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Marketing data appear in a variety of forms. Examples are choice data (think of 

brand choice), ordered choice data (think of answers to a survey on a scale of 1 to 5), 

duration data (e.g. the time between two purchases), and count data (e.g. the number of 

stores opened in a given country). An often-seen form is time-series data, where these 

concern, for example, sales per week, market shares per month, the price evolution over 

the last few years, or historically-observed advertising-spending patterns. The main 

feature of time-series data is that the observations are ordered over time, and hence that it 

is likely that earlier observations have predictive content for future observations. Indeed, 

if relative prices are, say, 1.50 today, they most likely will be around 1.50 tomorrow too, 

or in any case, not something like 150.  

Time series can concern a single variable, like sales or advertising, but can also 

cover a vector of variables, like sales, prices and advertising, jointly.  In some instances, 

marketing modelers may want to build a univariate model for a time series, and analyze 

the series strictly as a function of its own past. This is, for example, the case when one 

has to forecast (or extrapolate) exogenous variables, or when the number of variables to 

be analyzed (e.g. the number of items in a broad assortment) is so large that building 

multivariate models for each of them is too unwieldy (Hanssens, Parsons and Schultz 

2001).  However, univariate time-series models do not handle cause-and-effect situations, 

that are central to marketing planning.   To specify the lag structure in response models, 

one extends the techniques of univariate extrapolation to the case of multiple time series.   

Time-series data can be summarized in time-series models.  However, not all 

models built on time-series data are referred to as time-series models. Unlike most 

econometric approaches to dynamic model specification, time-series modelers take a 

more data-driven approach.  Specifically, one looks at historically-observed patterns in 

the data to help in model specification, rather than imposing a priori a certain structure 

derived from marketing or economic theory on the data.  As put by Nobel Laureate Sir 

Clive Granger (1981, p. 121):  

“,W�LV�ZHOO�NQRZQ�WKDW�WLPH�VHULHV�DQDO\VWV�KDYH�D�UDWKHU�GLIIHUHQW�DSSURDFK�WR�WKH�
DQDO\VLV�RI�HFRQRPLF�GDWD�WKDQ�GRHV�WKH�UHPDLQGHU�RI�WKH�HFRQRPHWULF�SURIHVVLRQ��
2QH�DVSHFW�RI�WKLV�GLIIHUHQFH�LV�WKDW�ZH�DGPLW�PRUH�UHDGLO\�WR�ORRNLQJ�DW�WKH�GDWD�
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EHIRUH�ILQDOO\�VSHFLI\LQJ�WKH�PRGHO��LQ�IDFW��ZH�JUHDWO\�HQFRXUDJH�ORRNLQJ�DW�WKH�
GDWD��$OWKRXJK�HFRQRPHWULFLDQV�WUDLQHG�LQ�D�PRUH�WUDGLWLRQDO�PDQQHU�DUH�VWLOO�
YHU\�PXFK�LQKLELWHG�LQ�WKH�XVH�RI�VXPPDU\�VWDWLVWLFV�GHULYHG�IURP�WKH�GDWD�WR�KHOS�
PRGHO�VHOHFWLRQ��RU�LGHQWLILFDWLRQ��LW�FRXOG�EH�WR�WKHLU�DGYDQWDJH�WR�FKDQJH�VRPH�
RI�WKHVH�DWWLWXGHV�´��

�
This feature of looking at the data to help in model specification can be illustrated as 

follows.  Given a hypothesized model for a time series, one can derive, assuming its 

validity, what the properties of empirical data would be in case that model would truly 

describe the data.  For example, a simple model that says that \t only depends on \t-1 

using the scheme \t� � �\t-1 + Ht would imply that \t-data show a correlation with \t-1 of 

size , with \t-2 of size 2, and so on.  If such a correlation structure were to be found in 

empirical data, one would have a first guess at what the best descriptive model could look 

like.     Similarly, a competing model with structure \t = Ht- �\t-1 would show a non-zero 

correlation between \t and \t-1, and a zero correlation between \t and, respectively, \t-2,  

\t-3, …  By comparing the empirically-observed correlation patterns (referred to as the 

empirical autocorrelation function) with the one associated theoretically with a given 

model structure, a model is selected that  is likely to have generated the data.  Other 

summary statistics that are useful in this respect are the partial autocorrelation function 

and (in case of multiple variables) the cross-correlation function (see e.g. Hanssens et al. 

2001 for a review). While time-series modelers highly stimulate this “looking at the 

data”, critics refer to this practice as data-mining, arguing that time-series models “lack 

foundations in marketing theory” (Leeflang et al. 2000, p. 458). 

 This criticism is one of the reasons why, historically, time-series models were not 

used that often in the marketing literature.  Other reasons, described in detail in Dekimpe 

and Hanssens (2000), were (i) marketing scientists’ traditional lack of training in time-

series methods, (ii) the lack of access to user-friendly software, (iii) the absence of good-

quality time-series data, and (iv) the absence of a substantive marketing area where time-

series modeling was adopted as primary research tool.   However, over the last few years, 

these inhibiting factors have begun to disappear.  Several marketing-modeling textbooks 

now contain chapters outlining the use of time-series models (see e.g Hanssens et al. 
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2001; Leeflang et al. 2000), while others include an overview chapter on time-series 

applications in marketing (see e.g. the current volume, or Moorman and Lehmann 2004). 

In terms of software, several user-friendly PC-based packages have become available 

(see e.g. Eviews), while new data sources (e.g. long series of scanner data) have 

considerably alleviated the data concern.  In terms of the substantive marketing area, 

several time-series techniques have been specifically designed to disentangle short- from 

long-run relationships.  This fits well with one of marketing’s main fields of interest: to 

quantify the long-run impact of marketing’s tactical and strategic decisions.  In terms of 

the critique on the a-theoretic character of time-series modeling, we observe two recent 

developments.  First, some time-series techniques have a more confirmatory potential 

(e.g. cointegration testing for theoretically-expected equilibria, or structural VARX 

models to combine sample-based information with marketing theory).  Second, following 

a 1995 special issue of Marketing Science, there is growing recognition of the value of 

Empirical Generalizations obtained through the repeated application of data-driven 

techniques on multiple data sets. We refer to Dekimpe and Hanssens (2000) for an in-

depth discussion on these issues.  Because of these developments, time-series models 

have become increasingly accepted in the marketing literature. 

