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Abstract

We propose a natural conjugate prior for the instrumental variables regression model.
The prior is a natural conjugate one since the marginal prior and posterior of the structural
parameter have the same functional expressions which directly reveal the update from prior
to posterior. The Jeffreys prior results from a specific setting of the prior parameters and
results in a marginal posterior of the structural parameter that has an identical functional
form as the sampling density of the limited information maximum likelihood estimator. We
construct informative priors for the Angrist-Krueger (1991) data and show that the marginal
posterior of the return on education in the US coincides with the marginal posterior from
the Southern region when we use the Jeffreys prior. This result occurs since the instruments
are the strongest in the Southern region and the posterior using the Jeffreys prior, identical
to maximum likelihood, focusses on the strongest available instruments. We construct in-
formative priors for the other regions that make their posteriors of the return on education
similar to that of the US and the Southern region. These priors show the amount of prior
information needed to obtain comparable results for all regions.

1 Introduction

Endogeneity is a fundamental property of many economic series which explains the long tra-
dition of analysing the instrumental variables (IV) regression model. The founding articles on
the econometric analysis of the IV regression model therefore belong to some of the earliest
contributions to the econometrics literature. Given the prevalence of maximum likelihood in
the statistics literature in the nineteen thirties and forties, maximum likelihood was the first
inferential procedure that was developed for a statistical analysis of the IV regression model, see
Anderson and Rubin (1949) and Hood and Koopmans (1953). Later Theil (1953) and Basmann
(1957) added two stage least squares (2SLS) as another inferential procedure for the IV regres-
sion model. The initial contributions to the literature on Bayesian analysis of the IV regression
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model considerably lagged the previously referred to classical ones. Drèze (1976) initialised the
Bayesian analysis of the IV regression model. For a long time, the literature on Bayesian analysis
of the IV regression model was primarily concerned with the numerical computation of integrals,
see e.g. Kloek and van Dijk (1978), Bauwens (1984), Steel (1991), Geweke (1996) and Bauwens
and van Dijk (1989). Inspired by the resurgence of the discussion about classical inference in
the IV regression model due to the appearance of ‘weak instruments’, see e.g. Nelson and Startz
(1990) and Staiger and Stock (1997), a further development of the Bayesian analysis of the IV
regression model studied identification and prior specification. Because the priors specified in
the earlier Bayesian literature did not incorporate the local non-identification of the structural
parameter, pathologies in the resulting marginal posteriors arise, see e.g. Kleibergen and van Dijk
(1998) and Chao and Phillips (1998). This is not the only peculiar property of these marginal
posteriors since the tails of the posterior of the structural parameter also become thinner when
(possibly superfluous) instruments are added to the model, see e.g. Maddala (1976) and Kleiber-
gen and Zivot (2003). These properties made Kleibergen and Zivot (2003) conclude that the
earlier Bayesian analyses of the IV regression model had more in common with 2SLS than with
limited information maximum likelihood (LIML). Thus Kleibergen and Zivot (2003) state that
the Jeffreys prior is the Bayesian counterpart of LIML since it leads to a marginal posterior of
the structural parameters that has the same functional expression as the sampling density of the
LIML estimator.

Drèze and Richard (1983) construct a class of informative priors for usage in the IV regression
model. These priors are based on Drèze (1976) and thus also lead to the previously mentioned
pathologies in the marginal posteriors. We therefore propose a class of natural conjugate priors
that lead to the Jeffreys prior for a specific setting of the prior parameters. The priors are
based on the property of the IV regression model that it results from a reduced rank restriction
on the parameter matrix of the encompassing unrestricted reduced form. We specify a natural
conjugate prior on the parameters of the unrestricted reduced form and impose rank reduction
on its parameter matrix. The rank reduction restriction satisfies an invariance principle to avoid
statistical paradoxes, see Kleibergen (2004). A straightforward algorithm allows us to compute
the resulting marginal prior for the structural parameter in the common case of one endogenous
variables. By computing the marginal prior of the structural parameter, we can specify the prior
parameters in such a manner that they adequately reflect our a priori information. The same
algorithm can be used to compute the marginal posterior of the structural parameter since it has
the same functional form as the prior. Hence, the appellation of the prior as a natural conjugate
one. The functional expressions of the marginal prior and posterior of the structural parameters
also directly reveal the update from prior to posterior.

We use our natural conjugate priors to analyse the data from Angrist and Krueger (1991). For
a specific setting of the model used by Angrist and Krueger (1991) that uses both the interactions
of year-of-birth and quarter-of-birth and state-of-birth and quarter-of-birth as instruments, we
show that the posterior results on the return to education using the Jeffreys prior for the US
are completely determined by those from the Southern region. The marginal posterior of the
return on education in the US is almost an overlay of the marginal posterior in the Southern
region when we use the Jeffreys prior. This results since the Jeffreys prior, identical to LIML,
focusses on the strongest available instruments. The marginal posteriors for the others regions,
the Northeast, Midwest and West, are rather distinct from that of the South and have little with
it in common. We therefore compute the natural conjugate prior needed for the other regions to
make their posteriors coincide with that from the South which turn out to be rather informative.

The paper is organised as follows. In the second section, we briefly discuss the IV regression
model. The third section discusses the priors advocated by Drèze (1976) and the Jeffreys prior.
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The fourth section discusses the natural conjugate prior for the IV regression model. It first
briefly discusses the natural conjugate prior for the linear regression model and then proceeds
with discussing the reduced rank restriction, the construction of the (marginal) prior and an
algorithm to compute the marginal prior of the structural parameter. The fifth section updates
the prior with the likelihood to obtain the posterior. The sixth section applies the natural
conjugate priors to the Angrist and Krueger (1991) data. Finally, the seventh section concludes.

Throughout the paper we use the notation: vec(A) for the column vectorization of the n×m
matrix A such that for A = (a1 · · · am), vec(A) = (a′1 · · · a

′
m)′, Im is the m × m identity matrix,

PX = X(X ′X)−1X ′ and MX = In −PX for a full rank n×m dimensional matrix X, E(.) is the
expectation operator.

2 Instrumental Variables Regression Model

The structural form (SF) of the linear IV regression model can be represented as a limited
information simultaneous equations model, see e.g. Hausman (1983),

y = Xβ + ε
X = ZΠ + V.

(1)

The T × 1 vector y contains observations on the endogenous variable that is to be explained
by the IV model; the T × m matrix X = (X1 . . . Xm) contains the explanatory endogenous
variables; Z is a T × k matrix of instruments. The T × 1 vector ε consists of structural errors
and V = (V1 . . . Vm) is a T × m matrix of reduced form errors with k ≥ m. The m × 1 vector β
contains the structural parameters of interest. The k × m matrix Π contains the reduced form
parameters. The variables y, X and Z could be residuals from an initial regression on a T × kW

matrix of exogenous variables W in which case (1) results from an extended model that has the
exogenous variables W included in all equations. The matrix Z is assumed to be of full column
rank. When we substitute the equation of X into the equation of y, we obtain the restricted
reduced form (RRF) of the IV regression model,

(y : X) = ZΠ(β : Im) + (u : V ), (2)

with u = ε + V β, which is nested in the unrestricted reduced form (URF),

(y : X) = Z(π : Π) + (u : V ), (3)

with π : k × 1. The unrestricted reduced form (3) equals the restricted reduced form (2) when
π = Πβ.

We make an exact distributional assumption with respect to the disturbances u and V of the
reduced form of the linear IV model: we assume that the disturbances u and V are jointly normal
distributed with mean zero and T (m + 1) × T (m + 1) dimensional covariance matrix (Ω ⊗ IT )
where Ω : (m + 1) × (m + 1) :

(

u
vec(V )

)

∼ N(0, Ω ⊗ IT ). (4)

The exact distributional assumption implies that the structural form disturbances ε and V are
distributed as

(

ε
vec(V )

)

∼ N(0, Σ ⊗ IT ), (5)

with Σ =

(

1
−β

... 0
Im

)′

Ω

(

1
−β

... 0
Im

)

=

(

σ11

σ21

... σ12

Σ22

)

, σ11 : 1 × 1, σ12 = σ′
21 : m × 1, Σ22 : m × m.
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3 Two diffuse priors and their corresponding posteriors

3.1 Drèze’s (1976) approach

In one of the earliest Bayesian analyses of the IV regression model, Drèze (1976) specifies the
diffuse prior:

pDrèze
SF (β,Π, Σ) ∝ |Σ|−(k+(m+1)+1)/2 (6)

where the subscript SF denotes that the prior is on the parameters of the structural form. The
primary motivation of Drèze’s approach is that it has an invariance property such that the prior
on the structural form implies the same kind of prior on the parameters of the restricted reduced
form (which is proportional to |Ω|−(k+(m+1)+1)/2).

The marginal posteriors of β and Π resulting from the prior in (6) are:

pDrèze
SF (β|y, X, Z) ∝

(

(y−Xβ)′MZ(y−Xβ)
(y−Xβ)′(y−Xβ)

)T/2
(y − Xβ)′(y − Xβ)−k/2

pDrèze
SF (Π|y, X, Z) ∝ |Π′Z ′MX−ZΠZΠ|−1/2

[

|Π′Z′MXZΠ|
|Π′Z′M(y : X)ZΠ|

](T+k−m)/2

×|(X − ZΠ)′(X − ZΠ)|−(T+k)/2

(7)

where for m = 1 the marginal posterior of Π in (7) can be rewritten as:

pDrèze
SF (Π|y, X, Z) ∝ [(X − ZΠ)′(X − ZΠ)]−(T+k−1)/2

×(Π′Z ′MXZΠ)−1/2
(

Π′Z′MXZΠ
Π′Z′M[y X] ZΠ

)(T+k−1)/2 (8)

The marginal posterior of β in (7) is constructed in e.g. Drèze (1976), Bauwens and van Dijk
(1989) and Zellner et. al. (1988). The marginal posterior of Π is constructed in Kleibergen and
van Dijk (1998). It immediately follows from the marginal posterior of Π in (8) that there is a
non-integrable asymptote at Π = 0 in the case of a just identified model with m = 1 (because
of the term (Π′Z ′MXZΠ)−1/2). This is not the only peculiar property of this posterior: as
mentioned in the introduction, the Drèze approach is sensitive to the ordering of the endogenous
variables, and the tails of the posterior become thinner when (possibly superfluous) instruments
are added to the model, see e.g. Maddala (1976) and Kleibergen and Zivot (2003). The Drèze
approach shares the latter properties with the small sample distribution of the 2SLS estimator
which made Kleibergen and Zivot (2003) conclude that it has more in common with 2SLS than
with LIML.

3.2 Jeffreys prior

Since the prior proposed by Drèze (1976) does not lead to a marginal posterior of β that is similar
to the sampling density of the maximum likelihood estimator, the posteriors that result from
other priors have been analysed to discover such similarities. One such prior is the Jeffreys prior,
the square root of the determinant of the information matrix, which for the structural form of
the IV model (1) is given by, see Appendix A for a derivation of the Jeffreys prior,

pJef
SF (β,Π, Σ) ∝ |Σ|−(m+1)|Π′Z ′ZΠ|

1
2 |Σ22.1|

− 1
2
(k−m) (9)

on the structural form parameters or equivalently

pJef
RRF (β,Π, Ω) ∝ |Ω|−(m+1)|Π′Z ′ZΠ|

1
2 |(β : Im)Ω−1(β : Im)′|

1
2
(k−m) (10)

on the restricted reduced form parameters.
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Intuitively speaking, the term |Π′Z ′ZΠ|1/2 in the prior ‘cancels’ the asymptote at Π = 0
so the posteriors are proper even in case of a just identified model. The |(β : Im)Ω−1(β :

Im)′|
1
2
(k−m) factor in the prior influences the tail behavior of the marginal posterior of β and

makes it independent of the number of instruments such that it has Cauchy type tails.
The primary motivation of the Jeffreys prior is its universal invariance property with respect

to parameter transformations. Kleibergen and Zivot (2003) show that Bayesian analysis using a
Jeffreys prior leads to, when m = 1, a functional expression of the marginal posterior of β that is
identical to the sampling density of the LIML estimator. Chao and Phillips (1998) show the same
when m = 1 and the model is just identified so k = 1. Just like the small sample distribution
of the LIML estimator, the posterior based on the Jeffreys prior is insensitive to the ordering of
the endogenous variables and the posterior retains Cauchy type tails when (possibly irrelevant)
instruments are added.

