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Minimum MSE estimation of a regression 
model with fixed effects from a series of 
cross-sections 

Marno Verbeek and Theo Nijman* 
Tilburg University, 5000 LE Tilburg. The Netherlands 

If panel data are not available but repeated cross-sections are, the parameters in a regression model 
with fixed individual effects can be estimated consistently using the cohort approach proposed by 
Deaton (1985). In this paper we show that Deaton’s estimator is inconsistent if the number of time 
periods is small, even if the number of cohorts tends to infinity. Moreover, we propose an alternative 
estimator which does not suffer from a bias due to a small number of sampling periods and we 
introduce a new class of estimators, containing both estimators mentioned above. We discuss 
minimum mean squared error estimation within this class. Our results show that it may be optimal 
to eliminate onlv Dart of the measurement error in the cohort averages, since the implied bias is otTset 
by a smaller va&ce. 

1. Introduction 

Many models suggested by economic theory can be written as regression 
models with fixed individual effects [see, e.g., Heckman and MaCurdy (1980), 
MaCurdy (1981), or Browning, Deaton, and Irish (1985)]. It is well known by 
now how such models can be estimated from panel data [see, e.g., Hsiao (1986)]. 
Unfortunately, however, panel data (i.e., repeated observations on the same 
individuals) are often not available, though series of cross-sections (i.e., obser- 
vations on different individuals in a number of periods) are. 

Recently, Deaton (1985) suggested a way to estimate parameters in a fixed 
effects regression model from a series of cross-sections. He proposed to construct 
a pseudo panel consisting of a number of cohorts (i.e., groups of individuals 
sharing some common characteristics such as age) followed over time, and 
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showed how consistent estimators of the regression parameters can be obtained 
from this pseudo panel. Since only a limited number of observations is available 
for each cohort, the observed cohort aggregates are considered as error-ridden 
measurements of the true cohort population values and an errors-in-variables 
technique is proposed to obtain consistent estimators. 

In section 2 of this paper we introduce a class of estimators, containing 
Deaton’s errors-in-variables estimator as well as the standard within estimator 
on the pseudo panel as special cases. We show that consistency of Deaton’s 
estimator requires that the number of available cross-sections tends to infinity. 
In addition, we suggest a modified estimator which does not suffer from an 
inconsistency due to a small number of time periods. 

In sections 3 and 4 we make some additional assumptions on the model 
of interest and the way in which the cohorts are constructed and, subsequently, 
we consider minimum mean squared error estimation of the slope param- 
eters in a simple regression model with fixed individual effects. Section 5 
concludes. 

2. A new class of estimators 

Consider the following linear model on an individual level: 

Yir = XirB + ei + &it, t= l,...,T, (1) 

where i indexes individuals, Xit is a k-dimensional row vector of exogenous 
variables, and interest lies in the k-dimensional parameter vector /I. Throughout 
this paper the error term sit is assumed to be uncorrelated with the explanatory 
variables in xif and the individual effects Bi. Moreover, it is assumed that the 
data set is a series of T independent cross-sections with N individual observa- 
tions each, where different values for the index i reflect different individuals 
(i = 1, . . . , NT). 

In many applications, for example in life cycle models, economic theory 
suggests that the individual effects Bi are correlated with the explanatory 
variables. Consequently, regression estimators which simply include Oi in the 
error term (‘random effects estimators’) will be inconsistent. Moreover, a fixed 
effect treatment of the Oi is not possible because repeated observations on the 
same individuals are not available. Deaton (1985) has shown how fl can never- 
theless be identified. Suppose, as in Deaton (1985) and Verbeek and Nijman 
(1992a) that the individual observations are split into C groups or cohorts (for 
example age intervals). Aggregating all observations to cohort level and denot- 
ing the average value of xit in cohort c at time t by f,, (and analogously for all 
other variables in the model), we obtain a model in terms of observed cohort 
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aggregates, 

jc* = %tP + 6, + -%,, c=l,..., C, t=l,..., T. (2) 

