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1 INTRODUCTION 

Worldwide electricity markets are being deregulated. Electricity producers, distribution 

companies and consumers are free to trade electricity contracts bilaterally amongst each other. 

As a result, electricity markets have been established to facilitate trading in spot and 

derivative contracts that involve intra-day, day-ahead or longer-term ahead delivery.  

 

This paper focuses on the purchasing decision of consumers and distribution companies. 

Overlooking their expected future consumption (or the future consumption of a batch of 

clients in the case of a distribution company), consumers have to decide when and which 

contracts to purchase in order to deal with the price risk they face. This price risk origins from 

the variation in prices on day-ahead markets (or intra-day markets in some countries), as these 

most closely resemble spot markets. If consumers have not contracted their consumption on 

beforehand, they have to purchase on these spot markets. Prices on day-ahead markets are 

extremely volatile and exhibit frequent price jumps1. In order to manage the price risk 

consumers face, they can trade in many derivative contracts.  

 

Popular contracts are the base-load and peak-load forward contracts that involve delivery in a 

future period of time, for example the calendar year of 2008 or the second quarter of 2007. A 

typical base-load contract involves the delivery of 1MW of electricity in all hours in the 

delivery period. A typical peak-load contract involves the delivery of 1MW of electricity in 

the peak hours in the delivery period, where the definition of peak hours may differ over 

markets. For instance, the German EEX market defines the peak between 8 am and 8 pm on 

working days and the Dutch APX market defines the peak between 8 am and 23 pm. These 

contracts are traded over the counter or as futures on many exchanges. On the German EEX 

market, one can trade calendar year contracts up to 6 years ahead although the more recent 

contracts are more liquid. 

 

Given these set of forward and futures contracts that can be traded every day, the consumer 

has to question herself frequently how to contract her future consumption: to wait and 

purchase on the day-ahead market or to (partially) hedge this risk by purchasing some of these 

forward contracts. If she decides to hedge, she actually manages a portfolio of electricity 

forward and futures contracts that cover (partly) the delivery of her expected future 

consumption. As being a portfolio manager, her goal in the hedging decision process is to 

obtain minimum expected costs of consumption conditional on her risk appetite.  

                                                      
1 See Bunn and Karakatsani (2003) and Huisman, Huurman and Mahieu (2007) among others for 
reference on the behaviour of day-ahead electricity prices. 
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This paper deals with the optimal number of forward contracts to hold in the portfolio such 

that expected costs are minimized respecting a risk appetite expressed in terms of Value at 

Risk. Value at Risk is here defined as the maximum costs she is willing to pay for the 

consumption in a certain delivery period with a given level of confidence. To do so, a one-

period model is introduced to calculate the optimal hedge amounts for peak-load and off-peak 

load contracts. 

 

This portfolio construction problem is in line with the problem formulation of the famous 

Markowitz (1952) model, where efficient investment portfolios are constructed based on the 

investors goal to maximize expected future returns given a certain level of risk. In this model, 

risk is measured by the standard deviation of the portfolio returns. Campbell et al. (2001) 

introduced a similar portfolio allocation model in which risk is defined in terms of Value at 

Risk. In the electricity literature, some have followed the Markowitz methodology to address 

the forward hedging issue, particularly Nasakkala and Keppo (2005) and Woo, Horowitz, 

Hori and Karimov (2004) who study the interaction between stochastic consumption volumes 

and electricity prices (day ahead and forward) and propose a mean-variance type model to 

determine optimal hedging strategies. Vehvilainen and Keppo (2004) take the viewpoint of a 

generation company and optimize hedging strategies using VaR as a risk measure. 

 

To analyze both stochastic consumption and prices is meaningful, yet complex. Some cases 

need Monte Carlo simulations in order to provide results. This paper takes a step back and 

assumes that consumption is deterministic2. In a one-period framework, it focuses on the 

decision how much to hedge in peak-load and off-peak load hours. This paper provides 

analytical formulas that make it possible to analyze the relation between the quoted forward 

prices and the risks faced on the day-ahead market in isolation of other stochastic variables.  

