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Abstract. The 
exibility of neural networks to handle complex data patterns of

economic variables is well known. In this survey we present a brief introduction to

a neural network and focus on two aspects of its 
exibility . First, a neural network

is used to recover the dynamic properties of a nonlinear system, in particular, its

stability by making use of the Lyapunov exponent. Second, a two-stage network

is introduced where the usual nonlinear model is combined with time transitions,

which may be handled by neural networks. The connection with time-varying smooth

transition models is indicated. The procedures are illustrated using three examples:

a structurally unstable chaotic model, nonlinear trends in real exchange rates and a

time-varying Phillips curve using US data from 1960-1997.

1. Introduction

In recent decades one witnesses a substantial increase in the interest

of econometricians for nonlinear models and methods. This is due to:

(i) advances in processing power of personal computers; (ii) increased

research on algorithms for fast numerical optimization methods; and

(iii) the availability of large data sets. One of the nonlinear models

which received much attention from applied researchers is a neural

network, also known as neural net. The basic idea behind a neural net is

the tremendous data-processing capability of the human brain. Human

brains consist of an enormous number of cells, labeled neurons. These

neurons are connected and signals are transmitted from one cell to an

other cell through the connections. These connections are, however, not

all equally strong. When a signal is transmitted through a strong con-

nection it arrives more strongly in the receiving neuron. One may argue

that there is a particular weight associated with each connection which

varies with the strength of the connection. Neurons may also receive

signals from outside the brains. These are then transformed within
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the brains and returned to the outside world. The whole structure of

signal-processing between many (unobserved) cells can be described by

a particular mathematical model which is therefore known as a neural

network model. For a more detailed description of the analogy between

the mathematical neural network models and the working of the human

brain we refer to, e.g., Simpson (1990).

Neural networks are used in many sciences like biology, informatics, and

econom(etr)ics. Within the latter �eld neural nets are, in particular,

applied for the description and prediction of complex data patterns in

economic time series. The �eld is very extensive and empirical illustra-

tions are many. This paper is not intended to give a complete survey.

Instead, we start with a brief introduction on neural nets and their


exibility. Our focus is on the following two applications of neural net-

work analysis with the aim of showing that neural nets are a convenient

econometric tool:

(i) Recovery of the unobserved dynamics, in particular, stability of a

nonlinear system from a low dimensional data set;

(ii) Speci�cation of a neural network where a time varying component

is included.

In the �rst topic a neural net is used to recover the dynamic properties

of a nonlinear system, in particular, its stability by making use of the

Lyapunov exponent. We use one simulated series from a structurally

unstable chaotic model and some data from real exchange rates to

illustrate the methods. Second, a two-stage network is introduced where

the usual nonlinear model is combined with time transitions which

may be handled by neural nets. The connection with time- varying

smooth transitions models is indicated. The procedures are illustrated

on a time-varying Philips curve using US data from 1960-1997. We

discuss connections with the existing literature but refer for a general

introduction to neural networks to Hertz, Krogh and Palmer (1991)

and Bishop (1995) and the references cited there.

2. A simple introduction to neural networks

There exist many classes of neural networks, see e.g. Hertz, Krogh and

Palmer (1991) and Bishop (1995). In this paper we restrict attention to

a simple class which is known as the three-layer feed forward neural net-

work, also labeled the Rumelhart-Hinton-Williams multi-layer network

after Rumelhart et al. (1986). For expository purpose we describe and

interpret this network as a generalization of the well known linear model
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from basic econometrics, see e.g. Theil (1971), chapter 3. Suppose that

the cells of the network are partitioned into particular groups or layers

and suppose further that there exist three such layers: the 'input' layer,

the 'hidden' layer, and the 'output layer'. The cells of the input layer

correspond to the 'regressors' or 'explanatory variables' in the standard

linear regression model. The cells in the output layer correspond to the

dependent variables in the linear model. The hidden layer contains cells

which transmit the signals from the input layer to the output layer.

These cells may be interpreted as unobserved components built into

the linear model. A graph of a neural network with three cells in the

input layer, two cells in the hidden layer and two cells in the output

layer is shown in �gure 1.

Input Hidden Output

Figure 1. Graph of a neural network

The network transmit signals as follows. A weighted sum of the signals

of the input cells are sent to the hidden layer cells. Within the cells of

this layer the values of the signals received are transformed by a so-

called 'activation function'. A weighted sum of the transformed signals

is then sent to the cells of the output layer. We note that the weights

in the neural network correspond to unknown parameters in the linear

model.

