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Abstract 

This paper focuses on the characteristics of hourly electricity prices in day-ahead 

markets. In these markets, quotes for day-ahead delivery of electricity are submitted 

simultaneously for all hours in the next day. The same information set is used for quoting 

all hours of the day. The dynamics of hourly electricity prices does not behave as a time 

series process. Instead, these prices should be treated as a panel in which the prices of 24 

cross-sectional hours vary from day to day. This paper introduces a panel model for 

hourly electricity prices in day-ahead markets and examines their characteristics. The 

results show that hourly electricity prices exhibit hourly specific mean-reversion and that 

they oscillate around an hourly specific mean price level. Furthermore, a block structured 

cross-sectional correlation pattern between the hours is apparent.  
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1 Introduction  

Since the worldwide structural reforms and market liberalization that started in the early 1990�s, 

market places have been created, on which market participants can trade electricity forward contracts 

for different delivery periods. Typically, long-term contracts are traded on forward markets with 

delivery periods varying from a week up to a year. Short-term contracts are traded on day-ahead 

markets that involve delivery of electricity in the next day and on intra-day markets that involve 

delivery in 15 or 30 minutes after the transaction. Note that the delivery periods of these markets are 

complementary.  

 

This paper focuses on the dynamics of electricity prices in day-ahead markets. Due to the non-

storability of electricity, day-ahead prices exhibit specific characteristics such as mean-reversion, 

seasonality, spikes and a complex time-varying volatility structure. Many of these results were 

obtained from examining the time series dynamics of daily average prices. An overview of the 

different models can be obtained from Bunn and Karakatsani (2003), Escribano, Peña and Villaplana 

(2002), Eydelund and Wolyniec (2003), Huisman and Mahieu (2003), Lucia and Schwartz (2002) and 

Pilipovic (1998).  

 

The dynamics of daily average prices are extremely important as these prices are used as a reference 

price for marking to market valuations and serve as a base for option contracts such as daily callable 

options. However, the average prices mentioned above are indeed averages and do not meet the 

microstructure of the day-ahead market itself. In day-ahead markets, separate prices are quoted for 

delivery in each specific hour in the next day; the daily average is then the average over the 24 hours. 

Many markets distinguish daily average baseload and peakload prices, which refer to the average price 

over all 24 hours (baseload) or the average prices in the peak hours (peakload). On some markets, such 

as in Australia, New Zealand and the UK, prices are even quoted on a half-hourly delivery basis.  

 

The models developed for daily average prices cannot directly be applied to describe dynamics in 

hourly prices. For example, if hourly prices revert to an hourly specific mean prices level, then the 

daily average model with a daily mean will not suffice. Other questions are whether the level of mean-

reversion is constant over the day or different per hour and whether the volatility structure is constant 

throughout the day. In addition, what is the correlation pattern between specific hours? These 

questions are relevant as many agents in the electricity markets are exposed to hourly variation. Power 

generation plants let their nomination depend on the expected prices for electricity delivery throughout 

the day. Companies that use electricity in a certain profile through the day that cannot be resembled by 

standard baseload and peakload contracts might have a demand for contracts that deliver only in a few 

hours of the day. To valuate these contracts market makers need to assess the expectations and risks 
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for those specific hours and cannot rely on daily average prices only. Other applications can be found 

in power risk management, contract structuring and derivative pricing (e.g. hourly power options are 

currently traded in the US markets and to a lesser extent in the European markets1). 