 Time-series modelers make use of a wide array of techniques, which are 

discussed in great detail in textbooks as Hamilton (1994) or Franses (1998), among 

others.  In this chapter, we will not attempt to review all of these techniques.  Instead, we 

will focus on two domains which have recently received considerable attention in the 

marketing literature: (i) the use of persistence modeling to make long-run inferences 

(Section 2), and (ii) the use of state-space models, focusing on their integration with 

normative decision making (Section 3).  Finally, we will discuss a number of 

opportunities and challenges for time-series modelers in marketing (Section 4).   

�

���3(56,67(1&(�02'(/,1*�
Long-run market response is a central concern of any marketing strategy that tries to 

create a sustainable competitive advantage.  However, this is easier said than done, as 

only short-run results of marketing actions are readily available.  Persistence modeling 
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addresses the problem of long-run market-response identification by combining into one 

metric the net long-run impact of a chain reaction of consumer response, firm feedback, 

and competitor response that emerges following an initial marketing action.  This 

marketing action could be an unexpected increase in advertising support (e.g. Dekimpe 

and Hanssens 1995a), a price promotion (e.g. Pauwels, Hanssens, and Siddarth 2002), or 

a competitive activity (e.g. Steenkamp et al. 2005), and the performance metric could be 

primary (Nijs et al. 2001) or secondary (Dekimpe and Hanssens 1995a) demand, 

profitability (Dekimpe and Hanssens 1999), or stock prices (Pauwels, Silva-Risso, 

Srinivasan and Hanssens 2004), among others.   

 Persistence modeling is a multi-step process, as depicted in Figure 1 (taken from 

Dekimpe and Hanssens 2004).  In a first step, one applies unit-root tests to the different 

performance and marketing-support variables of interest to determine whether they are 

stable (mean or trend-stationary) or evolving.  In the latter case, the series have a 

stochastic trend, and one has to test whether a long-run equilibrium exists between them.  

This is done through cointegration testing.  Depending on the outcome of these 

preliminary (unit-root and cointegration) tests, one specifies a Vector AutoRegressive 

Model, probably augmented with some eXogenous variables (i.e. a VARX model), in the 

levels, in the differences, or in error-correction format.   A technical discussion on these 

different steps is given in a recent review paper (Dekimpe and Hanssens 2004), and will 

not be repeated here.  From these VARX models, one can derive impulse-response 

functions (IRFs), which trace the incremental effect of a one-unit (or one-standard-

deviation) shock in one of the variables on the future values of the other endogenous 

variables.   

---Figure 1 about here --- 

Without going into mathematical details, we can graphically illustrate the key 

concepts of the approach in Figure 2 (taken from Nijs et al. 2001): 

---Figure 2 about here --- 

In this Figure, we depict the LQFUHPHQWDO primary demand that can be attributed to an 

initial price promotion. In the stable detergent market of Panel A, one observes an 

immediate sales increase, followed by a post-promotional dip. After some fluctuations, 

which can be attributed to factors such as purchase reinforcement, feedback rules, and 
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competitive reactions, we observe that the incremental sales converge to zero. This does 

not imply that no more detergents are sold in this market, but rather that in the long run 

no additional sales can be attributed to the initial promotion. In contrast, in the evolving 

dairy-creamer market depicted in the bottom panel of Figure 2, we see that this 

incremental effect stabilizes at a non-zero, or persistent, level. In that case, a long-run 

effect has been identified, as the initial promotion keeps on generating extra sales. This 

could be due to new customers who have been attracted to the category by the initial 

promotion and now make repeat purchases.   Alternatively, existing customers may have 

increased their product-usage rates. From these impulse-response functions, one can 

derive various summary statistics, such as:  

(i) the immediate performance impact of the price promotion; 

(ii) the long-run or permanent (persistent) impact, i.e., the value to which the 

impulse-response function converges; and 

(iii) the combined cumulative effect over the dust-settling period. This period 

is defined as the time it takes before the convergence level is obtained. For 

the Figure in panel A, for example, the total effect over the dust-settling 

period (also referred to as the short-run effect) amounts to the area under 

the curve (specifically, the sum of the IRF estimates that have not yet 

converged to zero). 

Persistence modeling offers two distinct advantages. First, it offers a clear and 

quantifiable distinction between short- and long-run promotional effectiveness, based on 

the difference between temporary and permanent movements in the data. Second, it uses 

a system’ s approach to market response, in that it combines the forces of customer 

response, competitive reaction, and firm decision rules. Indeed, the chain reaction of all 

these forces is reflected in the impulse-response functions, which are themselves derived 

from the multi-equation vector-autoregressive model.  

 Persistence modeling has been used extensively in the recent marketing literature, 

and has resulted in several strategic insights.  We summarize these insights in Table 1, 

which updates Dekimpe and Hanssens (2004). 

