary studies carried out in the Netherlands 

in response to a major PDV epidemic amongst harbour seals in north-western Europe in 2002, 

and compares the data with those obtained in response to a similar epidemic in the same 

area in 1988. PDV decimated half the harbour seal population of the Netherlands in 2002, 

without noticeably affecting the grey seal population.  Compared to other North Sea locations, 

cumulative mortality in the Netherlands was on the high end of the range, and was similar to 

that of 1988. It is tempting to speculate that one of the reasons for this is that, like in 1988, 

environmental contaminants as PCBs were still at levels associated with immune suppression in 

harbour seals in 2002. The virus did not spread haphazardly through the population but followed 

a sex- and age-related pattern. Bordetella bronchiseptica infection was a frequent co-infection 

in PDV-infected seals both in 1988 and in 2002, while it was not isolated in between the PDV 

epidemics. Such PDV epidemics have not been documented before 1988, and the fact that they 

occur now may be partly due to human activities impacting on seal and fish populations and 

the marine environment in general. PDV is likely to re-occur in epidemic form, and because of its 

high pathogenicity for harbour seals, to substantially impact on their populations in the North 
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Sea. PDV should therefore be accounted for in North Sea harbour seal population management 

strategies.



169

Summarizing discussion

Reference List

Addison RF. Organochlorines and marine mammal reproduction. 1.	 Can J Fish Aquat Sci 1989;46:360-368.

Addison RF, Ikonomou MG, Fernandez MP, Smith TG. PCDD/F and PCB concentrations in Arctic ringed seals (2.	 Phoca 

hispida) have not changed between 1981 and 2000. Sci Total Environ 2005;351-352:301-311.

Anderson CN, Hsieh CH, Sandin SA, Hewitt R, Hollowed A, Beddington J, May RM, Sugihara G. Why fish magnifies 3.	

fluctuations in fish abundance. Nature 2008;452:835-839.

Barclay AJG, Foster A, Sommer A. Vitamin A supplements and mortality related to measles: a randomized clinical trial. 4.	

Br Med J 1987;294:294-296.

Beaugrand G, Brander KM, Alistair Lindley J, Souissi S, Reid PC. Plankton effect on cod recruitment in the North Sea. 5.	

Nature 2003;426:661-664.

Bogomoini AL, Gast RJ, Ellis JC, Dennett M, Pugliares KR, Lentell BJ, Moore MJ. Victims or vectors: a survey of marine 6.	

vertebrate zoonoses from coastal waters of the North West Atlantic. Dis Aquat Organ 2008;81:13-38.

Borgsteede FMH, Bus H.G.J, Verplanke JAW, Van der Burg WPJ. Endoparasitic helminths of the harbour seal, 7.	 Phoca 

vitulina, in the Netherlands. Neth J Sea Res 1991;28:247-250.

Branagan D. Letter to the Editor (on behaviour of rinderpest infected buffalo). 8.	 Bull Epiz Dis Afr 1965;341-342.

Brouwer A, Reijnders PJH, Koeman JH. Polychlorinated biphenyl (PCB)-contaminated fish induces vitamin A and thyroid 9.	

hormone deficiency in the common seal (Phoca vitulina). Aquat Toxicol 1989;15:99-106.

Callaghan TV, Björn LO, Chernov Y, Chapin T, Christensen TR, Huntley B, Ims RA, Johansson M, Jolly D, Jonasson S, 10.	

et al. Biodiversity, distributions and adaptations of Arctic species in the context of environmental change. Ambio 

2004;33:404-417.

Carter SD, Hughes DE, Taylor VJ, Bell SC. Immune responses in common and grey seals during the seal epizootic. 11.	 Sci 

Total Environ. 1992;115:83-91.

Claussen D, Strauss V, Ising S, Jäger M, Schnieder T, Stoye M. The helminth fauna from the common seal (12.	 Phoca vitulina 

vitulina, Linné, 1758) of the Wadden Sea in Lower Saxony. J Vet Med B 1992;38:649-656.

Cosby SL, McQuaid S, Duffy N, Lyons C, Rima BK, Allan GM, McCullough SJ, Kennedy S, Smyth JA, McNeilly F, Craig C, 13.	

Orvell C. Characterisation of a seal morbillivirus. Nature 1988;336:115-116.

Davidson WR, Nettles VF, Hayes LE, Howerth EW, Couvillon CD. Diseases diagnosed in gray foxes (14.	 Urocyon 

cinereoargenteus) from the southeastern United States. J Wild Dis 1992;28:25-33.

De Koeijer A, Diekmann O, Reijnders P. Modelling the spread of phocine distemper virus among harbour seals. 15.	 Bull 

Math Biol 1998;60:585-596.

De Swart RL, Ross PS, Vedder LJ, Timmerman HH, Heisterkamp S, Van Loveren H, Vos JG, Reijnders PJH, Osterhaus 16.	

ADME. Impairment of immune function in harbor seals (Phoca vitulina) feeding on fish from polluted waters. Ambio 

1994;23:155-159.

Dietz R., Heide-Jorgensen M-P., Härkönen T. Mass deaths of harbour seals (17.	 Phoca vitulina) in Europe. Ambio 1989;18:258-

264.

Domingo M, Ferrer L, Pumarola M, Marco A, Plana J, Kennedy S, McAliskey M, Rima BK. Morbillivirus in dolphins. 18.	 Nature 

1990;348:21.

Duignan P.J. Morbillivirus infections of Marine Mammals. 19.	 Zoo and Wild Animal Medicine, Current Therapy 4. 1998: 497-

501.

Duignan PJ, Duffy N, Rima BK, Geraci JR. Comparative antibody response in harbour and grey seals naturally infected 20.	



170

Summarizing discussion

by a morbillivirus. Vet Immunol Immunopathol 1997;55:341-349.

Duignan PJ, Sadove S, Saliki JT, Geraci JR. Phocine distemper in harbor seals (21.	 Phoca vitulina) from Long Island, New York. 

J Wildl Dis 1993;29:465-469.

Duignan PJ, Saliki JT, St Aubin DJ, Early G, Sadove S, House JA, Kovacs K, Geraci JR. Epizootiology of morbillivirus 22.	

infection in North American harbor seals (Phoca vitulina) and gray seals (Halichoerus grypus). J Wildl Dis 1995;31:491-

501.

Fernandez A, Esperon F, Herraeéz P, Espinosa de los Monteros A, Clavel C, Bernabé A, Sanchez-Vizcaino JM, Verborgh 23.	

P, DeStephanis R, Toledano F, Bayon A. Morbillvirus and pilot whale deaths, Mediterranean Sea. Emerg Infect Dis 

2008;14:792-794.

Godsell J. Herd formation and haul-out behaviour in harbour seals (24.	 Phoca vitulina). J Zool, Lond 1988;215:83-98.

Grachev MA, Kumarev VP, Mamaev LV, Zorin VL, Baranova LV, Denikina NN, Belikov SI, Petrov EA, Kolesnik VS, Kolesnik 25.	

RS, Dorofeev VM, Beim AM, Kudelin VN, Nagieva FG, Sidorov VN. Distemper virus in Baikal seals. Nature 1989;338:209.

Grenfell BT, Lonergan ME, Harwood J. Quantitative investigations of the epidemiology of phocine distemper virus 26.	

(PDV) in European common seal populations. Sci Total Environ 1992;115:15-29.

Hall A. Gray seal. In: Perrin WF, Würsig B, Thewissen JGM, eds. 27.	 Encyclopedia of marine mammals. San Diego: Academic 

Press; 2002: 552-559.

Hammond JA, Pomeroy PP, Hall AJ, Smith VJ. Identification and real-time PCR quantification of Phocine distemper virus 28.	

from two colonies of Scottish grey seals in 2002. J Gen Virol 2005;86:2563-2567.

Härkönen T, Bäcklin BM, Barrett T, Bergman A, Corteyn M, Dietz R, Harding K, Malmsten J, Roos A, Teilmann J. Mass 29.	

mortality in harbour seals and harbour porpoises caused by an unknown pathogen. Vet Rec 2008;162:555-556.

Härkönen T, Dietz R, Reijnders P, Teilmann J, Harding K, Hall A, Brasseur S, Siebert U, Goodman SJ, Jepson PD, Dau 30.	

Rasmussen T, Thompson P. A review of the 1988 and 2002 phocine distemper virus epidemics in European harbour 

seals. Dis Aquat Organ 2006;68:115-130.

Härkönen T, Harding K, Rasmussen TD, Teilmann J, Dietz R. 31.	 Age- and Sex-specific mortality patterns in an emerging wildlife 

epidemic: the phocine distemper in European harbour seals. PLoS ONE 2007;9:e887.

Härkönen T, Harding KC, Lunneryd SG. Age- and sex-specific behaviour in harbour seals 32.	 Phoca vitulina leads to biased 

estimates of vital population parameters. J Appl Ecol 1999;36:825-841.