The problem with estimating p in (2) is that the aggregated individual effects 
& are unobserved, not constant over time, and correlated with Xcl as long as 
Xir and 8, are correlated. Consequently, the within estimator on the pseudo panel 
will, in general, not be consistent. Now, consider the cohort population version 

of (2), 

Yc*, = x,*rP + 0, + c+i, c=l,..., C, t=l,..., T, (3) 

where the asterisks denote unobservable population cohort means and where 6, 
is the cohort fixed effect, which is constant over time because population cohorts 
contain the same individuals in all periods (ignoring birth and death of indi- 
viduals). Now jet and X,, can be considered as error-ridden measurements of 
yf*t and x2. It is assumed that the measurement errors are normally distributed 
with zero mean, independent of the true values, 

(4) 

In general, the measurement error variances depend on the number of observa- 
tions within each cohort. Assuming, for convenience, that there are n, observa- 
tions available in each cohort for each period, the measurement errors tend to 
zero if It, + co . For any construction of cohorts, ooo, CJ, and a2 can be estimated 
consistently from the individual observations. Without affecting our main con- 
clusions we shall in the sequel assume that a, and 0 are known. 

We can now define a class of estimators for /?, indexed by a parameter 
tl E [0, 11. as follows: 

where 

(6) 

(7) 

with X, = (l/T)CJT= I z,. The estimator proposed by Deaton (1985) eliminates 
the total measurement error variances and is characterized by u = 1. On the 
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From (9), (lo), and (5) it follows directly that 

plim F(a) = (s2, + (t - a)QZ)-l (52,/l + (t - 01)u). 
C-m 

(11) 

Whether or not &a) is consistent for p depends on the value of a as well as on the 
relationship between Q2 and 0. 

If 8i and xit are uncorrelated, it is easily verified that e = 5228. Consequently, p(a) 
is consistent for any value of a. On the other hand, if Bi and xi, are correlated, it is 
easily seen that F(a) is inconsistent for finite T unless a = ‘t. This implies that 
Deaton’s errors-in-variables estimator, B(l), is inconsistezt if T is fixed and, conse- 
quently, in conflict with Deaton’s (1285) assertion that b(l) is ‘clearly consistent as 
CT + co ‘. The inconsistency of /I (1) is caused by the incidental parameters 
problem (implying that 19 cannot be estimated consistently), which carries over to 
the parameters of interest /I, as long as the measurement errors are not correctly 
eliminated. Within our class of estimators it is easy to adjust Deaton’s estimator to 
attain consistency by choosing a = r instead of a = 1. If only a few cross-sections 
are available, the difference between the two estimators may be substantial. Of 
course, if T-P co, 7 + 1 and consistency of both estimators is guaranteed. 

The choice of a will not only affect the consistency of the estimators, it will 
also have an-effect on their variances. From (5) one can readily derive that the 
variance of P(a) is increasing in a. Consequently, Deaton’s errors-in-variables 
estimator (a = 1) not only is inconsistent, it also has a larger variance than the 
consistent estimator in our class. More generally, because the variance is 
monotonically increasing in a and the inconsistency has a minimum at 
a = (T - 1)/T, there is room for a trade-off between variance and asymptotic 
bias, and is it not unlikely that an estimator with a value of a smaller than r will 
perform better in terms of mean squared error. The results of Fuller (1987, 
p. 163ff.) also suggest that a smaller value of tx may improve the moment 
properties of the estimators. 

To illustrate the trade-off between large sample variance and large sample 
bias, we shall in the next two sections consider a simple illustrative case and 
present expressions for the probability limit and the corresponding variance 
of P(a) given a and n,. 