In the case of the Jeffreys prior with m = 1 and for moderate values of T (T > 20), an

accurate approximation of the marginal posterior of β can be obtained by pJef
RRF (β|Ω = (y :

X)′(y : X)/T, D), where

pJef
RRF (β|Ω, D) ∝ [(β − φ)2ω−1

11.2 + ω−1
22 ]−1

×

[

∑∞
j=0

(

21/2 Γ[(k+2j+1)/2]
j! Γ[(k+2j)/2]

(

BΩ−1Φ̂′Z′ZΦ̂Ω−1B′

2[(β−φ)2ω−1
11.2+ω−1

22 ]

)j
)]

(11)

with φ = ω21/ω22, ω11.2 = ω11 − ω2
21/ω22, Φ̂ = (Z ′Z)−1Z ′(y : X), Ω =

(

ω11

ω21

ω12

ω22

)

, D available

data and B = (β : 1), see Kleibergen and Zivot (2003).1

4 Specification of informative priors

The diffuse prior advocated by Drèze (1976) has been extended to incorporate prior information,
see Drèze and Richard (1983). Drèze and Richard (1983) refer to the resulting class of priors as
extended natural-conjugate priors.

In linear regression models, diffuse priors lead to marginal posteriors of the regression param-
eters that have similar functional expressions as the sampling density of the maximum likelihood
or least squares estimator. The extensions of these diffuse priors that allow for prior information
are typically referred to as natural conjugate priors, see e.g. Zellner (1971). Diffuse priors result
as a specific specification of the parameters of these natural conjugate priors. Natural conjugate
priors allow for incorporating prior information and lead to posteriors that have similar func-
tional expressions as the sampling density of the maximum likelihood estimator albeit that the
parameters of the prior appear in the expressions of these posteriors. The diffuse prior advocated
by Drèze (1976) does not lead to a marginal posterior of β that is similar in functional expres-
sion to the sampling density of the maximum likelihood estimator. Thus the extended natural
conjugate prior of Drèze and Richard (1983), which leads to the diffuse prior of Drèze (1976) for
a specific setting of its parameters, does not lead to such a posterior either. The diffuse prior
advocated by Drèze (1976) is therefore not an appropriate base to specify an informative prior
and such priors will contain the implicit information that is contained by Drèze’s (1976) diffuse
prior, see Kleibergen and Zivot (2003). We therefore construct an informative prior that is based
on the Jeffreys prior (10) since the Jeffreys prior leads to a marginal posterior of β that is similar
in functional expression to the sampling density of the LIML estimator.

1Note: the moment matrix that is substituted for Ω is Ω = (y : X)′(y : X)/T instead of Ω = (y : X)′MZ(y :
X)/T .
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To construct informative priors based on the Jeffreys prior, we first briefly review the natural
conjugate prior for the linear regression model. We then, since it is not directly obvious how to
base an informative prior on the expression of the Jeffreys prior (10), use the property that the
posterior that results from the Jeffreys prior corresponds with the posterior that results from
imposing rank reduction on the t-values of the parameter matrix of the unrestricted reduced form
(3). The informative prior is then based on the parameter matrix of the unrestricted reduced
form and the posterior of the parameters of the IV regression model is obtained from imposing
rank reduction on the matrix of t-values of the unrestricted reduced form parameters.

4.1 Natural Conjugate Prior in the Linear Regression Model

In the linear regression model,
y = Xβ + ε, (12)

with y a T×1 vector of observations on the endogenous variable, X a T×m matrix of explanatory
exogenous variables and ε a T × 1 vector of N(0, σ2IT ) distributed disturbances, a natural
conjugate prior for β and σ2 is specified by, see e.g. Zellner (1971),

pnc
lin(β|σ2) = (2π)−

1
2
m
(

σ2
)− 1

2
k
|A0|

1
2 exp

[

− 1
2σ2 (β − β0)

′A0(β − β0)
]

pnc
lin(σ2) ∝

∣

∣σ2
∣

∣

− 1
2
(µ0+2)

exp
[

−
σ2
0

2σ2

]

,
(13)

with β0 : m × 1 the prior parameter for β, A0 : m × m (σ2 times the inverse of) the prior
covariance matrix for β, σ2

0 (/µ0) the prior parameter for σ2 and µ0 the prior degrees of freedom
parameter. The conditional prior for β given σ2 is N(β0, σ

2A−1
0 ) while the marginal prior for σ2

is an inverted-Wishart, or inverted-gamma-2, density with scale parameter σ2
0 and µ0 degrees of

freedom.
For specific settings of the prior parameters the following standard priors result:

1. Jeffreys prior: A0 = 0, σ2
0 = 0, µ0 = 0:

pJef
lin (β, σ2) ∝

∣

∣σ2
∣

∣

− 1
2
(k+2)

. (14)

2. G-prior: A0 = νX ′X, see Zellner (1971):

pg
lin(β|σ2) = (2π)−

1
2
m
(

σ2
)− 1

2
k
|νX ′X|

1
2 exp

[

− ν
2σ2 (β − β0)

′X ′X(β − β0)
]

. (15)

The priors in (13) are referred to as natural conjugate priors because the posterior has the
same functional expression as the priors in (13):

pnc
lin(β|σ2, D) = (2π)−

1
2
m
(

σ2
)− 1

2
k
|A0|

1
2 exp

[

− 1
2σ2 (β − β̂0)

′A0(β − β̂0)
]

pnc
lin(σ2|D) ∝

∣

∣σ2
∣

∣

− 1
2
(µ0+T+2)

exp
[

−
σ̂2
0

2σ2

]

,
(16)

where A0 = A0 + X ′X, β̂0 = A−1
0 (A0β0 + X ′y) and σ̂2

0 = σ2
0 + y′y − β̂′

0A0β̂0.
When the explanatory variables are pre-determined and the disturbances are independently

normal distributed with mean zero and known variance σ2, the density of the maximum likelihood
or least squares estimator is normal. The sampling density of the maximum likelihood estimator
has therefore a similar functional expression as the posterior of β given σ2 when we use a natural
conjugate prior.
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4.2 Reduced Rank Specification

To be able to construct an informative prior based on the Jeffreys prior (9)-(10), we use that the
Jeffreys prior for the IV regression model can be constructed in an alternative manner. Besides
obtaining the Jeffreys prior as the square root of the determinant of the information matrix, for
the IV regression model it can as well be obtained using the reduced rank restriction which the
restricted reduced form (2), and thus also the structural form (1), imposes on the unrestricted
reduced form (3). This reduced rank restriction results since the rank of the unrestricted reduced
form parameter matrix (π : Π) equals m + 1 while the rank of the restricted reduced form
parameter matrix Π(β : Im) equals m. We therefore let a prior on a k × (m + 1) dimensional
normalized matrix of (t-values of) the unrestricted reduced form parameters induce a prior on
the structural form parameters.2 This unrestricted reduced form parameter matrix is specified
as

Θ = Q(π : Π)W, (17)

where Q and W are k×k and (m+1)× (m+1) dimensional scale matrices. Instead of imposing
the rank reduction directly on (π : Π), we impose it on its normalized specification Θ such that
we obtain certain invariance properties when Q and W are specified appropriately.

To impose the reduced rank restriction on Θ, Θ is specified as a function of the restricted
reduced form parameters (β,Π) and a k−m dimensional vector of parameters λ that reflects the
reduced rank restriction imposed on the unrestricted reduced form, see e.g. Kleibergen (1997),
Kleibergen and van Dijk (1998) and Kleibergen and Paap (2002,2005),

Θ = Q [Π(β : Im) + Π⊥λ(β : Im)⊥] W, (18)

where the 1 × (m + 1) and k × (k − m) dimensional matrices (β : Im)⊥ and Π⊥ are such that

1. (β : Im)⊥WW ′(β : Im)′ ≡ 0, (β : Im)⊥WW ′(β : Im)′⊥ ≡ 1,
2. Π′

⊥Q′QΠ ≡ 0, Π′
⊥Q′QΠ⊥ ≡ Ik−m.

(19)

Theorem 1. There is a one-to-one mapping between Θ and (β,Π, λ).

Proof. see Appendix B.

We specify the prior (and posterior) of (β,Π, Ω) in the restricted reduced form using the
prior (and posterior) of (β,Π, λ, Ω) that results after a transformation of random variables from
Θ to (β,Π, λ). The prior (and posterior) of (β,Π, Ω) in the restricted reduced form then equals
the conditional prior (and posterior) of (β,Π, Ω) given that λ = 0. In order to conduct the
transformation from Θ to (β,Π, λ), we construct the Jacobian of the transformation from Θ to
(β,Π, λ) which we evaluate at zero values of λ.

Theorem 2. The Jacobian of the transformation from Θ to (β,Π, λ) reads at zero values of
λ :

|J(Θ, (Π, β, λ))|λ=0| = |Π′Q′QΠ|
1
2 |(β : Im)WW ′(β : Im)′|

1
2
(k−m) |Q|m|W |m. (20)

Proof. see Appendix C.

2We refer to Kleibergen (2003) for a discussion of the Borel-Kolmogorov paradox that is avoided by our
specification of the induced priors but that is of general concern in the specification of priors as conditional
densities.
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We use the specification of Θ in (18) to obtain a prior on the parameters of the restricted
reduced form. Starting with a prior specified on (π, Π, Ω) in the unrestricted reduced form, the
following scheme shows how we obtain a prior on the parameters of the restricted reduced form:

pURF (π, Π, Ω) = pURF (π, Π|Ω)pURF (Ω)

⇓ Θ results from (17)

pURF (Θ, Ω) = pURF (Θ(π, Π)|Ω)|J((π, Π), Θ)|pURF (Ω)

⇓ (β,Π, λ) result from (18)-(19)

pURF (β,Π, λ, Ω) = pURF (Θ(Π, β, λ)|Ω)|J(Θ, (Π, β, λ))|pURF (Ω)

⇓ RRF = URF with λ = 0

pRRF (β,Π, Ω) ∝ pURF (Π, β, λ,Ω)|λ=0.

By specifying a prior on (π, Π, Ω) in the unrestricted reduced form, the above scheme shows how
we obtain a prior on the parameters of the restricted reduced form. The prior on the parameters
(π, Π, Ω) can, for example, be the Jeffreys prior.

Corollary 1. When we specify a Jeffreys prior on (π, Π, Ω) and Q = (Z ′Z)
1
2 , W = Ω− 1

2 such
that

pURF (π, Π, Ω) ∝ |Ω|−
1
2
(k+m+2) =⇒ pURF (Θ, Ω) ∝ |Ω|−

1
2
(m+2), (21)

the prior on (β,Π, Ω) in the restricted reduced form that it induces is identical to the Jeffreys
prior on (β,Π, Ω) in the restricted reduced form:

pJef
RRF (β,Π, Ω) ∝ pURF (Θ(β,Π, λ)|λ=0, Ω)|J(Θ, (Π, β, λ))|λ=0|

∝ |Ω|−(m+1)|Π′Z ′ZΠ|
1
2 |(β : Im)Ω−1(β : Im)′|

1
2
(k−m).

(22)

The specification of Q and W in Corollary 1 is such that Θ corresponds with the matrix of
t-values of (π : Π). Corollary 1 thus shows that the Jeffreys prior results from imposing rank
reduction on the t-values of the unrestricted reduced form parameter matrix. This principle can
be extended to obtain priors on the parameters of the restricted reduced form that are induced
by informative priors on the parameters of the unrestricted reduced form.

4.3 Natural Conjugate Priors for the IV regression model

A prior that can be specified on the parameters of the unrestricted reduced form to induce the
prior on the parameters of the restricted reduced form is a natural conjugate prior. By specifying
the prior mean of this model appropriately, we can incorporate prior information that stems from
the IV regression model:

pnc
URF (π, Π|Ω) = (2π)−

1
2
k(m+1)|A0|

1
2
m|Ω|−

1
2
k

exp
[

−1
2tr
{

Ω−1 ((π : Π) − Π0(β0 : Im))′ A0 ((π : Π) − Π0(β0 : Im))
}]

pnc
URF (Ω) ∝ |Ω|−

1
2
(µ0+m+2) exp

[

−1
2tr(Ω−1Ω0)

]

,
(23)

with β0 a m×1 dimensional vector that reflects the prior information on the structural parameter
β, Π0 a k×m dimensional matrix that reflects prior information on the reduced form parameter
Π, A0 a k × k dimensional scale matrix and the (m + 1)× (m + 1) dimensional matrix Ω0 (/µ0)
reflects prior information on the covariance matrix Ω. The parameter µ0 reflects the prior degrees
of freedom.
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The natural conjugate prior on (π, Π, Ω) in (23) is a direct extension of the prior in (13).
It consists of a matrix normal prior on (π, Π) given Ω and an inverted-Wishart prior on Ω,
see e.g. Zellner (1971). Prior information that stems from the IV regression model can be
incorporated through the specification of the prior mean Π0(β0 : Im) and the scale matrix A0.
Prior information on Ω can be reflected using µ0 and Ω0 but is typically of less concern.