 

It is shown that the Markowitz (1952) concept of efficient frontiers also applies to electricity. 

Applying the formulas obtained from the model using data from the German EEX market, 

this paper shows that consumers can obtain lower expected costs when they are willing to 

take more risk.  

                                                      
2 In practice, load is not deterministic but the variability of consumption volume is much 

smaller than the variability of day-ahead electricity prices. 
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2 THE MODEL 

Consider an electricity consumer (or a distribution company that purchases electricity for a 

batch of consumers) who decides today, date t, which contracts to enter in order to purchase 

the electricity consumption for a later day T. Today, she can trade two forward contracts that 

deliver on day T: a peak contract that delivers 1MW of electricity in all peak hours of day T 

and an off-peak contract that delivers 1MW in all off-peak hours3. If, before T, she does not 

enter in any forward contract, she has to purchase her electricity needs on the day-ahead 

market at time T-1. Therefore, the decision on the number of forward contracts to buy or sell 

depends on her expectations of the future day-ahead prices in relation to the current forward 

prices.  

 

The following model aims to determine the optimal number of contracts to purchase. Let P be 

the set of peak hours and let O be the set of off-peak hours in day T. Let s(h) be the price on 

the day-ahead market at T-1 for delivery of 1MW in hour h on day T. The volume needed in 

hour h on day T equals v(h)4. Furthermore, let θp be the number of peak load forward 

contracts and let fp the market peak forward price at time t for delivery at time T. 

Equivalently, θo and fo represent those values for off-peak hours. The expected costs Et{TC} 

for the time T electricity consumption equal the sum, over each hour, of the costs of the 

volume purchased with forwards plus the expected costs of the amount that has to be 

purchased on the day-ahead market : 

 

(1) Et{TC} = Σh∈P [θpfp + (v(h) - θp) Et{s(h)}] + Σh∈O [θofo + (v(h) - θo) Et{s(h)}], 

 

where Et represents the expectation conditional on the information available at time t. A 

rational end consumer wants to minimize the expected costs, but as she faces risk from the 

open position on the day-ahead market, she does so respecting an ex-ante risk limit. Risk is 

expressed in terms of a Value-at-Risk type measure and reflects the fact that she would limit 

the probability that the total costs for consumption on day T exceeds the threshold TC*.  

 

(2) Pr{TC ≥ TC*} = 1-c, 

 

                                                      
3 In most power markets, off-peak contracts do not exist and only baseload (involving delivery a 
constant load of electricity in each hour of the day) and peak contracts are traded. The off-peak contract 
can be constructed synthetically by buying a baseload contract and selling a peakload contract. 
4 The model assumes that the volume is certain. 
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where c is a confidence level (typically between 95% and 99% in practice). Substituting the 

total costs (1) in the VaR constraint (2) yields: 

 

(3) Pr{Σh∈P [(v(h) - θp) s(h)] + Σh∈O [(v(h) - θo) s(h)] ≥ TC* - npθpfp – noθofo} = 1-c, 

 

Where no and np equal the number of off-peak and peak hours respectively in the delivery 

day. Focus on the equation within the probability brackets. The left hand side equals the open 

position on the day-ahead market. The right hand side equals the difference between the 

maximum she is willing to pay and the total costs of purchasing her volume using forward 

contracts. The equation states that the size of her open position on the day-ahead market is 

determined by the amount that she is willing to pay in excess of the total costs of hedging 

using the forward contracts.  

 

Following Campbell et al. (2001), the VaR constraint is rewritten in the following way. Let X 

be the stochastic open position on the day-ahead market in (3) and let D be the probability 

distribution function of X. Thus, 

 

(4) X = Σh∈P [(v(h) - θp) s(h)] + Σh∈O [(vo - θo) s(h)] ∼ D(μ(θp, θo), σ2(θp, θo)). 