 

A few studies have recognized the need for higher frequency modeling and have addressed some 

interesting issues. Borenstein et. al (2002) and Saravia (2003) find a spread between day-ahead and 

real-time hourly prices on the U.S. power markets and attribute it to market power and speculation 

activity. Longstaff and Wang (2004) study the day-ahead hourly risk premium, calculated as the 

difference between the day-ahead price and the expected real time price. They find that premiums are 

affected by demand, sales and price variation. Furthermore, they study time variation in premiums by 

specifying a system of VAR�s for each of the 24 hours in which ex-ante measures of risk (demand 

load and sales) are used as explanatory variables for unexpected price changes. Wolak (1997) studies 

the hourly price formation of the deregulated day-ahead electricity markets of England and Wales, 

Scandinavia, Australia and New Zealand. Wolak applies a Principal Component Analysis to the error 

covariance matrix obtained from a VAR hourly (or half hourly) price system to gain insight in the 

intra-day correlation of the errors terms. Wolak finds that the �Anglo-Saxon� prices are difficult to 

forecast (i.e. 22 principal components explain 90% of variation in England and Wales data) compared 

to the Nordpool prices (5 principal components explain 90% of variation). Nogales et. al (2002) use 

price and demand load data obtained from the Spanish and U.S. markets to forecast next-day 

electricity prices by time series models. Li and Flynn (2004) examine the hourly rate of price changes 

in fourteen deregulated markets. Knittel and Roberts (2005) fit a range of traditional financial models 

and less conventional electricity price models to an hourly time series of real-time Californian 

electricity prices, and find that forecasting performance of traditional models is poor and can be 

substantially improved when they address the unique electricity price features are taken into account. 

Ramsay and Wang (1997) and Szkuta et. al (1999) propose a neural network approach to model the 

dynamics of intraday prices.  

 

Some of the studies above, model each hour separately or assume some correlation pattern between 

the hours. Others stack the hourly prices and treat them as a time series. An important difference 

between modeling daily average prices and modeling hourly prices is that hourly prices cannot be seen 

as a pure time series process. Time-series models assume that the information set is updated by 

moving from one observation to the next in time. This assumption is not valid for hourly prices, as the 

market microstructure does not allow for continuous trading. Many day-ahead markets are structured 

such that agents submit their bids and offers for delivery of electricity in all hours in the next day 

before a certain market closing time; hourly prices for next day delivery are determined at the same 

                                                   
1 See Eydelund and Wolyniec for an overview on electricity option contracts. 



4 

time. The information set used for setting the price of delivery in hour 23 is the same as the 

information set used to set the price for delivery in hour 5. Therefore, the information set is constant 

within the day and updates over the days. Therefore, in order to examine hourly price characteristics 

one cannot directly extend the time-series models that are used in some of the aforementioned studies. 

Applying directly a time-series approach is not sound from a methodological perspective. 

 

This paper proposes to model hourly power prices in a panel framework. Panel models describe the 

dynamics of a cross-section of individuals over time. In financial literature, panel models have been 

applied to exchange rates for instance. Each, day news affects the prices in the FX market and has a 

simultaneous impact on different exchange rates. For instance, news about the U.S. economy is likely 

to affect all exchange rates that are denoted in terms of the U.S. Dollar. Therefore, the cross-section of 

U.S. Dollar denoted exchange rates behave over time and their quotes respond to the same news 

factors (but perhaps to a different extent)2. To model hourly prices, observe that hours can be seen as 

cross-sectional individuals (as their prices are quotes at the same time) whose prices change over the 

days. Therefore, the panel framework exactly matches the microstructure of day-ahead markets. 

 

This paper examines the dynamics in day-ahead hourly prices using a panel model for three European 

wholesale power markets; the APX (the Netherlands), EEX (Germany) and PPX (France). The 

empirical results show that hourly electricity prices in day-ahead market mean-revert around an hourly 

specific mean price level, that the speed of mean-reversion is different over the hours (especially in 

superpeak hours) and that a block structured cross-sectional correlation pattern is apparent.  

 

This chapter is structured as follows. Section 2 focuses on the observed characteristics of hourly 

electricity prices and sets out the panel methodology. Section 3 provides an overview of our dataset. 

Section 4 discusses the empirical results. Section 5 concludes.   

