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Abstract 

In this paper we present an integration of optirnisation, priority setting, planning and combining of maintenance 
activities. We use a framework which covers several optimisation models, like the block replacement, a minimal 
repair and an efficiency model, and develop a uniform analysis for all these models. From this analysis penalty 
functions are derived which can act as priority criterion functions. These penalty functions also serve as basic 
elements in a method to determine optimal combinations of activities and in maintenance planning. The framework 
further assists in setting up an elicitation procedure, in case deterioration modelling is based on expert judgement 
rather than on statistical analysis of data. 
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1. Introduct ion  

Every few years new surveys appear on maintenance optimisation, showing that it is a lively field and 
that many interesting mathematical problems can be found in the maintenance area (e.g. McCall, 1965; 
Pierskalla and Voelker, 1979; Sherif and Smith, 1981; Valdez Flores and Feldman, 1989; Cho and Parlar, 
1991). Applications follow, but at a slow rate. These are stimulated by the advent of decision support 
systems (d.s.s.) for maintenance optimisation. One of the problems encountered in building a d.s.s, is 
which of the many optimisation models to select for inco~ora t ion  and how to assist a user in choosing 
the right model. 

Another  problem encountered in practice is that many relationships exist between components to be 
maintained. Modelling these relations directly yields large models, which are difficult to analyse as they 
suffer from the curse of dimensionality. A decomposition approach is then to be preferred. In such an 
approach one applies simple models for individual components and uses the outcomes as input in a 
comprehensive model. This requires a certain structure of the underlying models. Little work is present 
in this respect. 

Other problems are encountered in the implementation of maintenance policies for individual 
components. Urgent corrective maintenance work usually sets preventive maintenance aside, and 
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priorities have to be set. Furthermore,  it can be profitable to combine maintenance activities, thereby 
saving common preparation work. Finally, maintenance plans have to be made in agreement with 
production plans, which may result in a restriction to certain time windows where only a limited number 
of activities can be executed. 

This paper  tackles these problems in an integrated way. To facilitate in selecting a model we present 
an overall framework for time-based preventive maintenance and analyse it with respect to the questions 
when and where there exists an average-cost minimum. The framework is based on the marginal costs of 
deferring preventive maintenance. These costs may be directly estimated by a user or specified through a 
number of models, including the block replacement model. The framework further allows an extension to 
priority setting, combination and planning of maintenance. It is based on experience with developing two 
decision support systems for maintenance optimisation (see Dekker and Smeitink, 1994) in which a 
number of these problems had to be tackled. 

Few papers attempt to unify maintenance optimisation models. Aven and Bergman (1986) do, and in 
fact our framework is a simpler version of theirs. Yet they only consider optimisation and do not make 
links with combination, priority setting or finite horizon planning. The central notion in this paper, the 
marginal cost rate of deferring maintenance, was first introduced by Berg (1980). It was fruitfully applied 
in Berg and Cl6roux (1982) and Berg (1995) for repair-limit models and Dekker and Smeitink (1991) and 
Dekker and Dijkstra (1992) for opportunity maintenance. 

The structure of this paper  is as follows. After introducing the framework in Section 2 we provide a 
basic analysis and state which models can be incorporated. Next we treat elicitation of parameters by 
means of expert judgement in Section 3. Penalty functions are introduced in Section 4. Combining 
execution of maintenance activities is considered in Section 5, priority setting in Section 6, and 
maintenance planning in Section 7. 

2. The framework 

2.1. Introduction 

As there is quite a variety in maintenance activities there are many optimisation models. A method for 
planning, priority setting and combining of preventive maintenance activities should therefore embrace 
as many types of activities as possible. Priority setting refers to determining the order of execution of 
activities which have to be carried out. Planning encompasses the timing of activities in coordance with 
production and manpower requirements. Finally, combining refers to shifting originally planned execu- 
tion times to allow joint execution at possibly different moments. Notice that all these processes share 
timing as dominant aspect and that they are not done once but repeatedly. Being able to plan and shift 
execution times is in fact one of the most important advantages of preventive maintenance over 
failure-based maintenance. As a result of the planning the work can be prepared beforehand and 
necessary spare parts can be ordered. Shifting work in time also allows a more evenly spread workload 
and thus a higher efficiency. 

In a method for integrating optimisation with planning, priority setting and combining of maintenance 
activities it seems necessary to restrict oneselves to activities whose execution can be planned in advance. 
We therefore restrict ourselves in first instance to maintenance activities whose next execution moment 
is determined from its last one. To that end we formulate a framework for optimisation models and 
derive the results necessary for the existence and position of an average-cost minimum. It is a simpler 
version of the framework from Aven and Bergman (1986) and of the marginal cost analysis from Berg 
(1980, 1995). Yet our results are somewhat stronger. An extension to other types of maintenance will be 
discussed in Section 2.5. 
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2.2. The framework in the continuous time 

Here  we present the general structure of the framework for a continuous time setting; extensions 
follow later. Consider a component  (for ease of terminology we use this term, it may also be a part of a 
system) which deteriorates in time and which can be returned to the as-good-as-new condition by a 
preventive maintenance activity. The main question the framework focuses at is when to execute the 
activity and the answer will be based on cost considerations. We primarily consider long-term average 
costs as objective criterion, as that best reflects what one should do on a long term. The central notion in 
the framework is the so-called marginal expected cost of deferring the execution of the activity for an 
infinitesimally small interval. We first consider the case in which the activity can be carried out at any 
moment  against the same cost c p. In this case it is natural to speak of the marginal deterioration cost 
rate, denoted by m(.) ,  which is assumed to be a continuous and piecewise differentiable function of the 
time t since the previous execution of the activity. We will now show that these assumptions are 
sufficient to determine an average optimal maintenance interval. 