Corollary 2. When we specify the natural conjugate prior (23) on (π, Π, Ω) and Q = (A0 +

Z ′Z)
1
2 , W = Ω− 1

2 such that

pnc
URF (π, Π, Ω) =⇒ pnc

URF (Θ|Ω) = (2π)−
1
2
km
∣

∣

∣(A0 + Z ′Z)−
1
2
′A0(A0 + Z ′Z)−

1
2

∣

∣

∣

1
2
m

exp
[

−1
2tr
{

(Θ − Θ0)
′ (A0 + Z ′Z)−

1
2
′A0(A0 + Z ′Z)−

1
2 (Θ − Θ0)

}]

pnc
URF (Ω) ∝ |Ω|−

1
2
(µ0+m+2) exp

[

−1
2tr(Ω−1Ω0)

]

,
(24)

with Θ0 = (A0 + Z ′Z)
1
2 Π0(β0 : Im)Ω− 1

2 . The prior on (β,Π, Ω) in the restricted reduced form
that it induces is such that:

pnc
RRF (β,Π, Ω) ∝ |Π′(A0 + Z ′Z)Π|

1
2 |(β : Im)Ω−1(β : Im)′|

1
2
(k−m) |A0|

1
2
m |Ω|−

1
2
(µ0+2m+2)

exp
[

−1
2tr(Ω−1Ω0) −

1
2tr
{

Ω−1 (Π(β : Im) − Π0(β0 : Im))′ A0

(Π(β : Im) − Π0(β0 : Im))}] .
(25)

The natural conjugate prior on the parameters of the restricted reduced form (25) again
leads, for specific settings of the prior parameters, to the following standard priors:

1. Jeffreys prior: A0 = 0, Ω0 = 0, µ0 = 0:

pJef
RRF (β,Π, Ω) ∝ |Π′Z ′ZΠ|

1
2 |(β : Im)Ω−1(β : Im)′|

1
2
(k−m)|Ω|−(m+1). (26)

2. G-prior: A0 = νZ ′Z:

pg
RRF (β,Π, Ω) ∝ |Π′Z ′ZΠ|

1
2 |(β : Im)Ω−1(β : Im)′|

1
2
(k−m) |ν(1 + ν)|

1
2
m |Ω|−

1
2
(µ0+2m+2)

exp
[

−1
2tr(Ω−1Ω0) −

1
2tr
{

νΩ−1 (Π(β : Im) − Π0(β0 : Im))′

Z ′Z (Π(β : Im) − Π0(β0 : Im))}] .
(27)

The specification of the G-prior in (27) is an appealing one since we typically have little prior
insight into the specification of the covariance structure. The G-prior simplifies the specification
of the covariance structure and takes it from the likelihood. By specifying ν in the G-prior, we
control the weight that is attached to the G-prior compared to the likelihood in the posterior.
Another convenient feature of the G-prior is that it allows for the construction of the marginal
prior of (β,Ω) for some specific settings.

4.3.1 Marginal prior of (β,Ω)

When we use the G-prior (27), we can obtain an analytical expression of the marginal priors of
(β,Ω) in some specific cases. This allows us to obtain further insight into the proposed prior
specification.
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Theorem 3. When Π0 = 0, the marginal prior of (β,Ω) that results from the joint prior on
(β,Π, Ω) (27) is such that

pg
RRF (β,Ω) ∝

∣

∣(β : Im)Ω−1(β : Im)′
∣

∣

− 1
2
(m+1)

|Ω|−
1
2
(µ0+2m+2) exp

[

−1
2tr(Ω−1Ω0)

]

∝ |(β − φ)′Ω22(β − φ) + ω11.2|
− 1

2
(m+1) |Ω|−

1
2
(µ0+2m+2) exp

[

−1
2tr(Ω−1Ω0)

]

,
(28)

where φ = Ω−1
22 ω21.

Proof. see Appendix D.

Theorem 3 shows that the marginal prior for β given Ω corresponds with a Cauchy prior
when Π0 = 0 and we use the G-prior (27). In another reduced rank regression model, the error
correction cointegration model, Villani (2005) proposes a Cauchy prior on the parameters of the
cointegrating vector. Reasoning from the perspective of the algebraic structure of the reduced
rank regression model, the parameters of the cointegrating vector correspond with the structural
parameter β in the IV regression model. Theorem 3 shows that the G-prior specification can
lead to marginal priors that are similar to those suggested by Villani (2005) in another reduced
rank regression model. The proposed G-prior specification thus allows for marginal priors of
(β,Ω) that are similar to those proposed by Villani (2005) for the cointegration model but also
incorporate the implicit linkage between β and Π, i.e. that β is not identified when Π = 0, that
is not captured by the prior proposed by Villani (2005).

When m = 1, we can also construct the marginal prior of (β,Ω) for non-zero values of Π0.

Theorem 4. When m=1, the marginal prior of (β,Ω) that results from the joint prior on
(β,Π, Ω) (27) is such that

pg
RRF (β,Ω) = pg

RRF (β|Ω)qg
RRF (Ω), (29)

with

pg
RRF (β|Ω) ∝

∣

∣(β : Im)Ω−1(β : Im)′
∣

∣

− 1
2
(m+1)

∑∞
j=0

(

1
2

ν((β : Im)Ω−1(β0 : Im)′)
2
Π′

0Z′ZΠ0

(β : Im)Ω−1(β : Im)′

)j

2
1
2

Γ( 1
2
(k+2j+1))

Γ( 1
2
(k+2j))j!

qg
RRF (Ω) ∝ |Ω|−

1
2
(µ0+2m+2) exp

[

−1
2tr
{

Ω−1 (Ω0 + ν(β0 : Im)′Π′
0Z

′ZΠ0(β0 : Im))
}]

.

(30)

where qg
RRF (Ω) is not the marginal prior of Ω.3

Proof. see Appendix E.

The marginal prior that results from Theorem 4 is identical to that from Theorem 3 when
Π0 = 0. The analytical expression of the marginal prior of (β,Ω) in Theorem 4 suggests a
straightforward algorithm to compute the marginal prior of β :

1. Specify a grid of values of β : β1 . . . βL.

2. Generate N values of Ωi, i = 1, . . . , N from an inverted-Wishart distribution with scale
matrix Ω0 + ν(β0 : Im)′Π′

0Z
′ZΠ0(β0 : Im) and µ0 + m + 1 degrees of freedom.

3. Compute: pg
RRF (βj |Ω) = 1

N

∑N
i=1 pg

RRF (βj |Ωi) for j = 1, . . . , L.

3The specification of pg

RRF (β, Ω) as equal to pg

RRF (β|Ω)qg

RRF (Ω) is just used to obtain a straightforward algo-
rithm to compute the marginal prior of β and does not imply that qg

RRF (Ω) is the marginal prior of Ω.
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4. Compute the marginal prior of β : pg
RRF (βj) = 1

cp
g
RRF (βj |Ω), for j = 1, . . . , L with c =

∑L
i=1(β

i+1 − βi)pg
RRF (βi|Ω).

The marginal prior of (β,Ω) in Theorem 4 has Cauchy tails so it has no finite moments. We
therefore have to be careful when we use the above algorithm to compute such ‘prior moments’.

The G-prior in (27) provides an indirect manner of specifying the marginal prior on β since
it only gives the specification of the joint prior of (β,Π, Ω). It is therefore not directly obvious
how the specification of the prior parameters Π0, β0, ν, Ω0 and µ0 affects the marginal prior
of β. The above algorithm computes the marginal prior of β and thus allows us to verify if the
specified prior parameters reflect our prior knowledge on β in an adequate manner.

Since for m = 1

(β : Im)Ω−1(β0 : Im)′ = (β − φ)′ω−1
11.2(β0 − φ) + Ω−1

22

= (Ω22(β − φ)′ω−1
11.2(β0 − φ) + 1)Ω−1

22 ,

(β : Im)Ω−1(β : Im)′ = (Ω22(β − φ)′ω−1
11.2(β − φ) + 1)Ω−1

22 ,

(31)

the conditional prior of β given Ω can also be expressed as

pg
RRF (β|Ω) ∝

∣

∣Ω22(β − φ)′ω−1
11.2(β − φ) + 1

∣

∣

− 1
2
(m+1)

|Ω22|
1
2
(m+1)

∑∞
j=0

(

1
2
((Ω22(β−φ)′ω−1

11.2(β0−φ)+1))
2

(Ω22(β−φ)′ω−1
11.2(β−φ)+1)

νΩ−1
22 Π′

0Z
′ZΠ0

)j

2
1
2

Γ( 1
2
(k+2j+1))

Γ( 1
2
(k+2j))j!

,
(32)

which shows that the conditional prior of β given Ω crucially depends on νΩ−1
22 Π′

0Z
′ZΠ0. This

parameter is therefore analogous to the concentration parameter in the sampling density of the
maximum likelihood estimator, see e.g. Phillips (1983). The prior specification of νΩ−1

22 Π′
0Z

′ZΠ0

thus reflect our prior ideas about the identification of β. The |Ω22|
1
2
(m+1) element in (32) and the

specification of qg
RRF (Ω) in (30) indicate that the marginal prior of Ω22 can be approximated by an

inverted-Wishart distribution with scale parameter Ω0,22+νΠ′
0Z

′ZΠ0, when Ω0 =

(

Ω0,11

Ω0,21

...Ω0,12

Ω0,22

)

,

and µ0 degrees of freedom. The prior distribution of Ω−1
22 is then approximately a Wishart

distribution with mean µ0(Ω0,22 + νΠ′
0Z

′ZΠ0)
−1 so the prior concentration parameter equals

Prior concentration parameter =
νΠ′

0Z′ZΠ0

Ω0,22/µ0+νΠ′
0Z′ZΠ0/µ0

. (33)

The value of this prior concentration parameter reflects our prior information regarding the
identification of β. We note that the prior mean of Ω22 equals approximately Ω0,22/µ0; the prior
concentration parameter reduces to ν(Ω0,22/µ0)

−1Π′
0Z

′ZΠ0 when µ0 becomes large.
The Jeffreys prior corresponds with ν = 0, Ω0 = 0 and µ0 = 0 and is thus a specific setting

of the prior parameters of the G-prior (27). The Jeffreys prior is, however, an improper prior so
we can not construct the marginal prior of (β,Ω) that it implies.

5 Posteriors

The assumption of independent normal disturbances implies that the posterior results from the
natural conjugate prior (23) in a straightforward manner.
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Corollary 3. When we specify the natural conjugate prior (23) on (π, Π, Ω), the posterior of
(β,Π, Ω) reads

pnc
RRF (β,Π, Ω|D) ∝ |Π′A0Π|

1
2 |(β : Im)Ω−1(β : Im)′|

1
2
(k−m) |A0|

1
2
m |Ω|−

1
2
(T+µ0+2m+2)

exp
[

−1
2tr
{

Ω−1
(

Ω0 + (y : X)′(y : X) − Θ̂′
0A

−1
0 Θ̂0

)}

−1
2tr

{

Ω−1
(

Π(β : Im) − Θ̂0

)′
A0

(

Π(β : Im) − Θ̂0

)

}]

.

(34)

with A0 = A0 + Z ′Z, Θ̂0 = A−1
0 (Z ′(y : X) + Π0(β0 : Im)).

For the previously discussed standard specifications of the prior parameters, the posteriors
that result are:

1. Jeffreys prior: A0 = 0, Ω0 = 0, µ0 = 0:

pJef
RRF (β,Π, Ω|D) ∝ |Π′Z ′ZΠ|

1
2 |(β : Im)Ω−1(β : Im)′|

1
2
(k−m)|Ω|−

1
2
(T+2m+2)

exp
[

−1
2tr
{

(Ω−1 (Ω0 + (y : X)′MZ(y : X))
}

−1
2tr

{

Ω−1
(

Π(β : Im) − Φ̂
)′

Z ′Z
(

Π(β : Im) − Φ̂
)

}]

,

(35)

with Φ̂ = (Z ′Z)−1Z ′(y : X).

2. G-prior: A0 = νZ ′Z:

pg
RRF (β,Π, Ω) ∝ |Π′Z ′ZΠ|

1
2 |(β : Im)Ω−1(β : Im)′|

1
2
(k−m) |ν(1 + ν)|

1
2
m |Ω|−

1
2
(T+µ0+2m+2)

exp
[

−1
2tr
{

Ω−1
[

Ω0 + (y : X)′(y : X) − (1 + ν)Φ̂′
0Z

′ZΦ̂0

]}

−1
2tr

{

(1 + ν)Ω−1
(

Π(β : Im) − Φ̂0

)′
Z ′Z

(

Π(β : Im) − Φ̂0

)

}]

,

(36)

with Φ̂0 = (Z ′Z)−1
[

1
1+ν Z ′(y : X) + ν

1+ν Π0(β0 : Im)
]

.

Both of these specifications of the prior parameters lead to analytical expressions of the
marginal posterior of (β,Ω) when m = 1.