Many of these insights have been derived in a two-step modeling approach.  In a 

first step, the procedure described in Figure 1 is applied to multiple brands and/or product 
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categories (see e.g. Nijs et al. 2001; Srinivasan et al. 2004; Steenkamp et al. 2005).  In a 

second step, one explains the observed variability across brands or product categories in 

the aforementioned summary statistics (i.e. the immediate effect, the long-run effect and 

the dust-settling effect) through a variety of marketing-theory-based covariates.1  These 

could include, for example, the advertising intensity or concentration rate in the category, 

or the strength and nature (private label or national brand) of the brand.  However, this 

approach was recently criticized in Fok et al. (2006) for not appropriately accounting for 

the uncertainty in the first-stage parameter estimates when estimating the second-stage 

model.  They therefore proposed a single-step Hierarchical Bayes Error Correction 

Model.  As an added benefit, their approach offers direct estimates of a marketing 

instrument’ s short- and long-run effects.  This is more parsimonious than through the 

aforementioned summary statistics, which are a function of many VARX parameters.  A 

similar Error Correction Model was used in van Heerde, Helsen, and Dekimpe (2006), 

who investigated how short- and long-run price and advertising elasticities changed 

following a product-harm crisis. 

 As indicated before, persistence and error-correction models have resulted in 

several empirical generalizations on the presence/absence of long-run marketing effects.  

However, these insights have remained largely descriptive.  While some studies (see e.g. 

Pauwels 2004; van Heerde et al. 2006) have used these models for policy simulations,2 

their use for normative decision-making has remained the exception rather than the rule, 

and remains an important challenge for time-series modelers.  The linkage with 

normative decision making has been made explicitly in recent applications of state-space 

modeling, which we review in Section 3.  We offer somewhat more technical detail on 

these methods, as their usefulness for marketing has, to the best of our knowledge, not yet   

been covered in a review chapter.  

 

 

 

 
                                                 
1 This again helps to alleviate the criticism of being a-theoretical. 
2 We refer to Franses (2005) or van Heerde, Dekimpe, and Putsis  (2005) for an in-depth discussion on the 
use of time-series modeling for policy simulation.  
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Linear state-space models are expressed by two sets of equations: 

ttttt cZY ε++α= ,  and    (1) 

 tt1ttt dT ν++α=α − ,    (2) 

where )H,0(N~ ttε , )Q,0(N~ ttν , Y is a random vector (m x 1) and α is random 

vector (n x 1), where m could be greater than, less than or equal to n.  The vector Yt = 

(y1t, y2t,…ymt)′ contains multiple time-series such as sales of brand A, sales of brand B, 

and so on observed over several time periods t = 1, …, T.  Similarly, αt = (α1t, α2t,… αnt)′  

includes multiple variables such as market shares for various brands (Naik, Raman and 

Winer 2005) or time-varying coefficients (Naik, Mantrala and Sawyer 1998) due to copy 

or repetition wear out.  The dimensions of other matrices and vectors in the dynamic 

system conform to those of (Y, α).  Specifically, the link matrix Z is an m x n matrix; T is 

an n x n transition matrix; the drift vectors (c, d) are m x 1 and n x 1, respectively; the 

covariance matrices H and Q have dimensions m x m and n x n, respectively.   

Equation (2) is called the transition (or plant) equation, which captures the 

dynamics of the physical system explicitly.  It is linked to the observed (i.e., measured) 

variables via equation (1), which is therefore called the measurement or observation 

equation.  The vector Y is the observation vector; α is the state vector. The drift vectors 

(c, d) represent the effects of exogenous variables (e.g., β′= tt Xc , γ′= tt Wd , where X 

and W contain multiple variables, and (β, γ) are conformable parameter vectors). The 

subscript t denotes that the given quantity can change over time, indicating that it is 

potentially time-varying and therefore implicitly dynamic (besides the state vector that is 

explicitly dynamic). Table 2 summarizes the names and dimensions of vector-matrices in 

the state-space form. 

--- Table 2 about here --- 

The state-space form, given by (1) and (2), is extremely general. For example, 

standard time-series models like VAR, VMA, ARIMAX are special cases (see, e.g., 
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Durbin and Koopman 2001, Harvey 1994).  In addition, structural models that capture 

dynamic marketing phenomena such as Brandaid, the Nerlove-Arrow model, the Vidale-

Wolfe model, Tracker, Litmus, the Bass diffusion model and the IMC model have a state 

space representation (see Tables 3 and 4 for details).  

--- Tables 3 and 4 about here --- 

Last but not least, there are many practical advantages for casting ARIMAX or any other 

structural dynamic models in the above state-space form: 

i. the�H[DFW�likelihood function can be computed to obtain parameter estimates, 

infer statistical significance, and select among model specifications; 

ii. a FRPPRQ algorithm, based on Kalman filter recursions, can be used to 

analyze and estimate diverse model specifications; 

iii. PXOWLYDULDWH outcomes are handled as easily as univariate time-series; 

iv. inter-equation FRXSOLQJ and correlations across equations can be estimated 

v. PLVVLQJ�YDOXHV do not require special algorithms to impute or delete data; 

vi. XQHTXDOO\�VSDFHG time-series observations pose no additional challenges; 

vii. XQREVHUYHG variables such as goodwill or brand equity, can be incorporated;  

viii. WLPH�YDU\LQJ�FRHIILFLHQWV and�QRQ�VWDWLRQDULW\ can be specified; 

ix. KHWHURJHQHLW\ via random coefficients can be introduced seamlessly; 

x. QRUPDWLYH�GHFLVLRQ�PDNLQJ can be integrated with econometric analyses. 

Below, we briefly describe the maximum-likelihood estimation of state-space models.   

 

�����3DUDPHWHU�(VWLPDWLRQ��,QIHUHQFH��6HOHFWLRQ�
Suppose we observe the sequence of multivariate time series Y = {Yt} and X = 

{Xt} for t = 1, … , T. Then, given the model equations (1) and (2), the probability of 

observing the entire trajectory (Y1, Y2,… , YT) is given by the likelihood function, 
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In equation (3), p(Y1, Y2,… , YT) denotes the joint density function, and p(Yt |( Y1,… , Yt-

1)) = p(Yt | ℑt-1) represents the conditional density.  Appendix A provides the moments of 

the random variable Yt | ℑt-1 via Kalman filter recursions. In addition, the information set 

1t−ℑ = {Y1, Y2,… , Yt-1} contains the history generated by market activity up to time t-1.   