3. The bias in &a) in a simplified case 

In this section we shall consider a specific example with a specific way of 
construc$ng the cohorts, and derive analytical expressions for the probability 
limit of p(a), as a function of a and the cohort size n,. The model considered in 
this section is 

Yiz = xitS + 8i + &it, t= l,...,T, 
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where now xif is only one-dimensional. As before, the individual effects 8i may be 
correlated with the explanatory variable xit. In particular, we shall impose the 
assumption [based on Mundlak (1978)] that the individual effects Bi are corre- 
lated with the x’s in the following way: 

Bi = XiE” + 5i, (13) 

Our next assumption concerns the construction of the cohorts. As in Verbeek 
and Nijman (1992a), it is assumed that grouping is based on some variable’ 
z such that the support of the density of z is split into C intervals with equal 
probability mass, each interval corresponding with a particular cohort. In 
practice, the variable z is often based on the date of birth (resulting in age 
cohorts), but it is also possible to base z on more than one underlying variable. 
Finally, we have to specify the relationships between the cohort-identifying 
variable z and the other variables in the model. We shall assume that the 
regressor variable xit is correlated with zi according to 

Xir = ,4 + YtZi + Uit, (14) 

where3 E {eit[zi) = 0, cov {Uit, Ois} = ~0:. The p, are fixed unknown constants. 
The error term sit is assumed to be uncorrelated with Zi. 

Under the assumptions above, it can be shown4 that the inconsistency in B(a) 
is given by5 

6(x) = plim(&z) - p) = ;1 
1 +(T- 1)p (r-c++ 

C-CC 

T 
01 +(r--)oz’ 

(15) 

where w1 and o2 are given by 

(16) 

(17) 

’ For mathematical convenience, this variable z is assumed to be absolutely continuous, distrib- 
uted independently across individuals. Without loss of generality the variance of z is normalized to 
one. 

3 The equicorrelation of rir over time is chosen for mathematical convenience only and can easily 
be relaxed to more general autocorrelation patterns. 

4 Technical details are given in the appendix of the working paper version [Verbeek and Nijman 
(1992b)], available upon request. 

5 In this section lower-case letters are used to stress that or and co2 are scalar. 
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Table 1 

Relative inconsistencies of B(a), apart from n/p. 

T=2 T= 10 

W/et 

0.025 

u, 

10 
50 

100 
200 

a=0 

0.50 
0.21 
0.13 
0.07 

a=1 

- 0.50 
- 0.19 
- 0.08 

a=0 

0.43 
0.23 
0.15 
0.08 

a=1 

- 0.37 
- 0.05 
- 0.02 
- 0.01 

0.10 10 0.25 - 0.75 0.26 - 0.06 
50 0.07 - 0.08 0.08 - 0.01 

100 0.04 - 0.04 0.05 - 0.01 
200 0.02 - 0.01 0.02 - 0.00 

0.25 10 0.13 - 0.19 0.15 - 0.02 
50 0.03 - 0.03 0.04 - 0.00 

100 0.01 - 0.02 0.02 - 0.00 
200 0.01 - 0.01 0.01 - 0.00 

respectively. As long as il = 0 (i.e., as long as the individual effects and the 
explanatory variabl_e are uncorrelated), the estimator is consistent for fi for any 
u E [0, 11. If L # 0, P(g) is inconsistent for fl (when T is fixed) unless a = z. Note 
that the inconsistencies do not disappear if T + 00 unless p = 0, i.e., unless the 
xit’s are uncorrelated over time (conditional upon zi) or unless a - t + 0 as 
T + cc (which& the case for Deaton’s errors-in-variables estimator). 

The bias in p(a) may be very large if w1 is small relative to oz. Since o1 
denotes the within variance of the true cohort means, it is thus important to 
choose the cohorts such that this variation (over time and over cohorts) is large. 
If the expectation of xif does not depend on t (the p;s do not vary with t), this 
requires that there is time variation in the correlation between xit and the 
cohort-identifying variable Zi. The extent to which an increasing cohort size n, 
reduces the inconsistency, through its effect on 02, depends crucially on the 
ratio of o1 and at. Note that both co1 and ai are implied by the choice of the 
cohort-identifying variable and are independent of the number of observations 
in each cohort. Increasing n, reduces the bias in all estimators, unless o1 = 0. 

