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In this paper we consider the relative efficiency of rotating-panel designs in analysis-of-variance 
models. Throughout we assume that the parameter of interest is a linear combination of period 
means in the analysis-of-variance model. Results from spectral theory are used to obtain 
manageable expressions for the variance of the BLUE of this parameter. Relative efficiencies of 
the BLUE for rotating panels with different rotation periods are presented, e.g., for the period 
means themselves, of differences, or of averages of means. Moreover we present bounds on the 
relative efficiency which are valid irrespective of the parameter of interest. The analysis shows 
that the gains from choosing an optimal rotation design can be quite substantial, even if the cost 
of a reinterview equals the cost of a first observation. In many cases either the smallest or the 
highest possible rotation period is optimal. The analysis is illustrated with an empirical example 
concerning monthly consumer expenditures on food and clothing. 

1. Introduction 

The collection of micro-economic data, e.g., in consumer surveys, is charac- 
terized by its high cost. It is therefore very important to obtain as much 
information as possible from a given budget by using optimal sample designs. 
Consider, for example, the choice which a data-collecting agency will have to 
make in order to monitor average expenditures on some consumption cate- 
gory either to interview the same individuals in several periods or to inter- 
view different individuals in different periods. It is well known in the 
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literature that the optimal design of the sample will in general depend on the 
parameter of interest [see, e.g., Raj (1968, p. 152 ff.) or Cochran (1977, p. 345 
ff.11. For example, if one is primarily interested in the total consumption over 
a number of periods, it is less likely that reinterviews are attractive than if 
one is primarily interested in period-to-period changes in consumption. 

In an earlier paper [Nijman and Verbeek (199011 we determined the 
optimal split panel design, i.e., the optimal design if one is allowed to spend 
part of a given budget on the collection of a series of cross-sections while 
another part of the budget is spent on a pure panel where all individuals are 
observed every period. For longer panels it is not attractive however to 
observe the same individuals in all periods. It has been well documented in 
the literature that if the number of times respondents have been exposed to a 
survey gets large, the data may be affected [see, e.g., Binder and Hidiroglou 
(198811 and even behavioural changes may be induced. This phenomenon is 
known as panel-conditioning. Moreover, it is evident that (selective) nonre- 
sponse problems will increase if units are interviewed for a larger number of 
periods. In order to avoid these problems rotating panels, i.e., panels where 
part of the sample is replaced in each period and every individual is included 
in the panel for a limited number of periods only, are often used in practice. 
Little attention however seems to have been paid to the relative efficiency of 
alternative rotation designs and to the optimal choice of the design of 
rotating panels. In the early literature, Patterson (1950) and Eckler (1955) 
paid attention to the estimation of a time-dependent mean from several 
kinds of rotating samples and to the resulting variances. Rao and Graham 
(1964) analysed the variance of both the current mean and the change in 
means in a finite-population context, using a special class of recursive 
estimators. An excellent survey of the literature in this field is given by 
Binder and Hidiroglou (1988). 

In this paper we derive the design of rotating panels which minimizes the 
variance of the best linear unbiased estimator (BLUE) of linear combinations 
c~=O~j~~_j of the period means pt in the analysis-of-variance model, 

_Yj, = /-Lt + ai + &if 7 (1) 

where the (Y~ and eit are unobserved i.i.d. random variables with mean zero 
and variances a: and a,=, respectively, which are mutually independent. 
Important special cases are of course the determination of the optimal design 
if the parameter of interest is the period mean p7 itself, if the parameter of 
interest is the change in two subsequent period means pL7 - k7_i, or if the 
parameter of interest is the average or sum over m subsequent period means 
crl,i~,_k. Throughout this paper we assume for simplicity that the parame- 
ters a: and a,= are known a priori. If these parameters are unknown and 
replaced by consistent estimates, the same results hold true asymptotically 
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(assuming that the number of individuals in the sample tends to infinity). The 
constant correlation over time between different observations on the same 
individual implied by (1) is considered for analytical convenience only. The 
analysis can easily be extended to more general correlation patterns. More- 
over, if no unit is observed for more than two periods, (1) is not restrictive. 

We assume that the sample period over which observations on yi, are 
available runs from t = T - T to I = r + S, where T is the last period of 
interest. In sections 2 through 5 we restrict ourselves to the estimation of 
period means not too close to the beginning or end of the sample period, i.e., 
we will present results for the limiting case when T and S tend to infinity. In 
section 6 we drop the assumption that an infinite number of future observa- 
tions is available at the time of estimation, but the assumption that T is large 
is maintained. As a special case we consider the case in which no future 
observations are available, i.e., S = 0. 

A rotating panel with rotation length r is defined in this paper by the 
property that in every period lOOr-‘% of the participants is replaced and 
the assumption that always those units are replaced which participated the 
largest number of periods. If, e.g., r = 2, 50% of the participants in the first 
wave of the rotating sample will be replaced in the second wave, the other 
half is replaced in the third wave. New participants in the second wave will 
be replaced in the fourth wave, etc. Of course a rotating sample with rotation 
period equal to one is simply a series of cross-sections. We determine the 
relative efficiency of efficient estimators of linear combinations of the period 
means pcL1 in (1) from a rotating sample with rotation length r and IZ, 
observations in every wave on the one hand and another rotating panel with 
rotation length s and n, observations in every wave on the other hand. 