Henceforth, we make use of the following (standard) notation. A neural

network with I cells in the input layer, H cells in the Hidden Layer and

O cells in the output layer is denoted as nn(I;H;O). In �gure 1 the

network is given as nn(3; 2; 2).
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Next, we discuss the mathematical structure of a neural net. We make

use of the following notation for cells, signals and weights:

i index of input cells, i = 1; � � � ; I

h index of hidden layer cells, h = 1; � � � ;H

j index of output cells, j = 1; � � � ; O

g(:) activation function

xi value of input cell i

yj value of output cell j

aih weight of the signal from input cell i to hidden cell h

bh constant input weight for hidden cell h

cjh weight of the signal from hidden cell h to output cell j

dj constant weight for output cell j

The value of the signal that arrives in hidden cell h is given as

input for hidden cell h =

IX
i=1

(aihxi) + bh (1)

Hidden cell h transforms the value of this signal with the activation

function g(:) as follows

output from hidden cell h = g(

IX
i=1

(aihxi) + bh) (2)

where the activation function is a monotonous increasing and bounded

function given as

g(x) =
1

1 + e( � x)
(3)

which is the well known logistic function, de�ned on the interval [0; 1].

A particular value of the logistic function indicates the extent to which

a hidden cell is activated. The logistic function has attractive properties

such as that the derivative is equal to g(x)(1� g(x)). The graph of the

function is given in �gure (2) as

Other choices of the activation function are other monotone squashing

functions as the arctan and tanh functions and the cosine squashing

function, see e.q. Hertz, Krogh and Palmer (1991).
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Figure 2. Graph of logistic activation function

Next, the value yj of the output cell j is given as the weighted sum of

the output of the hidden cells. It is equal to

yj =

HX
h=1

cjh g

 
IX

i=1

aihxi + bh

!
+ dj (4)

In matrix notation one can write:

y = CH+ d (5)

H = G(xA+ b) (6)

where

x 2 R
I y 2 RO

A = (aih); I �H matrix b 2 R
H

H = (h1; � � � ; hH , the vector of hidden cells outputs

G : RH ! R
H

is the vector function, given by

G(v) = [g(v1; � � � ; g(vH)]
0

C = (cjh); O �H matrix d 2 R
O

The neural network nn(:) describes the situation at one moment in

time and it indicates a deterministic relation. By adding a subscript t

and an error term � one obtains the system

yt = CHt + d+ �t

Ht = G(xtA+ b)
(7)
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Figure 3. Graph of a neural network

Figure 3 is a representation of an nn(3; 2; 1). The mathematical speci-

�cation of this model is equal to

yt = d+
c1

1 + e�a11yt�1�a12yt�2�b1
+

c2

1 + e�a21yt�1�a22yt�2�b12
(8)

We note that this model is closely related to a threshold autoregressive

model; for details see Granger and Ter�asvirta (1993) and Van Dijk

(1999).

2.1. Flexibility of neural networks

The 
exibility of three layer feed forward neural nets is well docu-

mented. It is summarized by its so-called 'universal approximation'

property. Most of this approximation theory starts with Kolmogorov's

representation theorem, see (Kolmogorov, 1957). This provides the

background for the Hecht-Nielsen article in 1987, see (Hecht-Nielsen,

1987). From the point of view of a neural network user, the Kolmogorov

theorem provides, however, a justi�cation for the existence of approxi-

mations in the reverse way. That is to say, the number of layers and cells

are given but not the functional form of the one-dimensional activation

functions. In a neural network one encounters the opposite case: the

activation functions g are given (to some extent) but, at least, the

number of hidden layer cells is unknown.

The articles of Gallant and White (1988) (with the revealing title:

"There exists a neural network that does not make avoidable mistakes",

Hecht-Nielsen (1989), Cybenko (1989), Funahashi (1989) and Hornik,

Stinchcombe and White (1989) provides the theoretical background for

the statement :
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A (three layer) feed forward network is an universal approximator.

This general statement should be interpreted in the sense that any

square integrable function can be approximated arbitrary close in L2

norm.

Further, the articles of Hornik, Stinchcombe and White (1990) and

Gallant and White (1992) extend the approximation capabilities of the

network to the derivative of a function.

2.2. Estimation of parameters of neural networks

An generally accepted optimization principle is to minimize the norm

of

min
�

X
t

jjyt � ŷt(�)jj
2 (9)

where jj:jj is the Euclidean norm. For the case of a neural net it follows

that one minimizes the criterion function

min
A;b;C;d

X
t

jjyt � CG(xtA+ b)� djj2 (10)

A well known method for numerical optimization is the simplex method

and the BFGS method, a gradient method; see Press et al. (1988).

2.3. Determining the size of a neural network

Neural nets are 
exible, but the price of increased 
exibility is the

danger of 'over�tting'. This statement may be explained as follows.