Heide-Jorgensen M-P., Härkönen T. Epizootiology of the seal disease in the eastern North Sea. 33.	 J Appl Ecol 1992;29:99-

107.

Heide-Jorgensen M-P., Härkönen T, Dietz R., Thompson P.M. Retrospective of the 1988 European seal epizootic. 34.	 Dis 

Aquat Organ 1992;13:37-62.

Hemboldt CF, Jungherr EL. Distemper Complex in wild carnivores simulating rabies. 35.	 Am J Vet Res 1955;16:463-469.

Hutchinson WF. The dangers of ignoring stock complexity in fishery management: the case of the North Sea cod. 36.	 Biol 

Lett 2008.

Jensen T, van de BM, Dietz HH, Andersen TH, Hammer AS, Kuiken T, Osterhaus A. Another phocine distemper outbreak 37.	

in Europe.  Science 2002;297:209.

Kennedy S, Kuiken T, Jepson PD, Deaville R, Forsyth M, Barrett T, van de Bildt MWG, Osterhaus  ADME, Eybatov T, Duck 38.	

C, Kydyrmanov A, Mitrofanov I, Wilson S. Mass die-off Caspian seals caused by canine distemper virus. Emerg Infect Dis 

2000;6:637-639.

Kock RA, Wambua JM, Mwanzia J, Wamwayi H, Ndungu EK, Barrett T, Kock ND, Rossiter PB. Rinderpest epidemic in wild 39.	



171

Summarizing discussion

ruminants in Kenya 1993-97. Vet Rec. 1999;145:275-283.

Kovacs KM, Lydersen C. Climate change impacts on seals and whales in the North Atlantic Arctic and adjacent shelf 40.	

seas. Sci Prog 2008;91:117-150.

Kreutzer M, Kreutzer R, Sibert U, Müller G, Reijnders P, Brasseur S, Härkönen T, Dietz R, Sonne C, Born EW, Baumgärtner 41.	

W. In search of virus carriers of the 1988 and 2002 phocine distemper virus outbreaks in European harbour seals. Arch 

Virol 2007;153(1):187-92.

Laidre KL, Stirling I, Lowry LF, Wiig O, Heide-Jorgensen MP, Ferguson SH. Quantifying the sensitivity of Artic marine 42.	

mammals to climate-induced habitat change. Ecol Appl 2008;18:S97-125.

Lewis R, O’Connell TC, Lewis M, Campagna C, Hoezel AR. Sex-specific foraging strategies and resource partitioning in 43.	

the southern elephant seal (Mitrounga leonina). Proc Biol Sci 2006;273:2901-2907.

Lloyd-Smith JO, Cross PC, Briggs CJ, Daugherty M, Getz WM, Latto J, Sanchez MS, Smith AB, Swei A. Should we expect 44.	

population thresholds for wildlife disease? Trends Ecol Evol 2005;20:511-519.

Mahy BMJ, Barrett T, Evans S, Anderson EC, Bostock CJ. Characterisation of a seal morbillivirus. 45.	 Nature 1988;336:115.

Markussen NH, Have P. Phocine distemper virus infection in harp seals (46.	 Phoca groenlandica). Mar Mammal Sci 1992;8:19-

26.

McCullough SJ, McNeilly F, Allan GM, Kennedy S, Smyth JA, Cosby SL, McQuaid S, Rima BK. Isolation and characterisation 47.	

of a porpoise morbillivirus. Arch Virol 1991;118:247-252.

Measures LN. Lungworms of Marine Mammals. In: Samuel WM, Pybus MJ, Kocan AA, eds. 48.	 Parasitic diseases of wild 

mammals. Iowa State Univerisity Press/Ames; 2001: 279-300.

Muelbert MMC, Bowen WD. Duration of lactation and postweaning changes in mass and body composition of harbor 49.	

seal, Phoca vitulina, pups. Can J Zool 1993;71:1405-1414.

Muller G, Kaim U, Haas L, Greiser-Wilke I, Wohlsein P, Siebert U, Baumgartner W. Phocine distemper virus: characterization 50.	

of the morbillivirus causing the seal epizootic in northwestern Europe in 2002. Arch Virol 2008;153:951-956.

Muller G, Wohlsein P, Beineke A., Haas L, Greiser-Wilke I., Siebert U, Fonfara S., Harder T, Stede M, Grüber A.D., 51.	

Baumgärtner W. Phocine distemper in German seals, 2002. Emerg Infect Dis 2004;10:723-725.

Newby TC. Observations on the breeding behavior of the harbor seal in the State of Washington. 52.	 J Mammal 1973;54:540-

543.

Osterhaus AD, VEDDER EJ. Identification of virus causing recent seal deaths. 53.	 Nature 1988;335:20.

Osterhaus, ADME, Groen J, Uytdehaag FGCM, Visser IKG, van de Bildt MWG, Bergman A, Klingeborn B. Distemper virus 54.	

in Baikal seals. Nature 1989;338:209-210.

Pauly D, Watson R, Alder J. Global trends in world fisheries: impacts on marine ecosystems and food security. 55.	 Philos 

Trans R Soc Lond B Biol Sci 2005;360:5-12.

Pereira MG, Walker LA, Best J, Shore RF. Long-term trends in mercury and PCB congener concentrations in gannet 56.	

(Morus bassanus) eggs in Britain. Environ Pollut 2008.

Raga JA, Banyard A, Domingo M, Corteyn M, van Bressem MF, Fernandez M, Aznar JF, Barrett T. Dolphin morbillivirus 57.	

epizootic, resurgence, Mediterranean Sea. Emerg Infect Dis 2008;14:471-473.

Reijnders PJH. Reproductive failure in common seals feeding on fish from polluted coastal waters. 58.	 Nature 1986;324:456-

457.

Reijnders PJH, Ries EH, Tougaard S., Noogaard N, Heidemann G., Schwarz J, Vareschi E., Traut IM. Population development 59.	

of harbour seals Phoca vitulina in the Wadden Sea after the 1988 virus epizootic. J Sea Res 1997;38:161-169.



172

Summarizing discussion

Reijnders PJH, Van Dijk J, Kuiper J. Recolonization of the Dutch Wadden Sea by the grey seal (60.	 Halichoerus grypus). Biol 

Conserv 1995;71:231-235.

Reineking, B. Status Report N°45 (07.04.2003). 45. 2003. Common Wadden Sea Secretariat. 61.	

Renouf D, Lawson JW. Play in Harbour seals (62.	 Phoca vitulina). J Zool, Lond 1986;208:73-82.

Renouf D, Lawson JW. Quantitative aspects of harbour seal (63.	 Phoca vitulina) play. J Zool, Lond 1987;212:267-273.

Ries, E. H., Reijnders, P. J. H. Characteristics of a Core Breeding Area for the Wadden Sea Harbour Seal Population: the 64.	

Eems-Dollard Estuary (in: Population Biology and Activity Patterns of Harbour Seals (Phoca Vitulina) in the Wadden 

Sea).  53-65. 1999.  IBN Scientific Contributions 16; Doctoral thesis of Groningen University (ISBN 90-76095-09-4). 

RIKZ (Rijks Instituut voor Kust en Zee). 65.	 Vliegtuigtellingen Van Watervogels En Zeezoogdieren in De Voordelta, 2000-2001. 

Rapport RIKZ/2002.004, 41-44. 2002. 

Rodeheffer C, von Messling V, Milot S, Lepine F, Manges AR, Ward BJ. Disease manifestations of canine distemper virus 66.	

infection in ferrets are modulated by vitamin A status. J Nutr 2007;137:1916-1922.

Roscoe DE. Epizootiology of canine distemper in New Jersey raccoons. 67.	 J Wild Dis 1993;29:390-395.

Ross PS, De Swart RL, Reijnders PJ, Van Loveren H, Vos JG, Osterhaus ADME. Contaminant-related suppression of 68.	

delayed-type hypersensitivity and antibody responses in harbour seals fed herring from the Baltic Sea. Environ Health 

Persp 1995;103:162-167.

Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffman M, Katariya V, Lamoureux J, Rodrogues AS, Stuart SN, Temple HJ, et 69.	

al. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 2008;10:225-230.

Siebert U, Wohlsein P, Lehnert K, Baumgartner W. Pathological findings in harbour seals (70.	 Phoca vitulina): 1996-2005. J 

Comp Pathol 2007;137:47-58.

Sullivan RM. Aquatic displays and interactions in harbour seals 71.	 Phoca vitulina, with comments on mating systems. J  

Mammal 1981;62:825-831.

Swinton J, Harwood J, Grenfell BT, Gilligan CA. Persistence thresholds for phocine distemper virus infection in harbour 72.	

seal Phoca vitulina metapopulations. J Anim Ecol 1998;67:54-68.

Tanabe S. PCB problems in the future: foresight from current knowledge. 73.	 Environ Pollut 1988;50:5-28.