The plan of the paper is as follows. In section 2 we will show how results 
from spectral analysis can be used to obtain manageable expressions for the 
variance of efficient estimators of linear combinations of the w, in (1). In 
section 3 these results are used to discuss the relative efficiencies of designs 
for given parameters of interest. Defining p = az(aE2 + ail-‘, we show, e.g., 
that if the parameter of interest is the period mean pt itself, the relative 
efficiency of a series of cross-sections (r = 1) compared to a rotating panel 
with rotation period r = 2 is given by V’@:}/V’@:} = n2n; ‘(1 - P*)-‘/~. In 
section 4 bounds on the relative efficiency of rotating panels are derived 
which hold true irrespective of the parameter of interest. There we show, 
e.g., that the relative efficiency of efficient estimators of any linear combina- 
tion of the period means based on a series of cross-sections and a panel with 
rotation period r = 2, respectively, will always lie in the interval (n,n;‘(l + 

p)-‘, n,n; ‘(1 -p)-I). In section 5 we consider the choice of the optimal 
rotation period assuming a simple cost structure. In section 6 the simplifying 
assumption that the number of periods after the period of interest is large is 
dropped, and it is shown there that this assumption does not strongly 
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influence most of the results. Finally, section 7 presents an empirical illustra- 
tion and concludes. 

2. Theoretical results on the variances of the parameter estimators 

In this section we discuss the main steps in the derivation of manageable 
expressions for the variance of efficient estimators of (finite) linear combina- 
tions of the period means pFLI in (1) from a rotating panel with rotation period 
r. Details are presented in the appendix. 

As stated in the previous section the parameter of interest is assumed to be 
c~=,~j~7_j. We define sj = 0 if j > J or j < 0, and we define vectors 
p = (p,_r,. . . , ,u~+~)I and 5 = (tr-, (r-i,. . . , 5_s)’ such that 5’~ = 
c~,O~jpcL,_j. Using the fact that the data in a rotating panel with rotation 
period r can be divided into r independent subsamples in such a way that 
each subsample is a time series of independent small panels, we first show in 
the appendix that the variance of the BLUE of 5’~ can be written as 

VI5’iV = q%-‘%P,, (2) 

where 9 is the BLUE of p from a rotating panel with rotation period r and 
ly is defined by !P =A -‘, where A is a band matrix with elements A,, 
(k,l= -T,-T+l,..., S-1,s) satisfying A,,=a,,_,, if r-T<l,k< 
S -r, and 

aj=l- 
P 

1+ (r- 1)p 
if j=O, 

r-j P 
= -- 

r l+(r-1)p 
if O<j<r, (3) 

= 0 if j2r. 

The main problem then is to find expressions for the elements of A-‘. 
Several approaches to this problem are possible. We suggest to use an 
analogy with a similar problem that has been analysed in the literature on 
time-series analysis. There the inversion is considered of a matrix ZMA 
defined by ZFA = Ex~x,, with x, generated by some moving-average 
process, x, = 6(L)e, where e, N IID(0, ae2) and 6(L) = 1 + 6,L + . . * + 
IY~_,L’-~ is a polynomial in the lag operator L. It is well known that the 
inverse of ZMA can be approximated by the matrix ZAR defined by ,Zfi” = 
EzJ,, where z, is the autoregressive process obtained by inverting the lag 
polynomial in the moving-average process underlying ZMA, that is z, = 
F’(L)e,. More precisely, Shaman (1975) shows that ZMA and (ZAR)-’ are 
identical except for the (r - 1) X (r - 1) submatrices in the upper left and 
lower right corners. 
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Now choose a: and 19~ (k = 1, . . . , r - 1) in such a way that Exlx, = ulr-SI, 

which is possible because the aj (j = 0,. . . , r - 1) satisfy the conditions given 
by Wold (1953, pp. 152-154). If _ZMA and ,ZAR are chosen in this way the 
matrix A which is to be inverted differs from ZMA only by (r - 1) X (r - 1) 
submatrices in the upper left and lower right corners. Using this fact and the 
result obtained by Shaman (1975) we show in the appendix that, if Ej = 0 for 
lj I > J, then 

(4) 

Thus eq. (4) shows how the variance of a linear combination of period means 
not too close to the beginning or end of the observation period can be 
approximated. 

The simplest way to obtain the elements of the matrix SAR (and to obtain 
the results to be presented in section 4) appears to be to use results from 
spectral analysis. The spectral density associated with the series of covari- 
antes aj is defined by 

f,(A) = ; i1 -ihj 

alile 3 
-7r<A<7T. 

j= -r+l 

In the appendix we show that if the aj are given by (3), the spectral density 
f,(h) can be written as 

1 1 p 1 - cos(hr) 

27 l+(r-1)p 
l-p+pr-- 

r 1 -cash 
, A+O, 

I 2: l+(rl-l)Jl-p}, 
A =O. 

A direct consequence of standard results in spectral analysis [see, e.g., 
Fishman (1969), Priestley (1981), or Harvey (198l)l is the fact that the 
variance of Cj=o[j~t_j, where z, = 6-‘(Lk, as before, can be written as 

V 
dA)f;‘(AW, (7) 

where f;‘(A) denotes l/f,(A) and 

g(A) = i WljleiAi, 
i= -J 

(8) 
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with 

wk= 6 6j’6j+k? k = 0,. . . , J. (9) 
j=O 

AS V{Z~=o5jZ~_jl can also be written as ~‘-CAR~ we finally obtain the main 
result of this section from (4) and (7): 

provided 6, = 0 if ljl > J for some finite J. For the sake of notation the lim 
operation will be deleted in the following sections. 

3. The relative efficiency of designs for specific parameters of interest 

Eq. (10) in the previous section shows how the variance of an efficient 
estimator will depend on the linear combination of the period means to be 
estimated, on the choice of the rotation period, and on the number of 
observations in each wave. In this section we will analyse what this result 
implies for the relative efficiency of rotating panels if one is interested in 
some particular linear combination of the period means in (1). In the next 
section we will use (10) to derive conditions on the relative efficiency of 
panels which hold true irrespective of the parameter of interest. 