Theorem 5. When m = 1, the marginal posterior of (β,Ω) reads:

1. Jeffreys prior:
pJef

RRF (β,Ω|D) = pJef
RRF (β|Ω, D)qJef

RRF (Ω|D), (37)

with

pJef
RRF (β|Ω, D) ∝

∣

∣(β : Im)Ω−1(β : Im)′
∣

∣

− 1
2
(m+1)

∑∞
j=0 2

1
2

Γ( 1
2
(k+2j+1))

j!Γ( 1
2
(k+2j))

[

(β : 1)Ω−1(y : X)′PZ(y : X)Ω−1(β : 1)′

2(β : Im)Ω−1(β : Im)′

]j

qJef
RRF (Ω|D) ∝ |Ω|−

1
2
(T+m+1) exp

[

−1
2tr
{

Ω−1(y : X)′(y : X)
}]

.

(38)

2. G-prior:
pg

RRF (β,Ω|D) = pg
RRF (β|Ω, D)qg

RRF (Ω|D), (39)
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with

pg
RRF (β|Ω, D) ∝

∣

∣(β : Im)Ω−1(β : Im)′
∣

∣

− 1
2
(m+1)

∑∞
j=0

(

1
2ζ
)j

2
1
2

Γ( 1
2
(k+2j+1))

Γ( 1
2
(k+2j))j!

qg
RRF (Ω|D) ∝ |Ω|−

1
2
(T+µ0+2m+1)

exp
[

−1
2tr
{

Ω−1 [Ω0 + (y : X)′(y : X) + ν(β0 : Im)′Π′
0Z

′ZΠ0(β0 : Im)]
}]

,
(40)

and ζ = (1 + ν)(β : Im)Ω−1(β : Im)′Π̄′Z ′ZΠ̄ and

Π̄ =
[

1
1+ν (Z ′Z)−1Z ′(y : X) + ν

1+ν Π0(β0 : Im)
]

Ω−1(β : Im)′
[

(β : Im)Ω−1(β : Im)′
]−1

.

Proof. see Appendix F and Kleibergen and Zivot (2003) for the Jeffreys prior case.

The marginal posterior in Theorem 5 that results from the G-prior simplifies to the marginal
posterior for the Jeffreys prior when ν = µ0 = 0 and Ω0 = 0. The marginal posterior for the
Cauchy prior on β (28) also results from the expression of the marginal posterior from the G-prior
when Π0 = 0. Identical to the marginal prior of (β,Ω), the marginal posterior has Cauchy tails
so no finite posterior moments exist.

The algorithm for computing the marginal prior of β from the previous section can be used
to compute the marginal posterior of β that results from the G-prior:

1. Specify a grid of values of β : β1 . . . βL.

2. Generate N values of Ωi, i = 1, . . . , N from an inverted-Wishart distribution with scale
matrix Ω0 + (y : X)′(y : X) + ν(β0 : Im)′Π′

0Z
′ZΠ0(β0 : Im) and T + µ0 + m + 1 degrees of

freedom.

3. Compute: pg
RRF (βj |Ω, D) = 1

N

∑N
i=1 pg

RRF (βj |Ωi, D) for j = 1, . . . , L.

4. Compute the marginal prior of β : pg
RRF (βj |D) = 1

cp
g
RRF (βj |Ω, D), for j = 1, . . . , L with

c =
∑L

i=1(β
i+1 − βi)pg

RRF (βi|Ω, D).

Using the appropriate values of the prior parameters, the above algorithm can as well be used
to compute the marginal posterior of β that results from the Jeffreys and Cauchy priors. The
inverted-Wishart distribution from step 2 of the above algorithm collapses to a point mass at
Ω̄ = 1

T [Ω0 + (y : X)′(y : X)+ ν(β0 : Im)′Π′
0Z

′ZΠ0(β0 : Im)] for moderate values of T (T > 20).
The marginal posterior of β can therefore be computed directly in these cases:

pg
RRF (β|D) = pg

RRF (β|Ω = Ω̄, D). (41)

The expression of the marginal posterior in Theorem 5 shows that the proposed prior speci-
fication updates the prior towards the posterior in an identical manner as the natural conjugate
prior in the linear regression model. When we use the G-prior specification in the linear regres-
sion model, the specification of the posterior in (16) is such that β̂0 = 1

1+ν (X ′X)−1X ′y + ν
1+ν β0

and A0 = (1 + ν)X ′X. For large values of ν, the posterior is therefore identical to the prior
while the posterior is identical to the posterior that results from the Jeffreys prior for small
values of ν. The same reasoning applies to the posterior from Theorem 5. For large values of ν,

ζ ≈ ν
((β : Im)Ω−1(β0 : Im)′)

2
Π′

0Z′ZΠ0

(β : Im)Ω−1(β : Im)′
such that the posterior is identical to the prior while for small

values of ν, ζ ≈ (β : 1)Ω−1(y : X)′PZ(y : X)Ω−1(β : 1)′

(β : Im)Ω−1(β : Im)′
and the posterior is identical to the posterior
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that results from the Jeffreys prior for small values of ν. The update from prior to posterior is
therefore identical to that for the natural conjugate prior in the linear regression model which
explains why we refer to the proposed priors as natural conjugate priors for the IV regression
model.

For computation of the marginal posteriors (and priors) when m exceeds one, we have to use
the posterior simulators advocated in Kleibergen and van Dijk (1998) and Kleibergen and Paap
(2002).

6 Angrist and Krueger (1991) Return on Education

6.1 Data and model

We illustrate the prior specification framework using data from Angrist and Krueger (1991).
Angrist and Krueger (1991) analyse the return on education by regressing the (logarithm of)
income on the education spell and some additional control variables. Because of the endogeneity
of both the education spell and income, Angrist and Krueger use instruments that are obtained
from the quarter of birth. It is hard to find instruments that are correlated with education
but uncorrelated with unobserved ‘ability’ which explains both the education spell and income.
Estimating the return on education is therefore a non-trivial matter. The instruments that
are based on the quarter of birth exploit that students born in different quarters have different
average education spells. This results since most school districts require students to have turned
age six by January 1 of the year they enter school and compulsory schooling laws compel students
to remain at school until their sixteenth, seventeenth or eighteenth birthday. This asymmetry
between school-entry requirements and compulsory schooling laws compels students born in
certain months to attend school longer than students born in other months: students born earlier
in the year enter school at an older age and reach the legal dropout age after less education.
Hence, for students who leave school as soon as the schooling laws allow for it, those born in
the first quarter have on average attended school for three quarters less than those born in the
fourth quarter.

For quarter of birth to be a valid instrument it should only influence income through its effect
on education. This is a plausible assumption, as one’s birthday is unlikely to be correlated with
personal attributes other than age at school entry. Moreover, Angrist and Krueger (1991) do
not find evidence of an effect of quarter of birth on the education spell for college graduates.
Compulsory schooling laws do not compel persons to attend school beyond high school, so if such
evidence were found it would mean that there were also different reasons (like characteristics of
one’s family or personal attributes such as intelligence or ‘ability’ in general) causing an effect of
quarter of birth on education, and probably also a direct effect of quarter of birth on income. The
fact that no such evidence was found strengthens the idea that quarter of birth only influences
education through the compulsory school attendance, and has no direct influence on income.

The strength of these instruments clearly depends on the fraction of students that immediately
leave school when it is permitted. This is, however, only a small part of the total population
of students since most students do not immediately leave school when it is allowed and some
leave school before they attain the legal dropout age. Angrist and Krueger (1991) mention several
factors that influence the size of the latter group. Compulsory schooling laws allow certain officers
to take children into custody and/or punish a child’s parents if a child does not attend school;
and child labor laws restrict or prohibit children of compulsory school age from participating
in the work force, the main alternative to attending school. There are, however, exemptions
to compulsory schooling laws: students are exempt from compulsory school attendance if they
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have a high school degree; and in many states there are exemptions for children suffering from
physical or mental disabilities, or if they live far from school.

Alongside that the quarter of birth only affects the education spell for a small fraction of
the student population, its influence is also limited since it only implies a maximum difference
of one year over the different quarters which is small compared to the overall variation in the
education spell. Quarter of birth is therefore expected to be a weak instrument. Bound, Jaeger
and Baker (1995), for example, show that randomly generated instruments, designed to match
the data of Angrist and Krueger (1991), yield results remarkably similar to those based on the
actual instruments. Staiger and Stock (1997) also show that inference on the return on education
is strongly affected by the weakness of the quarter of birth instruments. Hence, although the
quarter of birth seems a plausible source for constructing instruments, we should be careful with
interpreting the results because of the weakness of the instruments.

We use a subset of the data used by Angrist and Krueger (1991): a data set on (the logarithm
of) income, education spell and state/quarter/year of birth consisting of 329,509 men born in
the USA in the years 1930-1939.4 We use the following model:

ỹi = x̃iβ +
∑9

j=1 Dy
j,i δy

j +
∑S−1

t=1 Ds
t,i δs

t + π1 + ε̃i i = 1, . . . , T (42)

x̃i =
∑9

j=1 Dy
j,iγ

y
j +

∑S−1
t=1 Ds

t,iγ
s
t + π2

+
∑S

t=1

∑4
h=2 Ds

t,iD
q
h,i πsq

th +
∑9

j=1

∑4
h=2 Dy

j,iD
q
h,i πyq

jh + ṽi
(43)

where ỹi is the logarithm of the weekly wage of person i in 1979, x̃i is the number of completed
years of education by person i, i.e. the education spell, and the parameter of interest is the return
on education β. The dummy variables Ds

t,i, Dy
j,i, Dq

h,i are equal to 1 if individual i was born in
state t, year 1930+ j, quarter h, and equal to 0 otherwise, respectively. S is the number of states
of birth, i.e. S = 51 (including the District of Columbia) if we use all states. We however also
consider four subsamples for which we divide the US into four regions that are also used by the
US Census Bureau. The states and numbers of observations in each region are given by Table 1.
The coefficients π1 and π2 are the constant terms; ε̃i and ṽi are disturbances that are assumed
to be jointly normal distributed and independent across individuals.

Table 1: US Census Bureau Regions

Census number of number of
region observations states states

1. Northeast 84484 9 Connecticut, Maine, Massachusetts, New Hampshire, New Jersey,
New York, Pennsylvania, Rhode Island, Vermont.

2. Midwest 102267 12 Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri,
Nebraska, North Dakota, Ohio, South Dakota, Wisconsin.

3. South 114391 17 Alabama, Arkansas, Delaware, D.C., Florida, Georgia, Kentucky,
Louisiana, Maryland, Mississippi, North Carolina, Oklahoma,
South Carolina, Tennessee, Texas, Virginia, West Virginia.

4. West 28367 13 Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana,
Nevada, New Mexico, Oregon, Utah, Washington, Wyoming.

USA 329509 51

The state and year dummies Ds
t,i and Dy

j,i are included in both equations since state and year
of birth both influence the education spell and income. The year dummies in the wage equation
(42) incorporate the effect of age (measured in years) on income.5

4The source of the data is the 1980 Census, 5 percent Public Use Sample.
5Angrist and Krueger (1991) also investigate a model with age measured in quarters of years (and its squared

value) included in both equations; our results are similar for the model with or without these two age terms.
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Table 2: Summary statistics of education and wage per region

Census number of education log weekly wage
region observations average st.dev. % ≤ 9 % ≤ 10 average st.dev.

1. Northeast 84484 13.27 3.12 9.4% 14.2% 5.96 0.65
2. Midwest 102267 13.06 2.99 10.0% 14.6% 5.97 0.66
3. South 114391 11.93 3.52 22.0% 28.0% 5.77 0.71
4. West 28367 13.63 3.01 6.5% 10.1% 6.00 0.65

USA 329509 12.77 3.28 13.7% 18.7% 5.90 0.68

The exogenous variables that are excluded from the wage equation (42) are the interactions
of state and quarter of birth dummies, and interactions of year and quarter of birth dummies.
The interacted state and quarter of birth dummies reflect that the influence of the quarter of
birth on education may differ between states which results since compulsory education laws differ
between states. The legal dropout age varies between 16, 17 and 18 years and in some states
students have to finish the school term. The rules concerning exemptions from the compulsory
school attendance vary as well across states. The average number of years of education that
students desire also differs between states; the more years of education that students on average
want to attend, the smaller the fraction of students that leave school as soon as the law allows
it, and the smaller the coefficients at the interacted state and quarter of birth dummies.

