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CHAPTER 1 

Introduction 

It is well known from population studies that blood pressure tends to increase 
with age (Master et al., 1950; Hamilton et al., 1954; Zinner et al., 1971; Kahn 
et al., 1972; Buck, 1973; Kimura, 1973; Miall and Chinn, !973), at least in 
Western society. Any upward deviation from this "normal" trend can thus be 
considered to represent a development into the hypertensive range. A hyper­
tensive individual distinguishes himself by an earlier or steeper increase in 
blood pressure. 
Once a diagnosis of essential hypertension has been established by excluding 
known causes of elevated blood pressure, the follow-up of these patients is 
mainly based on repetitive blood pressure readings. 
Many studies have been carried out with respect to the epidemiology of 
hypertension. Such investigations provide information about the incidence 
and end-points of hypertension but this concerns only the easily accessible part 
of the disorder. 
Although many attempts have been made to elucidate the mechanisms leading 
to essential hypertension the exact cause of this disease is still unknown. 
A certain level of blood pressure always is the result of the interaction between 
the heamodynamic status, including blood volume and the activity of a number 
of regulatory mechanisms. Thus, blood pressure is a function of flow and 
resistance in the arterial system and of the intravascular volume. Alterations in 
each parameter can result from the modifying impulses of neural or humoral 
factors. The circulatory control mechanisms and their known interrelations are 
schematically represented in figure I. It will be obvious that the isolation of 
one variable and the study of its function in hypertension can only yield poor 
information, since this ignores possible adaptations in relation to the other 
variables. Moreover, questions often arise as to whether abnormal results 
reflect factors contributing to the hypertensive state or the impact of the 
increased blood pressure on the organism. This uncertainty can be partly 
overcome when the duration of the hypertensive process is taken into account. 
Whereas deviations which are supposed to occur early are likely to be identi­
fiable as factors participating in the elaboration of the hypertensive process, 
late abnormalities are more probably the result of this process. Unfortunately 
the duration of hypertension is often unknown since in the majority of patients 
blood pressure has not been previously measured. The best choice, therefore, 
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Fig. 1 Schematic representation of the cardiovascular control mechanisms. 



in interpreting cross-sectional investigations is to use age as a reference frame. 
It can be conceived that essential hypertension is rooted in early life (Kass and 
Zinner, 1969) and although the disorder can arise at any age, it is likely that it 
has been of short duration in young adults. Another method of appraising the 
duration of the hypertensive process in cross~sectional studies is to select a 
variable which is known to change pari passu with time as a consequence of 
hypertension. 
The results of renal function studies use to be applied as such a parameter. 
Although several studies have been designed in such a manner, most of them 
deal with patients who have been selected on the basis of one or more of these 
variables. 
The aim of this study is to provide a biophysical profile of essential hyperten­
sion. An attempt will be made to interrelate different variables in order to trace 
the natural history of the disease. 
We have directed ourselves to the following questions, which form the basis of 
this investigation: 

I. Which characteristics can be found in the diurnal variations of blood 
pressure in essential hypertension? 

2. Which is the primary haemodynamic abnormality in essential hyperten­
sion? 

3. Which is the role of the kidney in hypertension relative to exocrine 
(volume control) and endocrine (production of pressor hormones) func­
tion. 

4. Which is the role of the adrenergic system in essential hypertension? 

The assesment and the reliability of the methods used will be described in the 
next two chapters. 
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CHAPTER 2 

Subjects and methods 

2.1 Introduction 

In 1966 a hypertension research program was started at the Department of 
Internal Medicine in the Zuiderziekenhuis, Rotterdam. 
Until now many patients with hypertension have been studied under metabolic 
ward conditions. In addition, a small number of normotensive control persons 
could be studied. 
One or more of the investigations, mentioned in 2.3 till2.9, were carried out in 
600 subjects. From this group 226 patients with essential hypertension were 
selected, who fulfilled the criteria of 2.2. 
These were 138 men and 88 women. The data obtained in this group will be 
discussed in chapters 4 to 8. Since methods for determination of noradrenaline 
and active renin became available only recently, we have selected a second 
group of 59 patients (40 men and 19 women) in whom specifically these 
hormones were measured. On most of these patients, the same haemodynamic 
investigations were carried out as on the original group. The data obtained on 
this group will be discussed in chapters 8 and 9. 
All data presented in this study have been retrieved and recalculated from the 
original tracings. 

2.2. Study protocol 

2.2.1. Selection of patients 

Patients were selected for the study on an out-patient basis; they were consi­
dered hypertensive when their blood pressure exceeded 150 mmHg systolic or 
I 00 mmHg diastolic during at least three consecutive visits. 
Although we recognize that such a criterium especially when applied to all age 
groups, may cause the patient group to become rather heterogeneous, it is 
hardly possible to make a better selection. 
None of the patients were on antihypertensive therapy during the studies. If 
they had been treated before, drugs were stopped at least two weeks before 
admission. The initial evaluation included a complete history and physical 
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examination, determination of blood electrolytes, urea and creatinine concen­
tration, urinalysis, chest film and electrocardiogram. 
The diagnosis of essential hypertension was made after exclusion of known 
causes of hypertension. The screening protocol further consisted of intrave­
nous pyelography, isotope renography and, if necessary, renal arteriography. 
None of the patients had proteinuria or excess excretion of vanillyl mandelic 
acid. When other metabolic diseases, such as diabetes, hyperlipidaemia, etc. 
occurred, subjects were excluded from the study. A further prerequisite for 
admission was, that hypertension was still being and uncomplicated, fundal 
changes with a few exceptions being restricted to grade I or II. In none of the 
patients, central venous pressure, measured indirectly, was elevated. Plasma 
creatinine in no case exceeded l20!J.mol! 1. 

2.2.2 Investigational program 

After the initial work-up patients were admitted to a metabolic ward, where 
they received a standardized diet, containing 60 mmol of sodium per day. This 
was chosen in view of the feasibility to provide a salt-free diet with I gram of 
sodium chloride per meal added. 
Moreover, such mild salt restriction was considered to be an appropriate 
stimulus to haemodynamic and hormonal adjustments. 
Potassium intake could not be controlled. 
Usually the patients were in sodium balance on the fourth day of admission. 
This was checked by 24 hour urinalysis. From there on the haemodynamic and 
endocrinological studies were performed during recumbency and after an 
overnight fast. In those cases where plasma volume and extracellular volume 
were both measured, these determinations were carried out on a separate day. 
In 1975 measuring extracellular volume was discontinued. Subsequently 
plasma volume was measured directly after completing the renal clearance 
studies. 
Cardiac output was measured simultaneously with either the body fluid volu­
mes or renal haemodynamics. 
Renal arteriography was performed on a separate day. During these studies 
renal plasma flow and glomerular filtration rate were determined togehter 
with the measurement of intrarenal blood flow. 

18 
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Fig. 3 Example of a direct recording of arterial pressure. 



2.3 Systemic haemodynamics 

2.3.1 Blood pressure 

At the time of the other investigations, blood pressure was measured either 
directly by manometry from an indwelling needle or indirectly by an automatic 
device (fig. 2+3). This will be indicated as the 10'm blood pressure. Direct 
values obtained with a Stetham transducer and a Hellige mu!ticardiotest 
recording system will be presented as an average of 20 pulses. Average indirect 
blood pressure data were calculated from 20 recordings over an 2 hour period 
during determination of the other variables. 
For computation of mean blood pressure from indirect recordings the formula 
of Mc.Intosh eta!. ( 1954) was used: mean arterial pressure ~ diastolic press­
ure + one third of pulse pressure. 

2.3.2 Variability of blood pressure 

The 24 hour blood pressure pattern was recorded by means of an automatic 
device (fig. 4 ). 
Until 1974 the Godart haemotonograph was used, which is based on the 
oscillometric phase-shift principle developed by the Dobbeleer (Birkenhager 
eta!. 1968 Westerman-vander Horst, 1975). From 1974 on, blood pressure 
was recorded by the Arteriosonde (Roche), which utilizes the Doppler effect 
(Kazamias eta!. 1971). 
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Variability of systolic, diastolic and mean blood pressure was calculated as the 
difference between highest and lowest reading expressed as a percentage of the 
highest value 

( 
Pmax -Pmin %) 

Pmax 

Total variability refers to the average of systolic and diastolic variability. 
For the computation of mean blood pressure readings the following procedure 
was developed as proposed by Birkenhager and Schalekamp (I976). The 
"basal" blood pressure taken immediately after waking, in accordance with 
the criterium adopted by Alam and Smirk (I 943 ), was used as a reference. The 
maximal excursion in daytime blood pressure was noted and the difference 
from basal blood pressure was termed "pressor range". 
The lowest level observed during sleep subtraced from the basal blood press­
ure yielded the "depressor range". The sum of both ranges corresponds to 
total variability of mean blood pressure (fig. 5). 

Variability studies were repeatedly performed on three consecutive days. The 
average values from these three days were used for presentation. 

0> 
I 
E 
E 100 
Q) 90 ~ 

:::J 
(f) 80 (f) 
Q) 
~ 70 0. 

"iii 60 ·.:: 
Q) 50 t 

"' c 

"' Q) 

E 
time of day 

Fig. 5 Schematic representation of the diurnal fluctuations in blood pressure. 

2.3.3 Cardiac output and total peripheral vascular resistance 

Cardiac output (C.O.) was estimated by the dye dilution technique or impe­
dance cardiography. 
The dye-dilution technique was carried out according to the Stewart-Hamilton 
principle (Hamilton et al., I932). A known amount ofindocyanine was injec­
ted into an antecubital vein, while arterial blood was drawn with constant 
speed by a Harvard Pump from the contralateral brachial artery into a Kipp 
haemodynamic reflectometer. A direct writing micrograph BD, (Kipp) recor­
ded the dilution curves (fig. 6). Calibration was performed according to the 
method of Sparling (I 96 I). 
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After correction for re-circulation, cardiac output was calculated by planime­
tric comparison of the circulation curve and the calibration curve (Mulder, 
1972). 

-g.-----

Fig. 6 Example of cardiac output curves (left) and calibration curves (right). 

Impedance cardiography was carried out according to the method of Kubichek 
et al. (1966). Thoracic impedance data were obtained using four electrodes 
(aluminized tape) and the Minnesota impedance cardiograph model 304 A. 
Two electrodes are placed circumferentially around the neck, one around the 
thorax and one around the abdomen. A constant sinusoidal current is applied 
to the upper and lower electrodes and voltage changes between the two middle 
ones are measured throughout the cardiac cycle. The change in impedance, 
indicated by the fluctuations in voltage, is thought to correspond with volume 
shifts between the two inner electrodes. During end-expiratory breath holding 
this is entirely due to the ejection of blood by the heart. A phonocardiogram is 
recorded simultaneously (fig. 7). From the maximum rate of change of impe­
dance, stroke volume can be calculated when basal thoracic impedance, ven­
tricular ejection time and distance between the inner electrodes are known. 

24 



I. 
.. 
!': 

Fig. 7 Example of impedance cardiogram. 

In the last ten years several authors have compared this method with the dye 
dilution or isotope dilution technique, and with a few exceptions, good correla­
tions were reported (Judy et al., 1969; Smith et al., 1970; Baker and Geddes, 
1971; Lababidi et al., 1971; Demange et al., 1972; Denniston et al., 1976; 
Keirn et al., 1976). 
In our hands the relation was acceptable. In 15 patients from our series cardiac 
output was measured, using the dye dilution and impedance technique simul­
taneously. 
In addition, we have applied both methods under non-basal conditions (e.g. 
tilting, saline loading). For the whole group of paired observations a direct 
relationship (r=0.66; p<0.001) was found (de Leeuw et al., 1978). There is no 
significant difference between the regression for the basal and the non-basal 
determinations. Compared to the dye dilution method, impedance cardio­
graphy appears to slightly underestimate cardiac output. 

Total peripheral vascular resistance (T.P.R.) was calculated from the following 
formula: 

s MAP(mmHg) 
TPR (dyn.sec.cm--) = ~ x 80 

CO (1/m) 

In those patients in whom the two methods for cardiac output were used 
simultaneously, the data from the dye dilution were taken for derivation of 
peripheral resistance. 
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2.4 Renal haemodynamics 

2.4.1 Clearance studies 

Renal plasma flow (R.P.F.) and glomerular filtration rate (G.F.R.) were 
estimated by clearance techniques. For both measurements a constant infusion 
was used. The infusion clearance was calculated when plasma samples indica­
ted a steady state between infusion and urinary excretion. 
For determining glomerular filtration rate (57 Co)- cyanocobalamine was used 
originally. (' 7Co )-cyanocobalamine is firmly bound to protein; radioactivity of 
unbound material was determined by subtraction after exhaustive dialysis 
against 0.9%) NaCl. 
Later on we switched to inulin clearance. Inulin is measured by fermentation 
(Wesson, 1969). Both methods were compared in a series of 36 subjects (de 
Leeuw et al., 1978) and a highly significant relationship was found (r=0.77; 
p<O.OO 1). 

For determination of renal plasma flow ( 125J)-hippuran was used; the infusion­
clearance was divided by the extraction ratio for hippuran. On the basis of data 
from the literature and from our laboratory a 74[Yo renal extraction was 
assumed (Pritchard et al., 1965; Dabaj et al., 1966; Houwen et al., 1970; Jago, 
1973; Kolsters, 1976). 
Total renal blood flow (T.R.B.F.) was calculated from the formula T.R.B.F. = 
RPF 
l~Ht , where Ht is the venous haematocrit. Renal vascular resistance was 

, MAP lmmHg) 
then calculated as R.V.R. (dyn. sec. em-~)= RBF (ml/m) x 80.000. 

Filtration fraction was calculated from the quotient ~~~ · 

2.4.2 Xenon-washout studies 

Intrarenal haemodynamics were assessed by means of the xenon-washout 
technique (fig. 8) on patients requiring renal arteriography. This method 
measures intrarenal blood flow distribution and capillary blood flow in each 
region (Kety, 1951 ). Its theoretical and practical implications have been the 
subject of another thesis (Kolsters, 1976 ). 

Percutaneous selective artery catheterization was carried out as described by 
Seldinger ( 1953), using Elecath-Cope catheters. Whenever possible, the renal 
vein was catheterized in the same way. Catheters were kept open by heparini­
zed saline solution. 
Renal plasma flow was always measured simultaneously by the clearance and 
extraction of ( 125J)-hippuran. In these cases, extraction ratio was calculated 
from the arterial (A) and venous (V) concentration ofhippuran by the formula 
A-V 

A 
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N 
-.) Fig. 8 Set-up of the renal catheterisation laboratory; on the right the Baird Atomic registration instruments. 



Blood samples were centrifuged immediately after being drawn. When no 
angiographic abnormalities were found, the right kidney was used for the 
washout study. 
In order to insure that intrarenal haemodynamics were not affected by contrast 
material, studies were performed at least 30 minutes after the adminstration of 
this material (Hollenberg et al., 1968; Rosen et al., 1968). 
Subsequently 1 mCi of 133 Xe in 2 ml saline was injected into the renal artery in 
5 sec. 
The disappearance of 133Xe from the kidney was monitored during 20 minutes 
by external counting with sodium iodide crystals placed in a cylindrical collima­
tor above the kidney. An example of a washout curve is given in fig. 9. 

Fig. 9 Example of a xenon wash-out curve. 

The mathematical principles on which the measurement of tissue perfusion 
with an inert gas is based, have been extensively described by Kety ( 1951 ). For 
any substance carried to an organ by the flow of blood, it is evident that the 
amount (Q,), which is brought in within a time interval 6 t, must equal the 
amount of the substance which during that time interval leaves the organ ( Q,), 
plus the amount which is accumulated and metabolized in that organ.ln case of 
an inert unmetabolized substance, like radioxenon, no conversion takes place. 
Therefore, the total quantity of the substance accumulating in the organ (Q;) 
can be described as 

6Qi = Oa _ Ov 
6t 6t 6t 

(I). 