An important feature of (10) is that the weights in the linear combination, 
si (j=O,..., J), determine the numerator within the integral while the 
choice of r affects the denominator only. In fig. 1 we have plotted the 
reciprocal of the denominator, f; ‘(A>, for rotation periods r = 1,2,3,4,8,12 
assuming that p = 0.5. Similarly the numerator in (lo), g(h), is presented in 
fig. 2 for six important special cases: estimation of the period means them- 
selves (J = 0; to = 11, of differences in means between two successive periods 
(J = 1; to = 1, [I = - 11, and of a k-period sum or average (J = k - 1; tj = 1, 
j=O , . . . , k - 1) for k = 2,3,6,12. Note that both f,(h) and g(A) are symmet- 
ric in A and are therefore plotted for nonnegative values of A only. 

It is obvious from these figures and well known in the literature [see, e.g., 
Cochran (1978, p. 348 ff.)] that the choice of the rotation period which 
minimizes the variance of the efficient estimator will in general depend on 
the linear combination of the means to be estimated. If the number of 
observations per wave does not vary with the choice of the rotation period 
(n, = n for all r), a series of cross-sections (r = 1) will be optimal if a 
twelve-period average is to be estimated because it is mainly the behaviour of 
f;‘(A) for small values of A (‘low frequency’) which is important. If a 
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Fig. 1. The inverse of the denominator for several rotation periods with p = 0.5. 
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Fig. 2. Values of numerator for several linear combinations of interest. 
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difference in means is to be estimated, a large value of r is optimal because 
the ‘high frequency’ components dominate the variance. 

Using (10) it is possible for any given 5 to compute the variance of the 
efficient estimator of &‘p given r and p. The integral in (10) can be computed 
with the Residue Theorem (see appendix), which yields that 

J 

/ 
r-l q2 

V{[‘$} = Re $c$ c 

w,+2 c w,z,h 
k=l I’ i- j=l 

h’( Zj) ’ 

\ I 

(11) 

where Re(z) denotes the real part of z and the zj are the r - 1 zeroes within 
the unit circle of the polynomial h(z) =~~-~,Y$~~~,+raljlz-j, and h’(z) = 
dh(z)/dz. The wk are defined in (9). Note that the zj are the I - 1 roots of 
the lag polynomial of the moving-average process introduced in section 2 and 
that in (11) it is assumed for simplicity that h(z) = 0 has no multiple roots. 

In order to compute the variances using (11) one has to determine the 
zeroes of a polynomial of degree 2r - 2. Although analytical results for r = 3 
and r = 4 can be obtained, they are not very revealing. Therefore we present 
analytical results for r = 1 and r = 2 only. For r = 1, the variance of ,$‘p is 
seen to equal 

v( [‘/Ii’} = ;-‘wo, (12) 

where a2 = a: + aE2, and for r = 2 (11) reduces to 

V{c$i2} = -$r2\il-pz (w0+2+1wk{ I-77 )‘I. (13) 

Using (12) and (13) it is straightforward to check by substituting (a = 1 and 
J = 0 that the relative efficiency of the BLUE of the period means p7 based 
on a series of cross-sections and on a rotating panel with rotation period 
r = 2 is given by 

(14) 
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RHO 

_______------ 
___________----- 

_______-------- 

0 
1, ” I 

1 2 3 4 5 

RELATIVE SAMPLE SIZE nl/d 

Fig. 3. Comparison of a series of cross-sections (r = 1) and a rotating panel with r = 2, 

Similarly the relative efficiency of the BLUES of pL, - pL,_i is 

while one obtains 

if pL, + pr_, is the parameter of interest. The result in (14) implies that a 
series of cross-sections yields more efficient estimates of the period means 
than a rotating sample with rotation period r = 2 if n1/n2 > (1 - P~)-“~. If 
this condition does not hold, the rotating sample is preferable. Similar 
conditions for the cases where p7 - p,_i or pT + p7_, are the parameters of 
interest are implied by (15) and (16). A graphical illustration of these 
conditions is given in fig. 3 where it is indicated for which values of the 
relative sample size r = 1 or I = 2 is preferable. The lines marked ‘all’ will be 
dealt with in the next section. Bounds on nl/n2 for other linear combina- 
tions of interest can be obtained directly from (12) and (13). It can easily be 
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RELATIVE SAMPLE SIZE nl/n3 

Fig. 4. Comparison of a series of cross-sections (r = 1) and a rotating panel with r = 3. 

verified, e.g., that the condition n1/n2 > (1 -$-1/Z from (14) is sufficient 
for optimality of a series of cross-sections over r = 2 if one is interested in 
weighted averages of the period means with nonnegative weights only as in 
that case wk 2 0 (k = 0,. . . , J). 

Efficiency comparisons similar to (14) (15) and (16) for other combina- 
tions of rotation periods can easily be obtained numerically using eq. (11). 
These efficiency results imply bounds on the relative sample sizes for the one 
or the other rotation period to yield more efficient estimates than the other. 
In fig. 4 such bounds are presented for the case where the choice is restricted 
to r = 1 or r = 3. Evidently, r = 1 is not an attractive choice if the individual 
effect is dominant unless the number of observations in the cross-sections is 
much larger than in the rotating panels. 