The interacted year and quarter of birth dummies reflect that the influence of the quarter of
birth on education may change over time. For example, the average number of years of education
that students desire may change over time. This explains why the average number of years of
education has increased from 1930 to 1939.6

Model (42)-(43) reads in matrix notation:

ỹ = WΠ1 + X̃β + ε̃ (44)

X̃ = WΠ2 + Z̃Π + Ṽ (45)

where ỹ = (ỹ1, . . . , ỹT )′, X̃ = (x̃1, . . . , x̃T )′, ε̃ = (ε̃1, . . . , ε̃T )′, Ṽ = (ṽ1, . . . , ṽT )′; W is the
T × (S + 9) matrix of year and state of birth dummies and a constant term with rows Wi =
(Dy

1i, . . . , D
y
9i, D

s
1i, . . . , D

s
S−1,i, 1), Z̃ is the T ×3(S +9) matrix with rows Zi containing the state-

and-quarter of birth and year-and-quarter of birth interactions Ds
tiD

q
hi, Dy

jiD
q
hi (t = 1, . . . , S; h =

2, 3, 4; j = 1, . . . , 9). The parameter vectors are the (S+9)×1 vectors Π1 = (δy
1 , . . . , δy

9 , δs
1, . . . , δ

s
S−1, π1)

′,
Π2 = (γy

1 , . . . , γy
9 , γs

1, . . . , γ
s
S−1, π2)

′ and the 3(S + 9)× 1 vector Π containing the coefficients πsq
th ,

πyq
jh (t = 1, . . . , S; h = 2, 3, 4; j = 1, . . . , 9).

We respecify (44)-(45) as:

y = Xβ + ε (46)

X = ZΠ + V (47)

where y, X, Z (and the error terms ε, V ) contain the residuals of ỹ, X̃, Z̃ (and ε̃, Ṽ ) after
regression on W ; that is, the observations are ‘corrected’ for differences in mean across years and
states.

6Angrist and Krueger (1991) conclude that as average income in 1979 is approximately equal across birth years
1930-1939, age has no or little influence on income for men between 40 and 49 years old. However, as the average
education has increased over years of birth 1930-1939, age may very well have a positive effect that is (on average)
compensated by the lower level of education. Note that this does not immediately imply that the variable age
should be included in the model, as the year dummies already incorporate the effect of age (measured in years).
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The 2SLS estimate of β in the above model for all regions of the US is 0.0928 (with an
asymptotic standard error of 0.0093), see Angrist and Krueger (1991), column (2) of Table VII.

We apply our prior specification framework to the data and model in (46)-(47). First the
results from the Jeffreys prior are discussed and afterwards we specify informative priors and
discuss the corresponding results. All posteriors are shown in Panels 1 and 2. Panel 1 contains
five Figures, Figures 1.1-1.5, each of which shows the posteriors of all four regions and the US for
a specific prior. Panel 2 contains five Figures, Figures 2.1-2.5, each of which shows the posteriors
that result from our five different priors for each region and the US.

6.2 Jeffreys prior

The marginal posterior of β (11) that results from the Jeffreys prior, with Ω = (y : X)′(y : X)/T
resulting from the reduced form of (46)-(47), is applied to data of the US as well as the four
Census regions. The marginal posteriors of β are shown in Figure 1.5 in Panel 1.7 The 95%
highest posterior density regions for the Northeast, Midwest and West are rather large and the
only region that yields a tight posterior of β is the South. The posterior that results from all
US data is remarkably similar to the posterior for the South. The small difference between
the posteriors based on all data and only the South, and the large highest posterior density
regions for the other regions reveal that inference on the return to education for the US is almost
completely determined by the returns to education in the South. If the effect of the return on
education is different for the other regions, which can not a priori be ruled out given the large
economic differences between these regions, inference using data of the US is not representative
for the average returns on education across the US. One should thus be careful when drawing
such conclusions.

Quarter of birth is clearly a much weaker instrument for the education spell in the Northeast,
Midwest and West than in the South. One obvious explanation for this is that the average
education spell is lower in the South: the fraction of persons with at most 9 or 10 years of
schooling is much larger than in the rest of the USA, see Table 2. Thus the fraction of students
influenced by compulsory schooling laws is much larger in the South.

The small difference between the marginal posteriors of β for the US and the South reflects
that the Jeffreys prior results from imposing rank reduction on the normalized parameter matrix
Θ which contains the t-values. The “t-values” associated with the weak instruments are close
to zero. When the rank reduction is imposed on Θ, the small elements of Θ, i.e. the small “t-
values”, are associated with the smallest singular value and the eigenvector associated with this
smallest singular value therefore has non-zero elements especially at the positions of the weak
instruments in Z. In the construction of the posterior for (Π, β,Ω) in the restricted reduced
from, the smallest singular value is restricted to zero and its eigenvector is discarded. Hence,
the weak instruments are discarded and the posterior of (Π, β,Ω) only uses strong instruments
when these are present. This explains why the posterior of the US is almost an overlay of the
posterior of the South since the instruments are the strongest in the South.

Besides the difference in the length of the highest posterior density regions, the location of
these regions also varies considerably for the different Census regions. The posterior of the return
on education in the Northeast has therefore little in common with the posterior of the return on
education in the South.

The Jeffreys prior is data dependent, because of the term Z ′Z, see e.g. (9) or (10). In our

7The LIML estimator of β for all observations is 0.106, while it is 0.065, 0.130, 0.107, 0.045 for the four regions
Northeast, Midwest, South, West, respectively. These approximately equal the posterior modes for the Jeffreys
prior: in the IV model Bayesian inference based on the Jeffreys prior is the analogue of LIML.
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specification, Z ′Z = Z̃ ′MW Z̃, with MW = IT −W (W ′W )−1W ′, which depends on the empirical
moments and products of Z̃ and W. These are just the numbers of observations for certain years,
quarters and/or states of birth which we know a priori. The Jeffreys prior for the Angrist-Krueger
(1991) data does therefore not violate the likelihood principle.

The posteriors of the return on education vary over the US. For some regions, i.e. the North-
east, Midwest and West, the posterior of the return on education yields implausibly large highest
posterior density regions when the Jeffreys prior is used. It is therefore of interest to incorpo-
rate prior information in the marginal posterior of the return on education. In the following
subsection, it is shown how a natural conjugate prior can be specified to incorporate such prior
knowledge. This prior knowledge may stem from the literature and could, for example, reflect
that the return on education does not vary too much over the different regions.

6.3 Natural conjugate prior

When we use the G-prior (27), we have to specify values for β0, Π0, ν, Ω0 and µ0 which control
the mode and shape of the prior of (β,Π, Ω). We choose β0 = 0.1, which reflects the stylized
fact that the return on education is approximately 10%, see e.g. Angrist and Krueger (1991) and
Card (1995).

We specify the prior parameters ν and the elements of the 3(S +9)× 1 vector Π0 by ‘adding’
a sample of νT persons who leave school as soon as the law allows for it.8 If for all men born
between 1930-1939 the asymmetry between school-entry requirements and compulsory school
attendance laws causes those men born in the third and fourth quarter to have completed one
more year of schooling than those born in the first and second quarter, then the coefficients in
Π at the state-and-quarter-of-birth dummies are πsq

t2 = 0, πsq
t3 = πsq

t4 = 1 (t = 1, . . . , S), and
the coefficients at the year-and-quarter-of-birth dummies are πyq

jh = 0 (h = 2, 3, 4; j = 1, . . . , 9).
These prior values Π0 do not reflect our actual beliefs about Π, since we do not expect everyone
to leave school as soon as it is permitted, but just result from adding a sample of νT observations
with perfect instruments. Since this group of early dropouts identifies β, we add such observations
to specify an informative prior on β. We note that if Π0 = 0 (or ν = 0) the coefficient β0 drops
out of the G-prior (27).

The value of ν reflects the weight attached to the prior ( ν
1+ν ) and the likelihood ( 1

1+ν ) in the
posterior. For guidance on specifying ν, we compute the marginal prior of β for several values
of ν using the algorithm from Section 4 and choose the value of ν that yields a marginal prior
for β that accords with the prior beliefs. The larger the value of ν, the more concentrated is
the marginal prior of β around β0 (as long as Π0 6= 0). For the US and each of the four Census
regions we use values of ν that correspond with νT = 100, 1000, 10000 and 25000. By specifying
νT instead of ν, we can compare the results between regions for (approximately) the same prior.9

The values of Ω0 and µ0 represent our prior beliefs on Ω and have therefore only an indirect
effect on the marginal prior of β. An obvious choice for Ω0 is µ0 times the covariance matrix

8The G-prior ‘weight’ of νT observations is most easily derived from the expression Π̄ =
1

1+ν

ˆ

(Z′Z)−1Z′(y : X) + νΠ0(β0 : Im)
˜

Ω−1(β : Im)′
ˆ

(β : Im)Ω−1(β : Im)′
˜−1

below (40) : ν times the reduced

form parameter matrix occuring in the prior Π0(β0 : Im) is added to (Z′Z)−1Z′(y : X), the OLS estimator which
represents T observations.

9The prior differs slightly between regions, as it depends on Z′Z. However, for the same value of νT ,
νΠ′

0Z
′ZΠ0 = (νT )Π′

0Z
′ZΠ0/T hardly differs between regions, as Π′

0Z
′ZΠ0/T ≈ 0.25 for each region, since ZΠ0 is

a T × 1 vector of dummy variables indicating if persons are born in the third or fourth quarter (in deviation from
the mean ≈ 0.5, and corrected for differences across states and years of birth, where the latter effect is negligible),
so that Π′

0Z
′ZΠ0/T amounts to the sample variance of a set of T Bernouilli random variables with probability of

‘success’ equal to 0.5.
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Figure 1: Figure 1: Marginal priors for return on education: νT = 100 (solid-plusses), νT = 1000
(dashed), νT = 10000 (solid-stars), νT = 25000 (dashed-dot).

of the residuals in the reduced form. For µ0 a convenient choice is given by µ0 = 10.10 In our
application, T is very large such that the values of Ω0 and µ0 hardly influence the posterior.
The large sample size implies a tight marginal posterior of Ω regardless of the strength of the
instruments which only affects the marginal posterior of β.

Figure 1 shows the marginal prior for the return on education for νT = 100, 1000, 10000 and
25000.11 For νT = 100, the prior indicates a lot of uncertainty on β and is hardly informative.
Since this marginal prior can be interpreted as (approximately) the marginal posterior under
the Jeffreys prior resulting from νT data from the model with ‘true’ parameters Π0, β0, and
Ω0/µ0 (as long as µ0 is not too small), Figure 1 also shows the weakness of the quarter of birth
instruments. Even in the extreme case in which men born in the first and second quarters have on
average a whole year less education than those born in the third and fourth quarters, one needs
more than νT = 1000 observations to obtain a marginal prior of β with negligible probability of
negative values (while β0 = 0.1).

The Figures in Panel 1 show the marginal posteriors for the different regions for a specific
prior. The priors are those used in Figure 1 and the Jeffreys prior. The Figures in Panel 2 show
the marginal posteriors for the different priors for a specific region or the US.

Panel 2 shows that the marginal posteriors change a lot, since they become more concentrated
around β = 0.1, when νT increases for the three regions in which the quarter of birth instrument
is the weakest, i.e. the Northeast, Midwest and West. For the US and South, the marginal
posterior is hardly affected by the specification of νT in the prior.

10Choosing a small value of µ0, e.g. µ0 = 2, yields rather wide highest prior density regions for β even in the
case of relatively large ν and Π0, since a small value of µ0 implies a marginal prior of Θ that is t distributed with
µ0 degrees of freedom which implies a large (infinite) prior variance of Θ.

11The prior is computed using the scheme in section 4 using N = 100 sampled Ωi’s. The number of N = 100 is
large enough since increasing N yields almost indistinguishable results.
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Figure 1.1: νT = 100 Figure 1.2: νT = 1000
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Figure 1.3: νT = 10000 Figure 1.4: νT = 25000
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Figure 1.5: Jeffreys

Panel 1: Marginal posteriors for return on education for different priors. US (solid),
Midwest (dashed), South (dash-dot), Northeast (solid-plusses), West (solid with stars)
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Figure 2.1: Northeast Figure 2.2: Midwest

−0.05 0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

30

35

40

45

β
−0.05 0 0.05 0.1 0.15 0.2 0.25

0

5

10

15

20

25

30

35

40

45

β

Figure 2.3: South Figure 2.4: West
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Figure 2.5: US

Panel 2: Marginal posteriors for return on education for different regions: νT = 100 (solid-plusses),
νT = 1000 (dashed), νT = 10000 (solid-stars), νT = 25000 (dash-dot), Jeffreys (solid)
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For the regions Northeast, Midwest and West, the marginal prior of β for νT = 10000 and
25000 from Figure 1 is somewhat tighter than the marginal posterior. It may seem counter-
intuitive that one has certain prior beliefs about β, and that adding data which are at worst
irrelevant results in an uncertainty on β that is larger than before any data had been observed.
The data do, however, not only update the prior beliefs on β, but also update the prior beliefs
on Π such that the posterior of Π is ‘closer’ to zero which implies a larger spread of the marginal
posterior of β.

Panel 1 shows that for the Northeast, Midwest and West we need the highly informative
marginal prior of β with νT = 25000 to obtain posteriors that are comparable to the posterior
that results from the Jeffreys prior for the US and the South. This shows once more the weakness
of the instruments for these three regions.