If it is assumed that flow rates (F) for arterial and venous blood are equal and 
constant andif the arterial and venous blood represent the only significant 
pathways of entrance and exit for the organ, then equation (l) can be rewritten 
as 
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where c, and c, represent the concentration of the indicator in arterial and 
venous blood. Immediately after the bolus injection of xenon into the renal 
artery, its concentration in arterial blood is zero and therefore 

dQ -'=-FxCv (3). 
dt 

Even when assuming very rapid equilibration between blood and tissue, con­
centrations of xenon in these spaces are not equal due to differences in 
solubility. Concentration of xenon in tissue (Ci) can be derived from the 
partition coefficient 

"A= Ci 
Cv (4 ). 

Combining formula (3) and ( 4) yields 

dQi _ -F x C; 
at- "A (S). 

Since Ci = ~;(6), where Vi is the total volume oftissue in which the substance is 
I 

dissolved, equation (5) can be rearranged to 

dQ; _ -Fdt 
(T;-vx"A (7). 

Equation (7) may be integrated to 

F 
- (--) t 

Ot = Qoe VI>. (8). 

where Qt and Oo represent the amount of xenon (Qi) at times o and t. If the 
partition coefficient is known, monitoring the disappearance of xenon from the 
organ allows calculation of flow per unit volume of tissue ( ~ ). 

The equations are valid not only for total organ flow, but also for specific 
regions within an organ. In case of n parallel open compartments the disappea­
rance curve describes the summation of n different components. Although it is 
generally accepted that the equation, which describes the xenon washout by 
the human kidney, contains more than one term, there is uncertainty about the 
number of terms needed to describe the washout curve. After Ladefoged 
( 1966) and Goluboff et a!., (1969), we have chosen for three-compartmental 
model. 
The analysis of the washout data was performed by computer. The analytical 
program is based on a (iterative) least squares method and is quite similar to 
the procedure described by Dell eta!., (1973). Flow rates per unit volume of 
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tissue were calculated, partition coefficients being corrected for haematocrit 
(Andersen and Ladefoged, 1965). Component 1 (Ct) was considered to 
represent outer cortical blood flow (Blaufox et al., 1970; Kew et al., 1971; 
Slotkoff et al., 1971; Kilcoyne et al., 1973; Kinoshita et al., 197 4; Hollenberg 
eta!., 1976). 
There is very little certainty concerning the physiological meaning of the 
second and the third component (C2 and CJ). Although with some reserve, c, 
will be presented here as "subcortical" flow. No significance is attributed to CJ. 
Mean blood flow (M.B.F.) was calculated as weighted arithmetic mean as 
described by Ladefoged ( 1966). From the distribution of total radio-activity at 
zero time, the fractional distribution of blood flow to the outer cortex (% Ct) 
and the "subcortical" region (%C2) could be calculated (Dobson and Warner, 
1957). Absolute cortical blood flow was calculated as %Ct X T.R.B.F. 

2.5 Body fluid volumes 

2.5.1 Plasma volume (P. V.) 

This variable was estimated by determining the dilution of (1 311)-ablumin 
(R.I.S.A.), after 5~tCi was injected intravenously. Blood samples were drawn 
at 10, 20, 30 and 40 minutes. Plasma activity was extrapolated to zero time. 
Blood volume was calculated with the formula 

2.5.2 Extracellular volume (E. C. V.) 

py 
BY=-· 

1-Ht 

This variable was estimated by means of radiosulphate. After intravenous 
injection of 50 11Ci of (355)-sodium sulphate, blood samples were drawn at 30, 
60, 90, 120 and 180 minutes. The zero time value was calculated by semiloga­
rithmic extrapolation. 

Interstitial fluid (I. F.) is calculated as E.C.V. - P.V. 

2.6 Plasma renin concentration 

2.6.1 Assay method 

Blood samples for renin determination were taken between 09.00 and 10.00 
hours. Chilled E.D.T.A.-containing tubes were used for collecting the blood, 
which was centrifuged immediately. 
Renin was determined according to the method of Skinner ( 1967). 
An excess of exogenous renin substrate prepared from sheep plasma was 
added to the specimen. 
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Endogenous renin substrate and angiotensinases were destroyed by dialysis 
against a buffer solution with Ph 3,3. Following the incubation with renin 
substrate the amount of angiotensin I generated, was measured by bio-assay in 
the rat (Skinner, 1967; Schalekamp et aL, 1970) or later on, by radio­
immuno-assay (Stockigt et al., 1971; Schalekamp et aL, 1973 ). 
The two methods were frequently compared. All results were expressed as 
bio-assay units of A II equivalents (ng/mL hr,), Since the last year, all results 
are expressed as micro-units per ml ofM.KC standard renin (Bangham et aL, 
1975). In our laboratory I f'U/ml corresponds to 0.08 ng/mLhr, 

Recently, it has become apparent that there are two forms of renin (i.e. an 
active and an inactive form). 
Since inactive renin is activated when the pH falls below a critical level, the 
previously described method measures total renin (i.e. active and activated). 
At pH 4.5 inactive renin is not activated (Derkx) and therefore, at this pH the 
same method measures only active renin. (Skinner et aL, 1975; Derkx et aL, 
1976). In this thesis, T.P.R.C. (total plasma renin-concentration) will refer to 
the total amount of renin, while A.P.R.C. (active plasma renin-concentration) 
stands for active renin only. The difference between the two, indicates inactive 
renin (Skinner et al., 1975; Derkx et aL, 1976). 

2.6.2 Renin secretion rate (R.S.R.) 

Secretion of renin by the kidney could be determined during the catheteriza­
tion studies. T.P.R.C. and later also A.P.R.C., were determined in 2 or 3 
samples drawn simultaneously from the renal artery and vein. The difference 
in plasma concentration between the two multiplied by renal plasma flow, 
yield renin secretion rate by both kidneys together, 
Renin secretion rate per I 00 grams of kidney tissue (R.S.R.-1 00 gr,) was 
calculated by multiplying the arteriovenous concentration difference by mean 
blood flow (M.B.F.), derived from the xenon-washout curve and the term (I­
haematocrit). This latter term converts M.B.F. to mean plasma flow. 

2. 7 Plasma aldosterone 

Blood was collected in the same way as for the renin assay. After purification 
by paper chromatography, aldosterone was measured by radio-immuno-assay 
as described by Fraser et aL, (1973). 
Recently, we started to use the CIS Aldosterone Radio immuno-assay kit, 
which provides a sensitive and specific determination of aldosterone on dried 
extracts of plasma samples without chromatography (Malvano et aL, 1976). 
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2.8 Plasma noradrenaline (NA) 

2.8.1 Assay method 

Blood was collected in chilled gluthation-containing tubes and centrifuged. 
Since the stress of venipuncture increases noradrenaline levels (Lake et al., 
1976), blood was drawn from an indwelling catheter which had been inserted 
at least thirty minutes previously. This interval is long enough to bring NA 
concentration back to basal levels (Lake et al., 1976). 
NA concentration was measured by a radio-enzymatic method, based on that 
described by Henry et al., (1975) and Lake et al., (1976) but with some 
modifications. Proteins were precipitated by addition of 60% perchloric acid, 
but we omitted extraction of NA from plasma with alumina. 
In this way it is possible to use smaller amoints of plasma. Moreover, the results 
are more reproducible (Falke et al., in preparation). 
Noradrenaline is converted to 3H-adrenaline after addition of highly purified 
phenylethanoi-N-methyl-transferase (P.N.M.T.). In this reaction, added 
('H-Me)-S-adenosylmethionine (S.A.M.) serves as methyldonor. 
The labeled adrenaline is extracted with alumina and the incorporated label 
measured in a beta-scintillation counter. Plasma samples are also estimated 
after addition of l 00 pi co gram internal standard. 

2.8.2 Renal NA production 

Noradrenaline production by the kidney was assessed in the same way as 
described for renin secretion. 

2.9 Electrolytes, creatinine 

Concentrations of sodium and potassium were determined by flame photome­
try. Creatinine was measured colorimetrically in a S.M.A. 12 apparatus. These 
procedures were performed both on plasma and on urine. 

2.10 Statistical evaluation 

For comparisons of data between groups the unpaired Student-t-test was used, 
while the paired t-test was applied to assess intragroup differences. Regression 
analysis and calculation of correlation coefficients were carried out according 
to standard methods (Snedecor and Cochran, 1967). 
Wherever appropriate, partial correlation coefficients were calculated to mea­
sure interdependence. An analysis of variance was applied to test the reprodu­
cibility of our methods. 
Differences and correlations were considered significant when the t-values 
exceeded those given for the 5% level of probability (Documenta Geigy, 
1970). 
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2.11 Presentation of data 

All test results represent an average of at least three successive determinations. 
Clearance values were taken as the mean of several samples during a period 
where the individual samples varied by 5% or less. 
Results of biochemical tests were only used for the study when duplicate 
determinations differed by I 0% or less. 
Group data will be presented as mean:': S.E.M. (standard error of the mean) 
except for the reproducibility studies, where they will be presented as mean :': 
S.D. (standard deviation). 

2.12 Radiation doses 

Patients who were subjected to all of the described tests, received a radiation 
dose of approximately !50 mRad (I.C.R.P., 1971; Kolsters, 1976). This value 
refers to total body radiation dose. 
Of the preparations used, only 131 J-albumine does not quickly leave the body. 
When the radioiodine-labeled protein is injected, it first mixes with the intra­
vascular protein pool; subsequently mixing also occurs with the extravascular 
protein pool. Due to the breakdown of the protein the radio-active label is 
released in the form of inorganic iodide. Although detailed data about distri­
bution and fate of radio-isotopes in the body are lacking, it is assumed that 
about 20% of the free label is accumulated in the thyroid. 
This organ then receives a radiation dose, which averages 304 mRad (I.C.S.H., 
1973 ). It must be emphasized, however, that this is only an approximation. For 
all isotopes, used in this study, the total body radiation dose together with the 
dose on the critical (i.e. most susceptible) organ is given in Table I. 
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Table I. 

Radiation close of the isotopes used in this study. 

Isotope Dose admini- Total body Critical Organ radiation 
stered radiation organ dose 
ILCi. dose mRad/fLCi 

mRacl/fLCi 

131 J 5 2.0 Thyroid 304 

125j 60 0.0002 Kidney 0.04 

35so2· 50 2.6 Testes 10 
4 

57 co 6 0.3 Blood 0.04 

133xe 1000 0.()004 Bladder 1.5 
I I curve) Liver 1.2 

All values remain well below the level of the maximum permissible close for 
each organ. 
Moreover, total radiation is relatively low when compared to the effect of one 
chest X-ray. 

Some controversy still exists about the radiation dose of 35so ~~ Whereas in 

the table the highest value is given based on a half-life of 90 days, the actual 
radiation dose probably is considerably less. Moreover, it is not generally 

accepted that the testes are exposed to 35so ~-. 
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CHAPTER 3 

Assessment of the methods 

3.1 Introduction 

Prior to any assessment of biologic variables, one should evaluate whether the 
tests are adequate to register real deviations from the normal pattern. There­
fore, two questions arise: 

1. What is the variability of the test results obtained on the same subjects 
with an interval of a few days. 

2. What are the normal values and what is the effect of ageing per se on these 
variables. 

Ad I. In a small number of patients, one or more of the tests, described in 
Chapter 2, have been performed twice under similar conditions and with an 
interval of a few days. The data from these paired observations have been 
compared in order to determine the assay-variability. The individual data from 
this study are summarized in the appendix (tables A-1 to A-ll). 

Ad 2. Although some data from out laboratory on normotensives will be 
presented (table A-12), this study is not a controlled one and our results will be 
compared with those obtained from the literature on both hypertensive and 
normotensive subjects. 

3.2 Assay variability 

For all parameters, calculated means, standard deviations and estimated varia­
tion of the differences between the two determinations are summarized in 
Table II. 
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w Table II. Variability of test results. 
0\ 

Determination n Mean:t:S.D. Mean±S.D. S.D. of difference Correlation I vs 2 

I st 2nd abs. "' r p 

Cardiac output ( 1/min) 23 5.0±1.1 5,0± 1,2 0.5 10 0.82 ().()01 

Glomerular filtration rate (ml/min) I I [ 13±28 112±22 9.5 8.8 0.87 0.001 

Renal plasma flow-l(ml/min)* 16 498±233 503±242 27 n.8 0.99 0.001 

Renal plasma flow-2(ml/min)*'' 20 481±12n 455± 105 46 8.8 0.88 0.001 

-CI(ml/min/100 gr) 14 378±97 373±73 35 10 0.83 0.(10 I 

Xenon-washout-MBF (ml/min/100 grl 14 328±97 326:t72 29 9 0.89 0.001 

-%CI 14 85±9 88±3 7 0.14 n.s. 

Plasma voh1me (ml) In 2635±666 2680±707 110 4.2 0.98 0.001 

Extracellular volume (I) 5 12,0±4,8 11.1 ±3.4 1.1 7.1 0.99 0.005 

Total renin concentration (ng/ml.hr.) 29 9,2±5.5 8.7±4.6 1.6 16 0.92 0.001 

Active renin concentration (p,U/ml) 14 24.0± 16.n 24.5± 18.4 3.0 14 0.97 0.001 

Plasma aldosterone (ng/100 ml) 33 12.4±6.6 12.2±5.6 4.5 28 0.46 0.01 

Plasma noradrenaline (ng/ml) 12 0.30±0.14 0.31 ±0.16 0.05 12 0.91 0.001 

*Refers to table A-3. 
**Refers to table A-4. 



3.2.1 Variations in the measurement of arterial blood pressure 

Variability of blood pressure over a 24 hour time span constitutes a special 
problem which will be studied in more detail in the next chapter. During the 
time the patients spent in the laboratory, fluctuations in blood pressure were 
demonstrable, albeit of a minor degree. 

3.2.2 Variations in the measurement of cardiac output 

Since the dye-dilution technique requires arterial puncture, it was not felt 
justified to repeat this invasive investigation without a strict reason. Therefore, 
we have to make do with data from the literature, which indicate that the 
variability of this method is about 5%- I 0% (Brandfonbrener et al., I 955; Lee 
et al., I966; Kubichek et al., I966; Arcilla and Rowe, I969; Lababidi et al., 
I 97 I). 
Indeed in 3 patients, in whom we were able to repeat the measurements, the 
variation remained within this limit. 

8 

co. 2 

I/ min 

6 

.. ... 
.. .. .. 

4 • .. • 
.. 

• 

2 

2 4 6 8 
CO. 1 I/ min 

Fig. I 0 Comparison between two measurements of cardiac output on separate 
days. 
In this figure and in fig. 11 - 18 the dashed line indicates the calculated 
regression line, while the dotted line is the line of identity. 
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Reproducibility of the impedance method was assessed in 23 patients (Table 
A-1 ). The congruency between the values of the first and the second measu­
rement is given by figure 10. Mean values for the first and the second were 5.0 
± 1.1 and 5.0 ± 1.2. 1/min., respectively. A good correlation was found 
between paired data (r = 0.82; p<O.OOl) and variability was 0.5 1/min. or 
10%. 
Others have reported even better intraindividual reproducibility (Kubichek et 
al., 1966; Lababidi et al., 1971; Keirn et al., 1976). 

3.2.3 Variations in clearance measurements 

On eleven patients, glomerular filtration rate was determined on two success­
ive occasions (Table A-2; fig. 11). Variation between the measurements was 
9.5 ml/min. or 8.8%. This was unrelated to age or average value of G.F.R. 
There was no difference between the variances of the inulin and the cyanoco­
balamine measurements. G.F.R. on the first determination averaged 113 ± 28 
ml!min. and 112 ± 22 ml!min. on the second. Comparative data from the 
literature are lacking. However, Davies and Shock (1950") have calculated 
day-to-day variability for inulin clearance measured by the standard techni­
que; in their series successive measurements had to differ by more than 25. I 
ml/min/1.73 m2 to be significant at the 5% level. 
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Fig. 11 Comparison between two measurements of glomerular filtration rate on two 

separate days. 
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According to Wesson (1969), variations up to 15% are inherent to inulin 
clearance methods. 
Although a simple comparison between their data and ours is not justified, we 
may conclude that the measurement of G.F.R. by a constant infusion techni­
que in our laboratory, yield quite reproducible results. 