4. The relative efficiency of designs irrespective of the parameter of interest 

A problem with the fact that the relative efficiency of panels with different 
rotation periods generally depends on the aim for which the rotating panel is 
to be used is that one usually wants to use one panel for the estimation of 
both levels, differences and averages. In this section we derive bounds on this 
relative efficiency which hold true irrespective of the linear combination of 
the means to be estimated. 
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Evidently, from (lo), a panel with rotation period r will yield a more 
efficient estimator of 5’~ than another panel with rotation period s irrespec- 
tive of the choice of 5 if 

n;‘f;‘(A) <n,y-‘(h), -?r<h_<n-. (17) 

If the value qrS is defined by 

eqs. (10) and (17) imply that the relative efficiency of panels with rotation 
period r and s respectively will be in the interval (n,n; ‘TIN;‘, n,n; ‘T,,) 
irrespective of the parameter of interest. In particular this implies that the 
panel with rotation period r will yield more efficient estimators of any lin- 
ear combination of the period means in (1) than a panel with rotation period 
s if the numbers of observations per wave satisfy n,/n, > qrs. 

Let us first of all consider the choice between a series of cross-sections and 
a rotating panel with rotation period equal to two. Using 

f,(h) = &Cl -PI (19) 

and 

f*(h) = &(l +p))I(1 -pcosA), (20) 

it is straightforward to verify that v12 = (1 -p>-’ and n2, = 1 + p. Thus, for 
any finite linear combination of interest ,$‘p, it holds true that 

V{ 5’~‘~ 
(1 +$iZ < vIt,l;‘] <(I -P)-$ (21) 

Expression (21) implies that if n, > (1 - p)-in,, a series of cross-sections is 
preferable to a rotating panel with rotation period 2 without ambiguity, while 
the opposite is true if n1 < (1 +p)-‘n,. If neither of these conditions is 
satisfied, the choice of the optimal design depends on the parameters of 
interest in the way described in the previous section. 

Using (6) it can be shown that nlS=(l-p)-’ (s=2,3,...) and that 

77 TS = 11 + (1. - l)p}/{l + (S - 1)~) if r > s, so that (21) can be generalized to 

[l+ (r- l)p]-iz < $$$ < (l-+ (22) 
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Table 1 

Lower bounds n,, on the quotient of the number of observations per wave n,/n, for panel with 

____ 
P 

r=l 0.3 
0.6 
0.9 

r=2 0.3 
0.6 
0.9 

r=3 0.3 
0.6 
0.9 

r=4 0.3 
0.6 
0.9 

r=8 0.3 
0.6 
0.9 

r = 12 0.3 
0.6 
0.9 

rotation period r to be unambiguously preferable. 

s=l s=2 s=3 s=4 s=8 s= 12 

- 1.43 1.43 1.43 1.43 1.43 
- 2.50 2.50 2.50 2.50 2.50 
- 10.00 10.00 10.00 10.00 10.00 

1.30 1.22 1.38 1.67 1.76 
1.60 1.50 1.92 2.95 3.40 
1.90 - 1.99 3.06 7.16 10.29 

1.60 1.23 1.18 1.67 1.92 
2.20 1.38 - 1.35 2.61 3.48 
2.80 1.47 - 1.60 4.54 7.67 

1.90 1.46 1.19 - 1.55 1.92 
2.80 1.75 1.21 - 2.14 3.15 
3.70 1.95 1.32 - 3.04 5.55 

3.10 2.38 1.94 1.63 1.42 
5.20 3.25 2.36 1.86 1.69 
7.30 3.84 2.80 1.97 - 1.99 

4.30 3.31 2.69 2.26 1.39 - 
7.60 4.75 3.45 2.71 1.46 - 

10.90 5.74 3.89 2.95 1.49 - 

In more general cases it does not appear to be possible to obtain simple 
analytical expressions for qrS, but it is of course straightforward to maximize 
(18) numerically. Numerical results for three different values of p are 
presented in table 1. If, for example, p = 0.3, r = 3 will be unambiguously 
preferable to r = 2 if n3/n2 > 1.23, while r = 2 will be unambiguously prefer- 
able to r = 3 if n2/n3 > 1.22, i.e., if nJn2 < 0.82. It is evident from these 
results that it is relatively simple to choose the optimal rotation period if p is 
small, i.e., if individual effects are relatively not very important in the analysis 
of variance model (1). Of course the choice of the rotation period is also less 
important if p is small since in that case the obtainable efficiency gain will 
only be marginal. 

In fig. 3, where we restrict ourselves to the choice between r = 1 and r = 2, 
we have drawn the bounds vi2 and 7721’ on the relative sample size n1/u2. 
These bounds (marked ‘all’) determine regions in which r = 1 and r = 2 
respectively are unambiguously preferable to the other. Analogously, bounds 
for the choice between r = 1 and r = 3 are drawn in fig. 4. Of course the 
bounds derived in section 3 for some specific linear combinations of interest 
will always lie in the region where the choice depends on the parameter of 
interest. 
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5. The optimal choice of the rotation period given a budget constraint 

In sections 3 and 4 we have shown how the results of section 2 can be used 
to obtain the relative efficiency of the estimators from two (given) designs 
and thereby to determine which of these two designs yields a more efficient 
estimator. In this section we will consider the more general problem of the 
optimal choice of the rotation period given an assumed cost structure. 
Assume that a sample still has to be drawn and that one is free to choose the 
rotation period r as long as it is not larger than some prescribed maximum: 
r 5 rmax. Such a maximum will usually have to be imposed, e.g., to avoid 
problems concerning panel conditioning and selective nonresponse referred 
to in the introduction. Let p1 denote the cost of observing an individual for 
the first time and pz of observing it for a second time. Assume for simplicity 
that observing it for a third, fourth, etc. time is equally expensive as the 
second observation. If there is a budget B for each period, the number of 
observations per wave in case of rotation period r equals 

rB rB* 

nr=p,+(r-l)p,= l+(r-1)a’ (23) 

where B* = B/p, and cy =p2/p1, the relative cost of a repeated observation. 
Based on experiences from the Panel Study of Income Dynamics, Duncan, 
Juster, and Morgan (1987) suggest that (Y is smaller than unity. In particular, 
they state that the field costs of a cross-section are 30% to 70% higher than 
for additional waves of the panel, implying values for (Y between 0.6 and 0.8. 