Let M( t )  := fdm(x)  dx,  i.e: the total expected costs due to deterioration over an interval of t time 
units, when the component  was new at the start .  It easily follows from renewal theory, that the average 
costs g(t )  per time unit when executing the activity every t time units amount to 

g ( t )  = (c  p + M ( t ) ) / t .  (2.1) 

Our first objective is to find the t value which minimises g(t). To this end we take the derivative and 
notice that g ' ( t ) =  [ m ( t ) -  g(t )] / t .  Hence 

g ' ( t )  = 0  ¢~ r e ( t ) - g ( t ) = 0  ~, t m ( t ) - f o r m ( x )  d x = c  p. (2.2) 

Eq. (2.2) is the key for the analysis of g(t).  Let qr(t) - tin(t) - M( t )  = fdm(t)  - re(x) dx. Notice that 
~ ' ( t )  = tm'(t). The following theorem summarises the relations between the behaviour of m(t )  and the 
existence of an average cost minimum. Part (iv) is a generalization of results for existing models (see e.g. 
Barlow and Proschan, 1965, for the block replacement model), the other parts are simple new results 
which are added for completeness. 

Theorem 1. (i) I f  re(t) is nonincreasing on [to, t 1] and m( t o) < g(to), then g( t ) has no minimum on [t 0, tl]. 
(ii) I f  mz( t )  = ml( t )  + c, for some c and all t > O, then g2(t) and gl(t)  have the same extremes. 

(iii) I f  ml(t)  is nonincreasing on (0, t l) and increases thereafter, then gl( t )  has the same minima as 
gz(t), where me(t)  = m~(t l) for t < t t and mE(t) = ml(t)  else and c~ = c~ + fd'(ml(t) - ml(tl)) dt. 

(iv) I f  re(t) increases strictly for t > to, where m( t  o) < g(to), and either 
(a) lim t _~=m(t) = o~, or 
(b) limt_~om(t) = c and limt_~[ct - M(t)]  > c °, for some c > O, then g( t )  has a minimum, say g *, in t *, 
which is unique on [t 0, oo]; moreover, 

and 

) / < 0  f ° r t o < t < t * '  

m ( t )  - g ( t  = 0  f o r t = t * ,  

~ > 0  f o r t > t * ,  

< 0  f o r t o < t < t *  

m ( t ) - g *  = 0  f o r t = t * ,  

> 0  f o r t > t *  

(2.3) 

(2.4) 
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(V) I f  m ( t )  is convex on [t 0, T], where m ( t  o) < g ( t  o) and ½(T + t o ) [ m ( T ) -  m(t0)] > c p + fdo ( m ( t ) -  
re(to)) d t ,  then g ( t )  has a m in imum,  say g *, in t *, which is unique on (t  o, T )  and (2.3) and (2.4) hoM on 
[t 0, T]. I f  t o = O, it is sufficient that ½ T [ m ( T )  - m(0)] > c °. 

Proof.  (i): Not ice  tha t  m ( t  o) < g ( t  o) implies  tha t  !/t(t0) < c p. I f  m ( t )  is nonincreas ing,  then  ~ ' ( t )  < 0 and 
the result  is immedia te .  

(ii): I f  m2( t )  = m l ( t )  + c, t hen  !/t2(t) = ~ l ( t )  and  the result  is immedia te .  
(iii): Accord ing  to (i) ne i ther  gl(" ) nor  g2 ( . )  have  a m i n i m u m  before  t t. Notice  next  tha t  for  t > t t we 

have ~ l ( t )  = c o ~, a/tz(t) = c p, f rom which the asser t ion follows. 
(iv): Not ice  tha t  

 (to) = f , ) m ( t ) - m ( x ) )  dx + to[m(t) -  m(t0)l ( t l - t o ) [ m ( t ) -  m(tl)l, to, 

for  some t a ~ (to, t). Hence ,  ~ ( t )  increases  strictly to infinity if m ( t )  does so. Since qz(t 0) < c p by (i), 
qr( t )  passes  the  level c p only once for  t > to, which guaran tees  the  uniqueness .  

I f  l im t _~=[ct - M(t) ]  = d for  some d > c p, then  it easily follows tha t  l im t _ ~ g ( t )  = c, Moreover ,  for t 
large enough,  say t > t~ we have M ( t )  < ct - d + e and g( t )  < c + [c p - d + e ] / t  for  any e > 0. H e n c e  if 
c p - d  < 0, then  g ( t )  approaches  c f rom below, implying tha t  it must  have a finite min imum.  The  
uniqueness  of  the  m i n i m u m  follows f rom the fact tha t  (2.2) implies tha t  m ( t )  intersects  g( t )  in min ima  
f rom be low and in max ima  f rom above.  As m ( t )  is strictly increasing on [to, ~), the re  can be  no max ima  
in tha t  region.  

(v): I f  m ( t )  is convex on [t 0, T], then  M ( T )  - M ( t  o) < ½(T - to ) [m(T)  + re(t0)]. Inser t ing  this in ~ ( T )  
and  using asser t ion (iii) shows af ter  some  a lgebra  tha t  ~ ( T )  > c p, f rom which the  results  follow in the  
same  way as pa r t  (iv). 

R e m a r k ,  A decreas ing  m ( t )  may  be  due  to burn- in  failures. Par t  (iii) of  this t h e o r e m  shows tha t  we only 
need  to es t imate  thei r  cont r ibut ion  to the total  costs and tha t  we can leave the burn- in  failures out  o f  the 
model l ing  of  m ( t )  prov ided  tha t  a compensa t ion  is m a d e  for  t h e m  in c °. In  this way we can take  care  of  
the  ba th tub  curve. 

Re la t ion  (2.4) can be  in te rp re ted  in the  following way (Berg, 1980, was the  first one  to in t roduce  it). 
Cons ider  at t ime t the  two options:  (a) main ta in  now or (b) defer  ma in t enance  for  a t ime dt.  For  opt ion 
(b) the  expec ted  costs over  [t, t + d t ]  amoun t  to re( t )  d t  + c p. For  opt ion (a) there  are  direct  costs c p, 
and the  renewal  is d t  t ime units be fo re  the  opt ion (b). To  compensa t e  for  this t ime dif ference we 
associate  costs g * d t  to the  interval,  which gives a total  expec ted  costs of  c p + g * d t  for  opt ion (a). 
Subt rac t ion  then  yields tha t  main ta in ing  is cost-effect ive if m ( t ) - g  * > 0. T h e  myopic  s topping rule: 
Main ta in  if re( t )  - g * > 0 is the re fo re  average  opt imal .  

A l though  a s imple  e n u m e r a t i o n  to locate  the  average-cos t  m i n i m u m  usually satisfies in pract ice,  one 
can speed  up calculat ions by using rela t ions (2.3) and  (2.4) and  applying a bisect ion p rocedure .  