In respect to labeled hippuran clearance, variability data are also scarce. In our 
series the values of the first and the second measurement correlated closely 
(n = 16; r = 0.99; p<O.OOJ), the averages being 498 ± 233 ml/min and 503 
± 242 ml/min respectively (Table A-3; fig. 12). 
Variability was 27 ml/min or 6.8%, which is extremely low when compared to 
other methods of R.P.F. determination (Davies and Shock, 1950~; Smith 
1951 ). Good reproducibility R.P.F. measurements by constant infusion of 
radio-active hippuran has previously been reported both for the dog (Mesch an 
et al., 1963) and for man (Danker et al., 1977). 

1200 
R.P.F. 2 

ml/min 

800 

400 . .. .. 

0 

0 400 800 1200 

R.P.F. 1 ml/min 

Fig. 12 Comparison between two measurements of renal plasma flow on two 
separate days. 
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3.2.4 Variations in intrarenal haemodynamics 

In view of the fact that assessment of intrarenal flow rates by Xe-washout 
requires catheterization of the renal artery, it is obvious that this method is not 
accessible for routine follow-up measurements. Therefore, it is difficult to 
determine day-to-day variation in intrarenal blood flow. Especially, uncer­
tainty remains about the effects of the procedure itself, such as stress-induced 
alterations in renal blood flow or interference by contrast material. 
Since most of the renal blood flow passes through the outer cortex, it is to be 
expected that cortical flow will vary in parallel with changes in total renal blood 
flow. For this reason, in 20 patients ( 125J)-hippuran clearance was measured 
both during the catheterization procedure and on a separate day under other­
wise similar conditions. Comparison of the results from both determinations 
did not show considerably more variation than could be expected on the basis 
of the data, mentioned in 3.23 alone (Table A-4; fig. 13). An important 
conclusion, derived from this observation is that the contrast material, at least 
after 30 minutes, does not depress tubular excretion of hippuran. 
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Fig. 13 Comparison of measurements of renal plasma flow as an isolated proce­
dure and after angiography. 
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Another method of appraising the "stability" of the intrarenal circulation is to 
measure the flow pattern repeatedly. This has been done with 14 patients. The 
interval between the end of the first and the start of the second determination 
was 15 minutes. The results are summarized in Table A-5 and figure 14. It 
must be emphasized that the variation which was calculated to be 35 
ml/min/100 gr, or 10% for c, and 29 ml/min/100 gr, or 9% for M.B.F., only 
refers to experimental error during the investigation; % C1 varied by 7(Yo but 
the error is exaggerated by one patient (nr. 8 in Table A-4 ). 
The results of Ladefoged (1966), obtained with men, are comparable to ours. 
In his series c, varied by 20 ml/min/100 gr and% c, by 5. '2 %. Variation in 
M.B.F. was 22 ml/min/100 gr. 

A good reproducibility was also reported by Rosen et al. (1968) and Kolsters 
(1976). In contrast Buchali found a standard deviation of 19%, but this could 
be due to methodological differences (Buchali et al., 1971). Hollenberg and 
Adams (1976) found a variability of 37 ml/min/100 gr., in patients with 
essential hypertension. This was higher than in a control group and explained 
by vasomotor tone in essential hypertension. 

3.2.5 Variations in volume determinations 

In sixteen patients variability of plasma volume measurement was estimated. 
The data from two separate days correlated very closely (r = 0.98; p<O,OO!; 
fig. 15) and the averages of 2635 ± 666 ml for the first and 2680 ± 707 ml for 
the second determination did not differ significantly (Table A-6 ). Variation 
was 110 ml or 4.2%. 
Using the same technique Ladegaard-Pedersen (1972) found a variation of 
170 ml ( 4.8% ). A good reproducibility has also been reported by Cranston and 
Brown (1963) and by Huggins et al. (1963). 
Other methods usually yield a grater standard deviation (Remington and 
Baker, 1961; Metcalf, 1961 ). 
Reproducibility of extracellular volume determinations could be assessed in 
only 5 patients (Table A-7). Variation was 1.1 I or 7.1% with mean values of 
12.0 ± 4.8 I and II. I ± 3.41 for the first and second measurements respective­
ly. The values obtained are in reasonable agreement with those from the 
literature for both the same method (Walser et al., 1956) and for other 
methods (Hosain and Wagner, 1971; Ladegaard-Pedersen 1972). 
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Fig. 14a Variation in c1 flow rate on two consecutive measurements. 
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Fig. 14b Variation in M.B.F. on two consecutive measurements. 
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Fig. 15 Comparison of two measurements of plasma volume on two separate 
days. 

3.2.6. Variations in total and active renin concentration 

Variability of total and active renin concentration was assessed in 29 and 14 
patients respectively. Variation was 16% for T.P.R.C. and 14% for A.P.R.C. 
In absolute terms this is 1.6 ng/ml.hr (or 20 ~U/ml) and 3.0 ~U/ml. No 
differences existed between averages of first and second determination (Ta­
ble A-8 and A-9; fig. 16). The individual data correlated fairly well both in 
the T.P.R.C. (r = 0.92; p < 0.001) and in the A.P.R.C. assay (r = 0.97; p < 
0.00 1). 
The intra-assay variability in our laboratory has changed in the course of time 
and is at present about 6(X). 
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Fig. 163 Comparison of two determinations of total renin concentration. The 
samples were drawn on different days, but at the same time . 
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Fig. 16b Comparison of two determinations of active renin concentration. The 
samples were drawn on different days, but at the same time. 
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3.2. 7. Variations in aldosterone concentration 

In a total of 33 patients aldosterone concentration was determined twice wit­
hin a period of I week. Although there was a correlation between the respec­
tive data, this was rather disappointing (r = 0.46; p < 0.0 I; fig. 17). 
The average for the first assay was 12.4 ± 6.6 ng/100 ml and for the second 
12.2 ± 5.6. Variation between both measurements, however, was as much as 
4.5 ng/100 ml or 28% (Table A-10). This exceeds greatly the analytical 
intra-assay variability, which is only 10% . 
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Fig. 1 7 Comparison of two determinations of plasma aldosterone. The samples 
were drawn on different days, but at the same time. 
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3.2.8. Variations in noradrenaline determination 

In twelve cases variability of noradrenaline levels was assessed, which was 
0.05 ng/ml or 12%. Data from both days correspond well (r = 0.91 p < 
0.001) and average 0.30 ± 0.14 on day land 0.31 ± 0.16 on day 2 (Table 
A-ll; fig. 18). 
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Fig. 18 Comparison of two determinations of plasma noradrenaline levels. 
The samples were drawn on different days. 
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3.3. Studies in normotensive control subjects 

We have not been able to perform a controlled study, although, at least some 
experiments could be carried out with normotensive in-patients. The main 
hindrance was that the selected subjects were often unable to maintain their 
salt-restricted diet. Nevertheless, there were 76 patients who completed at 
least part of the study and their individual data are presented in Table A-12. 
Although the number of observations is too small to serve as a comparison 
with the study in hypertensives, some characteristics of the material (Table 
III) could be of interest, especially, where they confirm data in the literature. 
As is apparent from the table, both renal plasma flow and glomerular filtra­
tion rate declined with age in this group. Calculated filtration fraction appea­
red not to be related to age. No relationship was found between the variab­
les, except for noradrenaline and active (r = 0.78) and total (r=0.79) renin. 

Table HI. 

Average values for haemodynamic and endocrinological investigations in nor­
motensive subjects. 

Type of investigation. 

Renal plasma flow. (ml/min) 

Glomerular filtration rate. (ml/min) 
-cyanocob. 
-inulin 

Plasma volume. (ml) 

Extracellular volume. (!) 

Total renin concentration (!L/ml) 

Active renin concentration (!LU/ml) 

Aldosterone concentration (ng/ I OOml) 

Noradrenaline concentration (ng/ml) 

number 

13 

8 
7 

55 

20 

24 

10 

23 

9 

mean±S.E.M. 

535±51 

130±5 
100±8 

2734±57 

12±0,5 

185±20 

33±8 

10±6 

0,16±0.01 

47 



3.4. Discussion 

Variability in the results is caused by several factors, such as errors in the 
sampling method, handling of the material or reading errors. 
In addition, some variation arises from the biochemical and physical analyti­
cal methods. Finally, we must consider physiological day-to-day variations 
occuring in any patient. From the results, presented in 3.2, it can be conclu­
ded that the methods used in this study do not appear to be subject to signifi­
cant experimental error. Despite its importance, relatively little information 
is available from the literature about such errors. Yet, many studies on phar­
macological or follow-up effects are based on the assumed validity of these 
techniques. 
It is shown here that such an assumption is indeed warranted. 
An important conclusion which can be drawn when appraising the individual 
data is that there is no systematic trend between the first and the second 
measurement. One could anticipate that when a patient is familiarized with 
the experimental procedure, the stress of the moment decreases. In this case, 
however, a more directional pattern of the observed difference between test 
results would be expected. 

Reproducibility values of l 0 percent or less for biological measurements indi­
cate that the methods are reliable and demonstrate (short-term) stability of 
the variables studied. In the biochemical determinations the standard devia­
tion was much larger and exceeded the errors inherent to the analytical met­
hod. 
The larger variability in the levels of hormones may be due to (episodic) 
alterations in secretion and degradation of these products. 
This particularly refers to aldosterone, which is influenced by many factors 
(see Chapter 8). 
These considerations must be taken into account when the results of larger 
studies are evaluated. 

The significance of the findings in normotensives will not be discussed here, 
since this forms part of the interpretation of the cross-sectional studies, which 
will be presented hereafter. 
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CHAPTER 4 

Systematic Haemodynamics in essential hypertension 

4.1. Introduction 

Since blood pressure is basically a haemodynamic phenomenon, it is reasona­
ble to search for a haemodynamic abnormality in hypertension in the first 
place and to elucidate its cause subsequently. 
In this respect, the circulatory control mechanisms which were schematically 
represented in fig. I could serve as a flow sheet for hypertension research. 
Arterial pressure is determined by the flow characteristics of the blood 
stream and the resistance offered by the total of mainly arteriolar vessels. 
Thus, hypertension could be caused by either an elevated cardiac output or 
by an increase in total peripheral vascular resistance or both. 
Furthermore, in the modulation of these functions the effect of age should be 
defined. 
As already mentioned in Chapter :!.!, :2:26 patients could be selected for this 
study. These were 138 men (age range 17-74 years) and 88 women (aged 
19-73 years). 
Mean age was 45 years; the distribution of the patients over the various age 
groups is presented in fig. 19. Since the entire array of determinations was 
not carried out on all patients, an account is presented in Table IV. All indi­
vidual data have been recorded in the appendix. In this chapter we will exa­
mine the haemodynamic characteristics of the hypertensive patients. First, we 
will focus on blood pressure itself, including its daily variations and subse­
quently, turn to the behaviour of cardiac output and vascular resistance. 

4.2. Results of the haemodynamic investigations 

4.2.1. Relation to age 

Blood pressure 

Although blood pressure at 10 am was measured in all patients, in 41 of them 
no frequent readings were obtained at the time of the haemodynamic investi­
gations. These patients were omitted from this section. A minority of the 
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Fig. 19 Frequency distribution of patients in group I. 

patients was normotensive at the time of the haemodynamic studies; they 
represent the group of borderline hypertensives, as defined by Birkenhager 
and Schalekamp (1976). When mean blood pressure is plotted against age 
(fig. 20), a significant positive correlation is obtained (r = 0.44; p < 0.001). 
The scattergram comprises 185 patients, in I 00 of whom blood pressure was 
measured intra-arterially. 
There is no obvious difference in distribution of data from the direct and 
indirect estimations. 

Total variability of blood pressure was determined in 80 patients and exhibi­
ted an inverse relationship with age (r = -0.28; p < 0,02) as shown in fig. 21. 
When the components of blood pressure variability were analyzed more pre­
cisely, the following patterns were found (Table V). 
Variability of systolic blood pressure was inversely related to age (r = -0.22; 
p < 0.05) but this was only valid for relative values. In absolute terms 
(mmHg) systolic variability was not related to age (r = -0.03; n.s.). 
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Fig. 20 Relationship between mean arterial pressure and age. 
Blood pressure was measured intra-arterially (closed circles) or indirectly 
with an Arteriosonde (open circles). 

Similar results were obtained for variability of diastolic blood pressure. Abso­
lute values were not related to age (r = -0.14; n.s.) but in terms of percenta­
ge, a significant inverse relation with age was found (r = -0.27; p < 0.02). 
Variability of mean arterial pressure was not related to age, either in absolute 
or in relative terms. 
Although rough estimations of basal blood pressure could be made in all 
patients, in only 55 of them could basal blood pressure be defined exactly. In 
the other 25, either registrations were incomplete or the moment of wake­
ning was not fully known. 
It could be calculated that basal blood pressure is directly related to age (r = 

0.43; p<O.OOl). 
Pressor range in mmHg is inversely related to age (r = -0.35; p<O.Ol) and 
this is also true when pressor range is expressed as a percentage of the basal 
value (r = -0.35; p<O.O 1). 
Depressor range tends to increase with age (r = 0.31; p. p<0.025); but only 
when this is expressed in absolute terms. 
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Pulse pressure, measured at 10 AM, also exhibits a positive relationship with 
age (r = 0.39; p<O.OO 1). 
In fig. 22 the above mentioned results have been summarized in a particular 
way. For a few parameters, the mean ± S.E.M. for each decade has been 
plotted on an age scale at the mean age for that decade. 
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Table IV. 

Average values for haemodynamic and endocrinological investigations 
in hypertensive patients (group 1). 

Type of investigation. number mean±S.E.M. 

Mean blood pressure (mm Hg) 185 126±1 

Total variability of blood pressure(%) 80 35±1 

Cardiac output (I /min) 
-dye 106 5.7±0.16 
-Imp. 64 5,0±0, 15 

Glomerular filtration rate (ml/min) 
-cyano 68 119±3 
-inulin 103 109±2 

Renal plasma flow (ml/min) 200 497± 12 

Plasma volume (ml) 194 2835±36 

Extracellular volume (I) 96 12±0,3 

Total renin concentration (ng/ml/hr) 205 8.8±0,3 

Aldosterone concentration (ng/100 ml) 100 14,5±0.9 

Cardiac output 

Cardiac output was measured in 170 patients. In I 06 of them the dye­
dilution technique was used, while in 64 patients the impedance method was 
applied. The relation of cardiac output to age shows a wide variance, there 
being no difference between the pattern of the dye-dilution and impedance 
data (fig. 23). Despite the marked variations, a significant inverse relation­
ship exists between cardiac output and age (r ~ -0.31; p<O.OO 1). 
The decline in caridac output is mainly due to a reduction of stroke volume 
with age (fig. 24), this relationship being significant (r ~ -0.21; p<0.02). 

Heart rate and age showed an inverse relationship, bordering on statistical 
significance (r ~ -0.18; 0.05<p<O.l0). 
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Fig. 23 Relationship between cardiac output measured by dye dilution (closed 
circles) or impedance cardiography (open circles) and age. 

Total peripheral vascular resistance 

This variable could be calculated for the 170 patients, in whom cardiac out­
put was measured. In 106 patients intra-arterial blood pressure determina­
tions were available and in the remaining 64 patients the indirect readings 
from the Arteriosonde were used. 
Total peripheral resistance gradually rises with age (fig. 25), the relationship 
being highly significant (r = 0.41; p <0.001). 