If r max = 2, the choice is again restricted to either r = 1 or r = 2 and the 
bound in (161, for example, can easily be rewritten to show that spending the 
budget on a series of cross-sections will yield more precise estimates of 
averages over two periods than a rotating panel with rotation period equal to 
two if 

(24) 

Note that (14) and (15) imply that the rotating panel will always be preferable 
if levels or period-to-period changes are to be estimated as long as (Y < 1 
which is likely to be the case. 

More general results on the optimal choice of the rotation period can be 
obtained using (11). The choice of the rotation period if rmax = 8 is visualized 
in figs. 5, 6, 7, and 8 for the case of averages over 2, 3, 6, and 12 periods, 
respectively. Note that no figures are included for the estimation of a 
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Fig. 5. The optimal rotation period for estimating a two-period average. mean. 
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Fig. 6. The optimal rotation period for estimating a three-period average mean. 
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Fig. 7. The optimal rotation period for estimating a six-period average mean. 
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Fig. 8. The optimal rotation period for estimating a twelve-period average mean. 
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Table 2 

Relative efficiency for a panel with rotation period r compared with a series of cross-sections. 

Levels First difference Two-period sum 

P (Y = 0.5 a=1 0 = 0.5 cr=l a = 0.5 (Y=l 

r=2 0.3 0.71 0.95 0.61 
0.6 0.60 0.80 0.40 
0.9 0.33 0.44 0.12 

r=3 0.3 0.62 0.93 0.50 
0.6 0.49 0.74 0.31 
0.9 0.24 0.37 0.08 

r=4 0.3 0.57 0.92 0.46 
0.6 0.44 0.71 0.27 
0.9 0.21 0.33 0.07 

r=8 0.3 0.49 0.88 0.40 
0.6 0.36 0.64 0.23 
0.9 0.15 0.27 0.06 

r = 12 0.3 0.46 0.86 0.38 
0.6 0.33 0.60 0.22 
0.9 0.13 0.24 0.05 

0.81 
0.53 
0.16 

0.76 
0.46 
0.12 

0.73 
0.43 
0.11 

0.71 
0.41 
0.10 

0.70 
0.40 
0.10 

0.83 1.10 
0.80 1.07 
0.53 0.71 

0.74 1.11 
0.68 1.02 
0.41 0.61 

0.68 1.10 
0.61 0.98 
0.34 0.55 

0.59 
0.49 
0.24 

0.55 
0.43 
0.20 

1.05 
0.86 
0.43 

1.01 
0.80 
0.38 

single period mean or a difference in means as our numerical results suggest 
that in these cases the largest rotation period will always be optimal. 
However, one should not be tempted to think that a true panel (r = m) would 
yield even more efficient estimates if the preferred choice for the rotation 
period is rmax. In case of equal sample sizes, for example, a true panel will 
yield estimators of the period means which are as efficient as the ones 
derived from a series of cross-sections [see, e.g., Cochran (1977, p. 345 ff.)]. In 
general, figs. 5 to 8 clearly show that intermediary rotation periods (r = 
2 , . . . ,7) are optimal in very small parts of the (p, a> space only. Usually it 
will either be the maximal (r = 8) or the minimal (r = 1) rotation period 
which is optimal. 

It is not only relevant to know how the optimal rotation period can be 
determined, but also to know how much efficiency will be lost if a suboptimal 
choice is made. In table 2 we present the relative efficiencies compared with 
a series of cross-sections (r = 1) for several rotation periods, some specific 
parameters of interest, and values of (Y and p. As an illustration consider the 
case where p = 0.6 and (Y = 1 (equal cost). Then it follows from table 2 that 
the variance of the estimator of a particular pt in case r = 4 is equal to 71% 
of the variance for r = 1 (a series of cross-sections) and only 43% if one is 
estimating a first difference. It is clear that the gains in efficiency can be quite 
substantial if an optimal sample design is chosen. Even in case of equal cost 
(a = 1) gains of more than 50% are not uncommon. Using (23) and the 
results for (Y = 1, one can easily compute relative efficiency bounds for any (Y 
by multiplying the numbers in the table by {l + (r - l)cu)/r. 
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Fig. 9. Regions with restrictions on the optimal rotation period r. 

Similar to the approach chosen in section 3, one can check whether it is 
possible to determine the rotation period which minimizes the variance of 
the BLUE irrespective of the parameter of interest, assuming that the cost 
structure (23) holds and imposing r I rmax. Using (231, each bound n,, can be 
rewritten as a bound on the relative cost of resampling, (Y. Pairwise compar- 
isons are used to determine regions of the parameter space where one or 
more rotation period(s) can never be optimal, whatever the parameter of 
interest. These regions are presented in fig. 9 where we assumed rmax = 8. 
Note that in most regions there is no unique optimal rotation period since 
this will depend on the parameter of interest. However, optimality of some 
rotation periods can be excluded for some values of p and (Y. If, e.g., 
p < (1 - (~)/(l + a), a series of cross-sections will not be optimal for any 
choice of the parameter of interest. More general results can be inferred 
from fig. 9. If, e.g., (Y < 0.5, a series of cross-sections cannot be optimal for 
any parameter of interest if p < 0.33, while r = 2 and r = 3 will always be 
suboptimal if p < 0.17 and p < 0.09, respectively. 