In table 1 we present values6 for the relative inconsistency S(cr)/fi of &) 
[apart from the factor7 n/p, i.e., we present 6(1$/n] for oi/a,2 = 0.025,0.10, and 
0.25, T = 2 and 10, and p = 0.5, for different values of n, and c1 = 0 and 1. Note 
that the inconsistencies are increasing in p. From the table we can see that the 

6A ‘-’ in the tables indicates that or + (T - a)02 is not positive (definite), as was assumed above. 

’ It can be shown that A/p is the relative bias in the between estimator for b on individual data and 
is an upper bound for the relative bias in OLS or GLS estimators [cf. Mundlak (1978)]. 
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inconsistencies may be fairly large if the within variance of the true cohort means 
o1 is small relative to the measurement error variance (T: and if small cohort 
sizes are chosen. A larger value of T does not have much effect on the bias if 
LY = 0, but reduces the bias if c1 = 1. 

It is important to realize that a choice of tl which reduces the bias may do so at 
the cost of a larger variance. To see this, we shall in the next section consider the 
variance and the MSE of our estimators B(a). 

4. Minimum MSE estimation in a simplified case 

In this section we shall derive the choice of a which minimizes the mean 
squared error of the estimator in the example of the previous section. Our results 
suggest that neither Deaton’s errors-in-variables estimator (a = 1) nor the 
adjusted errors-in-variables estimator (a = t) are optimal in finite samples and 
that the optimal value of a is smaller than r = (T - 1)/T. 

The asymptotic variance of p(a) can be written as 

V{&(a)} = kT (01 + (T - a)w2)-2v*, 

where 

Under the additional assumption of normality of the cohort aggregates R,,, &, 
and Eet, one obtains that 

v* = (01 + 502) [n;‘(u; + u; + n2Ao,2)] + rn;212A2a;, (20) 

where A = (1 + (T - l)p)/T. Since ,P does not depend on a, it immediately 
follows that the within estim_ator /3(O) has smallest variance, while Deaton’s 
errors-in-variables estimator /I(l) has largest variance in our class. 

Using the asymptotic bia_s and variance, we approximate the mean squared 
error (in finite samples) of p(a) by 

MSE {p(a)> x M/SE {&a)) = V {B(a)} + S(a)2. (21) 

Using (15) and (18) this can be written as 

P&E {@(a)} = L2A2(2 - a)’ +FT$ (~q/ai? + (T 
> 

- a))-2. (22) 
” 
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Obviously, if 1 = 0 (i.e., if the individual effects are uncorrelated with the 
explanatory variables), minimum MSE is obtained for a = 0, the within es- 
timator on the pseudo panel of cohort data. Assuming 1 # 0, we cc minimize 
(22) with respect to a. As o1 + (r - a)02 > 0, we obtain that MSE {B(a)} is 
minimal if a = a*, where 

a* 
1 

=r---v* n,2 
NT 12A2a2~ ’ ” 1 

(23) 

Thus, a minimal mean squared error is obtained for aopt = 0 if a* I 0 or 
a Opt = a* if a* > 0. Note that a* I z, such that a > T will never be optimal. 
Consequently, in finite samples it may be advantageous in terms of MSE to 
choose a smaller than r, even though the implied estimator will suffer from an 
inconsistency. 

Using the expression for V* one can derive that a* is increasing in 1 and NT 
as well as increasing in o1 /a:. Since ol/az is an indicator for the quality of the 
cohort-identifying variable z [see also Verbeek and Nijman (1992a)], this latter 
point implies that it is unadvisable to eliminate much measurement error if 
cohorts are chosen poorly (low 01/cr,2). This is caused by the fact that the 
(asymptotic) bias is bounded [cf. (15)], while the variance may increase rapidly if 
w&z decreases (in particular if a is large). 