Panel 1 clearly shows how the marginal posteriors for the Northeast, Midwest and West
approach the posteriors for the South and the US as νT increases. We note that the effect of the
prior is larger for the West than for the Northeast and Midwest which results since the sample
size of region West is much smaller so ‘adding’ νT observations has a larger effect.

Panel 2 shows that the posteriors based on the Jeffreys prior are indistinguishable from those
that result from the G-prior with νT = 100. The Jeffreys prior is the limiting case of the G-prior
for ν → 0 (and Ω0 = 0, µ0 = 0) which explains the similarity of the posteriors that result from
the Jeffreys prior and the G-prior when νT is relatively small compared to the sample size.
Figure 1 shows that the marginal prior of β for νT = 100 is almost flat. Figure 1 and Panel
2 therefore indicate that the Jeffreys prior implies a flat marginal prior for β which we can not
derive analytically since the Jeffreys prior is improper.

7 Conclusions

Using the property that the restricted reduced form of the IV regression model results from a
reduced rank restriction on the parameter matrix of the unrestricted reduced form, we construct
a natural conjugate prior for the parameters of the IV regression model. The prior is proportional
to a natural conjugate prior for the parameters of the unrestricted reduced form with the reduced
rank restriction imposed on them. In the case of one included endogenous variable, we provide
a straightforward algorithm for computing the marginal posterior of the structural parameter.
In the case of one included endogenous variable, we also obtain an analytical expression of the
marginal posterior of the structural parameters and the reduced form covariance matrix which
has an analogous functional expression as the marginal prior for these parameters. This explains
why we refer to these priors as natural conjugate priors.

We applied our prior specification framework to data from Angrist and Krueger (1991). We
showed that posterior results obtained using the Jeffreys prior completely stem from those of
the Southern region. The posterior of the return on education varies strongly over the different
regions of the US and we show that one needs a rather informative prior to obtain similar results
for all regions.

In future work, we intend to extend our results to more included endogenous variables. We
then have to use posterior simulators, like those proposed in Kleibergen and van Dijk (1998),
Kleibergen and Paap (2002) and Hoogerheide et. al. (2006), to obtain the marginal posteriors.
We also want to robustify the distributional assumption on the disturbances.
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Appendix

A. Derivation of the Jeffreys prior in the IV regression model The information matrix
of (π, Π, Ω) in the unrestricted reduced form equals

IURF (π, Π, Ω) = −E

[

∂2 lnL(π, Π, Ω|D)

∂
(

vec(π : Π)′ (Dm+1vec(Ω))′
)′

∂
(

vec(π : Π)′ (Dm+1vec(Ω))′
)

]

=

(

Ω−1 ⊗ Z ′Z 0
0 D′

m+1(Ω
−1 ⊗ Ω−1)Dm+1

)

,

where Dm+1 is a (m+1)2× 1
2(m+2)(m+1) duplication matrix that selects the 1

2(m+2)(m+1)
different elements of a symmetric (m + 1) × (m + 1) matrix, see Magnus and Neudecker (1988).
In case (π : Π) = ΠB, B = (β : Im) the derivatives of (π : Π) with respect to Π, β read

∂vec(π : Π)

∂vec(Π)′
= (B′ ⊗ Ik),

∂vec(π : Π)

∂vec(β)′
=

∂vec(π : Π)

∂vec(B)′
∂vec(B)

∂vec(β)′
= (Im+1 ⊗ Π)(e1 ⊗ Im) = (e1 ⊗ Π),

where e1 is the first m + 1 dimensional unity vector. The information matrix of (Π, β,Ω) in the
restricted reduced form then becomes

IRRF (Π, β,Ω) =





(

∂vec(π : Π)
∂vec(Π)′

∂vec(π : Π)
∂vec(β)′

)

0

0 ∂(Dm+1vec(Ω))

∂(Dm+1vec(Ω))′





′

I(π, Π, Ω)





(

∂vec(π : Π)
∂vec(Π)′

∂vec(π : Π)
∂vec(β)′

)

0

0 ∂(Dm+1vec(Ω))

∂(Dm+1vec(Ω))′





=





BΩ−1B′ ⊗ Z ′Z BΩ−1e1 ⊗ Z ′ZΠ 0
e′1Ω

−1B′ ⊗ Z ′ZΠ e′1Ω
−1e1 ⊗ Π′Z ′ZΠ 0

0 0 D′
m+1(Ω

−1 ⊗ Ω−1)Dm+1





and

|IRRF (Π, β,Ω)| =
∣

∣D′
m+1(Ω

−1 ⊗ Ω−1)Dm+1

∣

∣

∣

∣

∣

∣

(

BΩ−1B′ ⊗ Z ′Z BΩ−1e1 ⊗ Z ′ZΠ
e′1Ω

−1B′ ⊗ Z ′ZΠ e′1Ω
−1e1 ⊗ Π′Z ′ZΠ

)∣

∣

∣

∣

= |Ω|−(m+2)

∣

∣

∣

∣

(

BΩ−1B′ ⊗ Z ′Z BΩ−1e1 ⊗ Z ′ZΠ
e′1Ω

−1B′ ⊗ Z ′ZΠ e′1Ω
−1e1 ⊗ Π′Z ′ZΠ

)∣

∣

∣

∣

.

The last determinant in this expression can be further decomposed using

∣

∣

∣

∣

(

BΩ−1B′ ⊗ Z ′Z BΩ−1e1 ⊗ Z ′ZΠ
e′1Ω

−1B′ ⊗ Π′Z ′Z e′1Ω
−1e1 ⊗ Π′Z ′ZΠ

)∣

∣

∣

∣

=

∣

∣

∣

∣

(

(Σ−1)22 ⊗ Z ′Z (Σ−1)21 ⊗ Z ′ZΠ
(Σ−1)12 ⊗ Π′Z ′Z (Σ−1)11 ⊗ Π′Z ′ZΠ

)∣

∣

∣

∣

because:
Σ−1 = (e1 : B′)′Ω−1(e1 : B′) as Ω = (e1 : B′)Σ(e1 : B′)′.
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We now use that
∣

∣

∣

∣

(

(Σ−1)22 ⊗ Z ′Z (Σ−1)21 ⊗ Z ′ZΠ
(Σ−1)12 ⊗ Π′Z ′Z (Σ−1)11 ⊗ Π′Z ′ZΠ

)∣

∣

∣

∣

= |(Σ−1)11 ⊗ Π′Z ′ZΠ|

|((Σ−1)22 ⊗ Z ′Z) − ((Σ−1)21(Σ
−1)−1

11 (Σ−1)12 ⊗ Z ′ZΠ(Π′Z ′ZΠ)−1Π′Z ′Z))|

= |Σ−1
11.2 ⊗ Π′Z ′ZΠ|

|((Σ−1
22.1 ⊗ Z ′Z) − (Σ−1

22 Σ21Σ
−1
11.2Σ12Σ

−1
22 ⊗ Z ′ZΠ(Π′Z ′ZΠ)−1Π′Z ′Z))|

= |Σ−1
11.2 ⊗ Π′Z ′ZΠ|

1
2 |(Σ−1

22 ⊗ Z ′Z) + (Σ−1
22 Σ21Σ

−1
11.2Σ12Σ

−1
22 ⊗ Z ′MZΠZ)|

where we have used that Σ22.1 = Σ22 −Σ12Σ
−1
11 Σ12 such that Σ−1

22.1 = Σ−1
22 +Σ−1

22 Σ21Σ
−1
11.2Σ12Σ

−1
22 .

Using that

δ = Σ
− 1

2
11.2Σ12Σ

− 1
2

22 = ω
− 1

2
11.2(ω12 − β′Ω22)Ω

− 1
2

22 = ω
− 1

2
11.2(φ − β)′Ω

1
2
22,

since ω11.2 = Σ11.2, Σ12 = ω12 − β′Ω22, φ = Ω−1
22 ω21 and Ω22 = Σ22, it follows that

∣

∣

∣

∣

(

(Σ−1)22 ⊗ Z ′Z (Σ−1)21 ⊗ Z ′ZΠ
(Σ−1)12 ⊗ Π′Z ′Z (Σ−1)11 ⊗ Π′Z ′ZΠ

)∣

∣

∣

∣

=

|ω11.2|
−m|Π′Z ′ZΠ||(Ω−1

22 ⊗ Z ′Z) + (Ω
− 1

2
22 δ′δΩ

− 1
2

22 ⊗ Z ′MZΠZ)|

The last part of this expression can be further decomposed as

|(Ω−1
22 ⊗ Z ′Z) + (Ω

− 1
2

22 δ′δΩ
− 1

2
22 ⊗ Z ′MZΠZ)|

= |(Ω−1
22 ⊗ Z ′Z) + (Ω

− 1
2

22 δ′δΩ
− 1

2
22 ⊗ Π⊥(Π′

⊥(Z ′Z)−1Π⊥)−1Π′
⊥)|

=

∣

∣

∣

∣

(

Im−1 ⊗
(

(Π(Π′Π)−
1
2 : Π⊥)

))′
((Ω−1

22 ⊗ Z ′Z)+

(Ω
− 1

2
22 δ′δΩ

− 1
2

22 ⊗ Z ′MZΠZ))
(

Im−1 ⊗
(
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1
2 : Π⊥)

))

∣

∣

∣
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=

∣

∣

∣

∣

∣
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Ω−1
22 ⊗ (Π′Π)−

1
2 Π′Z ′ZΠ(Π′Π)−

1
2 Ω−1

22 ⊗ Π(Π′Π)−
1
2 Π′Z ′ZΠ⊥

Ω−1
22 ⊗ Π′

⊥Z ′ZΠ(Π′Π)−
1
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22 ⊗ Π′
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− 1
2

22 δ′δΩ
− 1

2
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∣

∣

∣
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1
2 Π′Z ′ZΠ(Π′Π)−

1
2 |m|(Ω−1

22 + Ω
− 1

2
22 δ′δΩ

− 1
2

22 ) ⊗ (Π′
⊥(Z ′Z)−1Π⊥)−1|

= |Ω22|
−m|Ω−1

22 + Ω
− 1

2
22 δ′δΩ

− 1
2

22 |(k−m)|Π′
⊥(Z ′Z)−1Π⊥|

−m|(Π′Π)−
1
2 Π′Z ′ZΠ(Π′Π)−

1
2 |m

= |Ω22|
−m|Z ′Z|m|Ω−1

22 + (φ′ − β′)′ω−1
11.2(φ

′ − β′)|k−m,

where we have used that |(Π(Π′Π)−
1
2 : Π⊥)| = 1 as both Π(Π′Π)−

1
2 and Π⊥ are orthogonal

matrices, (Π′Π)−
1
2 Π′Π(Π′Π)−

1
2 = Im and that

(Π′
⊥(Z ′Z)−1Π⊥)−1 = Π′

⊥Π⊥(Π′
⊥(Z ′Z)−1Π⊥)−1Π′

⊥Π⊥

= Π′
⊥(Z ′Z − Z ′ZΠ(Π′Π)−

1
2 ((Π′Π)−

1
2

Π′Z ′ZΠ(Π′Π)−
1
2 )−1(Π′Π)−

1
2 Π′Z ′Z)Π⊥

= Π′
⊥(Z ′Z − Z ′ZΠ(Π′Z ′ZΠ)−1Π′Z ′Z)Π⊥.

This property also implies that |Π′
⊥(Z ′Z)−1Π⊥|

−1|Π′Z ′ZΠ| = |Z ′Z||(Π : Π⊥)| = |Z ′Z||Π′Π|, and
so we obtain the following convenient expression of the determinant of the information matrix:

|IRRF (Π, β,Ω)| = |Ω|−(m+2)

∣

∣

∣

∣

(

BΩ−1B′ ⊗ Z ′Z BΩ−1e1 ⊗ Z ′ZΠ
e′1Ω

−1B′ ⊗ Z ′ZΠ e′1Ω
−1e1 ⊗ Π′Z ′ZΠ

)∣

∣

∣

∣

= |Ω|−(m+2) |ω11.2|
−m|Π′Z ′ZΠ||Ω22|

−m|Z ′Z|m|(β : Im)Ω−1(β : Im)′|k−m
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since Ω−1
22 + (φ′ − β′)′ω−1

11.2(φ
′ − β′) = (β : Im)Ω−1(β : Im)′. The Jeffreys prior on the restricted

reduced form is therefore proportional to

pJef
RRF (Π, β,Ω) ∝ |Ω|−

1
2
(m+2) |ω11.2|

− 1
2
m|Π′Z ′ZΠ|

1
2 |Ω22|

− 1
2
m|(β : Im)Ω−1(β : Im)′|

1
2
(k−m)

∝ |Ω|−(m+1) |Π′Z ′ZΠ|
1
2 |(β : Im)Ω−1(β : Im)′|

1
2
(k−m)

and on the structural form

pJef
SF (Π, β,Ω) ∝ |Σ|−(m+1) |σ11.2|

− 1
2
m|Π′Z ′ZΠ|

1
2 |Σ22|

− 1
2
m|Σ22.1|

− 1
2
(k−m)

∝ |Σ|−(m+1)|Π′Z ′ZΠ|
1
2 |Σ22.1|

− 1
2
(k−m),

since the Jacobian of the transformation from Σ to Ω equals one as

∣

∣

∣

∣

(

1
−β

... 0
Im

)∣

∣

∣

∣

= 1.