6. The optimal design for specific parameters of interest if one is estimating 
in recent periods 

A drawback of the results of the previous sections is that they are only 
valid if one is estimating period means not too close to the end of the sample 
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period. In those sections we restricted attention to the limiting case where 
the number of future periods on which data are available, S, tends to infinity. 
In this section we consider the case of a fixed S, still assuming for conve- 
nience that the number of past periods in the sample, T, is infinitely large. 
The results in this section suggest that, unless p is close to unity and S very 
small, the earlier results are hardly affected. 

The main reason for considering the limiting case where S tends to infinity 
in the previous sections is that in this case a simple expression for the inverse 
of the matrix A, which arises in the variance-covariance matrix of the 
efficient estimator, is available. In this section we show how to obtain an 
expression for the inverse of this matrix if S is fixed. Denote the moving-aver- 
age process which generates the autocovariances Exlx, = a~t-~l by X, = 
19(L)e, with e, N IID(0, a:) as before. Define z, = 6-‘(Lie, = $(L)e, where 
I//(L) = I& + I(IIL + l&L2 + . . * . In section 2, where it was assumed that T 

and S tended to infinity, we have approximated the inverse of the matrix 
ZMA defined by Z(, MA = Extx, by _ZAR defined as 2:” = Ez~z,. A valid 
approximation to (_ZMA)-’ if S is fixed is to use the matrix of covariances of 
more-than-S-period-ahead prediction errors of the AR process instead of the 
matrix of covariances of the variable z, itself. In the appendix we show that if 
we define the symmetric matrix B = (blk) by 

S-k 

b,k=ue-’ C $jtijG;.tk-/ k rl, -Tsl,ksS, (25) 
j=O 

and partition B as 

where B,, has dimension (r - 1) x (r - 11, it holds true that, if Sj = 0 
j > J for some fixed J, 

(26) 

for 

~~m~‘A-l~ = Jern[’ (z+P22B22)-lP22(B21B22) 

(27) 

where S is fixed and P22 denotes the lower right (r - 1) X (r - 1) block of 
A - ZMA. Evidently, (27) generalizes (4). 
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In order to illustrate these results consider again the case where r = 2 in 
which case 6(L) = 1 - 6L with 

6= 1-(1-p*)1’2 1P 1 and a*=--- e 
P 261+p’ (28) 

In this case b,, reduces to 

S-k 
b,, = ae-* C .,yj@+k-l= ae-**k-[ 

1 _ 3+x--k-t]) 

1-P ’ 
k 21. (29) 

j=O 

Using (27) and (29) it is straightforward to verify that the variance of 
.$‘p = c:=,.$j$T_j for a rotating panel with rotation period r = 2 is given by 

V{S’fi*) = -$*(I -p) i t&b-k,-1 
k,I=O 

+ 2(1 -P9)(1 +P) I=0 
p2 (iv%-,)‘i. (30) 

Note that (30) is a generalization of (13), while the two expressions coincide 
if S tends to infinity. For the special case of estimating the period means pcL,, 
it is readily verified from (30) that the relative efficiency of a series of 
cross-sections and a rotating panel with r = 2 can be written as 

V(2) n2 1 2s+2 -1 

v(g) =Qg{l+o } . 
(31) 

Note that this relative efficiency decreases with S and tends to the expression 
in (14) if S tends to infinity since 11.9 < 1 if p < 1. It is not surprising that (31) 
is always smaller than (14) because the nonavailability of future observations 
has no impact on the efficient estimator in the cross-section case (r = l), but 
implies an information loss for the r = 2 case. 
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Table 3 

Relative efficiency for a panel with rotation period r compared with a series of cross-sections (in 
case of equal sample sizes). 

P 

r = 2 0.3 0.98 
0.6 0.89 
0.9 0.61 

r = 3 0.3 0.96 
0.6 0.85 
0.9 0.53 

r= 4 0.3 0.95 
0.6 0.82 
0.9 0.48 

r = 2 0.3 
0.6 
0.9 

r = 3 0.3 
0.6 
0.9 

r = 4 0.3 
0.6 
0.9 

r = 2 0.3 1.12 
0.6 1.15 
0.9 0.94 

r = 3 0.3 1.14 
0.6 1.16 
0.9 0.87 

r = 4 0.3 1.15 
0.6 1.15 
0.9 0.81 

s=o 

0.82 
0.55 
0.17 

0.77 
0.48 
0.13 

0.75 
0.45 
0.12 

S=l 

Level 

0.96 
0.85 
0.58 

0.95 
0.79 
0.47 

0.94 
0.78 
0.45 

First difference 

0.81 
0.54 
0.17 

0.76 
0.46 
0.13 

0.74 
0.44 
0.11 

Two-period sum 

1.10 
1.08 
0.80 

1.12 
1.08 
0.78 

1.13 
1.08 
0.75 

s=2 

0.95 0.95 
0.82 0.80 
0.54 0.44 

0.93 0.93 
0.75 0.74 
0.43 0.37 

0.93 0.92 
0.74 0.71 
0.42 0.33 

0.81 0.81 
0.53 0.53 
0.16 0.16 

0.76 0.76 
0.46 0.46 
0.12 0.12 

0.74 0.73 
0.44 0.43 
0.11 0.11 

1.10 
1.07 
0.74 

1.11 
1.04 
0.71 

1.11 
1.03 
0.70 

1.10 
1.07 
0.71 

1.11 
1.02 
0.61 

1.10 
0.98 
0.55 

For the special case of S = 0, (31) reduces to 

(32) 

This relative efficiency implies a bound on the relative sample sizes for the 
series of cross-sections to be preferable to a panel with r = 2, which is always 
lower than the one given by Eckler (1955) - in his ‘two-level rotation 
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sampling’ case - viz. 