Empirically, it can make a huge difference in terms of mean squared error 
which value of a one is using. To illustrate this, we present numerical values of 
MSEs of the four estimators considered in this paper: the standard within 
estimator (a = 0), Deaton’s errors-in-variables estimator (a = l), the adjusted 
errors-in-variables estimator (a = T), and the estimator using the optimal value 
of a (a = aopt). For analyzing the relative performance of these estimators, two 
scaling parameters are irrelevant (corresponding to the scaling of yi, and Xit): 
of + 0: and 0:. In addition, we arbitrarily normalize all mean squared errors 
such that the MSE of the optimal-a-estimator equals one for n, = 50. Conse- 
quently, relative MSEs depend on ml/of, L’at/(a,’ + a:), p, on sample sizes 
N and T, and on cohort size n,. 

Numerical values for relative MSEs are given in table 2 (for N = 1000) and 
table 3 (N = 5000), where we have taken the parameter values from table 1, with, 
in addition, n’az/(a? + a:) = 0.5. Smaller values of this parameter reduce the 
value of aopt and deteriorate the relative performance of the adjusted errors- 
in-variables estimator, while larger values lead to smaller differences in the 
MSEs of the adjusted errors-in-variables estimator and the optimal-a estimator. 
The overall view is that both the within estimator on the pseudo panel (a = 0) 
and the unadjusted errors-in-variables estimator (a = 1) perform rather poorly, 
in particular for small cohort sizes n,. The reason for this is that biases are 
relatively important and cause a substantial deterioration of the mean squared 
errors compared to the optimal-a estimator. The differences between the latter 
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Table 2 

The relative MSE of @(cl) in comparison with ~(a”pL) with n, = 50; N = 1ooO. 

T=2 

WI/g: 

0.025 

0.10 

0.25 

n, Pp a=0 d( = cp” ‘X=7 

10 0.417 3.805 1.975 2.634 
50 0.319 1.229 1 .OOo 1.145 

100 0.197 0.885 0.855 0.959 
200 0 0.781 0.781 0.866 

10 0.461 4.821 1.414 1.469 
50 0.363 1.159 1.000 1.027 

100 0.241 0.967 0.948 0.972 
200 0 0.92 1 0.921 0.945 

10 0.470 3.568 1.182 1.196 
50 0.372 1.080 1.000 1.010 

100 0.250 0.987 0.977 0.987 
200 0.005 0.966 0.966 0.975 

a=1 

6.692 
1.992 
1.166 

43.387 
1.731 
1.181 
1.018 

8.029 
1.267 
1.069 
1.005 

T= 10 

w/ut a=0 a = aop’ a=5 a=1 

0.025 10 0.858 10.813 2.526 2.954 15.951 
50 0.824 3.412 1.000 1.061 1.385 

100 0.782 1.667 0.787 0.824 0.925 
200 0.670 0.913 0.678 0.706 0.742 

0.10 10 0.883 22.846 1.659 1.687 3.314 
50 0.849 3.046 1.000 1.010 1.093 

100 0.807 1.459 0.917 0.925 0.954 
200 0.723 0.994 0.875 0.883 0.895 

0.25 10 0.888 20.006 1.297 1.303 1.892 
50 0.854 2.116 1.000 1.004 1.038 

100 0.812 1.233 0.963 0.966 0.978 
200 0.728 1.000 0.944 0.948 0.952 

estimator and the adjusted errors-in-variables estimator (a = r) are fairly small, 
in particular if n, is not too small. If N increases, biases affect the MSE more 
heavily, causing a deterioration of the performance of the estimators with CI = 0 
and c( = 1. 