Special cases: (i) I f  re( t )  = a t  ~-1,  a > 0, then  ~ ( t )  = a(1 - 1/[3)t  t3, which increases  i f / J  > 1. In  tha t  case 
/3 

t* = 7 ~ c ° / a ( ~  - 1 ) .  
1at2 * 2V U/a (ii) I f m ( t ) = a t + b , a , b > 0 ,  t h e n ! F ( t ) = ~  , a n d  t = 

Eq. (2.2) also allows us to do some  sensitivity analysis. W e  have 

T h e o r e m  2. (i) I f  m z ( t )  = Aml( t )  with A > 1 and c~ =c~ ,  then t 2 < t~.  
(ii) I f  m 2 ( t )  - m l ( t )  increases in t and c p = c~, then t~ < t~.  

(iii) I f  c~ > c~ and m2( t )  = ml( t ) ,  then t ]  > t ; .  
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Proof. Notice that ~ ( t ) -  g t~( t )= t[m'E(t)-m'l(t)] .  For  case (ii) we now have that q t 2 ( t ) -  ~ l ( t )  
increases in t and that qt2(t) reaches the level c~ earlier than ~ l ( t )  f rom which the assertion follows. In 
case (i), ~2( t )  - qtl(t) is increasing if qtl(t) increases and the same argument  holds. Assertion (iii) is also 
a direct consequence of (2.2). 

2.3. Determination o f  the deterioration costs 

In this section we present  a number  of models that can be captured by the framework. 

The block replacement model 
In this model  a component  is replaced upon failure and preventively after a fixed interval of  length t 

(see, e.g. Barlow and Proschan, 1965). The total deterioration costs over that  interval, M(t) ,  are made up 
of the failure renewals, each against cost c f. Let  H ( t )  denote the expected number  of failures in [0, t]. 
Then we have M ( t )  = cfH(t) .  It  is well-known that for H ( t )  the following asymptotic expansion holds: 
lim t +~[H(t)  - t/Ix] = + ( 0 r Z / I x  2 - -  1 ) .  Hence Theorem 1(iv) implies the existence of a minimum provided 
that cP/c  f < 1(1 - tr2/Ix2), which is exactly the condition derived in Barlow and Proschan (1965). 

Minimal repair model with block replacements 
In this model failures of  a system occur according to a nonhomogeneous  Poisson process with rate 

A(t). Upon  failure the system undergoes a minimal repair, which brings it back to an as-good-as-before 
condition. Next to that the system may be replaced, which has to be planned in advance and cannot be 
combined with a failure repair. Let  c r, c p denote the costs of a minimal repair  and a preventive 
replacement  respectively, hence re(t) = crA(t). An average-cost minimum exists if either lim t +=A(t) = 
or in case lim t _~=A(t) = c for some c > 0, if lim t __,~[ct - A(t)] > c p, where A(t )  = f~A(s) ds. Notice that 
if A(t) follows a bathtub pattern,  we may add by Theorem l(iii) the costs associated to initial failures to 
the preventive maintenance costs, and consider for optimisation only the increasing part  of re(t). There  
is also a more general version of the minimal repair  model  in which replacements  may be combined with 
failure repairs and in which the repair  costs may vary. It  is not yet clear whether  that  can be incorporated 
in the framework. 

A standard inspection model 
In this inspection model  a component  is inspected every t t ime units against costs c p, which reveals 

whether  the component  is functioning. We assume that inspection is always accompanied by corrective 
actions which brings the component  back to an as-good-as-new condition (e.g. calibration of instruments). 
A failure of the component  can only be detected by inspection. Let  F ( - )  denote  the c.d.f, of the time to 
failure X and let c u be the costs associated to a non-functioning component  per  time unit. In this case 
the deterioration costs M ( t )  consist of the expected costs due to unavailability of the component  over 
[0, t]. Hence  M ( t )  = cUfdF(x) dx,  and m(t )  = cUF(t). It  is easy to show that  we have lim t _+~[M(t) - cut] 
= - c U E X ,  where E X  denotes the expected lifetime. Hence  there exists a unique minimum by Theorem 
1 provided that  c p < cUEX (the unavailability costs during a lifetime of a component  are more  than the 
inspection and repair  costs). 

An  efficiency model 
Assume that the efficiency of a system drops in course of  t ime and that preventive maintenance 

restores the efficiency to that  of  the as-good-as-new condition. The efficiency can be measured in terms 
of output  vs input and either the output  can go down, or the input may have to be increased to sustain 
the same output. The efficiency, E(-) ,  as function of time, is scaled on the interval [0, 1], where E(0) - 1. 
Let  c e denote  the costs per  t ime unit associated to a zero efficiency. The deterioration costs M ( t )  consist 
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of the total efficiency losses over [0, t], i.e. M(t )= fdce(1-  E(x ) )dx .  Let E(oo) denote the limiting 
efficiency in case no maintenance is ever carried out. Similarly to the previous model we can establish 
that lim t _~=[M(t ) -  ce(1 - E ( ~ ) ) t ]  = -c~ f~(E(m)-  E(t)) dt. Hence an optimal preventive maintenance 
interval exists provided that c ° < cef~(E(oo) - E(t)) dt. This model is mathematically equivalent to that 
of running costs (see also Berg and Epstein, 1979), yet they do not derive conditions for optimality. 

A combined model 
All aforementioned models may be combined as deterioration costs may consist of failure costs, repair 

costs, efficiency losses and unavailability penalties together. 

2.4. Extensions 

In this section we will give a number  of extensions of the framework. 

Discrete time case 
In the discrete t ime case actions may only be taken at discrete points in time. The only change for the 

f ramework is that  all functions have to be discretised: i.e. re(t) indicates the expected deterioration costs 
until the next t ime moment .  

Scrapping value 
Suppose a system is replaced by a new one every t t ime units against costs c p and that it has a 

scrapping value S(t) at age t. We assume that S(t) is decreasing in course of  time. Let  M(t) again 
denote  the deterioration costs of the system and let )~t(t) = M(t) - S(t). Notice that  the total costs over 
a replacement  cycle [0, t] amount  to c p - S ( t ) + M ( t ) ,  which equals c p + a~r(t). Hence  a scrapping value 
can be taken care of by adjusting the deterioration cost function. Finally, we would like to remark that 
this model  is mathematical ly equivalent to the block replacement  model with t ime-dependent  replace- 
ment  costs. 