In empirical econometric models one assumes that an observed eco-

nomic time series consists of a part that can be explained and a part

that is labeled unexplained or 'residual noise'. With 'over�tting' this

noise is also '�tted'. Then one obtains a wrong picture of the real

data generating process and the quality of the forecasts may be badly

a�ected. 'Over�tting' with neural nets may occur by increasing the

number of hidden cells, which increases the number of parameters,

without increasing the number of explanatory variables or inputs. Be-

cause of this possibility neural nets are more sensitive to 'over�tting'

than other classes of models like autoregressive models. Therefore it

is important to develop methods that determine the optimal size of

a neural net. Pruning methods apply to the reduction of large neural

networks to smaller ones. Two methods can be distinguished: weight



8 Johan F. Kaashoek and Herman K. van Dijk

(inter-connection) reduction or node reduction. Examples can be found

in Hertz, Krogh and Palmer (1991) and Bishop (1995); see also Mozer

and Smolensky (1989).

Below we present a brief description of a descriptive method to reduce

the size of a neural net. For more details we refer to Kaashoek and van

Dijk (1998).

2.3.1. Pruning a network: the incremental contribution method
The method we follow is labeled 'incremental contribution method". It

looks for each cell separately how much the speci�c cell contributes to

the overall performance of the network. When this contribution is con-

sidered to be low then such a cell is a candidate for excluding from the

existing network (and all its connections). Re-estimating the reduced

network may con�rm this exclusion. To measure the contribution of a

cell we look at two quantities.

First, the square of the correlation coeÆcient R2 between y and ŷ, the

neural network output where

R2 =
(ŷ0y)2

(y0y)(ŷ0ŷ)
(11)

where y as well ŷ are taken in deviation of the means.

The procedure applies to hidden layer cells as well as to input layer

cells, but here we restrict ourselves to hidden layer cells.

The contribution of cell h can now be measured by leaving out cell h,

and its connection from the network, and again calculate the square of

the correlation coeÆcient; we denote network estimates with cell h left

out by ŷ�h, and the corresponding r2 is de�ned as:

R2
�h =

(ŷ0
�hy)

2

(y0y)(ŷ0
�h
ŷ�h)

: (12)

The incremental contribution R2
incr(i) is now given as

R2
incr(h) = R2

�R2
�h: (13)

In the group of hidden layer cells, cells with a low R2
incr are candidates

for exclusion.

The second quantity involves the idea of principal components, see

Theil (1971). Let again ŷh be the network output with exclusion hidden

layer cell h. Construct the vector e�h of residuals

e�h = y � ŷ�h (14)
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and the matrix E�H :

E�H = (e�1; � � � ; eh�h): (15)

The matrix E�H
0E�H=T is an estimate of the covariance matrix of

the e�h's. The principal component of E�H
0E�H is the eigenvector

at maximal eigenvalue in absolute sense. Hence the principal compo-

nents provides a linear combination of (e�1; � � � ; e�h) which explains

the largest part of the variance.

Which fraction is explained by each of the eigenvectors is given by the

relative weight wi with

wh =
�hPH
h=1 �h

(16)

where �h are the eigenvalues of E�H
0E�H . In case of the principal

component �h is the largest eigenvalue.

Now one can look at the components of the principal component itself:

cells with low incremental contribution will have a low (in absolute

sense) coeÆcient in the eigenvector composing the principal compo-

nent. The exclusion of those cells will cause a relatively small increase

in the residuals; these cells are again candidate for exclusion.

Finally, one may apply a graphical analysis. Assuming the graph of ŷ

�ts well with the graph of y, the graph of ŷ�h may di�er less from the

graph of y for those cells with a "low contribution".

The procedure involves the contributions of one cell only. It is a "fea-

ture" of neural networks that sometimes pair of cells do have a similar

contribution with the output of the cells having reverse sign. Such a

"behaviour" can be detected by graphical analysis and by observing

that in the principal component analysis, explained above, such type

of cells do have (almost) equal coeÆcients. In that case one has to look

at the incremental contribution of both cells together.

The reduction method is applied in the next sections.

3. Stability analysis of complex nonlinear systems

A linear autoregressive system of equations of the n-vector of variables

x(t) can be written as

xt+1 = Axt; xt 2 R
N ; (17)
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The stability of �xed or equilibrium points depends on the eigenvalues

� (real or complex) of the matrix A. Taking the absolute value or

modulus of the eigenvalues, k�k, the �xed point will be unstable if for

some eigenvalue �, k�k > 1 which is equivalent with ln k�k > 0. The

same holds for the stability of orbits or time series x0; � � � ; xT�1; � � � .