Next, we obtain the parameter estimates by maximizing the log-likelihood 

function with respect to Θ:  

))(L(LnArgMaxˆ Θ=Θ
Θ

,    (4) 

which is asymptotically unbiased and possesses minimum variance.   

To conduct statistical inference, we obtain the standard errors by taking the 

square-root of the diagonal elements of the covariance matrix: 
1

ˆ

2 ))(L(Ln
)ˆ(Var

−

Θ=Θ








Θ′∂Θ∂

Θ∂−=Θ ,   (5) 

where the right-hand side of (5) is the negative inverse of the Hessian matrix evaluated at 

the maximum-likelihood estimates (resulting from (4)).   

Finally, for model selection, we compute the expected Kullback-Leibler (K-L) 

information metric and select the model that attains the smallest value on this K-L metric 

(see Burnham and Anderson 2002 for details).  An approximation of the K-L metric is 

given by Akaike’ s information criterion, p2L2AIC * +−= , where L* = max Ln(L(Θ)) and 

p is the number of variables in Xt.  As model complexity increases, both L* and p 

increase; thus, AIC balances the tradeoff between goodness-of-fit and parsimony.  

However, the AIC ignores both the sample size and the number of variables in Yt.  

Hurvich and Tsai (1993) provide the bias-corrected information criterion for finite 

samples: 

1mpmT
)pmTm(T

L2AIC
2

*
C −−−

++−= ,    (6) 

where T is the sample size, p and m are the number of variables in X and Y variables, 

respectively.  To select a specific model, we compute (6) for different model specifications 

and retain the one that yields the smallest value.   
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�����0DUNHWLQJ�$SSOLFDWLRQV�
In marketing, Xie et al. (1997) and Naik et al. (1998) pioneered the Kalman filter 

estimation of dynamic models. Specifically, Xie et al (1997) studied the nonlinear but 

univariate dynamics of the Bass model, while Naik et al. (1998) estimated the 

multivariate but linear dynamics of the modified Nerlove-Arrow model. To determine the 

half-life of an advertising campaign, Naik (1999) formulates an advertising model with 

time-varying, non-stationary effects of advertising effectiveness and then applies the 

Kalman filter to estimate copy and repetition wear out.  By incorporating non-normality 

via a Poisson distribution, Neelamegham and Chintagunta (1999) forecast box-office 

sales for movies.  To control for the biasing effects of measurement errors in dynamic 

models, Naik and Tsai (2000) propose a modified Kalman filter and show its satisfactory 

performance on both statistical measures (e.g., means square error) and managerial 

metrics (e.g., budget, profit). In the context of multimedia communications, Naik and 

Raman (2003) design a Kalman filter to establish the existence of synergy between 

multiple media advertising. Biyalogorsky and Naik (2003) develop an unbalanced filter 

with m = 3 dependent variables and n = 2 unobserved state variables to investigate the 

effects of customers’  online behavior on retailers’  offline sales and find negligible 

cannibalization effects (contrary to managers’  fears).  They also show how to impute 

missing values by fitting a cubic spline smoothing via a state-space representation. To 

investigate the effects of product innovation, Van Heerde, Mela and Manchanda (2004) 

deploy state space models to incorporate non-stationarity, changes in parameters over 

time, missing data, and cross-sectional heterogeneity.   

To understand how to integrate normative decision-making with empirical state-

space models, see Naik and Raman (2003) for multimedia allocation in the presence of 

synergy and Naik et al. (2005) for marketing-mix allocation in the presence of 

competition. In the context of multiple themes of advertising, Bass et al. (2006) 

generalize an ad wearout model for a single ad copy (Naik et al. 1998). They apply 

Bayesian estimation to a rich dataset from a company in the telecommunication sector, 

and illustrate the normative budget allocation across a portfolio of advertising themes.  
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�����1RUPDWLYH�'HFLVLRQ�0DNLQJ��
One of the advantages of state space modeling, as noted earlier, is that we can 

integrate econometric analyses with normative decision-making problems faced by 

managers. Below we set up such a marketing problem and illustrate how to solve it.  

 

0DQDJHULDO�'HFLVLRQ�3UREOHP�
Consider a company spending resources on two marketing activities, say 

television and print advertising.  A brand manager faces the decision problem of 

determining the total budget and its allocation to these activities over time. Suppose she 

decides to spend dollars over time as follows: {u1, u2, … , ut, …  } and {v1, v2, … , vt, …  }.  

Given this specific media plan {(ut, vt): t ∈ (1, 2, … )}, she generates the sales sequence 

{S1, S2, … , St, …  } and earns an associated stream of profits { π1, π2, … , πt, …  }.  

Discounting the future profits at the rate ρ, she computes the net present value J 

= )v,u,S(e
1t

tttt
t∑ π

∞

=

ρ− .  In other words, a media plan (u, v) = {(ut, vt): t = 1, 2, … } induces 

a sequence of sales that yields a stream of profits whose net present value is J(u, v).   

Formally, the budgeting problem is to find the RSWLPDO plan (u*, v*)  one that 

attains the maximum value J*.   To this end, the brand manager needs to determine )t(u*  

and )t(v*  by maximizing 

∫ Π=
∞

ρ−

0

t dt))t(v),t(u),t(S(e)v,u(J ,    (7) 

where ρ denotes the discount rate, Π(S, u, v) = mS – c(u, v) is the profit function with 

margin m and cost function c(⋅), and J(u, v) is the performance index for any DUELWUDU\ 
multimedia policies (u(t), v(t)).  We further assume a quadratic cost function c(u, v) = u2 

+ v2 to capture diminishing return to advertising. Below we illustrate how to derive the 

optimal plan using the IMC model proposed by Naik and Raman (2003).  



