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In case of sample selectivity the maximum likelihood estimator of the parameters in a model with fixed effects will not be 

consistent when the number of time periods is small. In this paper, we present a transformation to eliminate the fixed 

individual effects and show that the corresponding marginal maximum likelihood estimator is computationally feasible and 

can be used to estimate the remaining parameters consistently even if the number of time periods is finite. 

1. Introduction 

A commonly used model to analyze individual behavior using a panel data set is the following 
linear model: 

Y,, = J&P + a, + c,t > t=l ,..., T, i=l,..., N, (1) 

where X,, is a row vector of exogenous variables, p a column vector of unknown parameters of 
interest and the (Y, are unobserved individual specific effects. Because it is well known that in many 

applications these effects may be correlated with the explanatory variables [see Mundlak (1961) for a 
classical example of this topic] treating them as i.i.d. errors will usually lead to inconsistent 
estimators. A convenient way to circumvent this problem is to treat the (Y; as fixed unknown 
parameters and to estimate them either implicitly or explicitly. 

It is assumed that observations for y,, are only available if an unobserved variable r,: is 
nonnegative, for which we assume 

r* = zifY + E, + Vir, II t=l ,..., T, i=l,..., N, (2) 

where Z,, is a row vector of predetermined variables, possibly containing (partly) the same variables 
as Xii, and <, is an individual specific component of the error term. The (observed) indicator variable 
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r,, is defined as rit = 1 if r,f 2 0 and r,, = 0 if r,: < 0. Letting E, = (~,i,. . . , crT)‘, 77, = (qil,. . . , q,=)’ 
and += (1,. _ ., 1)’ of dimension T, we assume that the error terms in (1) and (2) are normally 

distributed according to 

so there is sample selectivity if p # 0. For identification purposes 01: + ot2 is usually set to one. 
In a recent application by Keane, Moffitt and Runkle (1988) this model is used to describe the 

development of real wages over the business cycle; the endogenous variable yi, is the logarithm of the 
wage rate and r,, is a dummy variable if individual i is employed at time t. In other applications 
[Hausman and Wise (1979), Ridder (1990)] eq. (2) is used to explain the probability of attrition of an 
individual from the panel. In all cases there is sample selectivity if the error terms in the two 
equations are correlated. 

2. Estimation of the model 

The standard fixed effects (or ‘within’) estimator of p in (1) which ignores the selectivity problem 
is inconsistent if both p # 0 and Z,,y varies with t [cf. Verbeek and Nijman (1990)]. An obvious 
alternative is to use the maximum likelihood estimator incorporating selectivity, as done in Keane et 
al. (1988). This is a straightforward extension of the method of Hausman and Wise (1979), but 
instead of treating the (Y, as random errors we treat them as fixed unknown parameters. However, the 
fixed effects (r, cannot be estimated consistently when the number of periods that individual i is 
observed (r, say) is small and this inconsistency is transmitted to the other coefficient estimators in 
models with limited dependent variables [see, e.g., Chamberlain (1980)]. In our model this incon- 
sistency occurs so long as p f 0. Although Heckman (1981b) has provided some Monte Carlo 
evidence that the bias is fairly small in a fixed effects probit model with T = 8, it is not clear to what 
extent his results hold for the present model. In addition, one has to optimize the likelihood function 
with respect to a large number of parameters, which is computationally unattractive. 

The standard solution to this incidental parameters problem is to condition the likelihood upon 
some (minimal) sufficient statistics for the incidental parameters resulting in a conditional likelihood 
function which is independent of the incidental parameters [Andersen (1970), Chamberlain (1980)]. 
However, in general there is no guarantee that these sufficient statistics exist. In the fixed effects 
model (1) with no selectivity bias (p = 0) minimal sufficient statistics for (Y~ are jj,, the observed 
individual averages of y,, [see e.g. Chamberlain (1980)]. Unfortunately, in the model with selectivity 
J,. is no longer a sufficient statistic for (Y, and conditioning the likelihood function does not eliminate 
the fixed effects, unless, again, p = 0. 