“1, 
1 

112 243 
(331 

This result is not surprising either since for the two-level rotation sampling 
case, it is assumed that all individuals in the sample are observed twice (with 
one retrospective observation), which implies that the final-period sample 
size is half of the sample size in the preceding periods. 

In table 3 we present values for the lower bounds on the relative sample 
size rz,/n, for rotation period r to be preferable to a series of cross-sections 
for r = 2,3,4 and three specific parameters of interest. The relative efficiency 
of two designs is obtained if the entries in the table are multiplied by n,/y1i. 
The value of S indicates how many periods of observation are available after 
period T. Of course the results for S = CC coincide with the results of sec- 
tion 3. 

Table 3 shows that the relative efficiencies do not strongly depend on S, 
except possibly for large values of p. Moreover, the more observations are 
available after the estimation period(s), the smaller the difference between 
the exact bounds and the bounds from section 3 will be. Table 3 therefore 
clearly suggests that when p is known to be moderate, the results of section 3 
may be used as an approximation. It is clear from the table that, if the cost 
structure in (23) is valid and the relative cost of resampling (Y is smaller than 
unity, a rotating panel will be preferred to a series of cross-sections, when 
one is interested in a level as well as a first difference. If (Y is still smaller 
(e.g., 0.8), then the rotating panel is also preferable in case of estimation of a 
two-period sum. 

7. Concluding remarks 

The collection of data, e.g., in consumer surveys, is characterized by its 
high cost. Therefore it is important to obtain as much information as possible 
from a given budget by using optimal sample designs. In this paper we have 
determined the relative efficiency of rotating-sample designs and have con- 
sidered the problem of the choice of the rotation period which minimizes the 
variances of the BLUE of specific linear combinations of the period means or 
of any linear combination of the period means in an analysis-of-variance 
model. 

The analysis-of-variance model (1) is characterized by an individual effect 
CY~, implying a constant correlation over time between different observations 
on the same unit. The results can however easily be extended to more 
general correlation patterns because the assumptions on the correlation 
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pattern do not affect the structure of the band matrix A to be inverted in 
order to derive expressions for the variance of efficient parameter estimates. 

In a previous paper [Nijman and Verbeek (1990)] where we discussed the 
choice between a pure panel, a pure series of cross-sections, and a combina- 
tion of these two data sources, model (1) was used to model monthly 
consumer expenditures on food and clothing in 1985 in The Netherlands 
using the so called Expenditure Index panel conducted by INTOMART, a 
marketing research agency. The assumptions on the error terms appeared to 
be valid and the maximum-likelihood estimates of p in (1) for food and 
clothing were 0.76 and 0.25 with standard errors 0.005 and 0.002, respec- 
tively. If the cost structure introduced in section 5 is valid, these results imply 
that a series of cross-sections cannot be optimal to monitor expenditures on 
clothing if the relative cost of resampling is less than 0.60 irrespective of the 
parameter of interest. The corresponding figure for food where the individual 
effect is more prominent is 0.14. If one considers one parameter of interest 
only, these bounds can be sharpened. 

Alternatively, the results in this paper can be used to determine the 
relative efficiency of rotating panels, If one is, e.g., interested in estimates of 
the average consumer expenditures in the last month of the sample, our 
results in section 6 imply that the relative efficiency of a panel with rotation 
period 2 to a series of cross-sections is 0.79n,n;’ for food and 0.98n,n,’ for 
clothing. If the parameter of interest is the period mean in a more distant 
past, these relative efficiencies drop to 0.65n,n,’ and 0.97n,n;‘, respec- 
tively. Alternatively, the relative efficiencies for a recent change in means are 
0.37n,n;’ and 0.85n,n;’ for food and clothing, respectively, while these 
bounds drop to 0.35n,n;’ and 0.85n,n;‘, respectively, if one is estimating in 
a more distant past. 

In summary, our results show that the gains from choosing an optimal 
rotation design can be quite substantial, even in the case the cost of a 
repeated observation equals the cost of a first observation ((w = 1). Our 
analysis suggests that in many cases either the smallest (r = 1) or the highest 
possible rotation period is optimal. In the above-mentioned example of food 
expenditures, a rotating panel with r = 4 will yield an efficiency gain of over 
70% if one is estimating a difference in subsequent means, compared to a 
series of independent cross-sections with the same number of observations in 
every period. 

Appendix: Details on some technicalities 

In this appendix we will derive the expression for A given by (3) and prove 
the results in (41, (6), (111, and (27). 
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A. 1. Proof of (3) 

In order to derive (3) we split the individuals in the data set into r 
independent subsamples, each of which containing a time series of indepen- 
dent small panels. If r = 2, e.g., a first subsample consists of the units 
included in the first wave only, of those included in the second and the third 
wave, of those in the fourth and fifth wave, etc., while the second subsample 
consists of units observed in even periods and in the preceding period. The 
ordinary-least-squares estimator is the BLU estimator bj of /A in the jth 
subsample (j = 1,. . . , r). If we define a k x k matrix fink by 

where Ik is the k-dimensional identity matrix and Lo is a k-dimensional 
vector of ones, it can be easily verified that 

(A.21 

where YPj is a block-diagonal matrix with upper left block Oj, subsequently 
[(T-j)/r] blocks equal to fl, where [xl denotes the integer part of X, and 
finally a lower right block OnT_j_tCr_jj,rl, and n,/r is the number of observa- 
tions per period in each subsample. 