 13 

6ROXWLRQ�YLD�2SWLPDO�&RQWURO�7KHRU\�
In their IMC model, the sales dynamics is 1tttt2t1t SvuvuS −λ+κ+β+β= , where 

St is brand sales at time t, (β1, β2) are the effectiveness of marketing activities 1 and 2, 

(u1, u2) are dollars spent on those two activities, κ captures the synergy between them, 

and λ is the carryover effect. For other marketing problems, the essential dynamics would 

arise from the transition equation (2). If we have multiple transition equations in (2), the 

following approach generalizes (as we explain below). We re-express this dynamics in 

continuous-time as follows: 

 ),t(S)1()t(v)t(u)t(v)t(u
dt
dS

21 λ−−κ+β+β=     (8) 

where dS/dt means instantaneous sales growth.  

Then, to maximize our objective function in (7) subject to the dynamics specified 

in (8), we define the Hamiltonian function: 

)S)1(uvvu()v,u,S(),v,u(H 21 λ−−κ+β+βµ+Π=µ ,   (9) 

where 22 vumS)v,u,S( −−=Π  and µ is the co-state variable.  We note two points; first, 

it is convenient to maximize H(.) in (9) rather than J(.) in (7), although the resulting 

solutions satisfy both these functions.  Second, if we have an n x 1 vector transition 

equation in the state space model (2), we would extend H(.) in (9) by adding additional 

co-state variables because each state equation has an associated co-state variable µj, j = 

1,… , n.  

At optimality, the necessary conditions are as follows: 

.
S
H

dt
d

,0
v
H

,0
u
H

∂
∂−ρµ=µ=

∂
∂=

∂
∂

    (10) 

Furthermore, these conditions are also sufficient because H(⋅) is concave in u and v. 

Applying the optimality conditions, we differentiate (9) with respect to u and v to get  

020

020

2

1

=κµ+µβ+−⇒=
∂
∂

=κµ+µβ+−⇒=
∂
∂

XYY
+

YXX
+

 

Solving these algebraic equations simultaneously, we express the solutions in terms of 

the co-state variable:  



 14 

22
21*

4
)2(

u
κµ−

κµβ+βµ
=  and 

22
12*

4
)2(

v
κµ−

κµβ+βµ
= .    (11) 

The remaining step is to eliminate the co-state variable µ(t) by expressing it in 

terms of model parameters. To this end, we use the third optimality condition in (10):  

  ρµ+λ−µ+−=µ⇒
∂
∂−ρµ=µ

)1(m
dt
d

S
H

dt
d

. 

To solve this differential equation, we note that transversality conditions for an 

autonomous system with infinite horizon are obtained from the steady-state for state and 

co-state variables (Kamien and Schwartz 1991, p. 160), which are given by ∂S/∂t = 0 and 

∂µ/∂t = 0, respectively.  Consequently, 
)1(

m
)t(

ρ+λ−
=µ , which we substitute in (11) 

to obtain the optimal spending plans: 

222
12*

m)1(4
))1(2m(m

u
κ−λ−ρ+

λ−ρ+β+κβ
=  and 

222
21*

m)1(4
))1(2m(m

v
κ−λ−ρ+

λ−ρ+β+κβ
= . (12) 

From (12), we finally obtain the total budget B = u* + v* as  

m)1(2
m)(

B 21

κ−λ−ρ+
β+β

= ,    (13) 

and the optimal media mix Λ = u*/v* as 

κβ+λ−ρ+β
κβ+λ−ρ+β

=Λ
12

21

m)1(2
m)1(2

.    (14) 

�
1RUPDWLYH�,QVLJKWV�

Although we can generate several propositions by analyzing comparative statics 

via (13) and (14), we present three main insights and implications (see Naik and Raman 

2003 for their proofs and intuition).   

 

PROPOSITION 1. $V�V\QHUJ\��κ��LQFUHDVHV��WKH�ILUP�VKRXOG�LQFUHDVH�WKH�PHGLD�EXGJHW��
This result sheds light on the issue of overspending in advertising.  The marketing 

literature (see Hanssens et al. 2001, p. 260) suggests that advertisers RYHUVSHQG, i.e., the 

actual expenditure exceeds the optimal budget implied by normative models.  However, 

the claim that “ advertisers overspend”  is likely to be overstated in an IMC context.  This 
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is because the optimal budget itself is XQGHUVWDWHG when models ignore the impact of 

synergy.  To see this clearly, we first compute the optimal budget from (13) with synergy 

(κ ≠ 0) and without it (κ = 0).  Then, we find that the optimal budget required for 

managing multimedia activities in the presence of synergy is always larger than that 

required in its absence.  Hence, in practice, if advertisers’  budgets reflect their plans for 

integrating multimedia communications, then overspending is likely to be smaller. 

 

PROPOSITION 2. $V�V\QHUJ\�LQFUHDVHV��WKH�ILUP�VKRXOG�GHFUHDVH��LQFUHDVH��WKH�SURSRUWLRQ�
RI�PHGLD�EXGJHW�DOORFDWHG�WR�WKH�PRUH��OHVV��HIIHFWLYH�FRPPXQLFDWLRQV�DFWLYLW\���,I�WKH�
YDULRXV�DFWLYLWLHV�DUH�HTXDOO\�HIIHFWLYH��L�H���β � � �β � ���WKHQ�WKH�ILUP�VKRXOG�DOORFDWH�WKH�
PHGLD�EXGJHW�HTXDOO\�DPRQJVW�WKHP��UHJDUGOHVV�RI�WKH�PDJQLWXGH�RI�V\QHUJ\����

�
This finding has implications for emerging media, for example, Internet 

advertising.  Companies should not think of Internet advertising and offline advertising 

(TV, Print) as FRPSHWLQJ alternatives.  Rather, these activities possess different 

effectiveness levels and may benefit from integrative efforts to generate cross-media 

synergies.  If so, the total media budget as well as its allocation to Internet advertising 

would grow.   