2 A panel framework for hourly prices in day-ahead markets 

As discussed above, hourly electricity prices in day-ahead markets do not follow a time series process 

but are in fact a panel of 24 cross-sectional hours that vary from day to day. This is due to the 

microstructure of many day-ahead markets prices for all hours are quoted at the same moment on a 

day (for instance, the Dutch APX market requires that bids and offers for each hour in the next day to 

be submitted before 11 am and these prices are published around noon). A trader uses exactly the same 

information to set the price for hour h as she uses to set the price for hour s (h being different from s). 

Proceeding to the next day, the information set updates, but it updates simultaneously for hour 1 

                                                   
2 See Huisman et al. (1998) for an application of a panel model to describe the dynamics of changes in exchange 

rates. Baltagi (1995) provides an overview of different panel model application in economics. 
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through 24. Therefore, hourly prices within a day behave cross-sectionally and hourly dynamics over 

days behave according to time-series properties. 

 

To introduce the model, let sh(t) be the natural logarithm of the day-ahead price observed on day t for 

the delivery of one MW electricity in hour h of the next day t+1. Following Lucia and Schwartz 

(2002) and Huisman and Mahieu (2003), the day-ahead price is the sum of two independent 

components: a deterministic component fh(t) and a stochastic component xh(t): 

(1) sh(t) = fh(t) + xh(t) 

The deterministic component fh(t) accounts for predictable regularities, such as mean price levels and 

seasonal behaviour. The deterministic component consists of a mean price level µ0 and hourly 

deviations from the mean price level to allow for differences in mean price levels over the hours, µh 

for h = 1 � 23 (µ24 equals 0 to prevent from multicollinearity). The deterministic component also 

allows for different price levels for different weekdays of the week. To model this, Id(t) is a dummy 

variable that equals 1 if the delivery day t+1 is a weekday d (d = 1 corresponds with Saturday, d = 2 

corresponds with a Sunday, �, d = 7 corresponds with a Friday), and let βd be the difference from the 

mean price level (β7 equals 0 to prevent from multicollinearity). The expression for the deterministic 

component becomes: 

(2) fh(t) = µ0 + µh + Σd βd Id(t). 

The stochastic component in equation (1) accounts for the variation of the price around the 

deterministic component. The stochastic part may account stochastic characteristics such as mean-

reversion, time-varying volatility and spikes. In this paper, the stochastic component is a mean-

reverting process. To model this, let αh be the rate of mean-reversion for hour h. It reflects the speed 

with which the price moves back to its hourly fundamental component when the price deviated from 

that value yesterday. The expression for the stochastic component becomes:  

(3) xh(t) = - αh xh(t-1) + εh(t). 

In equation (3), εh(t) is the error term. The equations (2) and (3) reveal the combination of cross-

sectional variation and time-series dynamics in panel framework. The price for delivery in hour h in 

day t depends on the price for that hour in the previous day and not on the price in the previous hour.  

 

The error term in equation (3), εh(t), is assumed to be independent over the days but it allows for cross-

sectional covariance between the hours. Allowing for cross-sectional correlation is important, as when 

a trader submits her quote delivery in hour h in the next day, she will let this quote depend on the 

information she has for all other hours observed at the time of quotation. Let ε(t) be the (24 x 1) vector 



6 

containing the hourly error εh(t) in row h and let Σ be the (24 x 24) hourly cross sectional covariance 

matrix (h = 1 through 24): 

(4) ε(t) ∼  IID(0, Σ). 

Equation (4) shows that one can disentangle cross-sectional dependence from time-series dependence. 

The covariance matrix Σ can be specified. In this paper, the covariance matrix is not specified in order 

to examine the cross-sectional patterns that are embedded in the prices. The parameters in the model 

are estimated using the seemingly unrelated regressions (SUR) method. SUR estimates the parameters 

of the 24 hourly time series, accounting for heteroskedasticity and contemporaneaous correlations in 

the errors across the time series. We refer to Baltagi (1995) for an overview of panel models and their 

applications and for details on SUR. 