Taubenberger JK, Tsai MM, Atkin J, Fanning TG, Krafft AE, Moeller RB, Kodsi SE, Mense MG, Lipscomb TP. Molecular 74.	

genetic evidence of a novel morbillivirus in a long-finned pilot whale (Globicephalus melas). Emerg Infect Dis 2000; 

6:42-45.

Thompson P.M., Thompson H., Hall A.J. Prevalence of morbillivirus antibodies in scottish harbour seals. 75.	 Vet Rec 

2002;151:609-610.

Thompson P, Rothery P. Age and sex differences in the timing of moult in the common seal, 76.	 Phoca vitulina. J Zool Lond 

1987;212:603.

Thompson PM, Fedak MA, MC Connel BJ, Nicholas KS. Seasonal and sex related variation in the activity patterns of 77.	

common seals (Phoca vitulina) J Appl Ecol 1989;26:521-535.

Traut IM, Ries EH, Donat B, Vareschi E. Spacing among harbour seals (78.	 Phoca vitulina vitulina) on haul-out sites in the 

Wadden Sea of Niedersachsen. Zeitschrift fur Saugetierkunde-International J Mammal Biol 1999;64:51-53.

Trilateral Seal Expert Group (TSEG). Aerial surveys of harbour and grey seals in the Wadden Sea in 2006. 79.	 Wadden Sea 

Newsletter 2006;1:9-11.

TSEG (Trilateral Seal Expert Group). Common and Grey Seals in the Wadden Sea. 80.	 Wadden Sea Ecosystem  no. 15. 2002. 

Valsecchi E, Amos W, Raga JA, Podesta M, Sherwin W. The effects of inbreeding on mortality during a morbillivirus 81.	



173

Summarizing discussion

outbreak in the Mediterranean striped dolphin (Stenella coeruleoalba). Anim Conserv 2004;7:139-146.

Osterhaus A, Groen J, Niesters H, van de Bildt M, Martina BE, Vedder L, Vos J, van Egmond H, Abou-Sidi B, Barham ME. 82.	

Morbillivirus in monk seal mass mortality. Nature 1997;388:838-839.

van Haaften JL. The common seal or harbour seal (83.	 Phoca vitulina). In: Reijnders PJH, Wolf WJ, eds. In: Marine Mammals 

of the Wadden Sea. Rotterdam: Balkema; 1981: 7-15-7/31.

Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R. Quasispecies diversity determines pathogenesis through 84.	

cooperative interactions in a viral population. Nature 2006;439:344-348.

Visser IK, Kumarev VP, Orvell C, de Vries P, Broeders HW, van de Bildt MW, Groen J, Teppema JS, Burger MC, UytdeHaag 85.	

FG, Osterhaus ADME. Comparison of two morbilliviruses isolated from seals during outbreaks of distemper in north 

west Europe and Siberia. Arch Virol 1990;111:149-164.

Wilson S. Juvenile play of the common seal 86.	 Phoca vitulina vitulina with comparative notes on the grey seal Halichoerus 

grypus. Behaviour 1974;48:37-60.

Wobeser GA. 87.	 Essentials of disease in wild animals. 1st edition ed. Blackwell; 2006.



174

Nederlandse samenvatting

In april 1988 werd een ongewoon hoog aantal dode zeehonden gevonden op Anholt, een klein 

eiland in het Deense Kattegat. Dit was de start van de epidemie die in 1988 tussen 18.000 en 

23.000 zeehonden in de Europese wateren zou doden, voornamelijk gewone zeehonden (Phoca 

vitulina). Onderzoek tijdens de epidemie toonde aan dat de sterfte veroorzaakt werd door een 

niet eerder gevonden morbillivirus, dat de naam 'phocine distemper virus’ (PDV) of ‘zeehonden-

ziektevirus’ kreeg. 

In mei 2002 werd wederom een ongewoon hoog aantal dode zeehonden gevonden op Anholt. 

De diagnose PDV-infectie werd snel gesteld en bevestigd. De mogelijkheid dat dit zou leiden 

tot een epidemie in de Europese wateren lag voor de hand, omdat serologisch onderzoek 

had aangetoond dat het merendeel van de gewone zeehondenpopulatie waarschijnlijk geen 

antistoffen had tegen PDV. Beleidsmedewerkers in Nederland waren snel overtuigd van de 

noodzaak voorbereidingen te treffen om op de juiste manier op de epidemie te reageren en 

hem ook goed te documenteren. Nederland had toen vijf weken om zich voor te bereiden op de 

epidemie: het eerste geval van PDV-infectie in Nederlandse wateren werd vastgesteld op 16 juni 

2002. In totaal zouden er in 2002 meer dan 22.500 zeehonden sterven in de Europese wateren.

De epidemie in 1988 leidde tot de publicatie van verschillende epidemiologische, pathologische 

en toxicologische studies, maar over de strandingen in Nederland werd weinig gepubliceerd. 

Het doel van dit proefschrift was om de PDV-epidemie in Nederland in 2002 vanuit deze 

verschillende disciplines te bestuderen, om daarmee zo mogelijk nieuwe inzichten te krijgen in 

de effecten van een PDV-uitbraak op individuele zeehonden en op de zeehondenpopulatie, en 

tevens in de gezondheidstoestand van het ecosysteem waarin deze zeezoogdieren leven. 

Hieronder volgt eerst algemene informatie over zeehonden in Nederland en over PDV. Daarna 

worden de belangrijkste epidemiologische, pathologische en toxicologische bevindingen van 

de PDV-epidemie in 1988 samengevat.

Achtergrondinformatie (Hoofdstuk 1)

Zeehonden 

Er leven twee soorten zeehonden in Nederland: de gewone zeehond en de grijze zeehond 

(Halichoerus grypus). Ze rusten in de Nederlandse Waddenzee en het Deltagebied op stranden 

of op zankbanken die bij dalend tij droogvallen en waarvandaan ze snel in diep water kunnen 

komen. Ze voeden zich met verschillende vissoorten en kreeftachtigen (Crustacea) in de wateren 

van deze gebieden en in de Noordzee.

Nederlandse samenvatting
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Vrouwelijke gewone zeehonden zijn met drie of vier jaar geslachtsrijp, mannelijke met vier tot 

vijf jaar, en ze kunnen tot zo`n 35 jaar oud worden. Geboorten komen in een bepaalde periode 

voor, die in Nederland van eind mei tot begin juli duurt. Pups zwemmen binnen enkele uren 

na de geboorte. De lactatieperiode duurt drie tot vier weken, waarna de pup abrupt gespeend 

wordt en paring tussen volwassenen plaats kan vinden. Implantatie van de bevruchte eicel 

wordt 2.5 maand uitgesteld. Gewone zeehonden ruien in de zomer, jaarlingen eerst, dan de 

overige onvolwassenen, dan volwassen vrouwtjes en het laatste volwassen mannetjes. Door 

het werpen en het ruien liggen gewone zeehonden in Nederland in de zomer vaker op land dan 

in de winter; in de winter wordt meer tijd doorgebracht in de Noordzee. In de zomer zijn ze ook 

tamelijk honkvast. Om deze twee redenen worden aantallen zeehonden geteld in de zomer. 

Geschat wordt dat het deel dat in de zomer op het land kan worden geteld ongeveer twee 

derde van de populatie bedraagt. 

Vrouwelijke grijze zeehonden zijn met drie tot vijf jaar geslachtsrijp, mannelijke met ongeveer 

zes jaar. Pups worden tussen september en maart geboren, afhankelijk van de locatie; in de 

Nederlandse Waddenzee is dit van december tot januari. De lactatieperiode duurt ongeveer 

18 dagen, waarin de pup tot het viervoudige in gewicht kan toenemen. Na spenen vast de pup 

tussen 10 dagen en een maand, verliest de ‘lanugo’ (foetushaar) en ontwikkelt duikcapaciteit. 

Paring tussen volwassenen volgt na het spenen van de pups, en uitgestelde implantatie vindt 

plaats na 4 maanden. Grijze zeehonden ruien ongeveer rond de tijd van de implantatie en liggen 

dan vaker op land. Aantallen worden daarom in Nederland van maart tot april geteld. 

De gewone zeehond komt voor op het noordelijke halfrond, zowel in de Atlantische als in de 

Stille Oceaan. Van de vijf verschillende ondersoorten, komen er twee veelvuldig voor in de 

Noord Atlantische Oceaan: in het oosten P. vitulina vitulina (ongeveer 100.000 in 1985) en in het 

westen P. vitulina concolor (40.000-100.000 in de vroege negentiger jaren); de grens tussen beide 

populaties is onbekend. De geografische spreiding van de grijze zeehond beperkt zich tot de 

Atlantische Oceaan, met ongeveer 130.000 dieren in het oosten en meer dan 150.000 dieren in 

het westen.

In Nederland leefden er in het begin van de 20ste eeuw enkele duizenden gewone zeehonden. 