Discounted cost case 
The analysis for the average costs case is easily extended to the discounted costs case, as is also shown 

in Berg's (1980) marginal cost analysis. Assuming a discount rate A we remark that the expected 
discounted deterioration cost rate at t ime t is given by m(t)e -at. Hence total expected discounted costs 
over an interval of length t, starting with a new s y s t e m / c o m p o n e n t  amount  to f~m(y)e -ay dy. Total 
expected discounted costs v(t) over  an infinite horizon when replacements  are made very t t ime units 
and starting with preventive maintenance,  amount  to 

c P +  f t m ( y )  e -;~y dy 

v ( t ) =  - O l _ e  -at  , t > O .  (2.5) 

In this case we have 

dr(t) 
d ~ - O  ~, m ( t ) - A v ( t ) = O ,  

which leads 'to a similar analysis as for the average costs (see also Section 2.5). 

Opportunity maintenance 
Suppose that preventive maintenance can only be carried out at opportunities which are generated 

according to a renewal process. Let  the generic r.v. Y denote the t ime between successive opportunities. 
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We assume that the opportunity process is independent  of the deterioration process. In this case 
maintenance can no longer be planned, instead we consider policies of the control-limit type, i.e. 
maintain at the first opportunity after a threshold time t since the last execution of the maintenance. Let  
the r.v. Z t denote the forward recurrence time, i.e. the time from t to the first opportunity. It easily 
follows from renewal theory that for the average costs g y ( t )  we now have 

c P + £ ~ M ( t + x )  d P ( Z t < _ x  ) 

g y ( t )  = , t > 0 
t + E Z  t 

(see Dekker and Smeitink, 1991). In a similar, but far more complicated way, they derive inequalities 
(2.3) and (2.4) with re(t)  replaced by ~7(t) - f gm( t  + z )  d P ( Y  < z),  the expected deterioration costs until 
the next opportunity. 

2. 5. A n  extension o f  the framework for  age replacement 

In the well-known age replacement model the marginal deterioration cost rate m( . )  is a function of 
the age of a component rather  than of the time since the last execution of the preventive maintenance 
activity. The age is set back to zero upon any renewal of the component,  including failure renewals. This 
implies that the renewal cycle has a variable length. The framework can be extended in the following way 
(see also Berg, 1995). Suppose the time to a system renewal, possibly caused by a breakdown, is 
stochastic with c.d.f. F( t )  and p.d.f, f ( t ) .  The long-run average costs are now given by 

g ( t ) =  ( c P +  f o t m ( x ) ( 1 - F ( x ) ) d x ) / ( L ( t ) )  (2.6) 

where L ( t )  = f~(1 - F ( x ) )  d x  indicates the expected cycle length. It is easily shown that g'( t )  = (re(t)  - 
g( t ) ) / { (1  - F( t ) )L( t )} .  Let  q~(t) be the analogon of gt(t), i.e. q~(t) = m ( t ) L ( t )  - fdm(x)(1  - F (x ) )  dx .  
Hence g'( t )  = 0 ¢0 re(t)  - g ( t )  = 0 ¢* q~(t) = c p. Notice further that q~'(t) = m'(t)[1 - F(t)].  We are now 
in a position to formulate a theorem similar to Theorem 1 and of which the proof  is analogous. 

Theorem 3. (i) I f  re(t)  is nonincreasing on [to, t 1] and m( t  o) < g(to), then g( t )  has no minimum on [t o, tl]. 
(ii) I f  m2(t) = ml( t )  + c, for  some c and all t > O, then g2(t) and gl( t )  have the same extremes. 

(iii) I f  m(  t ) is nonincreasing on (0, t 1) and increases thereafter, then g( t ) has the same minima as g2(t), 
where m2(t) = m ( t  t) for  t <_ t l and m2(t) = re(t) else and c[ = c p + f~l(m(t)  - m(tl))(1 - F(t ) )  dt. 

(iv) I f  m( t )  increases strictly for  t > t o, where m( t  o) < g(to), and either 
(a) lim t_~=m(t) = % or 
(b) lim t _~o~m(t) = c where c > lim t __,~og(t), for  some c > O, 
then g( t )  has a minimum, say g *, in t *, which is unique on [to, ~); moreover, 

and 

) { < 0  f o r t o < t < t * ,  

m ( t ) - g ( t  = 0  f o r t = t * ,  

> 0  f o r t > t * ,  

< 0  f o r t o < t < t *  , 

m ( t ) - g *  = 0  f o r t = t * ,  

> 0  f o r t > t * .  
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In case of  the age replacement  model the marginal deterioration cost rate r e ( x )  amounts to 
(c f - cP)r (x ) ,  where r ( x )  denotes the hazard rate, r ( x )  = f ( x ) / ( 1  - F (x ) ) .  In that case the numerator  of  
(2.6) equals c p + (c f - cP)F( t ) .  

Notice that the discounted cost case (see Section 2.4) can be regarded as a special case of the 
extended f ramework by considering discounting as a truncation of the system lifetime. Hence  the cdf of 
the t ime to system renewal, F ( x ) ,  should be defined as F ( x ) =  1 -  e -~x, where A is the continuous 
discount rate. In this case the expected lifetime equals 1 / 4  and hence the total discounted costs per unit 
of  t ime equal ,~v(t), where v ( t )  is given by (2.5). 

The main problem to use the age replacement  extension for planning and combining is that we no 
longer can predict in advance whether  we will replace at some time t, as that depends upon the possible 
occurrence of failures in between. Doing a correct analysis implies that we have to condition on all 
possible events between the moment  of planning and the expected moment  of execution. This directly 
leads to intractable models in case of multiple components.  An heuristic way out is to do a conditional 
planning, assuming that no failures occur in the planning horizon and taking the actual ages into account. 
This is a reasonable approach since numerical experiments show that in cases where preventive 
maintenance is really cost-effective, F ( t  *) is quite small (up to 20%). Implementing this approach on a 
rolling horizon basis (i.e. adapting the planning in course of t ime with the occurrence of events) takes 
care of failures. This idea was pursued in Dekker,  Wildeman and Van Egmond (1993) in a discrete t ime 
case. 