All values for cardiac output and peripheral vascular resistance are presented 
here as raw data (i.e. without conversion to a standard body surface area). 
The same procedure will be followed in the relationships of renal haemody­
namics and body fluid volumes against age. The reason for presenting the 
results as such is based on the observation that correction for body surface 
area did not disturb the relationships. Moreover, the determination of body 
surface area is still a speculative matter. For the interrelations between va­
riables, we converted all values to a standard body surface area of 1 m2 in 
order to avoid artificial relationships due to body size. 
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Fig. 24 Relationship between stroke volume and age. 
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Fig. 25 Relationship between calculated total peripheral resistance and age. 
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circles represent indirect measurements. 
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4.2.2. Interrelations 

Total variability of blood pressure was not related to 10 am blood pressure 
when the effect of age was eliminated. There was, however, a highly signifi­
cant inverse relationship with basal mean arterial pressure (partial correlation 
coefficient (r = -0.47; p<0.001). Moreover, a direct relationship was found 
for variability of blood pressure with cardiac output (r = 0.34; p<0.005) and 
a negative one with total peripheral vascular resistance (r = -0.37; 
p<0.005). These relations are maintained when we correct for the influence 
of age. 
Systolic and diastolic variability when considered apart were not related to 
cardiac output or vascular resistance and neither were pressor or depressor 
range. 
Basal mean arterial pressure was inversely related to variability of mean 
blood pressure (r = -0.32; p<0.02), but this appeared to be the effect of age 
since partial correlation abolished this relation (r = -0.23; n.s.). Elsewhere 
(de Leeuw eta!, 1978) the relation between mean blood pressure and cardiac 
index is given. At each level of blood pressure cardiac index varies widely, 
although the range becomes narrower, when the pressure is higher. Further­
more, cardiac index shows an inverse relationships with blood pressure 
(r = -0.16; p<O.O I) but this again is a pseudo-relation, which disappears 
when the influence of age is taken into account. Since peripheral resistance is 
derived from M.A.P. and C.O., it is, strictly speaking, not justi~ied to relate 
this variable to the other parameters. The best approach to interrelate the 
two independent variables and the resultant T.P.R. appeared to be drawing 
them together in a three-dimensional diagram (fig. 26). This figure represents 
the balance between flow, calculated resistance and the ,resultant" pressure. 
The most intriguing aspect of this figure is the immense variation in the in­
terplay between flow and resistance. The higher blood pressure values tend 
to be dependent mainly on a high resistance. 

4.3. Discussion 

An elevated peripheral resistance together with a normal or sometimes low 
cardiac output has been the hallmark of essential hypertension for many 
years (Blumgart and Weiss, 1927; Lauter and Baumann, 1928; Burwell and 
Smith, 1929; Ewig and Hinsberg, 1930; Weiss and Ellis, 1930; Starr eta!., 
1934; Wiggers, 1938; Goldring and Chasis, 1944; Bolomey et a!., 1949; 
Werko and Lagerloff, 1949). However, this finding has been challenged by 
the observation that especially in young hypertensive subjects, cardiac output 
can be markedly increased (Liljestrand and Stenstrom, 1925; Hayasaka, 
1927; Wezler and Boger, 1939; Varnauskas, 1955; Hejl, 1957; Taylor eta!., 
1957; Widimski eta!., 1958; Brod, 1960; Fejfar and Widimski, 1961; Rowe 
eta!., 1961; Eich eta!., 1962, 1966; Bello eta!., 1965, 1967; Finkielman et 
a!, 1965; Sannerstedt, 1966; Lund-Johansen, 1967; Kioschos et a!., 1967; 
Frohlich eta!., 1969, 1970; Safar eta!., 1970, 1973, 1975; Julius and Schork, 
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1971; Julius eta!., 197P• b; Ellis and Julius, 1973; Tarazi et al., 1974). 
Although in many of these studies peripheral resistance seems to be normal 
at first glance, it is actually increased when the data are compared with those 
of a control group (Birkenhager and Schalekamp, 1976). 
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Fig. 26 Nomogram representing the balance between cardiac index, calculated 
total peripheral resistance and blood pressure. 

According to these different haemodynamic patterns hypertensives have been 
classified in two groups: one with labile or mild hypertension and one with 
fixed hypertension. The former is characterized by a somewhat hyperkinetic 
circulation with quite variable levels of blood pressure, while the latter group 
exhibits a more consistent rise in vascular resistance and blood pressure. Alt­
hough a minority of patients with labile (borderline) hypertension shows an 
increased cardiac output, it has been said that this condition is a basic for the 
future development of hypertension. Epidemiologic studies, indeed, revelaled 
a higher incidence of sustained hypertension in patients with a previously 
hyperkinetic circulation (Levy et a!., 1944, 1945 ). However, borderline hy­
pertension per se is already a fairly good predictor of future established hy­
pertension (Julius and Schork, 1971) and it cannot be assumed that this is 
due solely to the hyperkinetic circulation since this afflicts only part of this 
population. 
Whether the borderline hypertensives should be considered as a distinct 
group is doubtful. Lability of blood pressure is not a "privilege" of this group 
since this also been described in patients with more severe hyperter.:;ion 
(Ibrahim et al., 1975). 
From our studies it is obvious that the degree of hypertension tends to be 
more severe in higher age groups, even though the same criterium for the 
diagnosis of hypertension was applied to all age groups. The blood pressure 
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Table V. 

Variability of blood pressure: relationship of its components with 
age. 

r p 

Syst. maximum 0,37 0,001 

Syst. 1ninimum 0,44 0,001 

Diast. maximum 0,39 0,001 

Diast. minimum 0,39 0,001 

M.A.P. -1naximum 0,43 0,001 

M.A.P. -n1inunum 0,36 0,005 

M.A.P. -basal 0,43 0,001 

Var. syst. pressure -mmHg -0,03 n.s. 

- 0/o -0,22 0,05 

Var. diast. pressure -mmHg -0,14 n.s. 

- 0/o -0,27 0,02 

Var. M.A.P. -mmHg -0,03 n.s. 

- 0/o -0,18 n.s. 

Pressor range -mmHg -0,35 0,01 

_o/o -0,35 0,01 

Depressor range -mmHg 0,31 0,025 

-Ofo 0,14 n.s. 
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profile was based on systematical in-patient readings. When casual readings 
are taken into account, the relationship with age should be less obvious, since 
blood pressure is accepted to be more labile in the young. We have assessed 
variability in a sample of patients, and found indeed an inverse relationship 
between total variability of blood pressure and age. Even patients with hyper­
tension starting at a higher age apparently do not disturb this general pattern. 
The regression is linear, there being no apparent distinction between patients 
with labile or more fixed hypertension. A similar pattern could be detected 
for both systolic and diastolic variability, buh not for variability of mean arte­
rial pressure. (The latter could be explained by the fact that peak values for 
systolic pressure do not always coincide with those for diastolic pressure). 
However, it must be emphasized that both maximum and minimum values 
for blood pressure rise with age and it is for this reason that the percentual 
variability declines, because in absolute terms (mmHg) no relationship with 
age emerged. 
Although total variability seemed to depend in a reciprocal way on casual 
(lOam) blood pressure, this relation could be explained on the basis of age 
alone. 
It is thus apparent that variability of blood pressure in absolute terms is the 
same in all levels of casual blood pressure and it can therefore be concluded 
that the relationship of casual blood pressure with age (fig. 20) is a reliable 
representation of a progressive disorder. Conversely, variability tends to be 
less when basal blood pressure is higher. 
The importance of basal blood pressure was already recognized more than 50 
years ago (Addis, 1922). 
The concept was adopted and extended by Alam and Smirk ( 1943 ), who 
established a relationship of basal blood pressure with life expectancy (Smirk 
eta!., 1959). From our study it follows that basal blood pressure steeply rises 
with age, more rapidly than maximum and minimum blood pressure. As a 
consequence, pressor range declines with age both in absolute terms and as a 
percentage of the basal pressure. On the other hand, depressor range in 
mmHg (but not as percentage from basal pressure) increases with age. It can 
thus be concluded that it is not justified to divide the hypertensive population 
in subgroups with labile or more fixed hypertension. Furthermore, day time 
variability is frequently determined by the level of basal blood pressure, as 
evidenced by the decrease of pressor range with age. 
Since in most laboratories, hypertensive patients are studied during the day, 
it is not surprising that marked lability of blood pressure has been associated 
with young subjects with early hypertension. 
It is tempting to speculate that pressor and depressor responses during day 
time and sleep depend on vascular tone as already suggested by Shaw et a!., 
( 1963) and Richardson et a!. ( 1973 a). Supportive data for this hypothesis 
have been obtained in cats by Zanchetti et a! ( !973) and in man by Bristow 
eta!. ( 1969). 

If we assume that basal blood pressure reflects a certain level of vascular 
tone, it can be inferred that the lower this tone, the less dilatation will be 
possible. Conversely, a higher level of resistance in the morning limits further 
constriction. Our results are compatible with this view, since vascular resis-
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tance increase with age (fig. 25). This would imply that in early hypertension 
variability of mean blood pressure is mainly mediated by vasoconstriction, 
while in more advanced hypertension this is brought about by vasodilatation. 
We also obtained relations of total variability with cardiac output, peripheral 
vascular resistance and basal blood pressure. For the latter, the relationship 
was most significant, while it was least with cardiac output. This also suggests 
that vascular tone is the primary factor in determining variability. In view of 
these relations one is inclined to state that at higher levels of vascular resis­
tance the ability of the vessels to dilate is impaired. This is suggested by the 
observation that minimal values for mean blood pressure also rose with age. 
One would have expected that these values were not affected by age when 
the vascular tree could dilate in the same at all ages. Therefore, our results 
may indicate that the ability to dilate becomes decreased with age by fixed, 
organic lesions. 

As previously mentioned a higher cardiac output has been recognized in a 
considerable number of patients, especially in those with only mild elevation 
of blood pressure. Although it is held by some authors that these patients 
form a special subgroup, the available data indicate a downward trend of 
cardiac output during the progression of the hypertensive disease. 
It is therefore possible that such patients represent an early stage of hyper­
tension (Pickering, 1968; Birkenhiiger et al. 1968). 
In most studies, the high cardiac output could be attributed to an increase in 
heart rate (Eich et al., 1962; Sannerstedt, 1966; Lund-Johansen, 1967; Julius 
and Schork, 1971; Julius et al., 1971 a,b; Ellis and Julius, 1973; Safar et al., 
1973, !975; Tarazi et al., !974), stroke volume being normal. In only one 
study, an increase in stroke volume together with a normal heart rate was 
found (Finkielman et al., 1965), but in this study the patients presumably had 
more advanced hypertension. 
Others have stressed an increase both in stroke volume and in heart rate, but 
in some of these studies, the values for stroke volume in normals are some­
what lower than those reported elsewhere (Bello et al., 1965; Safar et al. 1970, 
1973, 1975; Ellis and Julius, 1973; Julius et al, 1975). When excess cardiac 
function is mainly determined by heart rate, the underlying disorder has been 
attributed to a combination of sympathetic overactivity and parasympathetic 
inhibition (Julius et al., 1971b, 1975; Korner et al. 1973). As a corollary, it 
may be assumed that these subjects at the time of the (invasive) measure­
ments are more easily upset than their normotensive counterparts. In our 
laboratory, all measurements are carried out after a sufficient length of time 
has passed for the patient to become accustomed to the environment. When 
our determinations of cardiac output in hypertensives are compared with 
those in normals (adapted from the literature) a marked similarity is found. 
In fact, the relation between cardiac output and age in this study does not 
differ much from that in normals, as presented by Brandfonbrener et al. 
( 1955). In his study, equally high values for cardiac output were sometimes 
observed in young subjects. In fact, the intercept of the regression line, rela­
ting cardiac output to age in our study, is even lower than that of Branton­
brener. Although the data of Lee et al. ( 1966) are more difficult to evaluate, 
our results do not differ much from theirs. The decline in cardiac output with 
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age is caused by a reduction of stroke volume, which also occurs in normo­
tensives (Brandfonbrener et al., 1955). Safar et al. (1976a)found such a de­
crease only in hypertensives, but in this study mean age was only 28.5 years. 
The mechanism of this reduction is not clear. Brandfonbrener mentions body 
size and velocity (force) of flow as possible factors. In our patients no relation 
of body size with age could be detected. Our data also exclude an inverse 
relation between afterioad and output. So either changes in preload or in 
contractility (fig. 1) must account for the observed variations. It is reasonable 
to suggest that contractility decreases with advancing age, since it has been 
recently established by echo-cardiography that there is an insidious increase 
in left ventricular wall thickness, associated with a decrease in ejection frac­
tion fiber shortening (Dunn et al. 1977). 

In our study, pulse pressure increased with age; in the absecne of an increa­
sed stroke volume this points to a reduction in distensibility of the larger 
vessels. The quotient pulse pressure/stroke volume, as defined by Tarazi et 
al. (l975) increases with age. Angiographic studies have shown that in hu­
man hypertension, aortic volume is increased due to elongation and dilatation 
(Freis, 1960); this effect is presumably secondary to long-standing hypertens­
ion. 

The results of our cross-sectional study confirm the positive relationship of 
total peripheral vascular resistance and age. 
When the degree of hypertension is more severe, cardiac output seems to fall 
in the face of an increase in total peripheral resistance, which is in agreement 
with other studies (Glazer, 1963; Sannerstedt, 1966; Amery et al., 1967; 
Lund-Johansen, 1967; 1976; 1977). 
It can also be inferred from data in the literature that the natural history of 
hypertension is characterized by a steady increase in peripheral resistance 
(Eich et al., 1966; Sannerstedt, 1966; Bello et al., 1967; Birkenhiiger et al., 
1972; Lund-Johansen, 1973, 1976, 1977). 
However, when the haemodynamic studies from various laboratories are 
examined more closely, it appears that even at a stage when cardiac output is 
high, peripheral resistance is increased at the same time. 
Before discussing the nature of the increased resistance, we will report on our 
study of the haemodynamic pattern in a single organ, namely the kidney. 

4.4. Conclusions 

From the data presented in this chapter the following conclusions can be 
drawn: 

I. Variability of blood pressure is demonstrable throughout life; there is no 
distinction between so called labile and fixed hypertension. The absolute 
variations are not related to age. 
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2. Basal blood pressure rises steeper with age than maximal blood pressure. 
As a consequence, day time lability of blood pressure (pressor range) be­
comes less with advancing age. 

3. It is likely that vascular tone determines the level of pressor and depressor 
responses. In older age groups the ability to vasodilate is impaired. 

4. Even in the younger hypertensives an increase in peripheral resistance 
rather than a high cardiac output seems to be responsible for the increased 
blood pressure. 

5. In hypertensives cardiac output declines with age just as it does in normo­
tensives. Consequently, the rise in vascular resistance is greater in hyper­
tension. 
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The kidney in hypertension 
I Renal haemodynamics 

5.1. Introduction 

CHAPTER 5 

Ever since the early experiments of Goldblatt et al. ( 1934 ), who induced 
hypertension by clamping the renal artery, the kidney has frequently been 
implicated in the pathogenesis of essential hypertension. 
There are several lines whereby the kidney could exert its hypertensive ef­
fect: in the first place, this organ is critically involved in the regulation of 
extracellular volume. By altering the rate of sodium and water excretion, it 
plays a key role in the homeostasis of body fluids, which, in turn, could mo­
dify intravascular pressure. When renal handling of sodium is affected in such 
a way that the excretory capacity is compromised, an expansion of plasma 
volume will be the result. Such a process could be due either to excessive salt 
intake or to an acquired or inherited intrinsic renal defect. 
A second possibility for the kidney to raise blood pressure would be releasing 
an excess of renin. 
This proteolytic enzyme generates angiotensin I, which is converted to angio­
tensin II, the most potent pressor agent in humans. Angiotensin II, in turn, is 
involved in the regulation of the sodium retaining hormone aldosterone. Last­
ly, in view of recent findings, one could argue that the kidney plays its role by 
interference with other pressor or depressor systems ( catecholamines, pros­
taglandines ). In this section, we will deal with the renal circulation and the 
volume factor, while the renin-angiotensin system is discussed in the next. 