Hun aantal daalde vervolgens, en bereikte minima van ongeveer 450 dieren in de Nederlandse 

Waddenzee in 1978, en van 16 in het Deltagebied in 1981. Dit was een gevolg van de jacht 

(pas verboden in 1962), habitatverlies en slechte voortplanting (het laatste werd wel geweten 

aan vervuiling en verstoring door de mens). Daarna heeft de populatie zich langzaam hersteld 

en in 1987, vóór de 1988-epidemie, telde de Nederlandse Waddenzee bijna 1000 gewone 

zeehonden. Hoewel grijze zeehonden van oudsher aanwezig waren in Nederland, werden ze 

in de periode 1900-1950 niet meer waargenomen. Begin jaren tachtig werden ze steeds vaker 

gezien op een zandplaat tussen de Waddeneilanden Vlieland en Terschelling, en in 1985 werd er 

de eerste pup geboren. In 1987, vóór de 1988-epidemie, werden er 71 grijze zeehonden geteld 
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in de Nederlandse Waddenzee.

Het virus: PDV

PDV behoort tot het genus Morbillivirus van de familie Paramyxoviridae. Het is een membraanvirus 

met een negatief enkelstrengs RNA. Het genoom bestaat uit zes genen, die acht eiwitten 

coderen: het nucleocapside eiwit (N), het fosfoproteïne (P), twee niet-structurele eiwitten C 

en V, het matrix eiwit (M), het fusie glycoproteïne (F), het hemagglutinine-glycoproteïne (H), 

en tenslotte het grote eiwit (L). M, H, en F zijn de membraaneiwitten van het virion; N, P en 

L, geassocieerd met het RNA, vormen het nucleocapside van het virion. H bindt aan cellulaire 

receptoren, en wekt de neutraliserende antilichaamrespons op. Het H-gen is het meest variabele 

deel van het genoom. 

Er zijn tot nu toe acht morbillivirussen geïdentificeerd: het mazelen virus (MV), het runderpest 

virus (RPV), het ‘peste des petits-ruminants’ virus (PPRV), het hondenziekten virus (CDV), het 

dolfijn morbillivirus (DMV), het bruinvis morbillivirus (PMV), het griend morbillivirus (PWMV), 

en PDV. De laatste vijf infecteren zeezoogdieren, en de laatste vier zijn pas in de laatste drie 

decennia ontdekt. PDV is fylogenetisch het nauwste verwant aan CDV. PDV is in 1988 en in 2002 

geïsoleerd uit natuurlijk geïnfecteerde gewone zeehonden, en in 1988 ook uit nertsen van een 

nertsboerderij aan zee in Denemarken die vermoedelijk geïnfecteerd waren door contact met 

materiaal van gestorven zeehonden. Naast PDV infecties zijn bij verschillende zeehondensoorten 

ook infecties met CDV en met DMV waargenomen. 

Bevindingen tijdens de PDV-epidemie van 1988 

Tijdens de 1988 PDV-epidemie, strandden er in heel Europa duizenden gewone zeehonden 

en enkele honderden grijze zeehonden. In Nederland waren dat 417 gewone en geen grijze 

zeehonden. De epidemie begon op verschillende tijdstippen in verschillende gebieden 

van de Noordzee, in Nederland op 22 mei 1988. De uitbraak duurde meestal ongeveer twee 

maanden, in Nederland echter 115 dagen (mediaan 4 september 1988). Het deel van de 

zeehondenpopulatie dat aan de ziekte bezweek verschilde tussen de getroffen gebieden. Er 

leek ook een geslachts- and leeftijdsgebonden strandingspatroon te bestaan. De waargenomen 

verschillen in sterftepatronen tussen gebieden werden onder andere toegeschreven aan 

verschillen in het tijdstip van introductie van het virus, verschillen in de populatiestructuur en 

mogelijke verschillen in immuunrespons in de respectievelijke populaties. 

De bron van het virus bleef onbekend. Voorafgaand aan de epidemie hadden gewone zeehonden 

in de Noordzee nauwelijks antilichamen tegen morbillivirussen. In retrospectieve serologische 

studies werden wel antistoffen tegen morbillivirussen aangetoond in zeehondensoorten uit 

de Noord Atlantische Oceaan en Noordelijke IJszee, o.a. in zadelrobben (Phoca groenlandica), 
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waarvan bekend was dat ze bij wijze van uitzondering in de Noordzee voorkwamen in de winter 

van 1987-1988. Opmerkelijk was eveneens de aanwezigheid van neutraliserende antistoffen 

tegen het PDV in één derde van de gewone zeehonden en meer dan twee derde van de grijze 

zeehonden bemonsterd langs de oostkust van de VS tussen 1980 en 1994. 

De meest consistente lesies die gevonden werden in aan zeehondenziekte gestorven 

dieren waren broncho-interstitiële pneumonie, interstitiële pneumonie of purulente 

bronchopneumonie, emfyseen, en lymfocytaire uitputting van de lymfoïde weefsels. Niet-

purulente soms demyeliniserende encefalitis werd sporadisch waargenomen. Typisch waren 

syncytia, en intracytoplasmatische of intranucleaire eosinofiele insluitsels in epitheelcellen. Co-

infecties met parasieten, bacteriën (o.a., Bordetella bronchiseptica), en andere virussen kwamen 

veel voor. 

Studies na 1988 toonden aan dat milieuverontreinigende stoffen in de zee, zoals 

polychloorbifenylen (PCB's), het immuunsysteem van zeehonden negatief beïnvloedden. Deze 

stoffen hopen zich op in de zeehond, die, net als de mens, een van de laatste schakels is in de 

voedselketen. 

Hogere gevoeligheid voor ziekten is wel in verband gebracht met lage genetische variabiliteit. 

Na 1988 werd d.m.v. genetisch onderzoek aangetoond dat er zes zeehondenpopulaties in 

Europese wateren zijn (Waddenzee; Engelse oostkust; West-Scandinavië; Oost Baltische Zee, 

Schotland-Ierland, IJsland) en dat de genetische variatie in de Waddenzee populatie lager is dan 

in de meeste andere populaties. 

Epidemiologie (Hoofdstuk 2)

Beschrijving van de 2002 PDV-epidemie in Nederland

Hoofdstuk 2.1. beschrijft het verloop van de zeehondenstrandingen tijdens de 2002 PDV-epidemie 

in Nederland, alsmede de effecten van diergebonden (soort, geslachts- en leeftijdscategorie) 

en milieugerelateerde variabelen (locatie, wind, springtij, mate van ontbinding) op de 

dynamiek van de epidemie. Ook werden een aantal epidemiologische kenmerken vergeleken, 

waaronder mortaliteit tussen de PDV-epidemieën van 1988 en 2002, gebruikmakend van zowel 

gepubliceerde informatie als van onze eigen gegevens. 

Gedurende de PDV-epidemie in 2002 vond centrale registratie van datum en locatie van alle 

gestrandde zeehonden plaats. Gestrandde levende zeehonden werden opgehaald en voor 

verzorging naar opvangcentra gebracht. Dode en ter plaatse geëuthanaseerde zeehonden 

werden ook opgehaald, zodat er sectie op gedaan kon worden. Deze karkassen kregen een 

identificatienummer, eveneens centraal geregistreerd, en werden gekoeld of bevroren bewaard 
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tot de sectie plaatsvond. Tijdens sectie werden o.a. geslacht en lichaamslengte vastgesteld, op 

grond waarvan zeehonden per geslacht ingedeeld konden worden in drie leeftijdsgoepen: 

pups, onvolwassen zeehonden, en volwassen zeehonden. Gegevens over windrichting, 

windsnelheid en springtij van het Koninklijk Nederlands Meteorologisch Instituut werden 

eveneens verzameld.

De 2002 PDV-epidemie duurde in Nederland van 16 juni tot 29 november 2002. Er strandden 2284 

zeehonden (2154 dood, 130 levend), waarvan 2279 gewone en 5 grijze. Van de 2284, strandden 

er 2166 (95%) op de Waddenzee eilanden of het vasteland grenzend aan de Waddenzee. Er 

werd sectie gedaan op 1315 carcassen, waarvan 1096 complete gegevens hadden en gestrand 

waren op Vlieland, Terschelling, Ameland, Schiermonnikoog, Groningen, Friesland en Zeeland. 

Bij deze 1096 gewone zeehonden werd het effect van de verschillende variabelen onderzocht. 

De groep onvolwassen zeehonden strandde significant eerder dan die van volwassenen of 

pups, en binnen elke leeftijdsgroep strandden mannelijke dieren over het algemeen eerder dan 

vrouwelijke. Ook was er een effect van leeftijdsgroep op strandingslocatie: volwassen dieren en 

pups waren proportioneel het meest talrijk op het vaste land van Groningen, en onvolwassen 

zeehonden op Vlieland. Per kilometer strand was de dichtheid van strandingen het hoogste 

op Schiermonnikoog. Alleen bij volwassenen verschilden de man-vrouw ratio’s significant per 

locatie. De mediane strandingsweek in Zeeland (week 39) was significant later dan die voor 

alle Waddenzee locaties. Springtij had geen effect op het aantal dieren dat strandde, maar 

windrichting wel: in perioden met zuidenwind strandden er minder dieren dan in perioden met 

noordenwind. Het aantal dieren dat strandde in vergevorderde staat van ontbinding nam toe 

naarmate de epidemie voortschreed, en was in de Waddenzee het hoogst op de kust van het 

vaste land. De geschatte sterfte in 2002 was 54%, vrijwel identiek aan die in 1988 (53%). 