 

Note that the average and variance of D depend on the amounts hedged in the peak and off-

peak hours. Normalizing (4) yields: 

 

(5) Z = {X - μ(θp, θo)} / σ(θp, θo) ∼ D(0, 1). 

 

The cth quantile of D(0,1), φc, is the number such that Pr{Z ≤ φc} = c. Substituting this in (5) 

yields 

 

(6) Pr{X ≤ μ(θp, θo) + φc σ(θp, θo)} = c. 

 

From (3) and (6), it can be shown that  

 

(7) TC* - npθpfp – noθofo = μ(θp, θo) + φc σ(θp, θo). 
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Note that the quantile φc does not depend on θp and θo when the third and higher moments of 

distribution function D are the same for peak and off-peak hours. In reality, this is not the case 

as price spikes in day-ahead markets mostly occur in peak hours. This implies different third 

and fourth moments. Then, equation (7) still holds, but φc is then a function of θp and θo, 

φc(θp, θo). In the following, it is assumed that the third and higher moments of D are the same 

for peak and off-peak and, therefore, that φc is a constant. 

 

In order to formulate the expressions for the mean and variance of D, let μ(h) be the expected 

day-ahead price for delivery in hour h of day T conditional on the information available at 

time t: μ(h) = Et{s(h)}. In addition, define the (24 x 1) vector V that contains in row h the 

value (v(h) - θp) if h is a peak hour or (v(h) - θo) if h is an off-peak hour and the (24x1) vector 

Μ that contains μ(h) in row h. Furthermore, let Ω be the (24 x 24) covariance matrix that 

contains in cell (i,j) the covariance between the day-ahead price in hour i and j for delivery on 

day T.  

 

(8) μ(θp, θo) = VT M 

 

(9) σ2(θp, θo) = VT Ω V 

 

The optimization problem then becomes to minimize total expected costs given in (1) subject 

to the VaR constraint given in (7) with respect to the volumes in the peak hour θp and in the 

off-peak hour θo. The optimal hedge numbers can be derived using the Lagrange multiplier 

method. The Lagrangian L is: 

 

(10) L = npθpfp + noθofo + VT M + λ[VT M + φc (VT Ω V)½ - TC* + npθpfp + noθofo]. 

 

The optimal hedge numbers can be found by minimizing the Lagrangian subject to the 

parameters θp, θo, and the Lagrange multiplier λ.  

 

In order to provide some intuition, the following assumptions apply below in order to provide 

more insight in the solutions. Assume that the delivery day consist of only one peak and one 

off-peak hour. Although this assumption takes away 22 hours from the delivery day, the 

simplification deviates not too far from reality. Huisman, Huurman and Mahieu (2006) 

showed in their panel model for hourly day-ahead prices that the hourly covariance matrix 
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shows a clear block structure of high correlations among the peak hours and among the off-

peak hours and near zero correlations between peak and off-peak hours. In essence, hourly 

day-ahead prices can be seen to behave in separate peak and off-peak blocks. The 

simplification into one peak and one off-peak hour therefore reflects the two blocks structure.  

 

The expected total costs function (1) in the two hours framework becomes: 

 

(11) Et{TC} = θpfp + (vp - θp) Et{sp} + θofo + (vo - θo) Et{so} 

 

The VaR constraint becomes: 

 

(12) TC* - θpfp - θofo = μ(θp, θo) + φc σ(θp, θo) 

 

The expressions for the mean and variance of the distribution function D are: 

 

(13) μ(θp, θo) = (vp - θp) μp + (vo - θo) μo 

 

(14) σ2(θp, θo) = (vp - θp)2 σ2
p + (vo - θo)2 σ2

o + 2 ρ (vp - θp) (vo - θo) σp σo, 

 

where µp is the expected day-ahead price in the peak, µo is the expected day-ahead price in the 

off-peak, and ρ is the correlation between the prices in the peak and off-peak hour. The 