 

PROPOSITION 3. ,Q�WKH�SUHVHQFH�RI�V\QHUJ\��WKH�ILUP�VKRXOG�DOORFDWH�D�QRQ�]HUR�EXGJHW�WR�
DQ�DFWLYLW\�HYHQ�LI�LWV�GLUHFW�HIIHFWLYHQHVV�LV�]HUR�� 

 

This result clearly demonstrates that companies must DFW�GLIIHUHQWO\ in the context 

of IMC.  According to extant models of advertising that ignore synergy, an advertiser 

should allocate a zero budget to an ineffective activity (i.e., v* = 0 if β2 = 0).  In contrast, 

in the presence of synergy, the company benefits not only from the direct effect of an 

activity but also from its joint effects with RWKHU activities.  Hence, they should QRW 
eliminate spending on an ineffective activity because it can enhance the effectiveness of 

other activities by its synergistic presence. We call this phenomenon the FDWDO\WLF�
LQIOXHQFH of an activity.   
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In marketing, many activities exert a catalytic influence on one another.  For 

example, business-to-business advertising may not directly influence purchase managers 

to buy a company’ s products, but it may enhance sales call effectiveness.  Another 

example comes from the pharmaceutical industry; product samples or collateral materials 

may not directly increase sales of prescription medicines, but it may enhance the 

effectiveness of detailing efforts (Parsons and Vanden Abeele 1981).  Indeed, marketing 

communications using billboards, publicity, corporate advertising, event marketing, in-

transit ads, merchandising, and product placement in movies arguably may not have 

measurable impacts on sales.  Yet, advertisers spend millions of dollars on these 

activities.  Why?  The IMC framework implies that these activities, by their mere 

presence in the communications mix, act like catalysts, and enhance the effectiveness of 

other activities such as broadcast advertising or salesforce effort.   

The above discussion clearly illustrated how time-series models can be linked to 

normative decision making.  More research is needed along these lines, however, 

especially on how models that distinguish between short- and long-run marketing 

effectiveness (as described in Section 2) can be used to derive optimal pricing and 

spending policies, reflecting management’ s short- and long-run objectives. 

 

���&21&/86,21�
In this paper, we reviewed two time-series approaches that have received considerable 

attention in the recent marketing literature: (i) persistence modeling, and (ii) state-space 

modeling.  However, this by no means offered an exhaustive discussion of all time-series 

applications in marketing.  Because of space limitations, we did not review the use of 

“ more traditional”  time-series techniques in marketing, such as univariate ARIMA 

modeling, multivariate transfer-function modeling, or Granger-causality testing.  A 

review of these applications is given in Table 1 of Dekimpe and Hanssens (2000).  

Similarly, we did not discuss the frequency-domain approach to time-series modeling 

(see e.g. Bronnenberg, Mela and Boulding 2006 for a recent application on the 

periodicity of pricing), nor did we review recent applications of band-pass filters to 

isolate business-cycle fluctuations in marketing time series (see e.g. Deleersnyder et al. 

2004 or Lamey et al. 2006), or the use of smooth-transition regression models to capture 
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different elasticity regimes (see e.g. Pauwels, Srinivasan and Franses 2006).  Indeed, the 

use of time-series techniques in marketing is expanding rapidly, covering too many 

techniques and applications to be fully covered in detail in a single chapter.  

 Referring to the expanding size of marketing data sets, the accelerating rate of 

change in the market environment, the opportunity to study the marketing-finance 

relationship, and the emergence of internet data sources, Dekimpe and Hanssens argued 

in 2000 that “ for time-series modelers in marketing, the best is yet to come.”  (p. 192).  In 

a recent Marketing Letters article, Pauwels et al. (2004) identified a number of remaining 

challenges, including ways to (i) capture asymmetries in market response, (ii) allow for 

different levels of temporal aggregation between the different variables in a model, (iii) 

cope with the Lucas Critique, (iv) handle the short time series often encountered when 

working at the SKU level, and (v) incorporate Bayesian inference procedures in time-

series modeling.  In each of these areas, we have already seen important developments.  

For example, Lamey et al. (2006) developed an asymmetric growth model to capture the 

differential impact of economic expansions and recessions on private-label growth, and 

Ghysels, Pauwels and Wolfson 2006) introduced Mixed Data Sampling (MIDAS) 

regression models in marketing to dynamically relate hourly advertising to daily sales, 

see also Tellis and Franses (2006) who derive for some basic models what could be the 

optimal level of aggregation. Tests for the Lucas critique are becoming more widely 

accepted in marketing (see e.g. Franses 2005, van Heerde et al. 2005, 2006). Krider et al. 

(2005) developed graphical procedures to test for Granger causality between short time 

series, and Bayesian  procedures are increasingly used to estimate error-correction 

specifications (see e.g  Fok et al. 2006, van Heerde et al. 2006). 

 In sum, the diffusion of time-series applications in marketing has started.  We 

hope the current chapter will contribute to this process. 
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7DEOH����6WUDWHJLF�LQVLJKWV�IURP�SHUVLVWHQFH�PRGHOLQJ���
 
6WXG\� &RQWULEXWLRQ�
Baghestani (1991) Advertising has a long run impact on sales if both variables are (a) evolving and (b) in long-run 

equilibrium (cointegrated). 
Bronnenberg, Mahajan, and 
Vanhonacker (2000) 

Distribution coverage drives long-run market shares, especially the coverage evolution early in the life 
cycle. 

Cavaliere and Tassinari 
(2001) 

Advertising is not a long-run driver of aggregate whisky consumption in Italy. 

Chowdhury (1994) No long run equilibrium (cointegration) relationship is found between UK aggregate advertising 
spending and a variety of macro-economic variables. 

Dekimpe and Hanssens 
(1995a) 

Persistence measures quantify marketing’ s long-run effectiveness.  Image-oriented and price-oriented 
advertising messages have a differential short- and long-run effect. 

Dekimpe and Hanssens 
(1995b) 

Sales series are mostly evolving, while a majority of market-share series is  stationary. 