B. Theorem 1. The proof is based on Kleibergen (1997), Kleibergen and van Dijk (1998)
and Kleibergen and Paap (2002,2005). The specification is obtained in two consecutive steps.
First, we conduct a singular value decomposition of Θ which we use to impose rank reduction.
Secondly, after we imposed the reduced rank restriction, we further transform the parameters.

The singular value decomposition (SVD) of Θ reads,

Θ = USV ′ ⇔
Γ(δ : Im) + Γ⊥λ(δ : Im)⊥ = USV ′,

where U : k × k, U ′U = Ik, V :(m + 1) × (m + 1), V ′V = Im+1 and S : k × (m + 1) is a diagonal
matrix that contains the non-negative singular values in decreasing order on the main diagonal.

S =

(

S1

0

... 0
s2

)

where S1 and s2 are m×m and (k−m)× 1 dimensional matrices that contain the

singular values so the first element of s2 equals the smallest singular value and all other elements
are equal to zero. Γ : k × m, δ : m × 1, Γ′

⊥Γ = 0, Γ′
⊥Γ⊥ = Ik−m, (δ : Im)⊥(δ : Im)′ = 0, (δ :

Im)⊥(δ : Im)′⊥ = 1.When we solve for Γ, δ and λ, where we note that δ differs from the ‘δ’ used
previously, we obtain

Γ = U1S1V
′
21, δ = V ′−1

21 v11 and λ = (U22U
′
22)

− 1
2 U22s2v

′
12(v12v

′
12)

− 1
2 ,

where U1 =
(

U11

U21

)

:k × m, U2 =
(

U12

U22

)

, V1 =
(

v11

V21

)

: (m + 1) × m, v2 =
(

v12

v22

)

: (m + 1) × 1; U11,
V21 : m × m, U21 : (k − m) × m, U12 : (k − m) × m, U22 : (k − m) × (k − m), v22, v′11 : m × 1,
v12 : 1 × 1, see Kleibergen (1997), Kleibergen and van Dijk (1998) and Kleibergen and Paap
(2002,2005).

Next, we solve for (Π, β) from (Γ, δ), see Kleibergen and Zivot (2003):

QΠ(β : Im)W = Γ(δ : Im) ⇔
Π(β : Im) = Q−1Γ(δ : Im)W−1

such that

Π = Q−1Γ(δ : Im)W2 = Q−1U1S1V
′
1W2

β = [(δ : Im)W2]
−1 (δ : Im)w1 =

[

V ′
1W2

]−1
V ′

1w1,

with W−1 = (w1 : W2), w1 : (m + 1) × 1, W2 : (m + 1) × m. The resulting specification is such
that

1. (β : Im)⊥WW ′(β : Im)′ ≡ 0, (β : Im)⊥WW ′(β : Im)′⊥ ≡ 1,
2. Π′

⊥Q′QΠ ≡ 0, Π′
⊥Q′QΠ⊥ ≡ Ik−m,

with Π⊥ = Q−1U2U22(U22U
′
22)

1
2 and (β : Im)⊥ = W−1v2v

−1′
12 (v12v

′
12)

1
2 .
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C. Theorem 2: Jacobian of the transformation For the derivation of the Jacobian of the
transformation from Θ to (Π, β, λ), it is notationally convenient to conduct this transformation in
three steps, (i.) from Θ to (Γ1, θ2, δ, λ) where θ2 = Γ2Γ

−1
1 , (ii.) from (Γ1, θ2, δ, λ) to (Γ1, Γ2, β, λ)

and (iii) when λ = 0, (Γ, δ) to (Π, β). In the following we construct the Jacobians of these three
transformations.

(i.) We denote Θ as,
Θ = θΓ1D + θ⊥λD⊥,

where θ =
(

Im

θ2

)

, θ⊥ =
( −θ′2
Ik−m

)

(Ik−m +θ2θ
′
2)

− 1
2 , D = (δ : Im), D⊥ = (1+δ′δ)−

1
2 (1 : −δ′), Γ =

(

Γ1

Γ2

)

,

Γ1 : m × m, Γ2 : (k − m) × m. The Jacobians of Θ with respect to Γ1, θ2, δ and λ then read,

J1 = ∂vec(Θ)
∂vec(Γ1)′ = (D′ ⊗ θ)

J2 = ∂vec(Θ)
∂vec(θ2)′ = (D′Γ′

1 ⊗ Ik)
∂vec(θ)

∂vec(θ2)′ + (D′
⊥λ′ ⊗ Ik)

∂vec(θ⊥)
∂vec(θ2)′

J3 = ∂vec(Θ)
∂vec(δ)′ = (Im+1 ⊗ θΓ1)

∂vec(D)
∂vec(δ)′ + (Im+1 ⊗ θ⊥λ) ∂vec(D⊥)

∂vec(δ)′

J4 = ∂vec(Θ)
∂vec(λ)′ = (D′

⊥ ⊗ θ⊥) ,

where
∂vec(θ)

∂vec(θ2)′ =
(

Im ⊗
(

0
Ik−m

))

∂vec(θ⊥)
∂vec(θ2)′ = −(H− 1

2
′ ⊗
(

Im

0

)

)Kk−m,m+

(Ik−m ⊗
(

−θ′2
Ik−m

)

)∂vec((H
1
2 )−1)

∂vec(H
1
2 )′

∂vec(H
1
2 )

∂vec(H)′
∂vec(H)
∂vec(θ2)′

∂vec((H
1
2 )−1)

∂vec(H
1
2 )′

= −(H− 1
2
′ ⊗ H− 1

2 )

∂vec(H
1
2 )

∂vec(H)′ = ((Ik−m ⊗ H
1
2 ) + (H

1
2
′ ⊗ Ik−m))−1

∂vec(H)
∂vec(θ2)′ = (θ2 ⊗ Ik−m) + (Ik−m ⊗ θ2)Kk−m,m

∂vec(D)
∂vec(δ)′ = (e1 ⊗ Im)

∂vec(D⊥)
∂vec(δ)′ = −(

(

0
Im

)

⊗D− 1
2 )Km,1+

((1 : − δ′)′ ⊗ 1)∂vec(D− 1
2 )

∂vec(D
1
2 )′

∂vec(D
1
2 )

∂vec(D)′
∂vec(D)
∂vec(δ)′ ,

∂vec(D− 1
2 )

∂vec(D
1
2 )′

= −(D− 1
2
′ ⊗D− 1

2 ) = −D−1,

∂vec(D
1
2 )

∂vec(D)′ = ((1 ⊗D
1
2 ) + (D

1
2
′ ⊗ 1))−1 = 1

2D
− 1

2 ,

∂vec(D
1
2 )

∂vec(δ)′ = (δ′ ⊗ 1)Km−1,1 + (1 ⊗ δ′) = 2δ′,

and H = Ik−m + θ2θ
′
2, H

1
2 H

1
2 = H, D = (1 + δ′δ), D

1
2D

1
2 = D, e1 is the first m + 1 dimensional

unity vector, Ki,j : ij × ij, are socalled commutation matrices such that for any W : i × j,
vec(W ′) = Ki,jvec(W ), vec(W ) = Kj,ivec(W ′), Kj,i = K ′

i,j , see Magnus and Neudecker (1988).
Note that when Q is symmetric, Q = PΛP ′, where P are orthogonal eigenvectors and Λ is a
diagonal matrix containing the eigenvalues, then Q

1
2 = PΛ

1
2 P ′ is also symmetric.

The Jacobian of the transformation from Θ to (Γ1, θ2, δ, λ) then reads,

∂vec(Θ)
∂(vec(Γ1)′ vec(θ2)′ vec(δ)′ vec(λ)′) =

(

J1 J2 J3 J4

)

.

(ii.) Since θ2 = Γ2Γ
−1
1 , the Jacobians of the transformations from (Γ1, θ2, β, λ) to Γ1, Γ2, δ
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and λ read

G1 = ∂(vec(Γ1)′ vec(θ2)′ vec(δ)′ vec(λ)′)′

∂vec(Γ1)′ =









Im ⊗ Im

−Γ−1′
1 ⊗ Γ2Γ

−1
1

0
0









G2 = ∂(vec(Γ1)′ vec(θ2)′ vec(δ)′ vec(λ)′)′

∂vec(Γ2)′ =









0

Γ−1′
1 ⊗ Ik−m

0
0









G3 = ∂(vec(Γ1)′ vec(θ2)′ vec(δ)′ vec(λ)′)′

∂vec(δ)′ =









0
0

1 ⊗ Im

0









G4 = ∂(vec(Γ1)′ vec(θ2)′ vec(δ)′ vec(λ)′)′

∂vec(λ)′ =









0
0
0

1 ⊗ Ik−m









The Jacobian of the transformation from Θ to (Γ, δ, λ) then becomes,

|J(Θ, (Γ, δ, λ))| =
∣

∣

∣

∂vec(Θ)
∂(vec(Γ)′ vec(δ)′ vec(λ)′)

∣

∣

∣

=
∣

∣

∣

∂vec(Θ)
∂(vec(Γ1)′ vec(θ2)′ vec(δ)′ vec(λ)′)

∣

∣

∣

∣

∣

∣

∂(vec(Γ1)′ vec(θ2)′ vec(δ)′ vec(λ)′)′

∂(vec(Γ)′ vec(δ)′ vec(λ)′)

∣

∣

∣

=
∣

∣

(

J1 J2 J3 J4

)∣

∣

∣

∣

(

G1 G2 G3 G4

)∣

∣

and

|J(Θ, (Γ, δ, λ))|λ=0| =
∣

∣

∣

(

D′ ⊗ θ D′Γ′
1 ⊗

(

0
Ik−m

)

e1 ⊗ θΓ1 (D′
⊥ ⊗ θ⊥)

)









Im ⊗ Im 0 0 0

−Γ−1′
1 ⊗ Γ2Γ

−1
1 Γ−1′

1 ⊗ Ik−m 0 0
0 0 Im 0
0 0 0 Ik−m









∣

∣

∣

∣

∣

∣

∣

∣

=
∣

∣

(

D′ ⊗ Ik e1 ⊗ Γ (D′
⊥ ⊗ θ⊥)

)∣

∣

=
∣

∣

∣

(

D′ ⊗ Ik e1 ⊗ Γ (D′
⊥ ⊗ θ⊥)

)′ (
D′ ⊗ Ik e1 ⊗ Γ (D′

⊥ ⊗ θ⊥)
)

∣

∣

∣

1
2

=
∣

∣

∣

(

D′ ⊗ Ik e1 ⊗ Γ
)′ (

D′ ⊗ Ik e1 ⊗ Γ
)

∣

∣

∣

1
2

=

∣

∣

∣

∣

(

DD′ ⊗ Ik δ ⊗ Γ
δ′ ⊗ Γ′ Γ′Γ

)∣

∣

∣

∣

1
2

= |Γ′Γ|
1
2 |(DD′ ⊗ Ik) − (δδ′ ⊗ PΓ)|

1
2

= |Γ′Γ|
1
2 |(DD′ ⊗ MΓ) + ((DD′ − δδ′) ⊗ PΓ)|

1
2

= |Γ′Γ|
1
2 |(DD′ ⊗ MΓ) + (Im ⊗ PΓ)|

1
2

= |Γ′Γ|
1
2 |DD′|

1
2
(k−m),

where the last line is obtained by pre and postmultiplying by (Γ(Γ′Γ)−
1
2 : Γ⊥), Γ′

⊥Γ = 0,
Γ′
⊥Γ⊥ = Ik−m.