2.6. The delay time model  

In the delay time or two-phase model, an i tem passes through an observable intermediate state (often 
called fault) before failing (see, e.g. B a k e r  and Christer, 1994). Inspections are undertaken to see 
whether  deterioration has progressed that far, that the intermediate state is visible. If  so, a repair  is 
carried out immediately, which is also the case upon a failure. After  the repair  the state is as-good-as-new. 
Suppose that  faults occur according to a Poisson process with a rate A per  t ime unit and that a c.d.f. F ( . )  
of  the so-called delay time is available, i.e. the t ime left between the occurrence of the intermediate state 
and a failure. Let  c i, c r and c ~ denote the costs of inspection, repair  in the intermediate state (to the 
as-good-as-new condition) and failure repair  respectively. Notice that both after an inspection and repair  
the i tem is as good-as-new. Let  G ( . )  be the cdf of the time between the as-good-as-new state and failure 
if no inspections are carried out. Accordingly, G ( t )  = f~he-~UF(t  - u)  du.  Assturle further that inspec- 
tions are carried at intervals of length t since the previous inspection or repair. The deterioration cost 
rate m ( t )  now amounts to crh + (c f - c r ) G ' ( t ) / ( 1  - G(t) ) .  The delay-time model is especially suited for 
cases where c f is high compared  to c p and c r, hence an asymptotic criterion w.r.t, existence of an 
opt imum makes little sense. 

2. 7. Relation with the f ramework  f r o m  A v e n  and Bergman 

Aven and Bergman (1986) argue that the objective function in many maintenance optimisation models 
is of the form 

+ + d l) 

where T is a stopping t ime based on the information about the condition of the system, a( t )  is a 
nondecreasing stochastic process, h( t )  a nonnegative stochastic process and both c(0) and p(0) are 
nonnegative r.v.'s. The  expectation is taken w.r.t, all r.v.'s and stochastic processes. In our case h(s )  = 1, 
T is set at a prefixed value t, c(0) has the constant value c p, p ( 0 ) =  0 and a(s )  represents the 
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deterioration costs re(s). They show that (2.3) and (2.4) hold, but give no further results. We also 
consider the case that m(s)  is first decreasing and next increasing (the bathtub pattern). Although their 
framework is more general, one can not predict the replacement in advance and it is not yet clear how 
their framework can be used for planning and combining. 

3 .  E l i c i t a t i o n  o f  m o d e l  p a r a m e t e r s  

The crucial problem to apply the framework (and in fact any maintenance optimisation model) is to 
obtain a functional form for either re(t) or M(t) .  If one has many data on failures and maintenance of 
systems at an aggregate level, one may directly fit a curve to the deterioration costs versus the system 
age. This approach has been followed by Kamath et al. (1984) in a study for ambulance maintenance. 
They fit a Duane model: M ( t )  = at  t~, for some parameters a and 13, to the maintenance costs. 

If many data on failures and maintenance are available on a single deterioration mechanism, e.g. 
through tests, one may fit a statistical lifetime distribution or a stochastic process. Most models for 
replacement and inspection assume the knowledge of such a lifetime distribution. One has to check 
whether  the failures were independent  and what the effect is of maintenance on the deterioration 
mechanism(s). A problem is that the effectiveness of replacements depends on the reduction in failure 
rate, and not on the average rate; this requires fitting of at least two parameters.  

In many cases however, there are either too few data, or data are too unreliable to be used (e.g. when 
failure registration does not specify the failure mode or the precise equipment part  involved). In these 
cases one has to rely on expert judgement. Decision support systems assist in this respect, as they provide 
insight into the importance of data, by enabling sensitivity analyses. A major problem in the development 
of their userinterfaces is the modelling of deterioration in such a way that it is both suited for the 
problem and understandable for the expert. Asking for parameters of lifetime distributions is not 
advisable since a second parameter  is often related to the variance and one hardly sees a complete 
lifetime in case of maintained items. Van Noortwijk et al. (1992) therefore propose the use of interval 
techniques to assess a truncated discrete lifetime distribution. The main drawback of their approach is 
that they only focus on severe failures causing a replacement. Quite often there are also minor failures 
after which a minimal repair is done, and one will have severe interpretation problems (e.g. did the 
failure repair renew the equipment part or did it bring it back to an as-good-as before condition?). By 
generalising their approach to our framework, these problems can be overcome, because we cover 
multiple models at the same time. We therefore suggest the following procedure. 

First an appropriate interval should be selected to which experience is related, e.g. an historic 
maintenance interval. Next the deterioration costs are elicited for this interval and multiples or fractions 
of it. This can best be done in an interactive way in which the user specifies the intervals one by one and 
in which feedback is provided on whether the optimum lies within one of the intervals or beyond all of 
them. Within an interval, m( . )  can be assumed to be linear or constant, and an extrapolation is made for 
the area right of the last interval, assuming e.g. linear, quadratic, polynomial or exponential shape. We 
will demonstrate the procedure here for two (the minimum required number) of intervals. Suppose that 
the historic maintenance interval was of length T. The following questions should be asked: 
(a) Estimate the deterioration costs in the interval [0, T]. 
(b) Estimate the deterioration costs in the interval [T, T +  AT] for some AT (which may also be 

negative, depending on which side one has most experience; for negative AT the analysis is similar, 
but the expressions are slightly different). 

Both questions can either be answered directly, or a split up can be made according to: 
- probability of system breakdown requiring replacement and the associated costs; 
- expected number of failures requiring a minimal repair and the associated costs; 
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- efficiency loss and financial consequences  over the interval; 
- increased probabil i ty of  a h idden  system failure and possible financial consequences .  
This way of  quest ioning is less mode l  specific and leads to less in terpreta t ion problems be tween 

failures and breakdowns.  Let  c a, Cb deno te  the answers to quest ions (a) and (b). Not ice  tha t  c a = M ( T )  
and that  c b = M ( T  + AT)  - M ( T ) .  The  next step is to assume a functional  fo rm for  re( t ) ,  fit it to  the 
three  values (assuming also that  M(0) = 0) and have the user  agree with the results. For  example, 

(i) m ( . )  piecewise constant  and linear, i.e. re ( t )  = cl ,  t < T ,  and re ( t )  = c 1 + cz ( t  - T ) / A T  for t > T. 
W e  obtain:  c 1 = Ca/T and c 2 : 2 C b / A T - -  2Ca/T. This leads to t * = T ~ ( c  b - c a + c P ) / / ( C b  - -  C a )  . 