Note that in a point xt 2 R
N , the logarithm of the local expansion rate

in the direction of a vector v 2 R
N is given as

ln kA
v

kvk
k (18)

Lyapunov exponents are a generalization of the above concept for non-

linear systems. They are de�ned as the (spatial or time) means of the

logarithm of local expansion rates. In the case of time means, the ex-

pansion rates are calculated in the time series x0; � � � ; xT�1; � � � where

in a point xt 2 R
N , the logarithm of the local expansion rate in the

direction of a vector v 2 RN is now given as

ln kDxF (xt)
v

kvk
k (19)

where F : RN ! R
N is the data generating function:

xt+1 = F (xt) (20)

and DxF is the jacobian. Then the Lyapunov exponent �v0 , with start

direction vector v0 and start value x0, is de�ned as

�v0 = lim
T!1

1

T

TX
t=1

ln kDxF (xt�1)
vt�1

kvt�1k
k (21)

vt = DxF (xt�1)vt�1; kv0k = 1: (22)

The dependence of � on v0 and on x0 seems to indicate an in�nite

number of Lyapunov exponents. However, this is not the case. In general

there are as much Lyapunov exponents as the dimension N of the

system; see (Guckenheimer and Holmes, 1983). Above all, for an ergodic

system, with the space-mean being equal to time-mean, it follows that

for almost all start directions v0, and for almost all start values x0, the

value of �v0 will be the largest Lyapunov exponent; see (Arnold and

Avez, 1988) and (Guckenheimer and Holmes, 1983).

Since the mean of logarithms is the logarithm of the geometric mean,
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one can also write

�v0 = lim
T!1

1

T
ln

TY
t=1

kDxF (xt�1)
vt�1

kvt�1k
k (23)

= lim
T!1

1

T
ln kDxF

T (x0)v0k (24)

If some (or all) of the Lyapunov exponents are positive then one has

so-called "sensitivity on start values", a characteristic of chaotic series.

Hence, especially, the largest Lyapunov exponent is of interest: if posi-

tive, then the series is unstable, if negative then the series is stable.

This result can directly be applied if F , the data generating function

is known. However, in practice, one observes only a one dimensional,

�nite time series fxt; t = 0; � � � ; T�1g. So the question is how to extract

from the series fxtg the dynamic properties, especially the value of the

largest Lyapunov exponent of the original (unknown) model (20).

Although only the series xt is given, one can use the embedding theorem

by Takens (Takens, 1981), to reconstruct from the one-dimensional

series xt the original deterministic and smooth model. This theorem

says that if the data xt has an deterministic explanation, which means

the data generating process is smooth and deterministic, there exists

a �nite embedding m, such that the dynamic system 	 : Rm ! R
m

given by

	 : (xt; xt�1; � � � ; xt�m+1)! (xt+1; xt; � � � ; xt�m+2) (25)

has the same dynamical properties as the original one. Moreover, if

the original system is N -dimensional then an embedding dimension

m = 2N + 1 will be suÆcient to have "	 reconstruct the original

system".

Note that the only unknown component of 	 is the �rst component

function 	1 : R
m
! R with

	1 : (xt; xt�1; � � � ; xt�m+1)! xt+1: (26)

For the other components, i > 1, yields 	i(xt; xt�1; � � � ; xt�m+1) =

xt�i+2.

This function 	1 should be approximated, and a neural network seems

to be a proper candidate to do the job.

Once 	 is found, the Lyapunov exponents can be calculated using

equation (23). This means the calculation of Dx	 in each point of

the time series (xt; xt�1; � � � ; xt�m+1). Note that Dx	 has the form
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of a companion matrix. However, to avoid over
ow in calculating the

product of Dx	's the more stable method of Eckmann-Ruelle is used.

In this case, a QR decomposition of Dx	 is calculated at each point

and the Lyapunov exponents are now simply the products of diagonal

elements of the matrices R; see Eckmann and Ruelle (1985).

We apply this procedure to two data sets, one simulated and one

economic time series.

3.1. Simulated data experiment

In this experiment we use simulated data. The data are generated by

the model

xt+1 = �xt + �t � 0:5

�t+1 = 
�t(1� �t);
(27)

where only the series xt is observed. The data, called CH95, are gen-

erated with � = 0:95 and 
 = 4. Although completely deterministic,

this model has some nice features:

� The series �t is chaotic: for start values in [0; 1], the series �t is

bounded between 0 and 1 but has the "sensitivity of start values"

property characteristic for chaotic series.

� The model is structural unstable (
 = 4); e.g. a small change in

the coeÆcient value 4, will cause a dynamical di�erent data series.

For instance, a 
 value greater than 4 will for almost all start

values (between 0 and 1) generate diverging (exploding) data �t;

for values less than 4, periodic data are possible: the system is

structural unstable.