Summarizing the results, it has been shown that Deaton’s (1985) errors- 
in-variables estimator (c( = 1) will never be optimal in terms of mean squared 
error and that the adjusted errors-in-variables estimator (IX = r) will be optimal 
in large samples only. In most cases an intermediate value of c1 leads to 
a minimal MSE. If 1 is near zero, the within estimator on the pseudo panel 
(tl = 0) will be optimal, because in this case the bias will be negligible. 
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Table 3 

The relative MSE of j(m) in comparison with fl(cP) with n, = 50; N = 5000. 

T=2 

w/fJS n, a‘wt oc=o a = &-p’ Ci=T ci=l 

0.025 10 0.483 16.045 2.219 2.367 
50 0.464 3.424 1.000 1.029 18.640 

100 0.439 1.585 0.841 0.862 3.566 
200 0.390 0.936 0.761 0.778 1.399 

0.10 10 0.492 21.034 1.427 1.438 189.31 
50 0.473 2.348 1.000 1.005 3.507 

100 0.448 1.279 0.947 0.951 1.563 
200 0.399 0.989 0.920 0.924 1.093 

0.25 10 0.494 14.404 1.183 1.186 32.408 
50 0.474 1.650 1 .OOo 1.002 1.936 

100 0.450 1.129 0.977 0.979 1.223 
200 0.401 0.996 0.966 0.968 1.037 

T= 10 

4 a=0 G( = aap’ G(=T a=1 

0.025 10 0.892 51.051 2.726 2.818 44.778 
50 0.885 14.910 1.000 1.012 1.825 

100 0.876 6.250 0.779 0.786 0.998 
200 0.859 2.418 0.668 0.674 0.736 

0.10 10 0.897 111.46 1.668 1.674 8.174 
50 0.890 12.230 l.ooO 1.000 1.249 

100 0.881 4.145 0.916 0.918 0.987 
200 0.865 1.719 0.874 0.876 0.897 

0.25 10 0.898 96.916 1.298 1.299 3.793 
50 0.891 7.065 1.000 1.001 1.106 

100 0.882 2.556 0.963 0.963 0.993 
200 0.866 1.341 0.944 0.944 0.954 

5. Concluding remarks 

In this paper attention is paid to the estimation of a fixed effects regression 
model from repeated cross-sections using a cohort approach. In this approach 
the individual observations are grouped into cohorts based on one or more 
time-invariant characteristics, like date of birth or sex, which results in a pseudo 
panel of cohort data. As shown by Deaton (1985), if the individual effects are 
correlated with the explanatory variables, the standard within estimator based 
on the pseudo panel, will be inconsistent, a problem which can be viewed as an 
errors-in-variables problem. 
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In this paper we introduce a class of estimators including the errors-in- 
variables estimator proposed by Deaton (1985) and the standard within es- 
timator. It is shown that for a fixed number of cross-sections (T) both these 
estimators are inconsistent. In addition, from this class a consistent estimator 
(for fixed T) is derived, which boils down to performing a within transformation 
on the pseudo panel (i.e., taking deviations from cohort means) and adjusting 
the moments matrices in the least squares estimator by eliminating a fraction 
r = (T - 1)/T of the (estimated) measurement error variance. 

Our class of estimators is indexed by the fraction (a) of the measurement error 
variance that is eliminated (CI E [0, I]). The larger this fraction is, the smaller is 
the variance of the resulting estimator. In terms of mean squared error this 
implies that it is optimal to eliminate a fraction smaller than (T - 1)/T of the 
measurement error. Since this optimal fraction depends on unknown param- 
eters, choosing u = (T - 1)/T might be tempting in applications. The differ- 
ence between this adjusted errors-in-variables estimator and the optimal-a- 
estimator in terms of mean squared error was fairly small in the example 
considered in sections 3 and 4. Although Deaton’s errors-in-variables estimator 
(corresponding with c( = 1) is consistent if the number of cross-sections T tends 
to infinity, it does not perform very well in terms of mean squared error, since 
both the bias and the variance are larger than for the adjusted errors-in- 
variables estimator [a = (T - 1)/T]. Even for moderate T the difference can be 
substantial. 
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