5.2. Anatomical features of the renal vasculature 

Each kidney is supplied by one or more renal arteries, which originate from 
the abdominal aorta. Near the hilus the main vessel divides into a number of 
branches, called the interlobar arteries, which run through the renal columns. 
At the cortico-medullary junction they branch to form the arcuate arteries; 
these vessels actually do not form arches, but after running parallel to the 
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surface of the kidney, they bend and radiate into the cortical tissue as inter­
lobular arteries. 
They end as a capillary plexus in and just beneath the renal capsule; some of 
these vessels pierce the capsule and anastomose with extrarenal vessels 
(Fourman and Moffat, 1964 ). 
Passing through the cortex the interlobular arteries give rise to smaller intra­
lobular arteries, which ultimately form the afferent arterioles, each of which 
supplies a glomerulus. The glomerular capillaries rejoin and form the efferent 
arteriole, which is smaller than the afferent vessel. It has a very thin wall and 
is practically devoid of muscle cells (Graham, 1956; Barajas and Latta, 
1963 ), and therefore, looks like a thin walled venule. The arrangement of the 
postglomerular vessels is dependent on their point or origin in the kidney. 
There is a total of one million glomeruli in the human kidney (Tisher, 
1976); about 20 percent of these are classified as juxta-medullary (deep 
nephrons), while the others are called cortical (superficial nephrons). The 
cortical efferent arterioles, having a smaller lumen than the juxtamedullary 
ones. supply a plexus of peri tubular capillaries and, thereafter, form the venu­
les and veins (interlobular, arcuate, interlobar). 
I 
The juxtamedullary efferent arterioles, on the contrary, divide in the outer 
medulla into two types; in both their lumen is often equal or even wider than 
the supplying afferent arteriole. In the first, less frequent type, the arrange­
ment is similar to the cortical vessels; here, also capillary networks are for­
med, some laying in the juxtamedullary (or inner) cortex and some laying in 
the outer medulla. The second type of efferents form the vasa recta spuria, 
which run (without capillary interposition) directly into the renal medulla. 
Before reaching the venous system, these vasa recta break into capillary 
loops (Moffat and Fourman, 1963), also known as inner medullary peritubu­
lar capillaries (for survey, see Pomeranz et al., 1968). 
It has been recognized that a small amount of blood bypasses the glomeruli 
through aglomerular shunts (Smith et al., 1938). 
It is thought that these shunts, which do not occur in the renal cortex are the 
result of glomerular degeneration and obliteration, thus forming the vasa 
recta vera (Ljundquist, 1962, 1963 ). Their frequency increases with advan­
cing age. 
They are not to be confused with the vasa recta spuria, which do have a 
glomerular circulation, but are, in fact, radially directed efferent arterioles 
without peritubular capillaries. 
Whether there are true arteriovenous shunts in the kidney as suggested by 
earlier studies (Spanner, 1938: Simkin et al., 1948) has still not been proven. 
The process of ageing has a profound influence on the morphology of the 
renal vasculature. 
There is progressive spiralling of the small vessels, especially in the cortex 
and round the pelvis; collaterals appear to be dilated and elongated (Bell­
mann et al., 1959). Furthermore, there is constriction of afferent arterioles 
and progressive loss of glomeruli (Ljundquist, 1962, 1963). In the outer cor­
tex glomerular degeneration is followed by atrophy and fibrosis of both the 
afferent and the efferent arterioles, rendering this area progressively ische­
mic. 
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In the deeper layers of the kidney, the circulation keeps intact, despite a 
similar loss of glomerular tufts, Here, however, blood is shunted from affe­
rent to efferent arterioles by an anastomosis which is probably already for­
med in embryonic life, 
In hypertension, even in its benign phase, the structural changes are more 
pronounced. The larger vessels have an irregular calibre with constrictions 
and dilatations; one can see focal sclerosis and hyperplastic elastosis in many 
branches (Tellem, 1966), There is more spiralling; there is much more loss of 
glomeruli than one would expect on the basis of age alone, When the hyper­
tensive process is clinically more severe and in a later stage, more changes are 
to be seen in the efferent system. In the outer cortex postglomerular vessels 
of intact nephrons become wider, this being accompanied by intraglomerular 
dilatation. 
While the "efferents" of aglomerular juxtamedullary arterioles show diffuse 
hyalinosis, the efferent arterioles of intact glomeruli do not appear to be af­
fected by this process. 
Kidneys of patients with malignant hypertension have an strongly reduced 
vascularisation, especially of the cortex. Postglomerular arterioles are very 
dilated and spiralled. Interlobular and afferent vessels are, at least in part, 
obliterated. 
Good correlations have been reported between the degree of vascular chan­
ges in renal biopsy specimens, taken per-operatively, and measurements of 
renal blood flow; in the early stages of the disease the biopsies did not show 
much abnormality (Talbott et a!., !943; Castleman and Smithwick, 1948). 
Other clinical parameters such as cardiac involvement and the fundoscopic 
appearance also correlate with renal lesions (Salomon et a!., 1961 ). 
With modern techniques it has also been demonstrated that the renal vascula­
ture degenerates with increasing age and long-lasting hypertension (Yamagu­
chi eta!., 1969; Hollenberg et aL !969a). 

5,3, Innervation of the kidney 

The kidney is abundantly supplied with sympathetic nerve fibers; these fibers, 
which mainly arise from Th I 0-Th 11 run along the vessels walls. Their func­
tional significance remains somewhat controversial. In the outer cortical zo­
ne, the preglomerular vessels up to the afferent arterioles are heavily innerva­
ted; histochemical studies with the dog kidney have shown that the efferent 
vessels in the cortex are devoid of adrenergic innervation (McKenna and An­
gelakos 1968 a). In the juxtamedullary region, the preglomerular arteries are 
innervated in a similar way as in the cortex, but it is uncertain whether the 
amount of nerve fibers is comparable. 
All these nerves are vasoconstrictor in origin. While the vasa recta in the 
outer medulla receive some adrenergic and some cholinergic, and perhaps 
vasodilatory. fibers, there are no such fibers in the inner medulla (McKenna 
and Angelakos, 1968 ). 
Recently, interest has arisen in the adrenergic innervation of proximal and 
distal tubular cells, for whic there is both structural (Muller and Barajas, 
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1972; Barajas and Muller, 1973) and functional (Bello-Reuss et al., 1975, 
1976; Nomura et al., 1977) evidence. 
Furthermore, the juxtamedullary apparatus is supplied with adrenergic fibers; 
their role, however, will be discussed in the section on renin release. 

It will be apparent that structural-functional correlates in the human kidney 
could have a profound effect on the results of haemodynamic studies. 

5.4. Results of the measurement of renal haemodynamics 

5.4.1. Relations with age 

In a total of 171 patients glomerular filtration rate was determined, in 68 
subjects by means of cyanocobalamine clearance, in 103 with inulin clearan­
ce. Glomerular filtration rate tends to fall gradually with age (fig. 27) 
(r = -0.21; p<O.Ol). 
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Fig. 27 Relationship between glomerular filtration rate measured by inulin (closed 
circles) or cyanocobalamine (open circles) and age. 
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Renal plasma flow and renal blood flow 

The results are presented in figure 28. These variables were determined and 
calculated in 200 subjects. Highly significant inverse relationships were found 
between renal plasma flow and age (r = -0.53; p<O.OOl) and between renal 
blood flow and age (r = -0.51; p<O.OOl). 
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Fig. 28 Relationship between renal plasma flow and age. 
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lt can be inferred from the relations that renal plasma (or blood) flow in the 
sixth and the seventh decade is reduced until approximately one half of that 
at the age of 20 years. The renal fraction of the cardiac output also exhibited 
an inverse relationship with age (fig. 29) (r ~ -0.31; p<0.001). 
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Fig. 29 Relationship between renal fraction and age. 

Renal vascular resistance 

This variable was calculated for 169 patients. Renal vascular resistance, as 
shown in figure 30, increased with age (r ~ 0.43; p<0.001). There is a sugge­
stion of a curvilinear relationship with a steep increase beyond the age of 50 
years. This impression is mainly caused by a small number of patients (all 
females) exhibiting an extremely high R.V.R. 
Besides the exaggerated increase in R.V.R. this group was not shown to have 
particular characteristics. 
Although glomerular filtration rate was low in some, this reduction was not 
an exceptional one with reference to their age. 

Filtration fraction 

This was calculated in 168 patients. Again there is a positive relation with age 
(fig. 31), which is highly significant (r ~ 0.51; p<O.OOI). 
Four patients (all women) had filtration fractions which were extremely high. 
They all belonged to the group with an abnormally high renal vascular resis­
tance, the common denominator being a severely depressed renal plasma 
flow. 
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Fig. 30 Relationship between renal vascular resistance and age. 

Intrarenal haemodynamics 

The measurement of intrarenal haemodynamics has been the subject of a 
thesis by Kolsters ( 1976). He clearly demonstrated that, in the kidney, outer 
cortical blood flow declined with age both in normotensives and in hypertens­
ives. Cortical flow appeared to be diminished already in the younger age 
groups. 
These studies have now been extended and confirmed. Moreover, we have 
been in the exceptional situation to re-study three subjects in whom intrare­
nal blood flow was measured four to six years earlier. Their data are presen­
ted in the appendix. 
Component I flow rate decreased in the course of time in all subjects, alt­
hough in one patient the reduction was only minor and hardly to differentiate 
from spontaneous fluctuations in cortical blood flow (Fig. 32). 
No consistent changes were observed for C2. 
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Fig. 31 Relationship between filtration fraction and age. 
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Fig. 32 Reduction in C1 flow rate during follow-up. Arrows indicate the mag­
nitude and direction of the decrease in C 1· 
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5.4.2. Interrelations 

Renal haemodynamics 

Glomerular filtration rate in a particular way is directly related to renal 
plasma flow (fig. 33). When R.P.F. is lower than approximately 300 
ml!min/m2 , the regression is linear (r ~ 0.62; p<O.OO 1), but above that point 
the slope of the regression line almost parallels the X-axis, which means that 
at these higher flow rates G.F.R. is practically independent of renal plasma 
flow. G.F.R. is inversely related to R.V.R. (r = -0.57; p<O.OOI), as shown in 
figure 34. These relations remain in partial correlation after eliminating the 
effect of age. 
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No comparisons were made between the other parameters of renal function 
because they are interdependent. 
Nevertheless, pressure-flow relationships may be clarified by presenting the 
data on arterial pressure, renal blood flow and derived resistance values in 
one diagram (fig. 35). As in systemic pressure-flow relationships, a wide 
spread is observed. 
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Fig. 35 Nomogram representing the balance between renal blood flow, calculated 
renal vascular resistance and blood pressure. 

Systemic haemodynamics versus renal haemodynamics 

There appears to be a significant inverse relationship between mean arterial 
pressure and renal plasma flow (r = -0.39; p<O.OOl; fig. 36), which is inde­
pendent of age (partial regression: (r = -0.23; p<O.Ol). 
To a lesser degree such a relationship was also found with respect to mean 
blood pressure and glomerular filtration rate (r = -0.23; p<O.Ol), but this 
appeared to be an age-related phenomenon. Filtration fraction was directly 
related to mean blood pressure (r = 0.45; p<O.OOl; fig. 37), even after cor­
rection for age (r = 0.30; p<O.OOl). Cardiac output and renal blood flow 
were found to be positively related (r = 0.27; p<O.OOS; fig. 38), but this was 
due to age. Glomerular filtration rate and filtration fraction were not clearly 
proportionate to cardiac output. 
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Fig. 36 Relationship between mean arterial pressure and renal plasma flow. 
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5.5. Discussion 

Renal blood flow in essential hypertension 

5 

Several studies have revealed that in normal man renal blood flow as well as 
glomerular filtration rate tend to decline with age, usually more so beyond 
the age of 40 (Shock, 1945, 1946; Davies and Shock, 1950b; Kliitsch et al., 
1962; Lee et al., 1966; Wesson, 1969; Hollenberg et al., 1973, 1974a). 
Glomerular filtration rate is maintained for a longer period than renal blood 
flow; this means that the filtration fraction (F.F.) which is defined as the 
quotient of G.F.R. and R.P.F. has a tendency to rise with age. Tubular func­
tion, as assessed by the maximal tubular transport capacity for diodrast or 
P.A.H. (Smith et al., 1938) is also diminished in the older age groups. 
The reduction of renal blood flow with age is only partially understood. 
Renal mass decreases by 10 to 20 percent between the fourth and the eighth 
decade (Bell, 1950; Rao and Wagner, 1972). Thus one could argue that the 
depression of renal plasma flow is related to tubular inability to extract the 
test substance used in renal blood flow studies. However, when renal perfu­
sion is measured by the inert gas washout technique, which is independent of 
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tubular function, it is apparent that the reduction in flow exceeds the reduc; 
lion in renal mass (Hollenberg eta!., 1974a). Therefore, a limited blood sup­
ply is the primary factor. Thus, a small rise in renal vascular resistance with 
age is encountered in the normal population. It could be suggested that the 
decrease in renal blood flow and glomerular filtration rate represents a res­
ponse to the physiological decline in cardiac output. Indeed, the fraction of 
the cardiac output which perfuses the kidneys remains essentially unchanged 
in normotensives (Lee eta!., 1966). However the reduction in cardiac output 
could also be related to diminished venous return and this, in turn, could 
reflect reduced capacity and requirement for flow in peripheral tissues (Hol­
ienberg et a!., 1974a): Although renal blood flow sometimes is normal in 
essential hypertension (Steinitz, 1941; Goldring and Chasis, 1944; Corcoran 
eta!., 1948; Dutz, 1953; Heidland eta!., 1962; Hollenberg, 1972; Pedersen 
and Kornerup, 1976; Pedersen, 1977), in the majority of patients renal per­
fusion appears to be diminished (Goldring et al., 1938, 1941; Friedman et 
al., 1941; Foil et al., 1942, 1943; Smith et al., 1943; Bradley et al., 1947; 
Corcoran et a!., 1948; Hilden, 1948; Bolomy et al., 1949; Pfeiffer et al., 
1950; Doring et al., 1954; Bello et al., 1960; Brod et al., 1962; Ladefoged, 
1968; Hollenberg et al., 1969, Williams and Hollenberg, 1977). In most stu­
dies, where G.F.R. was measured, it was found to be within normal limits. 
Thus, an elevation of filtration fraction and renal vascular resistance is gene­
rally found in essential hypertension. 