Suppose only the one dimensional data set xt is observed. Our goal

should be to extract from this series, the dynamical properties of the

original data generating process: only Lyapunov exponents are consid-

ered.

The original data generating model (27) has two Lyapunov exponents

which can be calculated analytically. In a point (xi; �i), the jacobian of

the system function F is given by�
0:95 1

0 4(1� �i)

�
(28)

Since the jacobian DxF
T (x0; �0) =

QT
t=1DxF (xt�1; �t�1), one has

DxF
T (x0; �0) =

�
0:95T a12
0 a22(T )

�
(29)
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where a22(T ) =
QT

t=1 4(1 � �t�1). It is obvious that DxF
T has two

eigenvalues, e.a. 0:95T and a22(T ). With v0 = (1; 0), DxF
T (x0; �0)v0 =

((0:95)T ; 0) which results in a Lyapunov exponent value of ln(0:95).

It is well known that the system �t = 4�t�1(1 � �t�1) has Lyapunov

exponent ln(2). Since ln(2) > ln(0:95), for any start vector v0 6= (1; 0),

the resulting Lyapunov exponent will be ln(2).

Writing both Lyapunov exponents in base 2 logarithm, the values will

be ln(0:95)= ln(2) � 0:074 and 1.

Before starting with the neural network computations of the function

	1, see equation (26), �rst the scatter diagram f(xt�1; xtg of the series

CH95 is given. The sample size T is 200. Since et is bounded between

0 and 1, the graph of (xt�1; xt) lies between the lines y = 0:95x + 0:5

and y = 0:95x � 0:5. see �gure (4).

−4 −3 −2 −1 0 1 2
−4

−3

−2

−1

0

1

2

x(t−1)

x(
t)

Figure 4. Scatter diagram of series CH95.

As said above, in order to extract from the one dimensional observed

data fxtg, the dynamic properties, especially the value of the largest

Lyapunov exponent of the original model (27), only the function

	1(xt; xt�1; � � � ; xt�m+1) = xt+1

should be approximated by a neural network. This implies a choice for

the value of m, or in neural network terms, the size of the input layer.
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Since the original system has dimension 2, based on Takens embedding

theorem, it will be (more than) suÆcient to take as neural network

input variables (xt; xt�1; � � � ; xt�5); adding an additional constant, the

dimension of the input layer will be 6.

The initial number of hidden layers will be 5, while the output layer

has only one cell, the target value being xt+1.

To summarize the performance of this network, the quantities

R2 =
(ŷ0y)2

(y0y)(ŷ0ŷ)
(30)

MSSR =
1

T
(y � ŷ)0(y � ŷ) (31)

SIC = ln(MSSR) +
np

2T
ln(T ); (32)

are calculated. In table (I) the results for the nn(6; 5; 1) are reported.

Table I. Results of nn(6; 5; 1)

R2 MSSR SIC

1:00 1:4 10�9 �9:70

In table (II) the incremental contributions of the hidden layer nodes

are given; both R2 and principal component vector (row with label

PrincComp in table (II)) indicate that three hidden layer nodes can be

removed.

Table II. Contribution of hidden layer nodes

Hidden cell 1 2 3 4 5

R2

incr 0:000 0:000 0:517 0:880 0:940

PrincComp. �0:00 �0:000 �0:081 �0:733 0:675

The incremental contributions of inputs are shown in table (III); the

inputs xt�4; xt�3; xt�2 should be removed.

Applying node removal, the network is reduced to two inputs plus

constant and three hidden layer nodes (plus constant). This nn(3; 3; 1)

performs as well as the larger network; see table (IV).

Both input nodes do have the same contributions; no further reduction

at this level is applied.
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Table III. Contribution of input layer nodes

Input cell xt�4 xt�3 xt�2 xt�1 xt

R2

incr 0:000 0:000 0:000 0:124 0:241

PrincComp. 0:000 0:000 �0:000 0:613 0:790

Table IV. Results of nn(3; 3; 1) and nn(3; 2; 1)

Network R2 MSSR SIC

nn(3; 3; 1) 1:00 1:5 10�9 �10:04

nn(3; 3; 1) 1:00 6:3 10�9 �9:31

Table V. Contribution of hidden layer nodes in

nn(3; 3; 1) network

Hidden cell 1 2 3

R2

incr 0:696 0:890 0:943

PrincComp. 0:114 �0:745 0:657

The incremental contributions of hidden layer nodes is shown in ta-

ble (V). Based on the principal component vector (with weight 99%)

hidden node 1 could be removed; see again table (IV) for the results

on this network. The performance is just slightly worse compared to

the larger network. No further reduction is applied. So we end up with

a network of two inputs xt�1; xt (plus constant) and two hidden layer

nodes.