Er strandden dus relatief meer gewone zeehonden dan grijze zeehonden, waarschijnlijk 

omdat PDV-infectie in de gewone zeehond vaker een ernstig en dodelijke beloop heeft. De 

verschillende strandingspatronen van de geslachts- en leeftijdsgoepen zouden verklaard 

kunnen worden door geslachts- en leeftijds-gebonden verschillen in gedrag en indirect zouden 

eventueel ook verschillen in gehalten aan milieuverontreinigende stoffen in het lichaam een 

rol hebben kunnen spelen. Het was verbazingwekkend dat pups en volwassen vrouwtjes in juli 

nauwelijks strandden. Dit zou kunnen komen doordat ze zich afzonderen tijdens het werpen 

en in de zoogperiode, terwijl onvolwassen dieren in die tijd juist ruien en nauw contact met 

elkaar hebben tijdens onderling spel. De geografische spreiding van strandingen kwam in 

grote lijnen overeen met de normale verspreiding van zeehonden. Bijvoorbeeld de Eemsmond, 

waar veel gestrandde pups waren gevonden, is ook een gebied waar veel pups geboren 

worden. Het verschil in strandingspatroon tussen Zeeland en de Waddenzee zou het gevolg 

kunnen zijn van een tragere verspreiding van PDV in deze relatief kleine en verspreid levende 

zeehondenpopulatie. Wellicht de meest opvallende bevinding bij de vergelijking van de PDV-

epidemieen van 1988 en 2002 is dat de geschatte sterftepercentages in beide gevallen vrijwel 
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identiek waren.

Factoren van invloed op de transmissie van morbillivirussen

Bovengenoemde strandingspatronen waren aanleiding om een literatuurstudie uit te voeren 

naar de factoren die van invloed zijn op overdracht van morbillivirussen bij de mens en andere 

landzoogdieren. Het doel was om zo eveneens meer inzicht te krijgen in de overdracht van 

morbillivirussen bij zeezoogdieren, aannemend dat er parallelen zouden bestaan. Voor vijf 

uitgebreid bestudeerde morbillivirus-gastheer paren (mazelenvirus-mens; mazelenvirus-

aap; runderpestvirus-rund; hondenziektevirus-hond; hondenziektevirus-fret) werden data 

samengevat voor acht factoren die bij overdracht een rol spelen: infectieroute, infectiviteit 

van het virus, gevoeligheid van de gastheer voor infectie en ziekte, virulentie van het virus, 

besmettelijkheid van de gastheer, uitscheidingsroute, stabiliteit van het virus in het milieu, en 

gedrag van de gastheer. Dit leidde tot de volgende conclusies. 

Uitscheidings- en infectieroutes zijn van belang om na te gaan welk gedrag van de gastheer  

kan leiden tot een verhoogde kans op overdracht. Morbillivirussen worden hoofdzakelijk 

uitgescheiden via secreties uit neus, oog en mond en via urine, hoewel ook in uitgeademde 

lucht, uitwerpselen, sexuele vloeistoffen, bloed en huidkorsten infectieus virus aanwezig kan 

zijn. Infectie via de ademhalingswegen inclusief keelholte tijdens directe of indirectecontacten, 

bijvoorbeeld door druppels en aerosolen, vormt veelal de meest waarschijnlijke route. Dit 

suggereert dat vooral interactief gedrag waarbij de nog niet geïnfecteerde gastheer met 

het hoofd contact heeft met lichaamsopeningen van de besmettelijke gastheer (druppeltjes 

secretie) geassocieerd is met een hoog risico voor overdracht. Bij gewone zeehonden doen 

zulke momenten zich vooral in de zomer voor, tijdens het spelen van onvolwassen dieren 

of bij aggressief gedrag tussen mannetjes (volwassen en bijna volwassen). Infectie kan ook 

voorkomen bij indirect contact tussen zeehonden, bijvoorbeeld door het ruiken aan secreta en 

uitwerpselen, of door inademen van aerosolen. Ook andere infectieroutes zijn mogelijk, zoals 

via de ogen, huidlesies, het maagdarmkanaal en het urogenitale systeem. Tezamen wijzen deze 

data er ook op dat infectie niet per se op het land hoeft plaats te vinden. De observatie dat 

morbillivirusinfecties van dolfijnen (DMV) en bruinvissen (PMV) efficiënt worden overgedragen 

wijst eveneens in deze richting. Gedragsstudies, zowel onder normale omstandigheden en 

gedurende morbillivirus-epidemieën, zouden hieromtrent meer inzicht kunnen geven.

Belangrijk voor het modelleren van morbillivirusinfecties zijn de lengte van de latente 

periode, en de duur en mate van infectiviteit in de infectieuze periode. De duur van de latente 

periode blijkt beïnvloed te worden door de infectiedosis. De besmettelijke periode duurt bij 

morbillivirusinfecties meestal slechts een paar dagen, maar kan al aanvangen wanneer de 

gastheer nog geen verschijnselen vertoont. Er is echter veel individuele variatie in duur en 

mate van besmettelijkheid. Er kunnen zogenaamde superspreaders voorkomen, die uitbraken 
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explosiever kunnen maken. Bij alle vijf bestudeerde morbillivirus-gastheerparen scheidt een 

aantal individuen het virus veel langer uit dan gemiddeld, veelal met tussenpozen, maar in 

het algemeen niet langer dan twee maanden. Het betreft hier veelal zwangere individuen 

die de ziekte hebben overleefd waarbij tevens de foetus is geïnfecteerd, en individuen 

met immuunstoornissen die al bestonden voor de infectie. Veelal ziet men dat zich bij deze 

individuen longontsteking of neurologische complicaties ontwikkelen. Herinfecties komen zeer 

zelden voor en de besmettelijkheid van zulke individuen is doorgaans laag.

Morbillivirussen tasten het immuunsysteem aan en de daarmee verband houdende co-

infecties doen de mortaliteit toenemen. In twee morbillivirus-paren werd ook een andere factor 

aangetoond die mortaliteit doet toenemen: vitamine A-deficiëntie. Milieuvervuilende stoffen 

zoals PCB’s kunnen ook een negatief effect op het functioneren van het immuunsysteem van 

zeezoogdieren hebben. Verschillende mechanismen kunnen hieraan ten grondslag liggen. Een 

daarvan is verlaging van het vitamine A gehalte.

Het is niet duidelijk waar PDV zicn tussen epidemieën ophoudt. De morbillivirussen van 

landzoogdieren hebben vaak één of twee reservoirgastheren, die gevoelig zijn voor morbillivirus 

infectie én ernstige, veelal dodelijke, ziekte. Op grond van dit criterium komt de grijze zeehond 

minder in aanmerking als reservoir dan de gewone zeehond. Een ander criterium om in 

aanmerking te komen als reservoir is populatiegrootte. Buiten meerdere reservoir-species, kan 

de populatiegrootte van de benodigde reservoir-gastheer afnemen als er minder virulente 

virusstammen circuleren, als de besmettelijkheid langer duurt, of als het virus buiten de gastheer 

langere tijd infectieus kan blijven. Morbillivirussen blijven buiten de gastheer doorgaans kort 

infectieus, maar bij bepaalde omgevingscondities, die virusstabiliteit positief beïnvloeden, kan 

infectieus virus lange tijd aanwezig blijven. Zo zijn temperatuur en luchtvochtigheid in het 

Noordpoolgebied gedurende de lange winter beide laag, en is er ook geen zonlicht. Hier is dus 

sprake van een combinatie van voorwaarden die de besmettelijkheid van excreta en karkassen 

in ruime mate kan verlengen. 

Modellen 

De kans op virusoverdracht is niet altijd dezelfde voor de gehele populatie, als gevolg van vele 

biologische en omgevingsfactoren zoals ruimtegebruik, genetische gevoeligheid, geslacht, en 

leeftijd. De mate van homogeniteit van de kans op overdracht tussen individuen, beïnvloedt de 

dynamiek van de epidemie.