In this study, we observed a negative relationship of renal blood flow with 
respect to age. In view of the physiological decrease in renal blood flow and 
glomerular filtration rate due to senescence (which was already demonstrable 
in a very small sample of normotensives studied at our laboratory) the pro­
gressive changes in the course of hypertension should be offset against the 
former. We have compared our results, for the hypertensive patients, with 
those reported for normal men (Shock, 1945, 1946; Davies and Shock, 
1950b; Klutsch et al., 1962; Smith, 1951; Lee et al., 1966; Wesson, 1969; 
Pedersen and Kornerup, 1976). It can be inferred that on the basis of age 
alone renal plasma flow decreases from the third to the eighth decade by 
about SO(Yo. 
It is interesting that in the small group of normotensives, presented in Chap­
ter 3, renal plasma flow was reduced to a comparable degree in relation to 
age. 
On the average, the reduction of renal plasma flow amounts 70 ml!min. per 
decade (Davies, 1950b). In our hypertensive population, this average per de­
cade was 68 ml!min., which is, thus, similar to that of normotensives. When 
our results are compared to those of Wesson ( 1969), the decrease in renal 
plasma flow appears steeper for the hypertensives. Similarly, Safar et al. 
( 1976") found a negative relation between renal blood flow and age in hy­
pertensives aged 20 to 40 years but not in age matched normotensives. In 
only one study, renal blood flow did not decrease with age in hypertensives, 
while it did in normotensives (Pedersen and Kornerup, 1976). This may have 
been due to an uncontrolled sodium intake. In the face of a rise in blood 
pressure, a reduced flow means an exaggerated increase of renal vascular 
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resistance with age. Moreover, extrapolated Values, to early years, indicate 
that renal plasma flow, although in absolute terms still normal, is already 
diminished in the hypertensives. Therefore, an increase in renal vascular resis­
tance is apparent even at a very early stage of the disease. With hypertension 
of longer duration, as reflected by age, there is a steep increase in renal 
vascular resistance. 
It could be argued that the lower values for renal plasma flow in hypertensive 
patients are caused by depressed extraction of hippuran. Tubular function, as 
measured by the maximal capacity to excrete diodrast, tends to be decreased 
in hypertension (Goldring et a!., 1941; Faa et a!., 1942; Findley et a!., 1942; 
Chasis eta!., 1950), a phenomenon which could not be related to diminished 
perfusion per se (Goldring eta!, 1941; Wesson, 1969). In normaliiKln, it falls 
proportionally to the decline in G.F.R. (Davies and Shock, 1950b). 
In contrast, extraction of P.A.H. is much less affected in hypertension (Brad­
ley eta!., 1947; Cargill, 1949; Bergstrom eta!., 1959; Fukuda, 1964). Hip­
puran is cleared by the kidney through the same transport mechanism (Smith, 
1951) as P.A.H. and diodrast; yet hippuran extraction at such low plasma 
levels as are required in isotope studies was not related to age or level of 
hippuran clearance (Kolsters, 1976). This argues, also, against extraction of 
hippuran as the cause of our finding that renal plasma flow decreases with 
age and hypertension. 
In this study, a few patients were encountered with extremely high values for 
renal vascular resistance. No other characteristics were apparent in these pa­
tients, except for the fact that they were all women. The abnormality could, 
however, not be ascribed to the use of oral contraceptives. 
In the original description of this subgroup of patients, there were also two 
men included. However, these two patients have died in the meantime; on 
postmortem examination both of them were found to have an aortic aneu­
rysm with involvemement of the renal arteries. Although this was not readily 
apparent at the time of the haemodynam1c investigations (physical examina­
tion, IVP and isotope renography were unremarkable), we cannot exclude 
the possibility that this already might have influenced the renal circulation 
and for this reason we have omitted them from this section. 
With respect to the remaining patients, we are inclined to consider them as a 
separate group, an exception to the rule that renal vascular resistance increa­
ses with age in a linear fashion. It cannot be excluded, however, that just in 
these patients tubular extraction of hippuran was impaired. 

lntrarenal haemodvnamics 

As described in the section on renal anatomy, the kidney is a structurally 
heterogeneous organ: a distinction can be made between superficial (outer 
cortical) and deep (juxtamedullary) glomeruli. They both seem to have a 
different function and blood supply. When blood enters the kidney, it is divi­
ded over these zones. Animal studies have revealed that cortical flow is ·much 
faster than medullary flow (Trueta eta!., 1947; Kramer eta!., 1960; Thurau 
eta!., 1960). In 1963 Thorburn and co-corkers described a method for mea­
suring the distribution of total renal blood flow. They identified four localized 
regions within the kidney, each of which could be associated with a specific 
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flow rate. These isotope studies were at the same time introduced in man 
(Ladefoged and Kemp, 1963); although the method is still under discussion 
(Kolsters, 1976), several studies have revealed that the intrarenal circulation 
in man is also subjected to regional distribution; about 80% of the renal 
blood flow perfuses the outer cortex (Kolsters, 1976), while the remaining 
part can be considered as subcortical and medullary flow. The normal cortex 
is perfused at a flow rate of about 300-500 ml/min/100 g (Rosen et al., 1968; 
Ladefoged and Pedersen, 1969; Hollenberg et al., 1968, 1969, 1970; Blaufox 
et al., 1970; Kew et al., 1971; Kilcoyne et al., 1973; Kolsters, 1976). 
A relatively low blood flow exists in the deeper parts of the kidney; this is 
considered to be an important mechanism for the maintenance of the hyper­
tonicity of the medulla (Berliner et al., 1958). 
In 1947 Trueta and co-workers demonstrated that under certain experimen­
tal conditions (e.g. haemorrhage; limb injury; nerve stimulation) the blood 
stream was diverted away from the cortex. Since that time, many studies have 
been performed which revealed the significance of physiologic and non­
physiologic stimuli for the intrarenal distribution of blood flow. 
Several authors have reported a diminished cortical flow in hypertensive pa­
tients (Ladefoged and Pedersen, 1969; Hollenberg et al., 1968; Dell et al., 
1973; Kilcoyne et al., 1973; Logan et al., 1973; Nomura et al., 1974; Kol­
sters, 1976). 

Cortical flow rate declines with advancing age both in normals (Hollenberg et 
al., 1973, 1974a; Kolsters, 1976) and in hypertensives (Kolsters, 1976). Since 
this technique measures flow per unit mass of tissue, this again emphasizes a 
primary role of increased resistance. 
This observation fits the anatomical features of the ageing cortex (Ljund­
quist, 1963). 
The reduction of flow in the outer region of the kidney appears to be propor­
tional to the decrease in total renal blood flow (Nomura et al., 1974; Kol­
sters, 1976). Although these data seem to indicate that cortical blood flow is 
already jeopardized at young age, this is far from proven. On the contrary, 
Kioschos et al. (1967) observed even higher flow rates in the outer cortex, 
this being related to a high cardiac output. 
No consistent changes in flow rate in the other compartments have, thus far, 
been reported. 
Fractional distribution of the blood stream towards the outer cortex is not 
significantly affected by age, nor by alterations in total renal blood flow or 
the presence of hypertension (Kolsters, 1976); it is, however, directly related 
to cardiac output. 
lt will be evident that absolute cortical flow declines with age; the absolute 
subcortical flow does not change markedly. 
During actual follow-up this trend towards a reduction in cortical blood flow 
was also detectable. 

!}elations between renal and systemic haemodynamics 

In a few early studies, renal haemodynamics were found to be more de­
pressed at higher levels of blood pressure (Moyer et al., 1958; Moller, 1960; 
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Heidland et al., 1962). However, no regression analysis was carried out in 
these studies. Pedersen and Kornerup (1976) and Safar et al. (1976') found 
significant inverse relations between renal blood flow and mean arterial 
pressure. This is confirmed by our study. 
The relation is independent of age. Hypertension, therefore, has a consider­
able impact on the renal vasculature. Similar conclusions can be reached 
when the relation between renal blood flow and cardiac output is considered. 
In earlier studies from this laboratory, a direct relationship was found be­
tween renal blood flow and cardiac output (Birkenhiiger et al. 1968, 1972). 
In this larger survey, this relation was still found but appeared to be ex­
plained by the effect of age alone. This is in contrast to the findings of Safar 
et al. ( 1976') but in that study the direct relation of renal blood flow with 
cardiac output was based on only 48 hypertensive patients, aged 20 to 40 
years. In 3 1 age-matched normotensive controls, no relation of renal blood 
flow with cardiac output existed either. These observations could support the 
concept that the kidney is able to keep its blood flow constant despite a fall in 
cardiac output, a phenomenon known as autoregulation. However, if this ma­
chanism really exists, one would expect the renal fraction which designates 
the ratio of total renal blood flow to cardiac output to increase. Yet, the 
opposite is found. In normotensives, Lee et al. (1966) observed only an in­
significant tendency to decrease with age. 
In our study, the renal fraction decreased significantly with age. At the age of 
20 years, the expected renal fraction is about 20%, which is similar to what 
would be expected in normals (Lee et al., 1966). 
With increasing age, however, renal fraction is reduced to about 16% at the 
age of 70. This implies that the physiological rise in renal vascular resistance 
is proportional to the rise in total vascular resistance, but in the presence of 
hypertension the rise in renal vascular resistance is in excess of that in total 
resistance. Other studies in hypertensive patients also revealed a lower renal 
fraction in comparison to normotensives, this being due to diminished renal 
blood flow rather than changes in cardiac output (Bolomey et al., 1949; Ta­
quini et al., 1962; Brod, 1973; Kolsters, 1976). 
These findings indicate that the kidney is preferentially affected by the hyper­
tensive process. It is likely that, despite the raised resistance, the increased 
pressure is transmitted along the renal vessels, since renal venous wedge 
pressure is also elevated in hypertensive patients (Lowenstein et al, 1970). 
Moreover, morphological studies reveal striking abnormalities as described in 
5.2. 

Filtration processes 
' . One of the intriguing features of essential hypertension is a steady increase m 
filtration fraction. This is due to the fact that glomerular filtration rate is less 
affected than renal plasma flow. In normotensives glomerular filtration rate is 
well preserved until about 40 years of age. Thereafter, it declines progressive­
ly, the average decrease, between 20 and 90 years, being 46% (Davies and 
Shock, 1950b). Regression analysis showed the reduction to be about 1.0 
ml/min. per year. 
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Since renal plasma flow in these subjects was reduced only slightly more than 
that, the increase of filtration fraction with age was quite modest and usually 
occurred beyond the age of 60. The ratio of glomerular filtration rate to 
maximum transport capacity of diodrast remained unchanged throughout life, 
which indicates that loss of function with age affects nephrons as units. On 
the basis of these observations, it was concluded that formation of aglomeru­
lar tubules did not occur (Smith, 1951). 
Although morphological studies have shown otherwise for the deeper cortical 
regions, this is less important since the age-related atrophy involves the renal 
cortex more than it does the medulla (Moore, 1931; Ljundquist, 1963). 
As was described earlier in this chapter, the reduction in renal blood flow 
primarily affects the renal cortex and one would therefore, anticipate that 
glomerular filtration rate falls with age due to the disappearance of cortical 
nephrons with only little change in filtration fraction. 
This indeed occurs in the first half of life; however, after the age of forty, the 
decrease in plasma flow exceeds that of filtration rate. In our hypertensive 
patients, the decline in filtration rate with age was even less in comparison to 
the normotensives. From 20 to 70 years of age filtration rate declined only 
25% with an average reduction of 0.4 ml/min. per year. In a prospective 
study Reubi ( 1960) also showed that filtration rate does not decrease more 
rapidly with age in hypertensives than it does in normotensives. 
So it is clear that whole kidney filtration rate cannot be considered as a sim­
ple function of total renal plasma flow. Although renal blood flow in hyper­
tensives is reduced to a larger extent than in normotensives, the increase of 
filtration fraction in the former is related to a relative ,increase" in filtration 
rate rather than to absolute changes in blood flow. The question is why filtra­
tion rate is less affected by age in hypertensives. A plausible explanation 
could be that the intrarenal blood stream is diverted from nephrons with a 
lower filtration fraction to those with a higher filtration fraction. This possibi­
lity was discarded by Kolsters ( 1976 ). Although he found an inverse relation­
ship between filtration fraction and (YoCt, there was no relation of %Ct with 
age. 
I 

Since studies with cats had revealed higher filtration fractions in outer corti-
cal glomeruli (Nissen, 1966, 1968), Kolsters argued that his observations ba­
sed on 15 patients could not be explained by redistribution of blood flow. 
The relationship was explained by a relatively large reduction in absolute 
cortical flow without alterations in absolute juxtamedullary blood flow. It 
must be emphasized that this refers to hypertensive patients. 
In contrast, Hollenberg et al. (1974a), in a study on 207 normal subjects, 
observed an inverse relationship between %C1 and age. In this study, filtra­
tion fraction was not measured but filtration rate, as assessed by creatinine 
clearance, decreased with age. 
According to Hollenberg, the decrease in (YoC1 can account for preservation 
of glomerular filtration. In this respect, he refers to data obtained with rats, 
which indicate that it is the population of juxtamedu!lary nephrons, which has 
a higher filtration rate. Obviously, species differences exist with respect to 
single nephron glomerular filtration rate (S.N.G.F.R.). 
Filtration fraction has been shown to be lower in the superficial nephrons of 
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the rat (Horsier and Thurau, 1968; Jamison, 1973; Valtin, 1977), dog (Stein 
et al., 1972) and rabbit (Bankir et al., 1975) while it is higher in the cat 
(Nissen, 1966, 1968). So we can only speculate on the situation in the human 
kidney. It seems, however, that S.N.G.F.R. depends on the length of the 
proximal tubule (Valtin, 1977), of wich exact data for man are lacking. 
Another explanation for the increase in filtration fraction could be that glo­
merular capillary permeability is increased. However, permeability for large 
molecules such as hemoglobin, is not affected by age nor do the upper mole­
cular weight limits of dextrans excreted in the urine differ in separate age 
groups (Renkin and Gilmore, 1973). This naturally does not exclude the pos­
sibility that the glomerular unit becomes more porous for smaller substances. 
It has been noted that structural, as well as haemodynamic, factors are invol­
ved in increased porosity of the glomerular basement membrane (Ryan and 
Karnovsky, 1976); at least, urinary excretion of albumin in essential hyper­
tension is proportional to intra-arterial pressure (Parving, 1974'). At this 
point, we shall consider possible determinants of S.N.G.F.R. 
Starling ( 1899) pointed out that the formation of an ultrafiltrate of plasma 
across the glomerular capillary wall is governed by the magnitude and direc­
tion of the imbalance of hydrostatic and oncotic pressures. 
The net hydrostatic pressure, in turn, is the difference between glomerular 
capillary hydrostatic pressure and the pressure in Bowman's space. At any 
point along the glomerular capillary net filtration pressure is the resultant of 
the opposing forces. As protein free ultrafiltrate is formed in the single glo­
merular capillary, oncotic pressure progressively increases When, at the end 
of the glomerular capillary net, hydrostatic pressure equals oncotic pressure, 
a condition known as filtration equilibrium is reached. Such a condition has 
actually been found in the rat (Brenner et al., 1971, 197:~; Andreucci et al., 
1971; Andreucci, 1974; Robertson eta!, 1972; De en et al., 1973; Blantz, 197 4 j 
and in the primate (Maddox et al., 1974). 

Filtration equilibrium is reached despite variations in arterial pressure or 
glomerular plasma flow. Single nephron filtration is determined by plasma 
flow' permeability coefficient, transcapillary hydrostatic pressure difference 
and oncotic pressure. Brenner and coworkers recently reviewed the relative 
importance of each of these variables (Brenner et al., 1976; Brenner and 
Humes, 1977). The attainment of filtration pressure equilibrium requires that 
glomerular filtration rate depends to a high degree on renal plasma flow. An 
increase in plasma flow must be accompanied by an increase in capillary filte­
ring area, in order to keep filtration rate constant. 
Indeed, such a relationship was reported following vasodilatation in the rat 
(Brenner et al., 1972). The single nephron glomerular filtration rate then, 
depends entirely on glomerular plasma flow and the transcapillary pressure 
difference (effective filtration pressure). An increase in filtration fraction can 
now be explained either by an increase in effective filtration pressure or by 
alterations in the permeability of the glomerular capillaries (Robertson et a!.. 
1972); changes in plasma tlow alone do not affect filtration fraction (Brenner 
et a!., 1971; De en et a!., 1973 ). In hypertensive rats, glomerular hydrostatic 
pressure is indeed raisedjAzar et al., 1974, 1977) but it cannot be taken for 
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granted that the post-salt hypertension in these studies can serve as a model 
for essential hypertension. 
According to Smith (1951), the rise of F.F. in hypertension is the result of an 
elevated postglomerular (efferent) vascular resistance due to active vasocon­
striction. This would raise hydrostatic pressure within the glomerulus. Howe­
ver, anatomical studies in the rat (Barajas and Latta, 1963) as well as in man 
(Graham, 1956) failed to demonstrate many muscle cells, which would ac­
count for this vasoconstriction. Moreover, Gomez (1951), on the basis of a 
mathematical model, argued that the preglomerular (afferent) resistance was 
of much more importance than the efferent resistance. Nevertheless, in hy­
pertensive subjects the elevated pressure can still be transmitted along the 
renal vessels, since the renal vein wedge pressure is also increased in these 
patients (Lowenstein et al., 1970). lt is, therefore, reasonable to suggest that 
the intraglomerular hydrostatic pressure is also increased (Brown et al., 
1974; Scha1ekamp et al., 1974). Changes in oncotic pressure, thus far, have 
not been found in hypertension. Although hypertensives tend to have slightly 
higher values for plasma proteins, the deviation from normal is not significant 
(Tibblin et al., 1966). 
Despite changes in glomerular capillary pressure under various experimental 
conditions, approximately 60°/r) of this pressure is dissipated by the efferent 
arteriole (Andreucci et al., 1976). 
This, again, confirms the importance of pre glomerular resistance and invalid­
ates the hypothesis that efferent vessels are actively constricted. 
Whether filtration equilibrium is also reached in man is, however, doubtful; 
several studies suggest that this is not the case in the dog (Stein et al., 1971; 
Baer and Navar, 1973; Strandhoy, 1974; Knox et al., 1975; Ott et al., 1976; 
Chenitz et al., 1976). 
Although in some small primates filtration achieves equilibrium (Maddox et 
al., 1974 ), glomerular blood flow in man presumably resembles that in the 
dog more than in the rat or small primates (Chenitz et al., 1976). 
If filtration equilibrium is not obtained, then variations in glomerular plasma 
flow would have only little effect on filtration rate (Knox et al., 1975). In this 
case, the increase in F.F. would not necessarily be pressure-dependent. It can 
not be ruled out, however, that alterations in permeability surface area are 
also responsible for the observed phenomena. 