3 Data 

The dataset consists of the hourly day-ahead electricity price for three markets in 2004, the 

Amsterdam Power Exchange (APX), the European Energy Exchange (EEX; Germany) and the Paris 

Power Exchange (PPX), having 8760 (24 hours time 365 days) observations for each market. Table 1 

shows summary statistics for the dataset. The table shows the typical characteristics of day-ahead 

electricity prices: high volatility, skewness, and excess kurtosis.  

 
Table 1: Summary statistics of the day-ahead prices for 2004 (8760 observations for each market). 

 APX EEX PPX 

 Price Log price Price Log price Price Log price 

Mean  31.58 3.315 28.52 3.261 28.13 3.251 

Median 28.70 3.357 28.17 3.338 28.01 3.333 

St. deviation 22.26 0.563 10.80 0.470 10.41 0.459 

Minimum 0.010 -4.605 0.450 -0.799 0.000 -3.219 

Maximum 800.0 6.685 150.0 5.010 100.0 4.605 

Skewness 10.46 -2.717 0.502 -1.609 0.210 -1.834 

Excess kurtosis 239.1 36.10 6.236 8.022 13.90 3.567 

 

4 Empirical results 

Table 2 contains the SUR estimates for the parameters in equations (2), (3) and (4). Analyzing the 

deterministic components first, both β1 and β2 are significantly negative for all markets indicating the 

lower prices for electricity delivered on weekend days. The average mean log price level µ0 varies 

between 3.236 (�25.43) for the EEX and 3.300 (�27.11) for the PPX. The estimates for µ1 through µ23 

reflect the hourly deviations from the mean price level. The estimates for µh are negative for hours 1 
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through 7 (also for hour 8 on the APX) indicating the lower than daily average prices for off-peak 

delivery of power. Prices then increase for later hours and decrease late in the evening. These 

estimates make sense as demand for power is low in weekend and off-peak hours on weekdays and 

high in peak hours.  

 

The estimates for the mean-reversion parameters αh show some differences over the hours. The 

estimates are in the range of 0.7 and 0.9 until hour 17 and then fall to values in the range of 0.4 and 0.6 

for the hours 18 through 22. The estimates then assume the values of the morning hours at hour 23 and 

24. Clearly, mean-reversion is not stable over the day; super-peak hours (18 through 22) exhibit 

significant less mean-reversion. This can be explained by the higher demand for power in these hours 

resulting in less reserve production capacity and therefore an increased probability of shortages and 

spikes. Prices in these hours are less predictable. This result is important. Forward and options 

contracts in the super-peak hours should not be valuated based on models that use data for baseload 

and/or peakload forward contracts as those prices will overestimate the true amount of mean-

reversion. In nomination schemes, one should be careful assuming any price dependencies in the 

superpeak hours. Mean-reversion is not constant throughout the day. The level of mean-reversion is 

significantly lower in the super peak hours. The reported R2�s are all higher than 0.94 and the Durbon 

Watson statistics show no evidence for serial correlations. 
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Table 2: SUR parameter estimates for the general model (standard errors are in parenthesis). 

 APX EEX PPX  APX EEX PPX  APX EEX PPX 

µ 0 
3.290 

(0.020) 

3.236 

(0.020) 

3.300 

(0.020) 
µ19 

0.340 

(0.026) 

0.321 

(0.016) 

0.274 

(0.016) 
α15 

0.770 

(0.024) 

0.776 

(0.018) 

0.753 

(0.020) 

µ1 
-0.134 

(0.011) 

-0.111 

(0.016) 

-0.196 

(0.015) 
µ20 

0.283 

(0.020) 

0.293 

(0.014) 

0.263 

(0.013) 
α16 

0.771 

(0.024) 

0.774 

(0.018) 

0.804 

(0.022) 

µ2 
-0.342 

(0.017) 

-0.316 

(0.021) 

-0.322 

(0.019) 
µ21 

0.221 

(0.016) 

0.264 

(0.014) 

0.187 

(0.010) 
α17 

0.650 

(0.029) 

0.721 

(0.020) 

0.758 

(0.025) 