(iii.) Given that λ = 0, we transform (Γ, δ) to (Π, β). We obtain (β,Π) from (δ, Γ) by using

ΓD = QΠ(β : Im)W = QΠ(β : Im)W ∗
2

[

((β : Im)W ∗
2 )−1(β : Im)w∗

1 : Im

]

,
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where W = (w∗
1 : W ∗

2 ), w∗
1 : (m + 1) × 1, W ∗

2 : (m + 1) × m, such that δ = ((β : Im)W ∗
2 )−1(β :

Im)w∗
1 and Γ = QΠ(β : Im)W ∗

2 . To construct the Jacobian of the transformation from (Γ, δ) to
(Π, β), we use:

∂vec(δ)
∂vec(β)′ =

(

w∗′
1 (Im+1 − (β : Im)′ [(β : Im)W ∗

2 ]−1′ W ∗
2 )e1 ⊗ [(β : Im)W ∗

2 ]−1
)

∂vec(δ)
∂vec(Π)′ = 0
∂vec(Γ)
∂vec(Π)′ = (W ∗′

2 (β : Im)′ ⊗ Q)
∂vec(Γ)
∂vec(β)′ = (W ∗′

2 e1 ⊗ QΠ)

so

|J((Γ, δ), (Π, β))| =

∣

∣

∣

∣

(

W ∗′
2 (β : Im)′ ⊗ Q

0
W ∗′

2 e1 ⊗ QΠ

w∗′
1 (Im+1 − (β : Im)′ [(β : Im)W ∗

2 ]−1′ W ∗
2 )e1 ⊗ [(β : Im)W ∗

2 ]−1

)∣

∣

∣

∣

= |W ∗′
2 (β : Im)′ ⊗ Q|

∣

∣

∣w∗′
1 (Im+1 − (β : Im)′ [(β : Im)W ∗

2 ]−1′ W ∗
2 )e1 ⊗ [(β : Im)W ∗

2 ]−1
∣

∣

∣

To obtain the Jacobian of the full transformation, we note that D′W ∗′
2 (β : Im)′ = (w∗

1 : W ∗
2 )′(β

: Im)′, D′W ∗′
2 δ = β, such that

|J(Θ, (Π, β, λ))|λ=0| = |J(Θ, (Γ, δ, λ))|λ=0| |J((Γ, δ), (Π, β))|

= |Γ′Γ|
1
2 |DD′|

1
2
(k−m) |W ′

2(β : Im)′|k |Q|m
∣

∣

∣
w∗′

1 (Im+1 − (β : Im)′ [(β : Im)W ∗
2 ]−1′ W ∗

2 )e1

∣

∣

∣

m
|(β : Im)W ∗

2 |
−1

= |W ∗′
2 (β : Im)′Π′Q′QΠ(β : Im)W ∗

2 |
1
2 |W ∗′

2 (β : Im)′|k |Q|m
∣

∣

∣

(

((β : Im)W ∗
2 )−1(β : Im)w∗

1 : Im

) (

((β : Im)W ∗
2 )−1(β : Im)w∗

1 : Im

)′
∣

∣

∣

1
2
(k−m)

∣

∣

∣
w∗′

1 (Im+1 − (β : Im)′ [(β : Im)W ∗
2 ]−1′ W ∗

2 )e1

∣

∣

∣

m
|(β : Im)W ∗

2 |
−1

= |Π′Q′QΠ|
1
2 |(β : Im)(w∗

1 : W ∗
2 )(w∗

1 : W ∗
2 )′(β : Im)′|

1
2
(k−m) |Q|m

|W ∗′
2 (β : Im)′|k−1+1−(k−m)

∣

∣

∣
w∗′

1 (Im+1 − (β : Im)′ [(β : Im)W ∗
2 ]−1′ W ∗

2 )e1

∣

∣

∣

m

= |Π′Q′QΠ|
1
2 |(β : Im)WW ′(β : Im)′|

1
2
(k−m) |Q|m|W |m

where we used that w∗
1w

∗′
1 + W ∗

2 W ∗′
2 = WW ′, (β : Im)W2 is a square matrix and, because of the

specification of (β : Im−1), it holds that

|(β : Im)W ∗
2 ||w

∗′
1 (Im+1 − (β : Im)′ [(β : Im)W ∗

2 ]−1′ W ∗
2 )e1| = |W |.

D. Proof of Theorem 3. When Π0 = 0, the prior for (β,Π, Ω) reads

pg
RRF (β,Π, Ω) ∝ |Π′Z ′ZΠ|

1
2 |(β : Im)Ω−1(β : Im)′|

1
2
(k−m) |ν(1 + ν)|

1
2
m |Ω|−

1
2
(µ0+2m+2)

exp
[

−1
2tr(Ω−1Ω0) −

1
2tr
{

νΠ′Z ′ZΠ(β : Im)′Ω−1(β : Im)
}]

.

We construct the marginal prior of (β,Ω) by integrating with respect to Π. In order to do so,
we note that when Π has a matrix normal distribution with mean zero and covariance matrix
(β : Im)Ω−1(β : Im)′ ⊗ ν−1(Z ′Z)−1, Π ∼ N(0, (β : Im)WW ′(β : Im)′ ⊗ ν−1(Z ′Z)−1) then
S = νΠ′Z ′ZΠ has a Wishart distribution with k degrees of freedom and scale matrix (β :
Im)Ω−1(β : Im)′ so its density reads, see Muirhead (1982),

p(S) = 1
ck

|S|
1
2
(k−m−1)

∣

∣(β : Im)Ω−1(β : Im)′
∣

∣

1
2
k
exp

[

−1
2tr(S(β : Im)Ω−1(β : Im)′)

]

,
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with ck the integrating constant of the Wishart distribution with k degrees of freedom. We
obtain the value of the integral of pg

RRF (β,Π, Ω) over Π by constructing the expected value of

|S|
1
2 with respect to the Wishart density of S.

E(|S|
1
2 ) =

∫

|S|
1
2 p(S)dS

=
∫

1
ck

|S|
1
2
(k−m+1−1)

∣

∣(β : Im)Ω−1(β : Im)′
∣

∣

1
2
k
exp

[

−1
2tr(S(β : Im)Ω−1(β : Im)′)

]

dS

=
∣

∣(β : Im)Ω−1(β : Im)′
∣

∣

− 1
2 ck+1

ck

∫

1
ck+1

|S|
1
2
(k−m+1−1)

∣

∣(β : Im)Ω−1(β : Im)′
∣

∣

1
2
(k+1)

exp
[

−1
2tr(S(β : Im)Ω−1(β : Im)′)

]

dS

=
∣

∣(β : Im)Ω−1(β : Im)′
∣

∣

− 1
2 ck+1

ck
,

with ck+1 the normalizing constant of a Wishart distributed random variable with k + 1 degrees
of freedom. The value of this integral implies that the marginal prior for (β,Ω) becomes

pg
RRF (β,Ω) = |Ω|−

1
2
(µ0+2m+2) exp

[

−1
2tr(Ω−1Ω0)

] ∫

pg
RRF (β,Π, Ω)dΠ

∝
∣

∣(β : Im)Ω−1(β : Im)′
∣

∣

− 1
2
(m+1)

|Ω|−
1
2
(µ0+2m+2) exp

[

−1
2tr(Ω−1Ω0)

]

.

which can be further decomposed as

pg
RRF (β,Ω) ∝

∣

∣(β : Im)Ω−1(β : Im)′
∣

∣

− 1
2
(m+1)

|Ω|−
1
2
(µ0+2m+2) exp

[

−1
2tr(Ω−1Ω0)

]

∝
∣

∣(β − φ)ω−1
11.2(β − φ)′ + Ω−1

22

∣

∣

− 1
2
(m+1)

|Ω|−
1
2
(µ0+2m+2) exp

[
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where we specified Ω as Ω =
(
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)

, ω11 : 1 × 1, ω12 = ω′
21 : 1 × m, Ω22 : m × m, ω11.2 =

ω11 − ω12Ω
−1
22 ω21 and φ = Ω−1

22 ω21.

E. Proof of Theorem 4. The prior of (β,Π, Ω) reads
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where Π̄0 = Π0(β0 : Im)Ω−1(β : Im)′
[

(β : Im)Ω−1(β : Im)′
]−1

.
To obtain the marginal prior of (β,Ω), we use the result from the proof of Theorem 5 in

Appendix F that
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The marginal prior of (β,Ω) then reads
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and
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.

F. Proof of Theorem 5. 1. Jeffreys Prior: The posterior of (β,Π, Ω) reads
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with Φ̂ = (Z ′Z)−1Z ′(y : X) and Π̂ = Φ̂Ω−1(β : Im)′
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.

When m = 1 and Π ∼ N(Π̂, (β : Im)Ω−1(β : Im)′ ⊗ Z ′Z) then S = (β : Im)Ω−1(β

: Im)′Π′Z ′ZΠ ∼ χ2(k, µ) with µ =
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For the construction of the marginal posterior of (β,Ω), this implies that
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A convenient manner to represent this posterior is by, see Kleibergen and Zivot (2003),
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For moderate values of T and T >> k, the latter density collapses to a point mass at Ω̄ = 1
T (y :

X)′(y : X) such that the marginal posterior of β is well approximated by

pJef
RRF (β|D) = pJef

RRF (β|Ω = Ω̄, D),

for moderate values of T.
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2. G-prior. The posterior of (β,Π, Ω) reads
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[10] Drèze, J.H. and R.F. Richard. Bayesian Analysis of Simultaneous Equations systems. In
Z. Griliches and M.D. Intrilligator, editor, Handbook of Econometrics, volume 1. Elsevier
Science (Amsterdam), (1983).

[11] Geweke, J. Bayesian Reduced Rank Regression in Econometrics. Journal of Econometrics,
75:121–146, (1996).

[12] Hausman, J.A. Specification and Estimation of Simultaneous Equations Systems. In Z.
Griliches and M.D. Intrilligator, editor, Handbook of Econometrics, volume 1. Elsevier Sci-
ence (Amsterdam), (1983).

[13] Hood, W.C. and T.C. Koopmans. Studies in Econometric Method, volume 14 of Cowles
Foundation Monograph. Wiley (New York), 1953.

[14] Hoogerheide, L.F, J.F. Kaashoek and H.K. van Dijk. On the Shape of Posterior Densities
and Credible in Instrumental Variable Regression Models with Reduced Rank: An Applica-
tion of Flexible Sampling Methods using Neural Networks. Journal of Econometrics, 2006.
Forthcoming.

33



[15] Kleibergen, F. Bayesian Simultaneous Equations Analysis using Equality Restricted Ran-
dom Variables. In 1997 Proceedings of the Section on Bayesian Statistical Science, pages
141–146. American Statistical Association, 1997.

[16] Kleibergen, F. Invariant Bayesian Inference in Regression Models that is robust against the
Jeffreys-Lindleys Paradox. Journal of Econometrics, 123:227–258, 2004.

[17] Kleibergen, F. and R. Paap. Priors, Posteriors and Bayes Factors for a Bayesian Analysis
of Cointegration. Journal of Econometrics, 111:223–249, 2002.

[18] Kleibergen, F. and R. Paap. Generalized Reduced Rank Tests using the Singular Value
Decomposition. Journal of Econometrics, 2005. Forthcoming.

[19] Kleibergen, F. and H.K. van Dijk. Bayesian Simultaneous Equation Analysis using Reduced
Rank Structures. Econometric Theory, 14:701–743, 1998.

[20] Kleibergen F. and E. Zivot. Bayesian and Classical Approaches to Instrumental Variable
Regression. Journal of Econometrics, 114:29–72, 2003.

[21] Kloek, T. and H.K. van Dijk. Bayesian Estimates of Equation System Parameters : An
Application of Integration by Monte-Carlo. Econometrica, 44:345–351, (1978).

[22] Maddala, G.S. Weak Priors and Sharp Posteriors in Simultaneous Equation Models. Econo-
metrica, 44:345–351, 1976.

[23] Magnus, J.R. and H. Neudecker. Matrix Differential Calculus with Applications in Statistics
and Econometrics. Wiley (Chichester), (1988).

[24] Muirhead, R.J. Aspects of Multivariate Statistical Theory. John Wiley (New York), 1982.

[25] Nelson, C.R. and R. Startz. Some Further Results on the Exact Small Sample Properties
of the Instrumental Variables Estimator. Econometrica, 58:967–976, 1990.

[26] Phillips, P.C.B. Exact Small Sample Theory in the Simultaneous Equations Model. In
Z. Griliches and M.D. Intrilligator, editors, Handbook of Econometrics, Vol.1. North-Holland
Publishing Co., Amsterdam, 1983.

[27] Staiger, D. and J.H. Stock. Instrumental Variables Regression with Weak Instruments.
Econometrica, 65:557–586, 1997.

[28] Steel, M.F.J. A Bayesian Analysis of Simultaneous Equation Models by combining Recursive
Analytical and Numerical Approaches. Journal of Econometrics, 48:335–351, 1991.

[29] Theil, H. Estimation and Simultaneous Correlation in Complete Equation Systems.
Mimeographed Memorandum of the Central Planning Bureau, The Hague, 1953.

[30] Villani, M. Bayesian Reference Analysis of Cointegration. Econometric Theory, 21:326–357,
2005.

[31] Zellner, A. An Introduction to Bayesian Inference in Econometrics. Wiley (New York),
(1971).

[32] Zellner, A., L. Bauwens, and H.K. van Dijk. Bayesian Specification Analyis and Estimation
of Simultaneous Equation Models using Monte-Carlo Integration. Journal of Econometrics,
38:39–72, (1988).

34