Om het overdrachtspatroon van PDV tussen gewone zeehonden in de Nederlandse Waddenzee 

te bestuderen, deelden we allereerst de zeehonden in in drie leeftijdsgroepen op grond van 

geslacht en lichaamslengte: pup; onvolwassen zeehond; en, volwassen zeehond. Daarna werden 

drie verschillende “Susceptible-Infected-Removed’ (SIR) modellen gemaakt in de vorm van 
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een WAIFW matrix. WAIFW staat voor “Who Acquires Infection From Whom”, ofwel “wie wordt 

geïnfecteerd door wie”. We maakten eerst een model waarin de kans op overdracht (transmissie 

factor beta) tussen alle individuen gelijk was (homogene ofwel volledig gemengde populatie); 

vervolgens een model waarbij de kans op overdracht binnen leeftijdsgroepen verschilde van 

de kans op overdracht tussen leeftijdsgroepen; en tenslotte een model waarin de kans op de 

overdracht binnen en tussen leeftijdsgroepen verschilde. Om de transmissiefactor beta te 

berekenen werd gebruik gemaakt van de incidentie van de strandingen van de verschillende 

leeftijdsgoepen.

Het derde model beschreef het verloop van de epidemie beter dan het tweede, en het tweede 

beter dan het eerste. Daaruit kan geconcludeerd worden dat het strandingspatroon beter 

verklaard kan worden als er rekening gehouden wordt met verschillen tussen leeftijdsgoepen. 

Overdracht van onvolwassen zeehonden naar volwassen zeehonden en vice versa was het 

hoogst, gevolgd door overdracht tussen onvolwassenen. Als controle werd de R0 berekend 

als de dominante eigenwaarde van de ‘next generation matrix’ met de optimale combinaties 

van beta waardes. ‘R0‘ is het aantal secundaire gevallen dat ontstaat door besmetting door het 

eerste geval, in een volledig ontvankelijke populatie. Bij een R0 < 1, spreidt de infectie niet; 

bij een R0 ≥ 1, wel. De berekende waarde van R0 was 3.08, hetgeen goed overeenkwam met 

eerder berekende R0 waarden voor PDV-infectie ten tijde van de epidemie van 1988. Veel van de 

transmissiefactoren konden meerdere waarden aannemen, en veel van de berekende waarden 

waren gecorreleerd. Gedragsstudies zouden meer inzicht kunnen geven in welke combinaties 

van beta-waarden het meest waarschijnlijk zijn.

Pathologie (Hoofdstuk 3)

Het grote aantal dieren dat voor sectie was verzameld tijdens de PDV-epidemie van 2002 

bood een unieke gelegenheid om voor de beschrijving en analyse van de pathologie een 

quantitatieve benadering te gebruiken. Op monsters van 369 van de 1315 verzamelde karkassen 

konden diagnostische laboratoriumtests voor het aantonen van morbillivirusinfectie gedaan 

worden (reverse-transcriptase polymerase chain reaction, RT-PCR; immunohistochemistry, 

IHC; immunoglobulin M enzyme-linked immunosorbent assay IgM ELISA; immunoglobulin G 

enzyme-linked immunosorbent assay IgG ELISA), de overige karkassen verkeerden in een te 

gevorderde staat van ontbinding. Op grond van bevindingen bij de positief bevonden dieren (‘de 

PDV-gevallen’) werden vervolgens de lesies, de voedingstoestand en de co-infecties beschreven, 

alsmede de relaties tussen de testuitkomsten, lesies, leeftijd en co-infecties. Leeftijd werd 

bepaald door het tellen van het aantal cementlagen in een van de bovenste hoektanden, en voor 

analyse werden zeehonden ingedeeld in de drie genoemde leeftijdsgoepen (pups: <1-jaar oud, 

onvolwassenen: 1- of 2-jaar-oud, volwassenen: ≥ 3-jaar-oud). Een subset van 29 bevestigde PDV-

gevallen werd gebruikt voor histologisch onderzoek, en een subset van 36 voor bacteriologisch 

onderzoek. Zeehondenkarkassen werden ook vόόr de uitbraak systematisch verzameld en 
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onderzocht, waardoor het mogelijk was om de orgaangewichten, voedingstoestand en co-

infecties van PDV-gevallen te vergelijken met die gevonden bij zeehonden die vόόr de epidemie 

waren gestorven door andere oorzaken dan PDV-infectie, zoals bijvangst, ongeval, mesenteriale 

torsie, long- of hart-worm infectie, of bacteriële infectie (‘de niet-PDV-gevallen’) .

Van de 369 onderzochte zeehonden testten 232 positief voor morbillivirus infectie in een of 

meer laboratoriumtests (RT-PCR 47% positief; IHC, 54% positief; IgM ELISA, 37% positief; IgG 

ELISA, 27% positief ). In theorie zouden dieren die slechts IgG positief waren, al ten tijde van 

de PDV-epidemie van 1988 geïnfecteerd kunnen zijn, en in 2002 aan een andere oorzaak dan 

PDV overleden zijn. In de praktijk bleek er maar één zeehond te zijn die alléén IgG positief 

was én ouder dan 13 jaar was. Er bleek geen negatief effect van invriezen en ontdooien op de 

uiteindelijke testresultaten te bestaan. Wel bleken karkassen waarvan het hersenweefsel positief 

werd bevonden met RT-PCR, in longweefsel vaak negatief te zijn, en vice versa. Dit suggereert 

dat een aantal neurologische gevallen geen detecteerbaar viraal RNA in hun longen hebben op 

het moment van overlijden, en wijst erop dat zowel longweefsel en het hersenweefsel getest 

moeten worden m.b.v. RT-PCR als PDV-infectie vermoed wordt. Morbillivirus antigeen werd het 

vaakst aangetroffen d.m.v. IHC in longen (bronchiale en alveolaire epitheelcellen, alveolaire 

macrofagen, en syncytia) en lever (galgangepitheelcellen). De weefsels positief bevonden 

met RT-PCR waren niet altijd dezelfde als de weefsels die positief bleken met IHC. Er was 

geen correlatie tussen RT-PCR uitslagen en leeftijd, maar wel tussen IgG en leeftijd: het aantal 

morbillivirus IgG–positieve dieren nam significant toe met de leeftijd. Dit kan niet verklaard 

worden door verschillen aan blootstelling (PCR-resultaten geven hier geen aanwijzing voor), 

noch door reeds aanwezige IgG als gevolg van blootstelling in de vorige epidemie (nauwelijks 

gestrandde dieren ouder dan 13 jaar). Wel zou het verklaard kunnen worden door een minder 

vermogen van jonge zeehonden om specifieke IgG antistoffen aan te maken, bijvoorbeeld door 

een verhoogde gevoeligheid resulterend in een korter durend ziekteproces. 

De belangrijkste lesies bij de 232 ‘PDV-gevallen’ waren pneumonie (94% van de PDV-gevallen) 

en emphyseem (86% van de PDV-gevallen). Pneumonie was vaak ernstig (88% van de PDV-

gevallen met pneumonie) en wijdverspreid (65% van de PDV-gevallen met pneumonie). 

Histologisch werd in meer dan de helft van de gevallen van pneumonie gekarakteriseerd 

als bronchopneumonie, en in de overige gevallen als broncho-interstitiële pneumonie, 

beiden meestal met bloedstuwing. Duidelijke, ronde, 3- tot 10-micrometer in diameter  

intracytoplasmatische en intranucleaire insluitlichaampjes waren soms zichtbaar in bronchiaal-, 

urineblaas-, pelvis-, of galgang-epitheelcellen. Bij de PDV-gevallen met emfyseem, was het 

emphyseem aanwzig in de longen (44%), mediast (91%), pericard (78%), retro-peritoneaal (52%), 

en/of onderhuids (68%), en beperkte zich zelden tot de longen (4%). Emphyseem ontwikkelt 

zich vermoedelijk omdat de longen van de zeehond sterk ontwikkelde interlobulaire septa 

hebben, en bij ernstige bronchopneumonie, lucht niet via de normale route van alveolus via 

broncheolus en bronchus afgevoerd kan worden, en dus in de interlobulaire septa terecht komt, 
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en vandaaruit een uitweg zoekt en zich verder verspreid. Leeftijd had een significant effect op 

de verspreiding van emfyseem: extra-thoracale emfyseem kwam zelden voor bij pups en vaak 

voor bij volwassen dieren. Leeftijd had ook een significant effect op de ernst van de pneumonie 

en over de verspreiding van pneumonie: bij pups was longontsteking altijd ernstig en meestal 

uitgebreid. Een mogelijk verklaring hiervoor is een langere ziekteduur bij oudere zeehonden. 

Een alternatieve verklaring zou kunnen zijn dat oude dieren langer duiken dan jonge dieren, 

omdat bij de laatste de duik- en zuurstofopslag-capaciteiten nog niet volledig ontwikkeld zijn. 

Voor het duiken worden longen luchtledig gemaakt, en als dat wordt belemmerd, zoals bij 

broncho-pneumonie, kan lucht achterblijven in alveoli, en dan door de druk in de septa terecht 

komen. 