µ3 
-0.471 

(0.020) 

-0.448 

(0.027), 

-0.429 

(0.021) 
µ22 

0.144 

(0.010) 

0.196 

(0.012) 

0.134 

(0.009) 
α18 

0.441 

(0.029) 

0.601 

(0.022) 

0.614 

(0.022) 

µ4 
-0.572 

(0.024) 

-0.535 

(0.029), 

-0.566 

(0.023) 
µ23 

0.100 

(0.009) 

0.153 

(0.008) 

0.096 

(0.006) 
α19 

0.446 

(0.028) 

0.541 

(0.022) 

0.479 

(0.021) 

µ5 
-0.573 

(0.023) 

-0.501 

(0.027) 

-0.684 

(0.033) 
α1 

0.787 

(0.025) 

0.832 

(0.030) 

0.779 

(0.027) 
α20 

0.487 

(0.026) 

0.536 

(0.023) 

0.436 

(0.020) 

µ6 
-0.410 

(0.033), 

-0.267 

(0.025) 

-0.404 

(0.023) 
α2 

0.778 

(0.024) 

0.811 

(0.026) 

0.761 

(0.024) 
α21 

0.509 

(0.028) 

0.599 

(0.023) 

0.546 

(0.020) 

µ7 
-0.288 

(0.045) 

-0.132 

(0.030) 

-0.241 

(0.034) 
α3 

0.745 

(0.023) 

0.757 

(0.025) 

0.699 

(0.023) 
α22 

0.633 

(0.028) 

0.651 

(0.022) 

0.600 

(0.022) 

µ8 
-0.054 

(0.051) 

0.118 

(0.029), 

0.011 

(0.027) 
α4 

0.820 

(0.027) 

0.744 

(0.024) 

0.659 

(0.024) 
α23 

0.818 

(0.031) 

0.712 

(0.025) 

0.641 

(0.022) 

µ9 
0.189 

(0.029) 

0.231 

(0.026) 

0.169 

(0.024) 
α5 

0.781 

(0.023) 

0.708 

(0.025) 

0.666 

(0.025) 
α24 

0.742 

(0.028) 

0.787 

(0.031) 

0.715 

(0.023) 

µ10 
0.368 

(0.024) 

0.326 

(0.018) 

0.265 

(0.017) 
α6 

0.854 

(0.034) 

0.784 

(0.028) 

0.773 

(0.027) 
β1 

-0.171 

(0.020) 

-0.209 

(0.019) 

-0.226 

(0.020) 

µ11 
0.458 

(0.024) 

0.384 

(0.016) 

0.312 

(0.015) 
α7 

0.941 

(0.028) 

0.830 

(0.023) 

0.808 

(0.029) 
β2 

-0.359 

(0.023) 

-0.356 

(0.022) 

-0.403 

(0.024) 

µ12 
0.530 

(0.025) 

0.469 

(0.018) 

0.364 

(0.0315) 
α8 

0.931 

(0.028) 

0.867 

(0.023) 

0.790 

(0.023) 
β3 

0.031 

(0.024) 

-0.001 

(0.022) 

-0.048 

(0.025) 

µ13 
0.382 

(0.017) 

0.378 

(0.015) 

0.319 

(0.013) 
α9 

0.869 

(0.023) 

0.841 

(0.021) 

0.865 

(0.021) 
β4 

0.084 

(0.023) 

0.039 

(0.022) 

0.051 

(0.024) 

µ14 
0.367 

(0.020) 

0.337 

(0.017) 

0.282 

(0.013) 
α10 

0.832 

(0.025) 

0.829 

(0.018) 

0.800 

(0.019) 
β5 

0.063 

(0.023) 

0.038 

(0.021) 

0.046 

(0.023) 

µ15 
0.283 

(0.020) 

0.269 

(0.018) 

0.223 

(0.014) 
α11 

0.770 

(0.024) 

0.814 

(0.018) 

0.773 

(0.020) 
β6 

0.062 

(0.020) 