(ii) m ( . )  piecewise linear, i.e. re ( t )  = c l t ,  t < T ,  and re ( t )  = c l T  + c2(t  - T )  for t > T. We  obtain: 
c 1 = 2 c a / T  2 and c 2 = 2{c b - ( 2 c a A T ) / T } / A T  2. If  c a > c p then  the op t imum interval t* equals 
T c P ~ - ~ ,  else we have t .2 = T 2 q_ ( A T ) 2 ( c P  _ C a ) / ( C  b _ 2 c a A T / T ) "  

(iii) m ( ' )  linear, i.e. re ( t )  = c 1 + c2t  , t > 0, and A T =  T (to simplify formulas).  We  obtain  c 1 = (3c a - 
C b ) / 2 T  and c 2 = (c b - C a ) / T  2. This yields t * = T~/2cP/(Cb -- Ca) . 

I t  is evident that  this p rocedure  can be extended when  more  values for  M ( t )  are elicited. Once  one 
agrees on a funct ional  form, it is easy to optimise. 

Example.  Consider  a p u m p  which undergoes  a short  ma in tenance  check (lubrication, cleaning, etc.) every 
year.  W e  will elicit costs associated to this interval and its double  (T = AT = I yr). Suppose  that  there  is a 
4% probabil i ty tha t  the p u m p  fails within the  first year  after a check and that  the failure probabil i ty 
increases to 6% for the second year  after the check. Fai lure  induces costs of  about  $1000 (mainly due to 
downt ime)  and a check costs about  $40. H e n c e  c a = $40 and c b -- $60. Assuming  a l inear deter iora t ion 
rate (see case (iii)) yields: re ( t )  = $ 2 0 / y r  2. t + $30/yr .  The  op t imum main tenance  interval follows f rom 
~ ( t )  = c p, hence  1 0 $ / y r  2. t 2 = 405, implying that  t * = 2 yr  and g * = $70/yr .  Not ice  also that  g(1 yr) = 
$ 8 0 / y r  and that  the expected costs of  deferr ing main tenance  f rom year  1 to the 2nd year  amount  to $60 
minus $80, implying that  deferr ing is cost-effective. F r o m  the data  one  can directly infer that  mainte-  
nance  should be deferred.  

Remark .  This example shows how simple main tenance  opt imisat ion in fact can be. Wi th  simple means  
(est imation of  probabili t ies th rough  interval classes and separat ing costs into manhours ,  downt ime and 
materials)  the  compar ison  can be  carr ied out  manual ly  by the main tenance  engineers  themselves. It  also 
shows that  we do not  need  to fit a full statistical distr ibution to the t ime to failures, est imations of  only 
two probabili t ies suffice. In  fact a similar p rocedure  has been  used in a company  to rationalise (i.e. 
double  or  halve the interval) thousands  (!) of  rout ine  main tenance  activities. 

4. Penal ty  cost  funct ion for shift ing from the o p t i m u m  

O n e  impor tan t  aspect  of  the f ramework  is tha t  it allows the derivation of  penal ty  costs for deviating 
f rom the  individual opt imal  execution interval. These  penal ty  costs are input  in comprehensive  models  
for combina t ion  of  ma in tenance  and for  ma in tenance  planning.  Th ree  different  types of  deviation are 
possible: a shor t - te rm shift, a long- term shift and finally, a p e r m a n e n t  shift. H e r e  we assume that  a 
preventive ma in tenance  activity is carr ied out  at regular  intervals of  length t. The  short  t e rm shift 
changes  one interval to t + x, where  x may be positive or  negative, the next one  to t - x, so that  only one 
execution m o m e n t  is changed.  The  long- term shift changes  one  interval to t + x  and all following 
intervals remain  constant .  Finally, the p e r m a n e n t  shift changes  all intervals to t + x. Which  shift is most  
appropr ia te ,  depends  on how the preventive main tenance  p rog ram is incorpora ted  in the main tenance  
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management  system and whether  the shifts are permanent  or not. If the maintenance management 
system calculates all future execution dates from the initially planned dates, then the short-term shift is 
appropriate. If it does so from the actual execution dates, then the long-term shift should be used. From 
the deterioration costs M( . )  penalty cost functions for each of the shifts can be derived. Let  hs(x),  hL(X) 
and he(x) denote the penalty functions for deviating x time units from the optimum t * for a short-term 
shift, long-term shift and permanent  shift respectively. It is easy to see that 

h s ( x  ) = M ( t *  +x) + M(t* - x )  - 2M(t*), (4.1) 

hL(X ) = M ( t *  + x ) - M ( t * ) - x g * =  f f . * + ~ ( m ( y ) - g * )  d r ,  (4.2) 

he(x ) =g(t* +x) -g ( t* )  =hL(X)/(t* + x ) ,  (4.3) 

where g * denotes the minimum long term average costs. These penalty functions can not only be used to 
assess the cost-effectiveness of any special sales offer, but also for priority setting and to assist in 
combining activities or integrating maintenance planning with production planning. Notice that the 
penalty functions have the following properties: they are always nonnegative and they are zero for x = 0. 
Furthermore,  hs( . )  is symmetric round zero. 

These penalty functions indicate the expected cost for deviating from the optimum interval. It may 
happen, however, that the present state already deviates from the optimum and that one does not need 
to take the costs into account for arriving in the present state, but that one is interested in the extra costs 
for deviating even further. More specifically, suppose one is at t time units, t > t * since the last 
execution of the activity. The expected costs for deferring (in this case there is no other option) the 
activity for another x time units amount to (we only consider the long-term shift) 

htL(X) =M(t +x) -M( t )  -xg* = ftt+Z(m(y) - g * )  dy ,  x > 0. (4.4) 

In case of the extended framework we have to condition on the present age and only consider the case 
where the component  survives. Hence the penalty costs for deferring preventive maintenance at age t to 
age t + x, where it is normally executed at age t * (only the long-term shift is relevant) amount to 

h~(x) = / t + X ( m ( y )  - g * )  (1 -F (y ) )  d r ,  x > 0 .  (4.5) 
(1 -F( t ) )  " t  