Since the bj are independent, the BLUE of p using all subsamples is 

fi = k pj-’ 

i 1 
-l i- 

c T-‘P, 
j=l j=l 

and the variance of this estimator is 

u2 
V{fi} = cP where Y~=IJ-,-~ 

nr 

Using the fact that 

(A.31 

(A-4) 

(A.51 

it is easy to check that the elements of A = W- ’ satisfy eq. (3). 
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A.2. Proof of (4) 

Subsequently, we want to prove eq. (4) which states that 

if tj = 0 for ljl > J for some finite J. 
First define ZMA and ZAR as in section 2. Apart from the (I - 1) X (r - 1) 

upper left and lower right corners, A equals ZMA. Moreover, as stated in the 
main text, Shaman (1975) shows that .ZMA, apart from the (I - 1) X (r - 1) 
upper left and lower right corners, is equal to (ZAR)-‘. Define the symmetric 
(T + S + 1) X (T+ S + 1) matrix W as W =A - (,ZAR)-‘. From the results 
above it is obvious that only the (r - 1) X (r - 1) upper left and lower right 
corners of W contain nonzero elements. Since CZAR)-’ is positive definite 
and W is symmetric, there exists a nonsingular matrix Q such that 

Q’(Z”“)-‘Q =I, (A.71 

Q’WQ = D = Diag{ Aj} , (A-8) 

with D a diagonal matrix containing the eigenvalues hj of ZARW and Q the 
eigenvectors of _EARW [see, e.g., Gantmacher (1959, p. 310 ff.)]. Using (A.71 
and (A.8), it is easily verified that 

A =,+-‘&-(‘~AR[= - 5 a?------ ‘i 
j=_T ’ l +hj 

with S = Q’t. (A.91 

If the eigenvectors of .Z ARW associated with the zero eigenvalues are 
included in a matrix Q, and the remaining 2r - 2 eigenvectors in a matrix 
Qz, it is evident that Q&ZAR)-‘Ql = 0 and that the first and last r - 1 rows 
of Q, consist of zero elements only. From (A.91 then follows that 

lim A = 0 if 
S,T+m 

lim Q;c=O, 
S,T+m 

that is, A approaches zero if the first and last r elements of ZARt approach 
zero. Since tj = 0, ljl > J, and ZAR is a covariance matrix of an autoregres- 
sive process, this condition is satisfied. 
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A.3. Proof of (6) 

We start with A # 0. First note that, by using (3), 

r-l 

2n-f( h) = C Qe-‘*’ 

j= -r+l 

1 

= 1+(r-l)p i 
1+(r-2)p 

Furthermore, 

r-1 r-l 
c kei(r-k)A = eirA C kte-iAjk 

k=l k=l 

=e irA 

i 

e -ih _ e-irh (r _ l)e-irA 

(1_e-iA)2 - l-epiA I ’ 

(A.lO) 

(A.ll) 

Using the analogue expression for C’,l’,k e-i(‘-k)A and substituting erhk = 
cos(hk) + i sin(hk), it is straightforward to check that 

1 
27rf(A) = 

p 1 - cos(Ar) 

l+(r-l)p 
l-/I+pr-- 

. r 1 - cos A 
(A.12) 

Secondly, we consider A = 0. Since cos(kA) = 1, C;Y_llk cos(kA) = C;l\k = 

r(r - 1)/2 proves the second equality in (6). 

A.4. Proof of (11) 

First note that (8) can be rewritten as 

i 

J 

g(A) = Re w0 + 2 c wk erAk , 
i k=l 

(A.13) 

where Re(z) denotes the real part of z. With g(z) = w0 + 2ci= rwkzk and 
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~(Z)=(1/(2rr))CS_Ir+laljlZ -j, the integral in (10) can be written as 

lT g(A)f;r(A)dh = Re /^r g(e’“)t’(e’“) dA 
-7r -r 

(A.14) 

where y is the unit circle with positive orientation. With h(z) = 25rzrP1fr(z), 
it follows that 

1 T 

z 
/ 

_ g(A)f;‘(A)dA=Re -i/ 
zr-‘&3 z) dz 

7r y h(z) . 
(A.15) 

Note that z’-‘g(z) is a polynomial of degree J + r - 2 and h(z) is a 
polynomial of degree 2r - 2 with r - 1 roots outside the unit circle and 
r - 1 roots within the unit circle. The latter roots are denoted by zj 

(j= l,..., r - 1). We assume that the equation h(z) = 0 has no multiple 
roots. (This assumption is of no importance since the multiple-roots case can 
be treated as a limit of the no-multiple-roots case>. Application of the 

Residue Theorem [see, e.g., Hohand (1980, p. 16O)l yields 

1 
-I= g(A)f;‘(A)dA = Re 
45r2 -r 

where Res,_ denotes the residue at zj. In the no-multiple-roots case, the 
zj’s are all sin&e poles and we have 

(A.17) 

Thus, we finally obtain from (10) 

J 

I r-l z;-’ w,+ 2 c WkZj” 

: c 
k=l 3 

j=l h’(zj) 1. (A.18) 
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A.5 Proof of (27) 

First, we prove that the lower right elements of (ZMA)-’ equal the lower 
right elements of B. It is readily verified that XMA = u~~CC’ and B = u~-~DD’ 
with 

0 

and D = 

I 

I . 0 \ 

.*I*” . 
. . *2 *1 *o, 

(A.19) 

A sufficient condition for (SMA)Y ‘B = I is then that C’D = I. Elaboration of 
this equality yields exactly the same conditions as O(L)$(L) = 1. To prove 
(27) use 

Apl=(.XMA+P)p’=B(Z+PB)p’ where P= 

and standard results on partitioned matrices yield the expression within 
curved brackets in the right-hand side of (27). 
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