When we consider figure 33, a striking resemblance is noted between the 
flow-filtration relationship in our patients and that obtained for single neph­
rons (Brenner et al., 1976; Brenner and Humes, 1977). A reduction of renal 
plasma flow to approximately 300 ml/min/m2 hardly affects glomerular filtra­
tion rate. When flow falls further, filtration rate declines proportionally. These 
data could indicate that at flow rates above 300 ml/min/m 2 filtration pressure 
disequilibrium exists in the human kidney. At lower flow rates, apparently, 
filtration equilibrium is reached within the glomerular capillary. 
This hypothesis has several implications. First of all, it offers a reasonable 
explanation for the observations that under conditions of vasodilatation or 
volume loading glomerular filtration rate rises less than renal plasma flow. 
Conversely, vasoconstriction, in general, depresses filtration rate less than 
plasma flow (Smith, 1951 ). From a teleological point of view, Smith already 

81 



cast doubt on the assumption that filtration equilibrium is reached within the 
glomerular capillary. 
He reasoned that, ideally, the point of equality between the opposing pressures 
should occur in the proximal end of the efferent arteriole. This would promote 
maximal filtration in the glomeruli and maximal reabsorption in the peritubu­
lar capillaries. 
From our results, it further emerges that at a certain point, renal perfusion has 
declined so far that filtration pressure equilibrium will be reached. Although 
data, as presented above, are not available for normal man, it can be inferred 
from the data of Wesson ( 1969) and Smith ( 195 I) that a similar mechanism 
must exist in normotensives. 
Before the age of 40, filtration rate and plasma flow remain constant, with no 
change in filtration fraction. 
Beyond the age of 40, filtration fraction rises in accordance with the disequili­
brium hypothesis. On the basis of flow measurements, one would expect that 
filtration equilibrium will only be reached somehwere beyond the age of 60. 
In hypertensives, this "deflection point" is reached earlier due to the steep 
decrease of renal blood flow. In our series, this could be expected at about 40 
years. If this is correct, the higher filtration fraction in hypertension is explain­
ed. 
However, we must account for another difference between normotensives and 
hypertensives. As was pointed out above, glomerular filtration rate decreases 
more rapidly in normotensives than it does in hypertensives. 
At a plasma flow rate of 300 ml/min/m2 , expected filtration fraction is 0.23. At 
the age of 40, expected filtration fraction is 0,24, which is in agreeement with 
the discussion above. 
This implies that, above the age of 40 in a state of filtration pressure equili­
brium, other factors tend to maintain filtration rate in hypertension. One 
would expect this factor to be the increased intraglomerular blood pressure. 
However, in our study, no relationship was found between mean arterial 
pressure and whole-kidney filtration rate. In other studies, negative relations 
between these two variables have been found (Pedersen and Kornerup, 1976; 
Berglund et al., 1976). This might indicate that in the presence of systemic 
hypertension afferent arteriolar constriction occurs as an autoregulatory phe­
nomenon to prevent an excessive rise in intraglomerular pressure. In view of 
the increased wedge pressure, this mechanism obviously cannot fully prevent 
the transmission of the elevated pressure. On the other hand, the relative 
increase in S.N.G.F.R. is less when transcapillary pressure difference becomes 
higher due to a concurrent but smaller increase in oncotic pressure along the 
length of the capillary. 
Therefore, the only possibility that remains to explain the elevated filtration 
fraction is an increased glomerular permeability. This could explain the increa­
sed transcapillary escape rate of albumin in essential hypertension (Parving et 
al., 1974'). 
It is likely that distension of glomeruli, as seen in morphological studies 
(Ljundquist, 1963 ), leads to stretching and opening of fenestrations. 
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5.6 Conclusions 

On the basis of the data presented in this chapter, thefollowing conclusions can 
be drawn. 

1. An increase in renal vascular resistance and filtration fraction is generally 
found in essential hypertension. Renal vascular resistance rises more 
steeply with age than it does in normotensives. 

2. At an early stage of hypertension, renal vascular resistance is already 
elevated despite an almost normal renal blood flow. In the outer cortex, 
blood flow tends to be reduced in early hypertension. 

3. The reduction in renal blood flow is not attributable to changes in cardiac 
output per se. An intrarenal site of elevated resistance contributes to the 
reduction in flow. 

4. Glomerular filtration rate is biphasically related to renal plasma flow. At 
flow rates above 300 ml/min/m 2, filtration pressure disequilibrium ap­
pears to exist, while at lower flow rates equilibrium is achieved. 

5. With hypertension of longer duration, and especially after 40 years of age, 
an increase in glomerular capillary porosity probably contributes to an 
elevation of single nephron glomerular filtration rate. 

6. Although the possibility exists that redistribution of blood flow occurs to 
nephrons with other filtration characteristics, the available data do not 
permit the drawing of such conclusions. 
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CHAPTER 6 

The kidney in essential hypertension 
II Volume control 

6.1 Introduction 

Despite considerable variations in the daily intake of salt and water, extracellu­
lar fluid volume is kept remarkably constant by a number of regulatory 
processes which ultimately are effected through the kidney. By adjusting 
sodium and water excretion to body needs, the extracellular volume is expan­
ded or contracted. Volume control is in a way dependent on the compliance of 
the interstitial and vascular space. Any degree of volume expansion reflects to 
some extent the ratio of actual volume to the capacity of the circulation (Dirks 
et al., 1976 ). In this way the volume factor could be important in "static" blood 
pressure control. On the other hand, the filling of the vascular system could 
modify venous return and thereby cardiac function. Along this line a "dyna­
mic" function of blood volume would be possible. In this chapter an attempt 
will be made to interpret our volume measurements. 

6.2 Results 

6.2.1 Relations with age 

Plasma volume was measured in 194 patients. The data are scattered over a 
wide range, but do not show a relationship with age (fig. 39) neither in absolute 
terms, nor when expressed per m2. Plasma volume per m 2 was significantly 
lower in women than in men. 

Calculated blood volume was not relateu to age either. 

Extracellular volume was measured in 98 patients and appeared not to be 
related to age. 

Interstitial fluid, as a result, was unrelated to age, nor was the quotient plasma 
volume/interstitial volume. 
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6.2.2 Interrelations 

Systemic haemodynamics versus body fluid volumes 

Plasma and blood volume show a weak but not significant tendency to increase 
with risting blood pressure. A similar direct relation is also observed between 
plasma and blood volume and total peripheral resistance (r = 0.18; p<0.05). 
However, these trends are predominantly caused by a few observations and 
even disappear when the effect of age is eliminated. Blood volume and cardiac 
output were not related to each other. 

Renal haemodynamics versus volumes 

For the whole group plasma volume is not related to renal plasma flow or 
glomerular filtration rate, but is is directly related to filtration fraction 
(r = 0.25; p<0.005). 
It is interesting that in patients, in whom plasma volume was larger than 1700 
ml!ml, an inverse relationship was found between plasma volume and renal 
plasma flow (n = 36; r = -0.39; p<0.02) and between plasma volume and 
glomerular filtration rate (n = 29; r = 0.39; p<0.05). The intercepts were 300 
ml/min/m 2 and 69 ml/min/m2 respectively. 
Plasma and blood volume were not related to renal vascular resistance. The 
quotient plasma volume/interstitial volume was not related to any haemody­
namic variable. 
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Fig. 39 Relationship between plasma volume and age. 
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6.3 Discussion 

Several authors have emphasized the role of body fluid status in blood pressure 
control (Guyton 1963; Guyton and Coleman, 1969; Guyton et al., 1974; 
Coleman and Guyton, 1969, Tobian, 1972). 
In this study, volumes were not related to age; this is in keeping with the 
observations of others (Tarazi et al., 1969; Schalekamp et al., 1971; Birkenha­
ger et al., 1972"). Even during actual follow-up no alterations with age were 
found in normotensives (Chien et al., 1966) and hypertensives (de Leeuw et 
al., 1978). In 51 normotensives studied at our laboratory (Chapter 3) the 
absence of an age relationship was also established. In hypertensive subjects, 
plasma volume or blood volume is said to be normal (Grollman and Shapiro, 
1953; Teng et al., 1954; Walser eta!., 1956; Cranston and Brown, 1963; Jones 
et a!., 1964; Bello et a!., 1965; Hansen, 1968; Ellis and Julius, 1973; Schale­
kamp eta!., 1974; Distler eta!., 1974; Weidmann eta!., 1977; or reduced 
(Rochlin eta!., 1960; Finkielman eta!., 1965; Tibbin eta!., 1966, Tarazi et al., 
1968, 1969, 1970; Julius et al., 1971'; Molzahn eta!., 1972; Ibsen and Leth, 
1973; Parving et al., 1974h; Dustan et al., 1973; Safar et al., 1973, 1976; 
Ulrych, 1973). An inverse relationship between intravascular volume and 
blood pressure has been found in some studies (Tarazi et al., 1968; Kuramoto 
eta!., l968;Juliusetal., 1971'; Ulrych, l973;Safaretal., 1976)anddeniedin 
others (Tarazi eta!., 1970; Ibsen and Leth, 1973; Birkenhager and Schale­
kamp, 1976; Weidmann et al., 1977). On the other hand an inverse relation 
between plasma or blood volume and total peripheral resistance has been 
reported (Bello et a!., 1965; Finkielman et a!., 1965; Taylor et al., 1957; 
Birkenhiiger et al., 1968; Julius et al., 1971'; Dustan et al., 1973; Ulrych, 
1973; Safar et al., 1976, Chau et al., 1978. 
Extracellular volume or total exchangeable sodium in hypertension have been 
found to be normal by some investigators (Walser et al., !956; De Graeff, 
1957; Hollander et al., 1961; Tarazi et al., 1969; Novak et al., 1972; Ibsen and 
Leth, 1973; Lebel et al., 1974; Schalekamp et al., 1974) and increased by 
others (Grollman and Shapiro, 1953; Teng et al., 1954; Ross, 1956; Levin and 
Goldberg, 1960; Hansen, 1968). 
In one study exchangeable sodium was decreased (Woods et al., 1969). The 
differences between the various studies usually can be attributed to patient 
selection, time of measurement and body weight. The difference in plasma 
volume between males and females is generally recognized (Birkenhager and 
Schalekamp, 1976). Values for plasma volume in hypertensives were not 
reduced when compared with 51 normotensive subjects, studied at our labora­
tory. 
However, our values for extracellular volume are less than those observed by 
others (Tarazi eta!., 1969; Ibsen and Leth, 1973). As a consequence, the ratio 
P.V./I.F. is higher in our series. Two explanations can be offered for this 
discrepancy. Firstly, the method of estimating E.C. V. differed in our laborato­
ry. While we assessed E.C.V. as sulphate space, Tarazi and Ibsen measured 
bromide space, which is known to overestimate E.V.C. (Gamble et al., 1953; 
Staffurth and Birchall, 1960; Howe and Ekins, 1963). Secondly, sodium 
intake generally has not been controlled in other studies, while our patients 
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were subjected to mild sodium restriction, which should reduce extracellular 
volume. We have also studied 20 normotensives und similar conditions and 
their E.C.V. appeared not to differ from the hypertensives. This has been 
found before (Schalekamp et al., 1974b). 

In our series, therefore, the P.V./I.F. ratio is not much different for both 
groups. On the basis of data from the literature this quotient would be either 
normal or slightly reduced. In case of the latter, fluid must have been extruded 
from the vascular space. In view of the normality of E.C.V. the kidneys do not 
contribute to this process. It has been suggested that in hypertensives capillary 
hydrostatic pressure is raised due to an increased venous tone (Ibsen and Leth, 
1973). Although other studies seem to support the hypothesis of enhanced 
transcapillary leakage (Uirych, 1973; Parving eta!., 1974b), this could equally 
well be due to changes in arteriolar resistance (Birkenhager and Schalekamp, 
1976). 
A plausible explanation for the differences in plasma volume measurements 
could be that there are differences in salt intake between studies. In those 
studies where sodium intake was controlled, no difference in plasma volume 
between hypertensives and normotensives emerged (Hansen, 1968; Schale­
kamp eta!., 1974b). In the study of Safar eta!. ( 1976) total blood volume was 
higher in normotensives who received the same amount of salt as the hyper­
tensives, but in that study no data for plasma volume are given. Therefore, it 
cannot be excluded that the observed difference was due to differences in 
haematocrit. 
In this study, no relations were found between volumes and haemodynamic 
variables. Although this is at variance with other studies, there is as yet no 
agreement whether volume is really related to systemic haemodynamics. Pro­
bably of more interest are the relations between plasma volume and renal 
haemodynamics as observed in this study. When the patients were divided 
according to their plasma volume, those with a volume higher than 1700 ml/m 2 

exhibited an inverse relationship with renal plasma flow (the intercept being 
about 300 ml!min/m 2) and glomerular filtration rate. For the whole group 
P.V. is directly related to filtration fraction. An increase in filtration fraction 
shifts the balance between hydrostatic and oncotic pressure in such a way that 
tubular reabsorption of sodium is promoted at the level of the peritubular 
capillaries. 
When renal blood flow is still relatively normal, the kidney is characterized by 
filtration disequilibrium. Presumably, the filtration null point is reached 
somewhere at the level of the efferent arterioles or peritubular capillaries. As 
long as filtration disequilibrium is maintained, absolute changes in renal blood 
flow or glomerular filtration rate per se do not contribute much to tubular 
reabsorption, since this is mainly determined by the drop of the hydrostatic 
pressure from the equilibrium point on, of which the filtration fraction is the 
clinical parameter. However, at flow rates below 300 ml!min/m 2

, filtration 
equilibrium presumably is reached at the level of the glomerulus. 
Under these circumstances filtration fraction only rises slightly when renal 
blood flow is diminished. It will be evident that the increase of plasma volume 
then depends primarily on the fall in renal plasma flow and glomerular filtra-
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tion rate. The relationship between renal function and body fluid volumes 
under basal conditions has also been studied by Safar et al. (1976' ). Based on 
the expectation that blood volume is decreased in hypertension, he demonstra­
ted that the reduction in blood volume per unit rise in pressure was less at lower 
values for renal blood flow. This inverse relation still existed when the effect of 
blood pressure per se was eliminated. Although such mathematical derivations 
should be looked upon with scepticism, the results basically point in the same 
direction as our study. 

6.4 Conclusions 

On the basis of the results presented in this chapter, the following conclusions 
can be drawn. 

I. Body fluid volumes are not altered by age or the presence of hypertension 
per se. Plasma volume in women is lower than in men even when correc­
ted for body size. 

2. Long-term regulation of plasma volume in hypertension appears to be 
related to renal filtration characteristics, filtration fraction being the main 
determinant. 