5. Combining execution of activities 

One way of reducing maintenance costs is to combine the execution of maintenance activities. In many 
cases preparatory work, such as shutting down a unit, scaffolding, travelling of the maintenance crew, has 
to take place before maintenance can be done. Combining activities allows savings on this work. On the 
other hand, combining mostly implies that one deviates from the originally planned execution moments, 
which is not free. Combining activities can both be done on a long-term (e.g. creating maintenance 
packages) or on a short-term, taking all once-off combinations into account. Here  we will consider 
short-term combining and show that the penalty functions derived in the previous section allow a 
cost-effectiveness evaluation of combinations and assist in the timing of the execution. The main idea is 
to apply a decomposition approach, that is, we first determine for each activity its preferred execution 
moment  and derive its penalty function. Next we consider groups of activities, for which the preferred 
moment  of execution follows from a minimisation of the sum of the penalty function involved. If this sum 
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Table 1 
Example data for combining 8 activities 

Activity A i (days) ~i e r c p t i (days) x/* (days) 

1 2380 1.70 46 60 0 229 
2 2380 1.70 91 120 15 230 
3 1900 2.00 14 180 32 681 
4 2850 2.00 15 90 60 698 
5 1620 1.70 86 300 100 278 
6 2850 2.00 15 180 160 987 
7 1950 1.75 45 60 180 195 
8 1350 1.75 25 180 212 354 

is less than the set-up savings because of a joint execution, combining is cost-effective. Corrective 
maintenance work can also be  involved in the combination, provided that it is known at the outset of 
planning, deferrable and a penalty function for deferring can be assessed. Determining the optimal 
groups can be formulated as a set-partitioning problem (see Dekker,  Smit and Loosekoot,  1992). 
Wildeman, Dekker  and Smit (1992) show that under  certain conditions the optimal grouping consists of 
groups with consecutive initial planning moments,  which allows the formulation of an O(n 2) dynamic 
programming algorithm (n being the number  of activities). 

Example.  Table 1 provides data on 8 maintenance activities, which each replace a unit. Deteriorat ion 
costs of unit i are primarily due to small failures upon which a minimal repair  is done. These occur 
independently of the state of  other units and the cost rate amounts to: m i ( x  i) = c ~ l O 0 ( ~ S A i ) ( x i / A i )  ~ i -  1, 

where x i denotes units i ' s  age. Special case (i) (see Section 2.2) gives a formula for the individually 
optimal replacement  age, which we denote by xi*. Finally let t i be the resulting initial planning moment  
(counted from the start  of the planning horizon). 

The  resulting penalty functions are shown in Fig. 1 (the numbers  refer to the activities). 
We consider combining under  short- term shifts, in which case the penalty costs are given by Eq. (4.1). 

The planning horizon is [0, 220]. We assume that combining execution of k activities saves k - 1 times 

looo1 °° I / 
5 . 0 0  

O.OC; 
0 20 4b 60 80 160 120 1,~0 I,~0 1~0 260 220 

Time 
Fig. 1. Penalty cost functions. 
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the set-up work (for any k), which is estimated at 15 cost units (about 10% of the preventive 
maintenance costs of an activity). Using the algorithm of Wildeman, Dekker  and Smit yields as optimal 
groupings: {1, 2, 3} executed at day 12.6, {4, 5} at day 97.9 and {6, 7, 8} at day 192.9. The savings (set-up 
cost reduction minus penalty costs) for the combinations amount to 29.4, 14.4 and 28.2 respectively. Total 
savings amount  to 72.0, which constitutes 6% of total preventive maintenance costs. 

Dekker,  Wildeman and Van Egmond (1993) give an analysis of the performance of this combination 
method for a more complex case where components are replaced using a discrete time age replacement. 
They apply a conditional planning (assuming no failures in the planning horizon) on a rolling horizon 
basis (implement the decision for the current epoch, observe the new state at the next epoch and make a 
new planning). They use the discrete version of the penalty functions (4.5). They consider combining both 
for a finite and infinite horizon and compare their planning method with an optimal solution obtained by 
solving a large scale Markov decision chain numerically (which was tractable up to four identical 
components only). It appears that for high set-up costs and many components the component decomposi- 
tion has to be changed because components are almost always replaced together. When that has been 
done the loss of their strategy compared to the optimal one is less than 1%. 

6. Priority setting 

Maintenance is usually classified into corrective and preventive work. The first originates from a 
directly foreseeable, or already observed malfunctioning of systems, and the latter from a preconceived 
plan to keep systems in a good condition in the long run. Often the first type of work is the most urgent 
one. The maintenance capacity needed to take care of that may fluctuate severely in time, due to the 
random character of failures. Hence preventive work is often delayed in favour of the corrective work. 
Accordingly, there is usually a large backlog of preventive work, with the implication that an individual 
preventive maintenance activity is either delayed for an unknown time or even never carried out. Most 
maintenance organisations have problems in managing the backlog. It will be clear that the results of 
maintenance optimisation decrease in value if the maintenance organisation is not able to do the work 
on time, which is especially a problem for the many small maintenance activities. Priority criterion 
functions, embedded in management  information systems, can be of help. 

Here  we propose the use of the penalty functions hE(X) (or hs(x)  if appropriate, see Section 4) as 
priority functions, where the long-term objective is the average costs. Although they are formulated for a 
continuous time setting, where at each moment  a decision can be taken, they can easily be extended to 
discrete intervals between decision moments, depending on how often one wants to reset priorities. The 
same holds for a discounted costs objective function. Before we give some pro's and cons of these 
functions, we first introduce some other  priority criteria which have been used in practice (see Pintelon, 
1990, for a review): 
(i) a fixed priority according to the importance of the machine to be maintained; 

(ii) a machine importance factor multiplied by the waiting time for execution. 
It will be clear that these criterion functions are heuristic and not related to an optimisation model. 

The  penalty function hE(X) on the other hand, has the following properties: it is negative before the 
optimal execution time, zero exactly at that time and increases thereafter.  It is expressed in money terms, 
has an easy interpretation and is additive. T h e  latter means that the priority criterion for a group is the 
sum of the individual priority criteria. Hence, splitting up activities into smaller activities does not effect 
the priority for the group. This is not the case for the criteria of type (i) and (ii): these are expressed on a 
cardinal scale only! The penalty based criteria can therefore also be used for the groups which are the 
result of the combination of activities (just use the sum of the penalty functions minus their minimum 
value). Furthermore,  they can used in more sophisticated planning (see the next section). We like to 
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remark that the penalty based priority criteria only express how important it is to execute a certain 
activity. It does not express how much of a scarce resource is needed for execution. 