Lagrangian L then equals: 

 

(15) L=θpfp + (vp - θp) μp + θofo + (vo - θo) μo + λ [μ(θp,θo) + φcσ(θp,θo) - TC* + θpfp + θofo] 

 

Minimizing L with respect to θp, θo, and λ yields the following first order conditions: 

 

(16) δL/δθp = 0 ⇔ fp - μp + λfp - λμp + λ φc δσ/δθp = 0 

 

(17) δL/δθo = 0 ⇔ fo - μo + λfo - λμo + λ φc δσ/δθo = 0 
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(18) δL/δλ = 0 ⇔ μ(θp, θo) + φc σ(θp, θo) - TC* + θpfp + θofo = 0 

 

Rearranging equations (17) and (18) and using the expression for the mean (13) and variance 

(14) yields the following expression: 

 

(19) 
2
o)}/σpμp(f

pσ
oσρ)oμo{(f

2
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oσ
pσρ)pμp{(f
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−+−
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−
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In order to interpret this solution, define sp and so  

 

(20) 
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oσρ)oμo{(f
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2
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)}oμo(f
oσ
pσρ)pμp{(f

ps o

−+−

=

−+−
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such that expression (19) becomes: 

 

(21) 
o

p

s
s

)oθo(v

)pθp(v
=

−

−
. 

 

Equation (21) relates the ratio of the open position in the peak hour over the open position in 

the off-peak hour is equal to the ratio of sp over so. Thus, the amount of risk the end-consumer 

wants to take in each hour depends solely on sp over so. To interpret this result, think of sp and 

so as being efficiency measures. When the correlation between the peak and off-peak prices is 

zero, sP in expression (20) equals the ratio of the risk premium in the peak hour over the 

variance of the peak prices. Otherwise stated, sP is the risk premium paid for giving up one 

unit or risk (in terms of variance) in the peak hour. The lower the efficiency level, the least 

costly it is to hedge in that hour and the lower the open position in that hour will be. Both sp 

over so thus reflect the costs of hedging per unit of risk in their specific hours.  
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It is interesting to notice the resemblance with the Markowitz mean-variance framework for 

constructing efficient investment portfolio’s. Within this framework, Sharpe (1966) defined 

the Sharpe ratio as return premium that an investor receives for taking one unit of risk 

(measures in terms of volatility). Let E(rp) be the expected return on the portfolio, let rf be risk 

free interest rate and let σp be the volatility of the portfolio return. Then, the Sharpe ratio is: 

(22) Sharpe ratio =
E(rp) − rf

σp
. 

From a managerial perspective, the Sharpe ratio assesses the efficiency of an investment or a 

portfolio.  

 

The efficiency measures are crucial for determining optimal hedging strategies. Suppose that 

sp and so are equal. This implies that hedging in both hours cost the same per unit of risk. 

Then, equation (21) shows that the optimal open positions in both the peak (vp - θp) and off-

peak (vo - θo) are equal. The open positions in peak and off-peak hours are equal when the 

cost of hedging per unit of risk in the peak hour is equal to the cost of hedging per unit of risk 

in the off-peak hour.  

 

Suppose that sp is higher than so, the cost of hedging per unit of risk is higher in the peak hour 

than in the off-peak hour. Equation (21) shows that, in this case, the open position in the off-

peak hour is smaller than in the peak hour. This makes sense. As hedging is relatively more 

expensive in the peak hour, one prefers to hedge more in the off-peak and less in the peak 

hour. The hedge in the off-peak forms a substitute for a hedge in the peak hour. The open 

position is smallest in the hour with the lowest cost of hedging per unit of risk and is 

substituted for a bigger open position in the hour, more expensive, hour.  