0.069 

(0.019) 

0.045 

(0.020) 

µ16 
0.220 

(0.020) 

0.219 

(0.018) 

0.170 

(0.016) 
α12 

0.703 

(0.026) 

0.693 

(0.024) 

0.700 

(0.022) 
Adj.R2 0.941 0.955 0.942 

µ17 
0.208 

(0.023) 

0.208 

(0.018) 

0.154 

(0.018) 
α13 

0.766 

(0.026) 

0.741 

(0.020) 

0.702 

(0.021) 

Durbin 

Watson 
2.060 2.052 2.065 

µ18 
0.428 

(0.049) 

0.274 

(0.018) 

0.216 

(0.016) 
α14 

0.811 

(0.023) 

0.805 

(0.021) 

0.749 

(0.019) 
Log-LH -8645.5 -8331.0 -8239.5 
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 Other interesting observations on hourly stochastic patterns show up in the cross-sectional correlation 

matrix of the error term as specified in equation (4). These estimates are listed in Table 3 for the EEX. 

The results for the other markers are not shown here, but show patterns similar to the EEX.  

 

In table 3, the correlation numbers bigger than 0.5 are reported bold faced; non-significant correlations 

are left blank. Table 3 shows evidence for a clear cross-sectional correlation structure in hourly 

electricity prices. Firstly, observe the high correlations numbers ranging between 0.732 (between hour 

20 and 21) and 0.964 (between hour 15 and 16) between two adjacent hours. An explanation for this 

effect is that consumption and capacity flows over the hours; if reserve capacity is low in one hour it 

will probably be low in the next hour as well and if demand is high in one hour it will probably be 

high in the next hour as well. Secondly, observe the block-structure of correlations. The first block is 

identified by the hours 1 through 6 and hour 24. Prices in these off-peak hours exhibit high cross-

sectional correlations. The second block shows up in the peak hours from hour 6 through hour 19. 

Again prices in these hours are highly correlated. There is evidence for a clear peak off-peak 

correlation structure but, interestingly, the boundaries of the peak block do not perfectly match the 

market definitions of peak hours (hours 7 through 23).  

 

The empirical results from the panel model show that hourly electricity prices in day-ahead market 

mean-revert around an hourly specific mean price level, that the speed of mean-reversion is different 

over the hours (especially in superpeak hours) and that a block structured cross-sectional correlation 

pattern is apparent.  
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5 Concluding remarks 

This paper proposes a panel framework to model the dynamics in hourly electricity prices in day-

ahead markets. Hourly electricity prices do not follow a time series process but are in fact a panel of 

24 cross-sectional hours that vary from day to day. This is due to the microstructure of many day-

ahead markets prices for all hours are quoted at the same moment on a day.  

 

The empirical results show that hourly electricity prices in day-ahead market mean-revert around an 

hourly specific mean price level, that the speed of mean-reversion is different over the hours 

(especially in superpeak hours) and that a block structured cross-sectional correlation pattern is 

apparent. Prices in peak-hours correlate highly among each other and the same holds for prices in off-

peak hours. There is much less correlation between peak and off-peak hours. This effect can be 

explained by the differences in reserve capacity between the two blocks. The lower reserve capacity in 

the peak hours implies that the prices in those hours are more volatile and exhibit more spikes than 

prices in off-peak hours. 

 

Understanding the characteristics of hourly electricity prices is important as many agents in the 

electricity markets are exposed to hourly variation. Power generation plants let their nomination 

depend on the expected prices for electricity delivery throughout the day. Companies that use 

electricity in a certain profile through the day that cannot be resembled by standard baseload and 

peakload contracts might have a demand for contracts that deliver only in a few hours of the day. To 

valuate these contracts market makers need to assess the expectations and risks for those specific 

hours and cannot rely on daily average prices only. Other applications can be found in power risk 

management, contract structuring and derivative pricing (e.g. hourly power options are currently 

traded in the US markets and to a lesser extent in the European markets).  
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