Setting priorities between corrective maintenance and preventive is in principle possible using the 
above ideas, since the priority functions are expressed in money. Corrective maintenance has to be 
separated into deferrable and nondeferrable and for the first category a cost rate for deferring has to be 
estimated, which can be compared with the priority function for preventive maintenance. 

Dekker and Smeitink (1994) provide an analysis of similar priority criteria, though for a case where 
preventive maintenance could only be executed at randomly occurring opportunities of restricted 
duration. Hence at each opportunity priorities for execution had to be set. They computed long-term 
average costs for a twenty-four component system under four different priority criteria, including one 
based on the penalty functions. This one performed best in all cases considered. 

Finally, in case of the extended framework for the age replacement model (see Section 2.5) we may 
use a similar priority function. Given a present age of x, the expected cost rate of delaying t h e  
maintenance activity amounts to m ( x )  whereas we save by deferring on the average g * per time unit. 
Hence the priority function reads re(t)  - g  * for the continuous time case. 

The same reasoning has been followed to derive a replacement criterion for a maintenance package 
consisting of multiple preventive maintenance activities which could only be executed together, whereas 
upon failure only the respective activity was carried out. As in that case the minimal average costs g * 
are very difficult to compute, they were approximated by those of a block replacement policy, g~. Such a 
marginal cost reasoning yielded a simple but  very effective replacement criterion which performed only 
slightly worse than the (complex) optimal policy (see Dekker and Roelvink, 1995). 

7. Maintenance planning 

In this section we will show that the penalty functions can be used as basic elements in sophisticated 
versions of maintenance planning, using a rolling horizon. The difference with the previous section is 
that we now provide an explicit modelling of the planning, including a single capacity constraint, but this 
can easily be extended to multiple constraints. The approach we propose, is to apply a decomposition, in 
which one first optimises at the individual maintenance activity level and then matches the results with 
the higher level constraints. Although the decomposition approach is not exact (in the first stage one 
neglects the higher level constraints), one obtains a more stable solution and insight into the answer. In 
case the higher level constraints are very tight or if considerable cost savings can be obtained in 
combining, one may have to take these effects into account in the optimisation for each individual 
activity (see also Dekker, Wildeman and Van Egmond, 1993, for a discussion of this effect). The 
proposed way of planning is also especially suited for visual interactive modelling, as the effect of 
changing the planning of each activity follows directly from the penalty functions. 

We consider constraints on the execution moments and on the available maintenance capacity. Let  the 
planning interval be [0, T], in which activities 1 . . . . .  n are to be planned. Suppose time windows 
W1,. . . ,  W m are available for maintenance and that no planning within a window is necessary at this stage. 
Hence if an activity is carried out in window Wj we assume it is carried out at its midpoint, say tj. Le t Kj 
be the available maintenance capacity in window j. Window m, at time T, is unrestricted in capacity; it 
therefore represents the backlog of the activities to be carried at the end of the planning horizon. In the 
presence of constraints the optimal solution no longer bears the consecutiveness property. Hence wewill  
formulate an integer programming problem. Let  the decision variable Xgj be 1 if activity i is carried out 
during window j and 0 else. Suppose that t} °) is the preferred execution moment of activity i when 
restricted to the time windows tj, j = 1 . . . .  , m (in the uncapacitated case) and that hi( . )  indicates the 
associated penalty cost function for activity i (w.r.t. t}°)). Define cij as the value of this penalty function 
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at tj, i.e. cii =- h i ( t  j - t}°)). Finally, let ki denote the capacity requirements for activity i. We now have the 
following integer programming problem for the planning of maintenance under  constraints: 

min ~ CijXij 
i,j 

s t .  E x i j  ~- 1, i = 1 , . . . ,  n (every activity is executed once) 
Y 

~_,x i jk  i < K i ,  j = 1 , . . . ,  m (capacity constraint in window j )  
i 

X i j ~ { 0 , 1 } ,  i = l , . . . , n ,  j = l  . . . .  , m .  

The solution for the uncapacitated case is straightforward: xi i  = 1 if t i = t~ (°) and zero else; apart from 
x . r ,  it does not depend on the planning horizon. Other  formulations which apply deterioration costs 
instead of penalty costs, such as in Stinson and Khumawala (1987), have a solution which does depend on 
the planning horizon. This is only correct if a system is indeed terminated at the end of the planning 
horizon. Justifying preventive replacements only over the planning horizon is not correct, as their effect 
may last much longer. Else, if in fact a rolling horizon is applied, one either has to compensate for the 
state at the end of the horizon, or to apply our procedure.  The first may still give a very unstable policy 
because of horizon effects, whereas our procedure more closely follows a long-term policy (see, e.g. 
Dekker et al., 1993). A further advantage of our formulation is that the uncapacitated solution can serve 
as starting point for heuristics: 
(i) A single stage heuristic: consider the windows successively. If in window j the required capacity 

exceeds the available, delay those activities which have the lowest ( c i i + l -  c~j ) /kg  ratio (penalty 
increase over capacity use). 

(ii) As (i) but also consider forwarding activities one window, in case of spare capacity. 
As it is our main intention to show that a maintenance planning problem can be formulated with the 
penalty functions, we will not go into details about solving the problem. A final remark is that in practical 
applications it is mostly not the optimal solution which counts, but the insight which is obtained in a 
structured planning process. Multiple (not modelled) objective criteria and uncertainty about e.g. 
execution durations may make optimal solutions less desirable. The 'optimal solution' is then only used 
for comparison reasons. 

8. Conclusions 

In this paper  we presented a framework for optimisation models which allows integration with priority 
setting, planning and combination of activities. It is also useful in setting up an appropriate elicitation 
procedure in case model parameters are based on expert judgement. The latter is important for 
developing decision support systems for maintenance optimisation. Further  research is required to 
investigate whether  more models can be incorporated into the framework, and whether  other models can 
be converted to allow combining and planning as done in this paper. 
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