 

Hedge policies therefore depend completely on the efficiency measures sp and so. Monitoring 

these numbers provides clear information on optimal hedging positions. Expression (20) 

yields that the amount to hedge in the peak is a function of the amount hedged in the off-peak 

and vice versa. Observe that in this expression, the quantile φc plays no role. That implies that, 

if someone decides on the amount to hedge in the off-peak hour, it only depends on the 

market risk premiums and the day-ahead price volatilities and correlation what the amount in 

the peak should be. The risk attitude of the end-consumer, expressed in terms of her Value at 

Risk and confidence level she desires, does not influence the relation between the peak and 

off-peak hedge. The ratio of open the position in the peak over the open position in the off-

peak does not depend on risk aversion and is therefore the same for each consumer. 
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The optimal hedge amount for the off-peak hour is obtained from substituting equation (21) 

into (12).  

 

(23)  

σ~φ
s
s
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The optimal hedge for the peak can be obtained from substituting (23) into equation (21).  

3 MANAGERIAL IMPLICATIONS 

This section focuses on some managerial issues that can be addressed using the outcomes of 

the above model. 

3.1 How to hedge a baseload demand profile? 

Some end-consumers have a baseload demand profile. They consume the same amount of 

electricity in each hour of the day and therefore v(h) = v. Examples of these companies are 

chemical plants and industrial companies that work 24 hours per day or supermarkets that are 

open whole day. As baseload forwards, involving delivery in each hour of the delivery period, 

can be traded directly in worldwide energy markets, it seems at first sight straightforward to 

hedge the baseload profile with a baseload forward contract. However, from equation (21) it 

can be seen that this is not, per definition, an optimal strategy. When the volumes of the peak 

and the off-peak hours are equal, equation (21) becomes: 

(25) 
os
ps

o

p

s
s

o)-1( vp θθ −= . 

The optimal hedges in the peak and off-peak are only equal, such that a baseload contract can 

be used, when their efficiency levels are the same, sp = so. In all other cases, the hedge 

amounts in the peak and off-peak differ and the end-consumer should hedge with a 

combination of a peak and off-peak contract. An end-consumer who hedges using a baseload 
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contract in a world where the efficiencies are not equal, could obtain lower expected costs 

level by applying a different hedging strategy. 

3.2 Can a risk loving end-consumer obtain lower expected costs than a risk averse end-

consumer? 

The model presented above defines risk in terms of Value at Risk. As this risk measure 

reflects the maximum costs an end-consumer is willing to pay at a certain confidence level, a 

risk loving end-consumer is someone who applies, ceteris paribus, a bigger VaR or a lower 

confidence level. Therefore, the question whether a risk loving end-consumer obtains lower 

expected costs than a risk averse end-consumer can be answered by examining the optimal 

expected cost levels for different VaRs and confidence levels. To do so, the optimal hedge 

amounts (24) and the expected costs (11) are calculated for the one peak and off-peak hour 

case based on empirically obtained parameter values. 

 

For each day in December 2006, daily peak and off-peak prices were calculated as the 

average price in peak hours and off-peak hours in the German EEX market. The average over 

the daily peak prices equals €50.59 per MWh and the average over the daily off-peak prices 

was €36.14 per MWh. The standard deviation over the daily peak prices was €16.87 per 

MWh and over the daily off-peak prices was €10.05 per MWh. The correlation between the 

daily average prices was 0.23. On the 8th of January 2007, the EEX closing prices for the 

CAL08 baseload contract was 52.79 and for the peak-load contract was 80.08. The implied 

off-peak price for CAL08 was 37.58. The average day-ahead prices closed at 37.88 for 

baseload hours, 52.23 for peak load hours and 23.53 for off-peak hours. Under the assumption 

that the day-ahead prices observed at January 8 are a proxy of the average price on the day-

ahead market and using the standard deviations and correlation from the observed prices in 

December 2006, the optimal hedge ratios can be calculated.  