Based on this nn(3; 2; 1) network, the Lyapunov exponents of 	 are

calculated. This can be done on two ways: either along the actual data

(xt; xt�1), or along a series (x̂t�1; x̂t), where x̂t is a series generated by

the neural network function nn(3; 2; 1):

x̂t+1 = nn(3; 2; 1)(x̂t�1; x̂t) (33)

The series x̂t is the dynamic forecast given some initial values x̂0 =

x0; x̂1 = x1
1; here and in the following, such a series will be denoted

as orbit in contrast to the actual data series fxtg.

If the function 	 is indeed a proper approximation of the original model

then one should expect that the dynamic properties along the actual

data and along the orbit data should be similar.

1 The start values are taken from the actual data.
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Table VI. Lyapunov exponents 
 = 4

series actual xt orbit x̂t

Lyapunov exponent 0:9951 1:0155

Lyapunov exponent �0:0735 �0:0729

The results for the Lyapunov exponents are given in table (VI); they are

in both cases near the theoretical values. Note that for the orbit data

the largest Lyapunov exponent is greater than 1; this would correspond

in the original model (27) with a coeÆcient of �t(1 � �t) larger than

4: for almost all start values, the series �t would diverge. However

the orbit data x̂t converge to a large amplitude periodic pattern: in

�gure (5) the graph of (t; x̂t) for the t = 1; � � � ; 150 (left �gure), and

for t = 1; � � � ; 200 (right �gure) is compared to the graph of the actual

data (t; xt). Since the original system is chaotic, one should not expect

that both series, actual and orbit data, fall together but one should

that the graph of both series show a similar pattern; even in this case

(and also in the larger networks get before) the orbit trajectory �nally

deviates essentially from the original pattern; see �gure (5).
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Figure 5. Actual data CH95, 
 = 4 and orbit data (continuous line) generated by

neural network nn(3; 2; 1)

The reason for the deviations of orbit data from the original pattern,

must be found in the structural instability of the system (27) with


 = 4.

If 
 = 3:95 then still a chaotic series will be generated however the

system it self is structural stable. Approximating those data by a neural

network, a network similar in size as before is found. In �gure (6)

again actual and orbit (even extended in time beyond the range of the

original data) is shown. Now the orbit data, the dynamical forecast of
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Figure 6. Actual data with 
 = 3:95 and orbit data (continuous line) generated by

neural network nn(3; 2; 1)

given value x0, "behaves" like the original data. The same holds for the

Lyapunov exponents; see table (VII)2.

Table VII. Lyapunov exponents 
 = 3:95

series actual xt orbit x̂t

Lyapunov exponent 0:8618 0:8614

Lyapunov exponent �0:0782 �0:0727

Finally, we look how the network nn(3; 2; 1) has approximated the

original data. For both cases, 
 = 4; 
 = 3:95, none of the parameters

A; b; C and d, are very large. For instance in the case of 
 = 4, the

input vector of hidden nodes xA+ b, is given as:

(xA+ b)1 = �3:1557xt�1 + 3:3197xt � 1:3688

=
1

3:3197
(�0:9506xt�1 + xt � 0:4123)

(xA+ b)2 = �0:7453xt�1 + 0:8095xt + 0:0516

=
1

0:8095
(�0:9207xt�1 + xt + 0:0637)

(34)

2 For 
 = 3:95 no analytic value of the largest Lyapunov exponent is available;

the second Lyapunov exponent will be again � �0:074.
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Figure 7. Time series JPUS: Yen-Dollar exchange rates.

Especially, the �rst component is remarkable: written in the variable

�t, this component equals to

1

3:3197
(�t�1 � 0:4123) �

1

3:3197
(4�t�2(1� �t�2)):

The output of the two hidden nodes is almost equal in magnitude but

do have reverse signs. Such a "behaviour" of hidden nodes, is rather

common in this type of networks, and it is suggested to remove such

nodes. However, that should be not applied as a "general" rule as shown

here; a network with just one hidden node performs badly. In general,

one should take care to remove such hidden nodes.

3.2. Nonlinear trends in real exchange rates

The economic time series are monthly observations of the natural log-

arithm of real exchange rates. We report those between yen and dollar

(period January 1957 to March 1998). This series is denoted by JPUS,

see �gure 7. Since the original data process is unknown, a proper

embedding dimension m, e.g. delay vector (xt; � � � ; xt�m+1), is also

unknown. One way out is to extract from the correlation dimension,

see Grassberger and Procaccia (1983), the embedding dimension. ; see

also Kaashoek and van Dijk (1991)
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Another approach would be to start with a rather large network and

prune this network till further reduction will corrupt the performance

essentially. In this case, the initial network was taken to be nn(6; 10; 1)

with input variables (1; xt; xt�1; � � � ; xt�4). The performance of this

network, and the successively reduced networks, are summarized in

table (VIII). At the same time, in the column "�" the largest Lyapunov

exponent along the actual data set is reported while in column "�̂" the

largest Lyapunov exponent along the orbit is reported. The applied

reduction can be found in the column "Pruning".