Dekimpe and Hanssens 
(1999) 

Different strategic scenarios (business as usual, escalation, hysteresis and evolving business practice) 
have different long-run profitability implications. 

Dekimpe, Hanssens, and 
Silva-Risso  (1999) 

Little evidence of long-run promotional effects is found in FPCG markets. 

Dekimpe et al. (1997) New product introductions may cause  structural breaks in otherwise stationary loyalty patterns 
Franses (1994) Gompertz growth models with non-constant market potential can be written in error-correction 

format. 
Franses, Kloek, and Lucas  
(1999) 

Outlier-robust unit-root and cointegration tests are called for in promotion-intensive scanner 
environments. 

Franses, Srinivasan, and 
Boswijk (2001) 

Unit root and cointegration tests which account for the logical consistency of market shares. 

Hanssens (1998) Factory orders and sales are in a  long-run equilibrium, but shocks to either have different long-run 
consequences  

Hanssens and Ouyang (2001) Derivation of advertising allocation rules (in terms of triggering versus maintenance spending) under 
hysteresis conditions  
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Horváth et al. (2005) The inclusion/exclusion of competitive reaction and feedback effects affects the net unit sales effects 
of price reductions, as do intrafirm effects. 

Horváth, Leeflang, and Otter 
(2002) 

Structural relationships between (lagged) consumer response and (lagged) marketing instruments can 
be inferred through canonical correlation analysis and Wiener-Granger causality testing. 

Johnson et al. (1992) The long-run consumption of alcoholic beverages is not price sensitive. 
Joshi and Hanssens (2006)  Advertising has a long-run  positive effect on firm valuation. 
Jung and Seldon (1995) Aggregate US advertising spending is in long-run equilibrium with aggregate personal consumption 

expenditures. 
Lim, Currim, and Andrews 
(2005) 

Consumer segmentation matters in persistence modeling for price-promotion effectiveness. 

McCullough and Waldon 
(1998) 

Network and national spot advertising are substitutes. 

Nijs et al. (2001) Limited long-run category expansion effects of price promotions.  The impact differs in terms of the 
marketing intensity, competitive structure, and competitive conduct in the industry. 

Nijs, Srinivasan, and 
Pauwels (2006) 

Retail prices are driven by pricing history, competitive retailer prices, brand demand, wholesale 
prices, and retailer category management considerations. 

Pauwels (2004) Restricted policy simulations allow to distinguish four dynamic forces that drive long-term marketing 
effectiveness: consumer response, competitor response, company inertia and company support. 

Pauwels and Srinivasan 
(2004) 

Permanent performance effects are observed from store brand entry, but these effects differ between 
manufacturers and retailers, and between premium-price and second-tier national brands. 

Pauwels and Hanssens 
(2006) 

Brands in mature markets go through different performance regimes, which are influenced by their 
marketing policies 

Pauwels et al. (2002) The decomposition of the promotional sales spike in category-incidence, brand-switching and 
purchase-quantity effects differs depending on the time frame considered (short versus long run). 

Pauwels et al. (2004) Investor markets reward product innovation but punish promotional initiatives by automobile 
manufacturers. 

Srinivasan and Bass (2000) Stable market shares are consistent with evolving sales if brand and category sales are cointegrated 
Srinivasan, Popkowski 
Leszczyc, and Bass  (2000) 

Temporary, gradual and structural price changes have a different impact on market shares. 

Srinivasan et al. (2004) Price promotions have a differential performance impact for retailers versus manufacturers. 
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Steenkamp et al.(2005) Competitive reactions to promotion and advertising attacks are often passive.  This rarely involves a 
missed sales opportunity.  If reaction occurs, if often involves spoiled arms. 

Villanueva, Yoo, and 
Hanssens (2006) 

Customers acquired through different channels have different lifetime values. 

Zanias (1994) Feedback effects occur between sales and advertising. The importance of cointegration analysis is 
demonstrated with respect to Granger causality testing and multi-step forecasting. 

 
 
 



 26 

7DEOH����1DPHV�DQG�1RWDWLRQ�IRU�9HFWRUV�DQG�0DWULFHV�LQ�6WDWH�6SDFH�0RGHOV�

Notation  Vector or Matrix Name Dimension 

Y Vector Observation Vector m x 1 

α Vector State Vector n x 1 

T Matrix Transition Matrix n x n  

c Vector Drift vector (in observation) n x 1 

d Vector Drift vector (in transition) m x 1 

Z Matrix Link Matrix (from state to observation) m x n 

ε Vector Observation errors m x 1 

ν Vector Transition errors n x 1 

H Matrix Observation noise matrix m x m 

Q Matrix Transition noise matrix n x n 
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7DEOH�����'HVFULSWLRQ�RI�'\QDPLF�0DUNHWLQJ�0RGHOV�

0RGHO� 7KH�0DWKHPDWLFDO�0RGHO� 0RGHO�'HVFULSWLRQ�
Vidale and 
Wolfe  
(1957) 

 
dA
dt

A u A= − −β δ( )1  

 
Discrete Version 

A u ut t t t= − − +−( )A1 1β δ β  

Over a small period of time, increase 
in brand awareness (A) is due to the 
brand’ s advertising effort (u), which 
influences the unaware segment of 
the market, while attrition of the 
aware segment occurs due to 
forgetting of the advertised brand. 

Nerlove and 
Arrow 
(1962) 

dA
dt

u A= −β δ
 

 
Discrete Version 

A A ut t t= − +−( )1 1δ β  
 

The growth in awareness depends 
linearly on the advertising effort, 
while awareness decays due to 
forgetting of the advertised brand. 

Brandaid 
(Little 1975) 

A A g u

g u
u

u

t t t= + −

=
+

−λ λ

φ

β

β

1 1( ) ( )

( )
 

Brand awareness in the current 
period depends partly on the last 
period brand awareness and partly on 
the response to advertising effort; the 
response to advertising effort can be 
linear, concave, or S-shaped. 