Therefore, one has to look for an alternative way to overcome the incidental parameters problem, 
which is provided by transforming the data in such a way that the individual effects are eliminated 
and maximizing the likelihood of the transformed data. This can be seen as an application of 
marginal maximum likelihood [Kalbfleisch and Sprott (1970), Gourieroux and Monfort (1989, p. 
208)J since (in general) only the likelihood of part of the original data is used. Well known effective 
transformations for the standard fixed effects model [eq. (1) with p = 0] are taking deviations from 
individual means (the ‘within’ transformation) and taking first differences. It appears that the 
‘within’ transformation, i.e. taking deviations from observed individual means, works equally well in 
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the model with selectivity bias, since it eliminates the incidental parameters (cx,) and thus yields a 
consistent estimator which is asymptotically normal. 

The marginal likelihood contribution of individual i is given by 

(4) 

where 

z= {tE {l,..., T}; r,,=l}, i=l,..., N, 

is the set of time indices for the periods in which individual i is observed and denotes deviations 
from the observed individual means, i.e. 

(5) 

where q denotes the number of elements in q;; j, denotes the T-vector of observed yC;,‘s. Since (4) 
does not involve cxi the incidental parameters problem is solved and maximizing the marginal 
likelihood function (the product of all /,m) will lead to consistent and asymptotically normally 
distributed estimators for p, y, p, ai and u,‘. 

At first sight the computation of the marginal maximum likelihood estimator seems to require 
numerical integration over T dimensions because of the T-variate conditional probabilities in (4) 
which is only feasible for small enough T. Fortunately however, it can be shown that the dimension 
of numerical integration can be reduced to two due to the special structure of the conditional 
distribution of the error term in the probit equation, which is identical to the distribution of 

u,, + a,1 + T,lU,Z 3 (6) 

where v,~, u,i and u,~ are uncorrelated error terms with 

E{%,} =‘qu,,} =o, %+r} = (~+dr,t(J;,-~;,P) =A,,> 

and 

V{ v,~} = ui(1 - riIp2), V{ u,,} = u: and V{ u,~} = p2uz/l;. (7) 

So just like in the random effects case analyzed by Ridder (1990) the conditional probit error term 
has an error components structure, which can be used to reduce the dimension of integration. In 
particular 

“;s”’ f(u,> ~2) du, du,, (8) 

where f( .) is the (normal) density function of U, and u2 and @ is the standard normal distribution 
function. If individual i is observed in all periods (Y, = Lo) or if there is no individual effect in the 
probit error term (CJ~ = 0), this s’ tmplifies further to a single integral. 
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3. Concluding remarks 

In this paper we have proposed a marginal maximum likelihood estimator that can be used to 
obtain consistent estimators of the parameters in a fixed effects model if there is sample selectivity. 
This estimator is consistent if the number of individuals (N) tends to infinity, even if the number of 
time periods (T) is finite, and does not require numerical optimization with respect to the fixed 
effects. Just like in standard cases, Wald, Lagrange Multiplier and likelihood ratio tests can be 
performed using the marginal likelihood function. 

The marginal maximum likelihood estimator proposed above can be generalized in a number of 
ways. First, the normality assumption of the individual effect in the probit equation can be replaced 
by any other assumption concerning the distribution of E,, including semi-parametric ones [cf. Keane 
et al. (1988)]. More general autocorrelation patterns of the probit error term can also be allowed, 
although computational tractability will usually require that T is small (because of the T-variate 
numerical integrals). Additionally, the strict exogeneity of the X,, variables required for the within 
transformation can be relaxed to predeterminedness if an alternative transformation is performed, 
for example the one proposed by Arellano (1988). Finally, if the initial conditions problem is 
properly taken into account, Z,, in eq. (2) may also contain the lagged dummy variable Y~.~_, 
without affecting consistency, so that state dependence and unobserved heterogeneity [cf. Heckman 
(1981a)] can be distinguished. 
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