Table VIII. Results of neural network approximation of JPUS data

Network R2 MSSR SIC � �̂ Pruning

nn(6; 10; 1) 0:997 0:16 10�3 �3:880 0.058 -0.013 3 redundant hidden cells

nn(6; 7; 1) 0:997 0:16 10�3 �4:041 0.033 -0.038 2 redundant hidden cells

nn(6; 5; 1) 0:997 0:16 10�3 �4:130 0.048 -0.143 2 redundant input cells

nn(4; 5; 1) 0:997 0:16 10�3 �4:194 0.048 -0.032 2 redundant hidden cells

nn(4; 3; 1) 0:996 0:18 10�3 �4:188 0.076 -0.034 2 redundant input cells

nn(2; 3; 1) 0:996 0:19 10�3 �4:215 -0.011 -0.019

The input variables of the resulting network nn(2; 3; 1) are f(1; xt)g.

In �gure (8) the orbit based on the nn(2; 3; 1) network is shown (the

data are scaled down between 0:1 and 0:9): the orbit follows nicely

the pattern of the actual data converging to a scaled value of 0:26

compatible with the unscaled value of �0:74.

In all cases the orbit is stable (negative largest Lyapunov exponent)

while along the actual data, the Lyapunov exponent is positive indi-

cating an unstable series except for �nal the nn(2; 3; 1) network.

The di�erences between the networks with respect to statistics are

marginal. Note also that the Lyapunov exponent based on actual data

still encompass stochastic elements if present in the data itself. The

smallest network is preferable.

For a more detailed analysis on nonlinear trends in real exchange rates

of several industrialized countries using neural nets we refer to Kaashoek

and van Dijk (1999).

4. Phillips curve

The data are monthly US unemployment rates (all workers, 16 years

and older), denoted by LHUR, and monthly 12-period in
ation rates
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Figure 8. nn(2; 3; 1) orbit compared to actual JPUS data

de�ned by 100 ln(pt=pt�12) in the level of the consumer price index

pt; those data are denoted by INFR12. The unemployment rates and

price indices data start at 1960 and end at November 1997.

The Phillips curve relates unemployment rates with in
ation rates; a

common approach, see e.g. Sargent (1999), is to link unemployment of

one year before with current in
ation. In �gure (9) the time series of

LHUR(�1)3 and of INFR12 are shown.

The Phillips curve data f(LHUR(�1)(t); INFR12(t))g are shown in

�gure (10).

Two attempts are made to model the relation between LHUR(�1) and

INFR12.

First: Let nn(2; 6; 1) be the neural network with inputs a constant term

and the variable LHUR(�1), consider 6 hidden layer cells and let the

target output value be INFR12. The performance of this network,

which is to �t the Phillips curve to the data of �gure (10), is poor:

MUSSR = 0:13, R2 = 0:11. This is rather obvious because with

input variable LHUR(�1), the points of �gure (10) can hardly to be

3 Here, and in the following, 1 year delayed data are denoted by a �1 argument.
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ation rates INFR12 and unemployment rates

LHUR(�1)
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Figure 11. Graph of neural network function nn(2; 6; 1)(x) and actual data

considered as generated by a single valued relation (function). The

graph of the neural network function x! nn(2; 6)(x) con�rms this: it

seems to consists of four descending functions (all four being standard

Phillips curves) with smooth transitions in between; see �gure (11).

Networks with more hidden layers show similar patterns. Although a

neural network is capable of generating step-functions, it can not of

course model "multi-level relations". The graph in �gure (10) is rather

to be considered as generated by some explicit time dependent relation

(t; LHUR(�1))! INFR12.

Second attempt:

Referring again to �gure (11, a time varying approach is tempting as

in time varying smooth transition models, see e.g. Van Dijk (1999).