Tracker 
(Blattberg and 
Golanty 1978) 
 
 

A A e At t
ut

t− = − −−
−

−1 11 1( )( )α β  The incremental awareness depends 
on the advertising effort, which 
influences the unaware segment of 
the market. 

Litmus 
(Blackburn 
and Clancy 
1982) 

A e e At
u u

t
t t= − +− −

−( )A*1 1
β β  The current period awareness is a 

weighted average of the steady-state 
(“ maximum” ) awareness and the last 
period awareness.  The weights are 
determined by the advertising effort 
in period t. 

IMC Model 
(Naik and 
Raman 2003) 

1tt2t1t22t11t SuuuuS −λ+κ+β+β+α=
 

Sales grow due to not only direct 
effects of advertising (βi), but also 
indirect effects of synergy (κ) 
between advertising.  
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7DEOH�����6\VWHP�0DWULFHV�IRU�&RPSDULVRQ�RI�0RGHOV 

6\VWHP�0DWULFHV� 9LGDOH���
:ROIH��

1HUORYH��
$UURZ��

%UDQGDLG��
�

7UDFNHU�
�

/LWPXV�
�

,0&�
PRGHO�

State Vector, αt [At] [At] [At] [At] [At] [St] 

Observation Vector, z [1] [1] [1] [1] [1] [1] 

Transition Matrix, Tt [1-g(ut) - δ] [1-δ] [λ] [1-g(ut)] [1-g(ut)] [λ] 

Drift Vector, dt [g(ut)] [g(ut)] [(1-λ)g(ut)] [g(ut)] [A*g(ut)] g(u) 

Observation Noise, H σε
2 σε

2 σε
2 σε

2 σε
2 σε

2 

Transition Noise, Q σν
2 σν

2 σν
2 σν

2 σν
2 σν

2 

Response Function, g(x) βx βx xγ/(φ+xγ) 1-eα-βx 1-e-βx α+∑βixi 

+κx1x2 
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UNIT-ROOT TESTING: 
Are performance and marketing variables stable or evolving? 

 
 Yes     No 
 
 
 
    COINTEGRATION TEST:  

Does a long-run equilibrium exist between the evolving variables?       
 
      
 

Yes    No 
 
 
 
 
  VECTOR ERROR CORRECTION MODEL VAR MODEL IN DIFFERENCES   VAR MODEL IN LEVELS 
 
 
 
 
 
 
 
 

DERIVE IMPULSE-RESPONSE FUNCTIONS AND ASSOCIATED PERSISTENCE LEVELS 

�
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Long-run Impact 

Long-run Impact 

A: Impulse response function for a stationary market 

B: Impulse response function for an evolving market 

'(7(5*(17 

-0.4 
-0.2 
0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 

0 5 10 15 20 25 
�����	��
  

� 
� �
�
�

��
���
��
�� �
��� �
� � �  

'$,5<�
&5($0(5 

0.0 

0.5 
1.0 

1.5 
2.0 

2.5 

0 5 10 15 20 25 
��������
  

� 
� �
�
�

��
���
��
�� �
��� �
� � �  



 31 

$SSHQGL[�$ 
0RPHQWV�RI�WKH�&RQGLWLRQDO�'HQVLW\�S�< � _ϑ � �  � 

 
This appendix provides the moments of the conditional density S(Yt|ϑt-1).� We 

recall that the observation equation is Yt = Ztαt + ct +  εt, the transition equation is αt = Tt 
αt-1 + dt + νt, and error terms are distributed as εt ~ N(0, Ht) and νt ~ N(0,Qt).  Since the 
error terms are distributed normally and both the transition and observation equations are 
linear in the state variables αt, the random variable Yt|ϑt-1 is normally distributed 
(because the sum of normal random variables is a normal.)   

Let �Yt denote the mean and ft be the variance of the normal random variable 
Yt|ϑt-1.  By taking the expectation of observation equation, we obtain 

,caZ

0c]|[EZ

]|cZ[E

]|Y[EŶ

t1t|tt

t1ttt

1ttttt

1ttt

+=
++ℑα=

ℑε++α=
ℑ=

−

−

−

−

     (A1) 

where at|t-1 is the mean of the state variable αt|ϑt-1. Similarly, the variance of Yt|ϑt-1 is 

,HZPZ

]|[VarZ]|[VarZ

]|Z[Var

]|Y[Varf

tt1t|tt

1ttt1ttt

1tttt

1ttt

+′=
ℑε+′ℑα=

ℑε+α=
ℑ=

−

−−

−

−

    (A2) 

where Pt|t-1 is the covariance matrix of state variable αt|ϑt-1.   
Next, we obtain the evolution of mean vector and covariance matrix of αt via the 

celebrated Kalman recursions (see, e.g., Harvey 1994 for details):  
 
Prior mean:    t1tt1t|t daTa += −−  

Prior covariance:   t1t1tt1t|t QTPTP +′= −−−  

Kalman Gain Factor:  1
tt1t|tt fZPK −

− ′=         (A3) 

Posterior mean:   )ŶY(Kaa ttt1t|tt|t −+= −   

Posterior covariance:   1t|ttt1t|tt|t PZKPP −− −=      
 
Finally, we apply recursions in (A3) for each t, t = 1, … ,T to obtain at|t-1 and Pt|t-1, 

starting with a diffused initial prior on α0 ~ N(a0, P0).  For example, given (a0, P0), we get 
(a1|0, P1|0) and thus (a1|1, P1|1); now given (a1|1, P1|1), we get (a2|1, P2|1) and thus (a2|2, P2|2); 
and so on.  Knowing at|t-1 and Pt|t-1 for each t, we determine the moments of Yt|ϑt-1 via 
equations (A1) and (A2).  The initial mean vector, a0, is estimated by treating it as hyper-
parameters in the likelihood function.  
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