 

The following example uses the observed values from the EEX market, as presented above, in 

the one period framework. Consider an end-user who expects to consume 1MW in the off-

peak hour and 2MW in the peak hour. If she would purchase her volume using one off-peak 

forward contract, priced at 37.58, and two peak forward contracts, priced at 80.08, her total 

costs would equal €197.74. Suppose that her risk is measured as a 99% VaR and that she 

expressed a risk appetite equal to €200. That is, she is willing to pay more than €200 in only 

one out of a hundred days. It is assumed that the distribution function D() is normal. 

 

The efficiency ratios sp equals 0.0975 and so equals 0.0348. As the efficiency measure in the 

off-peak hour is lower than in the peak, it is more efficient to hedge in the off-peak hour and 

 11



she will keep a smaller open position in the off-peak than in the peak. The optimal hedge 

amounts are 0.943 in the off-peak hour and 1.842 in the peak hour. As she is willing to take 

some risk, she under-hedges in both hours and speculates on the day-ahead market. The open 

position in the peak hour (equal to 0.158) is bigger than the open position in the off-peak hour 

(0.057). So, she speculates more in the peak hour as the peak forward contract is relatively 

expenses per unit of risk she faces in the peak day-ahead market. Given these outcomes, her 

expected costs are €193.35. If she would take no risk and fully hedge her position with one 

off-peak forward contract and two peak forward contracts, her costs would be €197.74. By 

taking risk (recall her risk appetite is €200) she is able to reduce her expected costs. She does 

so by speculating in the day-ahead market and more aggressively in the peak hour as the 

forward price for that hour is relatively more expensive per unit of risk than in the off-peak 

hour. Taking risk is rewarded by lower expected costs. 

 

The following figure sheds more light on the risk – expected costs relation. The x-axis shows 

different risk appetites (starting from 200) and the y-axis shows the expected costs from the 

optimal forward positions. 
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Figure 1. The risk – expected costs relationship for different VaR levels (from 198 through 

225) while the confidence level is constant at 99%.  

 

Figure 1 shows that when the end-consumer would take more risk, by increasing the VaR she 

accepts, she would pay lower expected costs for her electricity consumption. The black 
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expected costs line is the efficient frontier reflecting the lowest costs one can obtain for each 

level of risk. A risk-loving consumer or distribution company has lower expected costs than a 

risk-averse consumer or distribution company. 

 

In figure 1, the level of VaR varied to show the relation between risk and expected costs. In a 

Value at Risk environment, one can express the risk appetite also in terms of confidence level. 

A risk-loving agent is willing to deal with less confidence than a risk-averse agent. Figure 2 

shows the efficient frontier when the risk appetite is varied in terms of confidence level, 

starting at 99% (risk-averse) down to 95% (risk-loving). 

 

In figure 2 shows a non-linear relation between risk and return, but the conclusions are in line 

with figure 1. The risk-loving consumer (one who accepts a low level of confidence) obtains 

lower expected costs than a risk-averse consumer (high level of confidence). 
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Figure 2. The risk – expected costs relationship for different confidence levels (from 

99% through 95%) while the VaR level is constant at 200. 

 

Both figures also reveal the difference between the hedge volumes for different risk levels. In 

both cases, the consumer reduces the hedge volume more aggressively in the off-peak hour 

than in the peak hour as she takes more risk. This can be seen that the line corresponding with 

the off-peak hedge volumes is steeper than the line for the peak hedge volume in both figures. 

This can be explained that the variance risk in the peak hour is bigger than in the off-peak. 
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The conclusion from this exercise is that, for parameter values obtained from the EEX 

market, that willingness to take risk results in lower expected costs.  

4 CONCLUSIONS 

This paper deals with the construction of an electricity portfolio for an electricity consumer or 

distribution company who needs to purchase electricity for consumption at a future date. A 

one-period model is presented and optimal hedge amounts are derived in the case of one peak 

and one off-peak hour. It is shown that a risk-loving consumer can obtain lower expected-

costs than a risk-averse consumer. Risk taking behaviour is rewarded by lower expected costs 

by profiting from the differences in efficiency of hedging using baseload and peakload 

contracts.  
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