In 9% van de PDV-gevallen waren er ook andere lesies in de luchtwegen of in de borstholte 

gevonden, en in 7% van de gevallen duidelijke lesies in andere orgaansystemen. De laatste 

waren, in vergelijking met de rest, significant vaker IgG positief, and hadden minder vaak 

longontsteking en emfyseem. Dit alles suggereert dat deze dieren een langduriger en afwijkend 

ziekteverloop hadden in vergelijking met de meeste PDV-gevallen.

PDV-infectie had een significant positief effect op het gewicht van de longen, nier en bijnier 

van oudere dieren. Hoewel purulent bronchopneumonie zou kunnen leiden tot zwaardere 

longen, was er geen verband tussen matige of hoge aantal neutrofielen in longweefsel en het 

longgewicht. De meeste PDV-gevallen hadden lege magen (93%), of magen met alleen corpora 

aliena (4%). Een deel van de corpora aliena was sportvisapparatuur. Ook ‘de niet-PDV-gevallen’ 

die vόόr de epidemie gestrand waren hadden meestal lege magen of magen met corpora aliena, 

behalve de zeehonden waarvan de dood veroorzaakt werd door bijvangst. De gemiddelde 

dikte van de speklaag bij PDV-gevallen (13.5 mm) was significant lager dan die van ‘de niet-PDV-

gevallen waarvan de dood geassocieerd werd met bijvangst (31.8 mm), en vergelijkbaar met 

die van ‘niet-PDV-gevallen’ met andere doodsoorzaken. Gezamelijk zouden deze bevindingen 

kunnen wijzen op sterke dehydratie van dieren geïnfecteerd met PDV. In een toekomstige 

epidemie zou dit wellicht bevestigd kunnen worden door een ureum-stikstof bepaling uit te 

voeren op kamervocht van het oog.

Co-infecties waar systematisch naar gezocht werd waren infecties met phocine herpes virus 1, 

bacteriën, wormen en luizen. Van PDV-gevallen bleken 5% PCR positief voor phocine herpes 

virus 1 infectie. Bacteriële longontsteking kwam vaak voor, duidend op het immuunsuppressieve 

character van de PDV-infectie. We vonden 14 soorten of geslachten bacteriën, waarvan B. 

bronchiseptica heeft meest voorkwam, nl. in tweederde van de onderzochte PDV-gevallen  

B. bronchiseptica werd altijd gekweekt uit longweefsel, en soms ook uit andere weefsels. B. 

bronchiseptica werd niet gevonden in de ‘niet-PDV-gevallen’. Macroscopisch was er minder 

aanwijzing voor bacteriële co-infecties dan microscopisch. Een verklaring zou kunnen zijn 

dat de bacteriële infecties in de longen veelal (per)acuut waren. Van de PDV-gevallen bleken 
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11% longwormen, 19% hartwormen, en 66% maagwormen te bevatten. De longwormen 

Otostrongylus circumlitus en Parafilaroides gymnurus kwamen vooral voor bij pups, en de 

hartworm Acanthotheilonema spirocauda vooral bij de onvolwassen dieren. De maagwormen 

Pseudoterranova decipiens en Contracaecum osculatum werden gezien in alle leeftijdscategorieën, 

maar het hoogste aantal kwam voor bij de volwassen, en vooral de mannelijke zeehonden. 

Luizen waren aanwezig in 14% van de gevallen, vnl. bij onvolwassen dieren. 

Samenvattend, wijzen onze resultaten uit dat voor PDV-diagnose d.m.v. RT-PCR zowel hersen- 

als longweefsels getest zouden moeten worden; dat leeftijds-gerelateerde verschillen in 

immuniteit en orgaan-ontwikkeling mogelijk het ziekteverloop en de ziekteduur beïnvloeden; 

dat uitdroging een rol kan spelen bij het verloop en de uitkomst van zeehondenziekte en dat 

bacteriële co-infecties in de longen vaker voorkomen in PDV-gevallen dan het macroscopisch 

beeld suggereert. De evaluatie van deze resultaten illustreeert hoe kwantitatief pathologisch 

onderzoek bij massale epidemieën kan bijdragen aan het verkrijgen van beter inzicht in het 

algehele ziekteverloop van de oorzakelijke infectie.

Toxicologie (Hoofdstuk 4)

De aanvankelijke afname in PCB- en DDT-gehalten in zeehonden houdt niet aan 

Sinds de jaren 1970, worden er beleidsmaatregelen genomen om te komen tot een schoner 

milieu. Dit leidde aanvankelijk tot een neerwaartse trend van veel organische chloorverbindingen 

in sediment en biota van de Noordzee, maar recente gegevens over trends van deze stoffen en 

nieuwe producten in top-predatoren zoals gewone zeehonden ontbreken grotendeels. Studies 

na 1988 toonden aan dat milieuverontreinigende stoffen zoals polychloorbifenylen (PCB's) het 

functioneren van het immuunsysteem van zeehonden negatief kunnen beïnvloeden. Bij de 

aanvang van de 2002 epidemie werd gespeculeerd dat de zee mogelijk schoner zou zijn dan 

in 1988, en dus dat mortaliteit bij gewone zeehonden tijdens de PDV-epidemie wellicht lager 

zou zijn. Uiteindelijk bleek dat de cumulatieve mortaliteit in gewone zeehonden in de 2002 

PDV-epidemie vergelijkbaar was met die van de 1988 epidemie, en bleef de vraag bestaan of 

verontreiniging hiertoe wellicht had bijgedragen.

Gehalten aan milieu-verontreinigende stoffen werden daarom bepaald in speklaag monsters 

van 45 onvolwassen gewone zeehonden gestrand tijdens de 2002 PDV-epidemie (n = 18) en 

de tien voorafgaande jaren (n = 27), en trends werden geanalyseerd. Waarden werden bepaald 

van polychloorbifenylen (PCB's), dichloor-difenyl-trichloorethaan en metabolieten (DDTs), 

tris(4-chlorphenyl)methanol (TCPMOH), chloordaan verbindingen (CHLs), tris(4-chloorfenyl)

methaan (TCPMe), heptachloorepoxide (HP-epox), hexachloorcyclohexaan isomeren (HCHs) 

en hexachloorbenzeen (HCB), en polygebromeerde difenylethers (PBDE's). Onvolwassen dieren 

werden voor dit onderzoek gekozen omdat er dan weining invloed zou zijn van geslacht en 
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leeftijd op de gemeten gehalten. 

De gemiddelde waarden (in vetgewicht) van de verschillende organische chloorverbindingen 

in speklaag waren in volgorde van hoog naar laag voor PCBs 28 μg/g, DDTs 3.0 μg/g, TCPMOH 

0.80 μg/g, CHLs 290 ng/g, HP-Epox 61 ng/g, TCPMe 32 ng/g, HCHs 18 ng/g, en HCB 5.0 ng/g. 

PBDEs gehalten waren gemiddeld 380 ng/g, met vooral hoge BDE-47 waarden. In geen van de 

monsters was BDE-209 aantoonbaar.

Om de trend-analyse te doen, werd eerst voor elk van de organische chloorverbindingen en 

voor de PBDEs een lineair regressiemodel gemaakt met als stochastische variabele ‘gehalte van 

de stof in speklaag’ en als verklarende variabelen ‘jaar van stranden’ en ‘speklaagdikte’. Alleen 

bij de organochloorpesticiden HCH en HCB was, na correctie voor speklaagdikte, een dalende 

trend waarneembaar in de periode 1993-2002. Bij alle andere organische chloorverbindingen, 

met inbegrip van PCBs en DDTs, en de PBDEs was geen trend waarneembaar in die periode. 

Voor alle stoffen behalve HCB was speklaagdikte een storende factor, significant en omgekeerd 

gecorreleerd met de gevonden gehalten. Zoals verwacht veranderden deze resultaten niet als 

‘geslacht’, ‘lengte’, of hun interactie (als maat voor leeftijd) aan het model toegevoegd werden 

als verklarende variabelen. Alleen werd duidelijk dat vrouwelijke dieren bijna twee keer zo hoge 

TCPMOH en TCPMe gehalten hadden als mannelijke dieren. Vervolgens werden de gemeten PCB-, 

DDT- en HCH-gehalten gecombineerd met data van toxicologisch onderzoek bij onvolwassen 

gewone zeehonden uit de zuidelijke Noordzee in de zeventiger jaren. Hoewel een effect van 

de locatie niet kan worden uitgesloten, leek dit te wijzen op een algemene daling van gehalten 

van PCBs, DDTs en HCH tussen de jaren 1970 en 1988. Daarna bleven HCH-gehalten dalen, maar 

verdwenen de neerwaartse trends voor DDT- en vooral PCB-gehalten grotendeels. 

Tenslotte vergeleken we de gehalten aan PCBs, DDTs en HCB in gewone zeehonden die in 2002 

kort voor of tijdens de PDV-epidemie stierven (n = 23), met gehalten uit een gepubliceerd 

experiment bij gewone zeehonden die gevoed waren met vis uit de sterk vervuilde Oostzee en 

die geassocieerd bleken met immuunsuppressie. De gemiddelde PCB-gehalten van de dieren 

uit 2002 waren in de zelfde orde van grootte als die van de dieren uit het experiment, terwijl 

gemiddelde DDT- en HCB-gehalten lager waren. 