Suppose 4 time periods, and for each time period a neural network

approximation written as nni(x); i = 1; : : : ; 4 with

nni(x) = cig(aix+ bi) + di; 8i: (35)

then a formulation of time varying smooth transition model could be:

nn1(x)g1(t) + nn2(x)g2(t) + nn3(x)g3(t) + nn4g4(t) (36)

subject to some normalization, say:

g1(t) + g2(t) + g3(t) + g4(t) = 
; 8t: (37)
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Hence equation (36) can be written as:

nn1(x)(
�g2(t)� g3(t)� g4(t)) +

nn2(x)g2(t) + nn3(x)g3(t) + nn4g4(t):
(38)

Collecting the transition functions, one gets:


 nn1(x) + g2(t)(nn2(x)� nn1(x)) +

g3(t)(nn3(x)� nn1(x)) + g4(t)(nn4(x)� nn1(x)):
(39)

Now assume:

nni(x) = (1 + 
)nn1(x); i = 2; � � � ; 4 (40)

then the model equation can be written as:


f1 + g2(t) + g3(t) + g4(t)gnn1(x) (41)

Note that the condition (40) assumes that for all four regimes, the

neural network approximation di�ers only by a multiplicative constant.

Assuming

gi(t) = ci=(1 + exp(�ait� bi)); (42)

then the �nal formulation (41) is:

nn(t)� nn(x) (43)

where nn(t) is a neural network with 3 hidden layers.

Assuming 4 time transitions, our neural network model is given by:

(t; x)! nn(t)� nn(x) (44)

with

nn(t) : t! 1 +

3X
i=1

ci

1 + e�ait�bi
(45)

nn(x) : x! Æ +

HX
i=1


i

1 + e��it��i
: (46)

The function nn(t) will be denoted as the t-network while the function

nn(x) will be called the x-network.

The number of hidden layer cells H in the x-network nn(x) has to be

de�ned. The input variable x will be (again) the data series LHUR(�1)
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Figure 12. Estimated data of model nn(t) � nn(x), with H = 3, and actual data

(dots)

while t will be a time-index series f1; 2; � � � g. We report on the results

for H = 3 and H = 1. Networks with more hidden layer cells didn't

give other results.

Results on H = 3.

Statistical values: MUSSR = 0:002, R2 = 0:96.

In �gure (12) the estimated- and actual data are shown.

The performance is much better (as expected) then the foregoing net-

work approximation.

In order to �nd out how the time-network performs and whether an

elementary "Phillips-curve" is found by this model, the outputs of

the t-network nn(t) and x-network nn(x) are graphed separately; see

�gure (13).

It seems that the x-network has indeed found some basic Phillips-curve

structure. However, the t-network shows only three levels. Looking at

the output of each hidden layer cell of the t-network nn(t) separately

reveals the same: hidden cells 1 and 2 will generate 3 levels while hidden

cell 3 is almost linear in time; see �gure (14)(the almost 
at zero line

is the �gures is the graph of actual data).
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Figure 13. Output of nn(t) (left) and nn(x) (right) compared to actual data (dots)
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Figure 14. Output of hidden layer cells of nn(t)

So (at least) one transition is missing. But the x-network nn(x) in-

dicates that there is also a level transition; such a level transition is

made up by two hidden cells with almost equal but reverse in sign

output level. So a x-network with only one hidden cell is tried out.

Results on H = 1.

Statistical values: MUSSR = 0:0023, R2 = 0:93.

In �gure (15) the estimated- and actual data are shown.

The output of the t-network nn(t) and x-network nn(x) show the three

transitions and in case of the x-network, a smooth "Phillips-curve"; see

�gure (16).
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Figure 15. Estimated data of model nn(t)� nn(x), with H = 1, and actual data
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Figure 16. Output of nn(t) (left) and nn(x) (right) compared to actual data

It seems that the x-network has indeed found (again) some basic Phillips-

curve structure and now the time-network nn(t) generates indeed four

levels. Approximately, those time transitions occur at ti = �bi=ai. In

this case the transitions take place at:

t1 = 171:93 � April 1974

t2 = 300:81 � February 1982

t3 = 425:13 � June 1995

(47)

The date t1 corresponds more or less to the �rst oil crises, date t2
corresponds to a business cycle slowdown in the US economy while the

third date t3 coincides with the beginning of a period of low in
ation

and low unemployment.
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Figure 17. Output of hidden layer cells of nn(t)

Looking at the output of each hidden layer cell of the t-network nn(t)

separately reveals the same; see �gure (17).

5. Conclusion

In this paper we gave a brief exposition of neural networks and their


exibility in handling complex patterns in economic data. A descriptive

method to prune the size of neural nets in order to avoid over�tting is

summarized. It it shown how a neural network is used to recover the

dynamic properties of a nonlinear system, in particular, its stability by

making use of the Lyapunov exponent. A two-stage network has been

introduced where the usual nonlinear model is combined with time

transitions, which may be handled by neural networks. The empirical

examples on nonlinear trends in real exchange rates and a time-varying

Philips curve using US data indicate the applicability of the proposed

procedures. Further research is needed to allow for more than one out-

put and it is a challenge for neural network analysis to recover common

nonlinear trends in multivariate nonlinear systems.
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