Concluderend mag gesteld worden dat met uitzondering van HCB- en HCH-gehalten, de gehalten 

aan organische chloorverbindingen zoals PCBs en DDTs niet zijn gedaald in speklaag van de 

gewone zeehond in de tien jaar voorafgaand aan de PDV-epidemie van 2002. PCB-gehalten 

waren in 2002 op niveaus die eerder geassocieerd waren met immuunsuppressie in gewone 

zeehonden. Daarom kan niet worden uitgesloten dat milieuverontreiniging heeft bijgedragen 

aan de ernst en de omvang van deze PDV-epidemie. Tweederde van de geproduceerde PCB 

voorraden lagen in 1988 nog opgeslagen, al dan niet om onschadelijk gemaakt te worden. 

Hierdoor zullen de PCB-gehalten in zeehonden op korte termijn waarschijnlijk niet afnemen 
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PBDEs

Polygebromeerde difenylethers (PBDE's) zijn vlamvertragers geproduceerd en gebruikt sinds de 

vroege zeventiger jaren. PBDEs accumuleren in het milieu, en zonder beperkende maatregelen 

zou dit kunnen leiden tot nieuwe en langdurige milieuproblemen. Er waren drie commerciële 

producten in gebruik, pentaBDE, octaBDE en decaBDE, maar omdat schadelijke effecten voor 

de gezondheid vooral zijn aangetoond bij pentaBDE en octaBDE, zijn deze twee nu grotendeels 

verwijderd uit het productieproces. Het doel van deze studie was om een indruk te krijgen van 

de gehalten aan PBDEs in de gewone zeehond in de Nederlandse Waddenzee. 

We bepaalden hiervoor de gehalten van 17 BDE-congeneren in speklaag monsters van 25 

onvolwassen gewone zeehonden die tussen 1999 en 2002 strandden in de Nederlandse 

Waddenzee. BDE-47, een penta-BDE, kwam net als in de vorige studie in de hoogste gehalten 

voor (gemiddeld 122 ng/g vers gewicht van speklaag). De gehalten aan andere congeneren 

waren één (BDE-99, BDE-100, BDE-153, BDE-154 & BB-153) of twee (BDE-28, BDE-49) ordes van 

grootte kleiner dan de BDE-47 gehalten. De gehalten van al deze congeneren vertoonden een 

positieve correlatie met die van BDE-47-gehalten. BDE-209 was niet aantoonbaar. Zeehonden 

die gestrand waren in de westelijke Waddenzee hadden hogere BDE-47 gehalten dan dieren die 

gestrand waren in de oostelijke Waddenzee, hetgeen lijkt te correleren met de gehalten in vis. In 

de eerste studie was gebleken dat de niveaus van PBDE’s niet stegen van 1993 tot 2002. Wellicht 

zijn beperkende maatregelen voor pentaBDE en octaBDE tijdig genomen. 

Zeehondengenetica en longworminfectie (Hoofdstuk 5)

De gewone zeehonden in Noordzee kunnen genetisch onderscheiden worden in meerdere sub-

populaties. Deze populatieopbouw maakt een zekere mate van inteelt mogelijk of kan dit zelfs 

bevorderen. Ingeteelde individuen zijn vaak homozygoot. Over het algemeen zijn ingeteelde 

individuen meer vatbaar voor ziekten, en hebben ze een groter aantal en een grotere diversiteit 

aan parasieten, dan niet-ingeteelde indiviuden. 

Twee vragen werden in het genetisch onderzoek van dit proefschrift centraal gesteld. De 

eerste was of er sprake was van een correlatie tussen het moment van de stranding in de 

PDV-epidemie en homozygotie, zoals eerder werd waargenomen bij een uitbraak van DMV-

infectie in gestreepte dolfijnen (Stenella coeruleoalba). De tweede vraag was of er sprake was 

van een correlatie tussen longworminfectie en homozygotie. Longworminfecties zijn een 

frequente doodsoorzaak van jonge zeehonden. Er komen bij de gewone zeehond twee soorten 

longwormen voor: Otostrongylus circumlitus, een grote worm waarvan de volwassenen goed 

zichtbaar zijn in de bronchiën, en Parafilaroides gymnurus, een kleinere worm die zich bevindt in 

de alveoli en kleinere bronchioli. 
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We gebruikten 204 monsters van gewone zeehonden die tussen 1997 en 2003 langs de 

Nederlandse kust strandden, en we genotypeerden ze voor 27 microsatellieten (een kort stukje 

niet-coderend-DNA dat herhaald wordt). De zeehonden werden in twee longwormcategorieën 

ingedeeld: ‘geïnfecteerd’ als longwormen macroscopisch zichtbaar waren bij sectie; 'niet-

geïnfecteerd', als dat niet het geval was. Verder werden ze ingedeeld in twee leeftijdsgroepen: 

‘jong’ als zeehonden van vrouwelijk geslacht < 90 cm waren, of van mannelijk geslacht < 95cm 

waren; de overige dieren waren ‘oud’. De maten gebruikt voor homozygotie waren ‘IR’ (internal 

relatedness) en ‘HL’ (heterozygosity weighted by locus).

 

Op grond van ruwe analyse van de data leek het dat er geen direct verband bestond tussen 

het tijdstip van stranden in de PDV-epidemie en homozygotie. Wel werd een positieve relatie 

tussen ‘homozygotie’ en ‘longworminfectie’ gevonden, maar dit alléén bij de jonge dieren. Dit 

heeft waarschijnlijk te maken met de levenscyclus van de longwormen. Deze infecteren gewone 

zeehonden waarschijnlijk vroeg in het leven, en al is de wijze van besmetting nog onbekend, het 

is waarschijnlijk dat de infectieuze larven zich in vis ontwikkelen en zeehonden oraal infecteren. 

Sommige jonge zeehonden zijn met meer longwormen geïnfecteerd dan anderen, soms met 

fatale gevolgen. De ontwikkeling van specifieke beschermende immuniteit tegen longwormen 

is bij gewone zeehonden niet bewezen, maar zeehonden ontwikkelen wel antilichamen tegen 

longwormen, en longworminfecties bij oudere dieren zijn zeldzaam. 

Om na te gaan of deze positieve relatie tussen ‘homozygotie’ en ‘longworminfectie’ bij de jonge 

dieren het gevolg was van een genoomwijde verandering in heterozygotie veroorzaakt door 

inteelt, of het gevolg van toevallige associaties tussen markers en de naburige genen onder 

gebalanceerde selectie, werden twee type analyses gedaan. De resultaten duidden in beide 

gevallen in de richting van een genoom-wijd effect, dat wil zeggen inteelt. Onder de volwassen 

dieren waren weinig ingeteelde dieren, onder de jonge dieren waren er meer. Deze resultaten 

passen dus bij de hypothese dat inteelt de vatbaarheid voor parasitaire ziekten verhoogt.

Samenvattende discussie (Hoofdstuk 6)

In dit Hoofdstuk worden de belangrijkste conclusies van dit multidisciplinaire onderzoek, dat 

werd uitgevoerd in aansluiting op de massale PDV-epidemie onder gewone zeehonden in 

Noordwest Europa in 2002, samengevat en in hun samenhang besproken. Gekozen werd voor 

een studie in het Nederlandse deel van het verspreidingsgebied van de gewone zeehond en de 

data werden waar mogelijk gerelateerd aan soortgelijke data verkregen na de PDV-epidemie 

van1988  en aan data van de  andere locaties in Europa. De belangrijkste conclusies waren dat 

PDV in 2002 de dood veroorzaakte van de helft van de gewone zeehonden in Nederland, zonder 

een duidelijk effect op de grijze zeehond te hebben. Vergeleken met andere Noordzee-locaties, 

was het sterftepercentage in Nederland hoog en ongeveer gelijk aan dat van 1988. Het is 

mogelijk dat een van de redenen was dat, net als in 1988, milieuverontreinigende stoffen, zoals 
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PCBs, in zeehondenweefsels voorkwamen in gehalten die waarschijnlijk immunosuppressief 

zijn. Overdracht van het virus volgde een geslacht-en-leeftijdsgebonden patroon. Bordetella 

bronchiseptica infectie was een veel voorkomende co-infectie in de PDV-besmette zeehonden, 

zowel in 1988 en in 2002, terwijl deze bacterie in de tussenliggende periode niet geïsoleerd 

werd. PDV zal ook in de toekomst waarschijnlijk opnieuw in epidemische vorm optreden, en 

vanwege de hoge pathogeniteit voor gewone zeehonden, wederom leiden tot substantiële 

mortaliteit. Daarom dient terdege rekening gehouden te worden met PDV-infecties bij het 

beheer van de zeehondenpopulaties in de Noordzee. 
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