3. From observations in established hypertension there is no evidence that 
the regulation of body fluid volumes is primarily involved in the pathoge­
nesis of essential hypertension. 
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CHAPTER 7 

Reflections on the basic haemodynamic mechanism in essential hypertension 

As was demonstrated in chapter 4, hypertension appears to be related to an 
increase in total peripheral vascular resistance. 
This is true even for subjects with a high cardiac output; in spite of the fact that 
calculated peripheral resistance may fall within the "normal range", it is not 
normal because it should have responded to the high output with vasodilata­
tion in order to keep the blood pressure normal. 
With increasing age, cardiac output falls in the face of an increased peripheral 
resistance. This increase is steeper than could be expected in terms of a 
response to the reduction of cardiac output per se. Although the results of 
cross-sectional studies like the present one appear to indicate that the haemo­
dynamic pattern changes with time, only longitudinal studies can answer the 
question whether the average patient with essential hypertension passes 
through these stages. A few short-term follow-up studies (Eich et al., !962, 
1966; Birkenhager et al, 1972b) and one long-term follow-up study are now 
available (Lund-Johansen, 1977). It appeared that the haemodynamic trends 
as described above could not be detected during a one-year period of follow­
up, but they were clearly demonstrable after I 0 years of follow-up. Although 
adequate control data (follow-up studies in normotensives) are lacking, the 
difference between the actual and the expected (on the basis of age) vascular 
resistance seems to increase with the duration of hypertension. This could be 
due to mechanical vascular damage or to enhanced pressor activity (vasocon­
striction) or to impaired depressor activity (vasodilatation). 
With respect to the variability studies, it was already suggested that impaired 
vasodilatation might play a role. The findings with respect to renal haemody­
namics support the concept of an early increase in vascular resistance, as the 
basic hypertensive mechanism (chapter 5). 
One could arbue that the increase in total peripheral resistance is due solely to 
the increased resistance in the renal vasculature. However, this is discarded by 
our observation that the renal fraction is still normal at an early stage of the 
disease. This is in agreement with Pickering ( 1968), who states that at the start 
of the disease the distribution of the cardiac output is still normal. With 
progression of the disorder a redistribution of blood flow occurs away from the 
kidneys. According to Brad et al. (1962), blood is diverted mainly to muscles, 
which show a near-normal resistance. 
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The nature of the increase in resistance appears to be complex. Both functional 
and structural components are recognized. 
The haemodynamic situation at rest can be altered physiologically (exercise, 
change in posture, mental activity), experimentally (saline infusion) or 
pharmacologically (diuretics, anti-adrenergic agents). An overview of these 
provocative manoeuvres is given by Birkenhager and Schalekamp (1976). It 
appears that peripheral resistance remains at a higher level in hypertensives 
than in normotensives even when differences in cardiac output are abolished. 
After ten years of follow-up, "minimal" peripheral resistance during exercise 
also increases (Lund-Johansen, 1977). 
However, the ability of the peripheral vessels to dilate was still preserved and 
even exaggerated since the absolute difference in resistance between the two 
study periods was lower during exercise than under "basal" conditions. This 
points to a state of active vasoconstriction during rest. It must be emphasized, 
however, that basal values were obtained with the patients sitting and this 
could already have concealed the differences existing when the patients were 
supme. 
Whatever the exact relations, it is apparent that vascular resistance during 
actual follow-up behaves as suggested by the results of our cross-sectional 
study. 
The effect of saline loading in systemic haemodynamics is more difficult to 
interpret since this includes a number of adaptive mechanisms which are 
activated after expansion of the extracellular volume. Nevertheless, there is no 
indication that the changes in systemic haemodynamics after saline loading 
differ between normotensives and early hypertensives (Birkenhager and Scha­
lekamp, 1976). The abnormality of the haemodynamic setting persists after 
the infusion, since resistance values in the hypertensives only exceptionally 
decreased to the range found in normotensives. 

At this point, it must be emphasized that total peripheral resistance is a quite 
virtual variable, which means that one cannot measure it directly. It always 
depends on calculation from cardiac output and (mean) arterial pressure. 
However, the intra-arterial pressure is not only determined by the resistance to 
blood flow, but also by the degree of filling and distensibility of the arterial 
system. The viscosity of the blood, which can also contribute to resistance, 
probably does not play an important role in essential hypertension (Pickering, 
1968). 
Although total blood volume can be easily measured in man, there are as yet 
no methods available to determine the fraction of blood volume wich is present 
in the arterial tree. This fraction could influence blood pressure in two ways. In 
the first place, changes in arterial blood volume could alter the volume­
capacity ratio in this system; an expansion of blood volume thus increases 
blood pressure, provided arteriolar resistance is maintained. However, expe­
rimental volume expansion in hypertensive patients induces vasodilatation 
and this counteracts the expected rise in arterial pressure. The complex rela­
tionship between volume, pressure and flow in the arterial system is only 
poorly understood. Distensibility factors further complicate this problem. 
Until the advent of more sophisticated techniques, it will be quite difficult to 
identify the various constituents of peripheral resistance. Its numerical value, 
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however, can be considered to reflect mainly the resistance, offered by the 
arteriolar vessels. 

Structural changes have been thought to cause an increased vascular resistance 
(Sivertsson and Olander, 1968; Amery eta!., 1969; Sivertsson, 1970; Folkow 
and Neil, 1971; Folkow eta!., 1973). From the work of Folkow eta!. ( 1973) it 
has become apparent that in established hypertension the architecture of the 
vascular bed is altered: the wall-to-lumen ratio is increased, presumably as a 
consequence of medial hypertrophy, although it cannot be ruled out that the 
total number of arterioles is reduced as occurs in spontaneous hypertensive 
rats (Hutchins and Darnell, 1974 ). For a great deal, these findings can account 
for the haemodynamic status in advanced hypertension, but do not entirely 
explain the situation in early (labile) hypertension. Although the resistance to 
blood flow in peripheral vascular beds at "maximal" vasodilation was raised in 
borderline hypertensives, thus suggesting structural changes already being 
present (Sannerstedt, eta!., 1976), the changes in haemodynamics following 
physical exercise or volume expansion do not provide evidence for a decreased 
compliance of the vascular system (Birkenhager and Schalekamp, 1976). 
The elevation of renal vascular resistance has, at least partially, a functional 
character, since R.B.F. can be increased pharmacologically or experimentally 
by vasodilating agents (Reubi, 1950; Chrysant and Lavender, 1975; Chrysant 
et a!., 1976; Wester et a!., 1976), the noradrenaline precursor dopamine 
(Breckenridge eta!., 1971; Hollenberg eta!., 1973), alpha-adrenergic block­
ade with phentolamine (Hollenberg eta!., 1975), acetylcholine (Hollenberg et 
a!., 1975), pyrogens (Smith eta!., 1938, 1943) and volume expansion (Bucka­
lew eta!., 1969; Ulrych eta!., 1964; Lowenstein eta!., 1970; Schalekamp et 
a!., 1971; Kolsters, 1976). Hollenberg eta!. ( 1975) in an attempt to discrimi­
nate between functional and structural changes infused vasodilating substan­
ces into the renal artery. His experiments revealed a quantitatively important 
functional vasoconstriction of the renal vessels in a number of patients with 
mild hypertension. On the contrary, flow reduction in elder normotensives 
appeared to be due to fixed organic lesions (Hollenberg et a!., 197 4'). 
The results uniformly indicate that there is indeed increased tone in the renal 
vascular bed of patients with essential hypertension. 
Moreover preliminary observations from our laboratory have shown that the 
increase in vascular resistance in the renal vessels is also demonstrable during 
actual follow-up (de Leeuw et al., 1978 ). Both the functional and the structural 
components of the increase in resistance may be the sequelae of vasoconstric­
tor stimuli, either originating from the tissue (auto-regulation) or from increa­
sed activity on the part of pressor systems. 

A functional vasoconstriction has been thought to be the result of so-called 
autoregulation of tissue blood flow, in response to an increased cardiac output. 
There is no way to substantiate this view, mainly due to time relations. A firm 
autoregulatory control of tissue blood flow can be demonstrated rapidly in 
experimental conditions where the ability of the kidney to maintain extracellu­
lar fluid homeostasis is interfered with (Borst and Borst-de Geus, 1963; 
Ledingham and Cohen, 1963, 1964; Ledingham et al., 1967; Conway, 1966; 
Coleman and Guyton 1969; Guyton and Coleman, 1969; Guyton et al., 1970, 
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1971; Ferrario et al., 1970; Ferrario, 1974; Bianchi et al., 1972; Distler et al., 
1973; Zaal et al., 1973). In essential hypertension no direct information on 
autoregulation is available, but the steady rise in vascular resistance over the 
years, in the face of progressive subnormality of cardiac output, would suggest 
that the mechanisms involved here are basically different from autoregulation. 
Enhanced systemic pressor activity could be based either on the renin­
angiotensin system or on the adrenergic system or both. 
In the next chapters we will consider to what extent the hormonal and neural 
factors contribute to blood pressure control in hypertension. 
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CHAPTER 8 

Pressor mechanisms in essential hypertension 

The renin-angiotensin-aldosterone system 

8.1 Introduction 

Renin is a proteolytic enzyme with a molecular weight of about40.000; it has 
no direct physiological effect but acts only to cleave a leucine-leucine bond of 
its substrate, angiotensinogen. The latter substance is an alpha-2-globulin, 
synthesized in the liver. By the action of renin a decapeptide (angiotensin I) is 
liberated, which is relatively inacative. By a converting enzyme, which is 
present in blood and tissues, especially the lungs, angiotensin is cleaved to yield 
the octapeptide angiotension II, which to present knowledge is the most potent 
vasoconstrictor. Angiotensin II also stimulates the secretion of aldosterone by 
the adrenal cortex, either directly or by one of its metabolites. 
Renin was first described in 1898 by Tigerstedt and Bergmann, but it lasted 
until 1940 before it was demonstrated that it was probably an enzyme acting 
upon another substance in the blood (Page 2 and Helmer, 1940; Braun­
Menendez et al., 1940). It is synthesized and stored in membrane-bound 
cytoplasmic granules by large, epitheloid-like cells which lie at the vascular 
pole of the glomerulus. These cells are part of the so-called ,juxtaglomerular 
apparatus'' which encompasses: 

l. Those portions of the afferent and efferent arterioles, where the granular 
cells at the glomerular hilus first appear, 

2. the macula densa and 

3. the Goormaghtigh cells (Barajas and Latta, 1963). 

The epitheloid cells of the afferent arterioles are located in the medial layer at 
the distal part close to the other elements of the juxtaglomerular apparatus. 
Ultrastructurally, these cells appear to contain myofibrils and they are sur-
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rounded by a basement membrane, which is identical to that of the smooth 
muscle cells. 
The macula densa consists of cells in the distal tubule; they are not mesenchy­
mal in origin and contain only a small amount of renin (Mulrow, 1976). The 
role of the Goormaghtigh cells, which do not contain cytoplasmic granules is 
still obscure. 

The autonomic nevous system may represent an important structural and 
functional part of the juxtaglomerular apparatus. Various authors described 
the existence of synapses between cells of the juxtaglomerular apparatus and 
nerve endings of the autonomic system (Barajas, 1964; Simpson and Devine, 
1966; Raja-Ortega et a!., 1968; Wagermark, I 968). 
Adrenergic fibers running along the arteries from the hilus of the kidney 
terminate in the walls of the arterioles; they come in contact with about 
one-third of the cells of the efferent arteriole and somewhat less than one-third 
of the cells of the afferent arterioles in the region of the juxtaglomerular 
apparatus (Barajas and Muller, 1973 ). Renin has been demonstrated within 
the juxtaglomerular apparatus, both by morphological (Chandra eta!., 1965; 
Barajas and Latta, 1965; Barajas, 1966; Tisher eta!., 1968) and immunofluo­
rescence techniques (Cook and Pickering, 1959; Edelman and Hartroft, 1961; 
Bing and Kazimierczak, 1962), thus confirming the hypothesis of Goormagh­
tigh ( 1939). 
Cook ( 1967) demonstrated by direct sampling that the cytoplasmic granules 
contain renin. 
Except for the kidney, renin has also been found in the uterus, placenta, the 
adrenal glands, brain, submaxillary gland and in the wall of arteries and veins. 
The role of this extra-renal renin is not fully clear yet. 

8.2 Release of renin 

The factors which may influence renin secretion are: 

1. renal perfusion pressure 

2. sodium concentration at the macula densa 

3. impulse traffic of the renal sympathetic nerves 

4. alterations in extracellular volume and plasma concentration of sodium 

5. potassi urn 

6. angiotensin II and 

7. anti-diuretic hormone. 

Each of these will now be discussed briefly. 
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8.2.1. Renal perfusion pressure 

One of the major theories concerning the regulation of renin release stresses 
the role of a renal vascular receptor in the afferent arteriole, which is sensitive 
to local changes in perfusion pressure (Tobian eta!., 1959; Tobian, 1960, 1962; 
Skinner et al., 1964; Blaine et al .. 1970, Blaine and Davis, 1971; Davis, 1971, 
1973; Kaloyanides eta!., 1973; Churchill eta!., 1974). According to this theory, 
renin release varies inversely with local perfusion pressure, independently of 
changes in renal blood flow. II is suggested that the vascular receptor is a 
baroreceptor or stretch receptor (Tobian, 1960), which functions even without 
the involvement of the sympathetic system or other intrarenal mechanisms 
(Blaine eta!., 1970; Blaine and Davis, 1971). Several authors have provided 
evidence that the intrarenal stretch receptor is a most important effector of 
renin release (Blaine and Davis, 1971; Witty eta!., 1971, 1972; Davis, 1973; 
Gotshall et al., 1973, 1974; Kaloyanides eta!., 1973). The nature of the stimulus 
and the haemodynamic alterations which influence the renin releasing cells are 
not fully clarified. Whereas the data of some investigators suggest that 
vasoconstriction is responsible (Romero et a!., 1968; Tagawa and Vander, 
1969; Blaine and Davis, 1971; Witty et al., 1971, 1972), other studies point in 
the direction of vasodilatation (Ayers et al., !969; Harris and Ayers, 1972; Eide 
et al., 1973; Gutmann eta! .. 1973; Gotshall eta!., 1974). 
Thus, renin release is probably not merely dependent on the arteriolar 
diameter but rather on the wall tension of the afferent arteriole (Davis, !973, 
1974). On the basis of experiments in the isolated perfused rat kidney, Fray 
( 1976) suggested that vasodilatation or higher perfusion pressure increases the 
stretch of the afferent arteriole, whereas vasoconstriction or low perfusion 
reduces the stretch on the wall. Renin release, then, would be most sensitive to 
changes in the ratio between inner and outer diameter of the afferent arteriole 
(Fray, 1976). 

8.2.2. Sodium concentration at the macula dens a. 

The macula densa theory is the second major theory on renin release and 
postulates a receptor which is sensitive to distal tubular sodium (Goor­
maghtigh, 1945; Vander and Miller, 1964; Brown et a!., 1964; Reeves and 
Sommers, 1965; Thurau eta!, 1967; Vander and Luciano, 1967; Vander and 
Carlson, 1969). It has, however, two angles of incidence. While Vander and 
Miller suggest that a reduced sodium load at the macula den sa stimulates renin 
release, Thurau and associates attribute enhanced renin release to an increased 
sodium load. The experiments of Freedman et al.,(l974) seem to support the 
first hypothesis, while other studies support the latter (Meyer et a! .. !968; 
Cooke eta!., 1970). 
Barajas (1971) on the basis of morphological studies reported that the macula 
den sa is frequently more in contact with the efferent than the afferent arteriole. 
In his view, renin release is stimulated by decreased contact of the macula 
densa with the afferent arteriole. Increased sodium load and tubular volume 
would restore the contact and suppress renin release. Thurau and associates 
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have proposed that an increase in sodium concentration at the macula densa 
activates prefonned physiologically inactive renin molecules (rather than 
stimulating de novo synthesis). As a result angiotensin II is formed which is 
supposed to act locally on the afferent arterioles to produce constriction and 
decreased glomerular filtration rate thus closing a feed-back loop (Granger et 
al., 1972; Thurau et al., 1972). It should be emphasized that this feed-back 
hypothesis does not necessarily reflect integrated renin release. Nash et al. 
( 1968) assumed that alterations in sodium transport across the macula densa 
would regulate renin release. The mechanism of the macula densa, however, 
seems to be overruled by the baroreceptor mechanism (Kaloyanides et al., 
1973). 

8.2.3. Sympathetic activity 

There is now substantial evidence that the sympathetic nervous system and 
circulating catecholamines play an important role in the control of renin release 
(Davis, 1973). They seem to do so quite independently of the stretch and 
macula densa receptors (Johnson et al., !971; Ganong, 1973; Johns et al., 1975; 
Zanchetti et al., 1976). 
Electrical stimulation of the renal nerves (Vander, 1965; Johnson et al., 1971; 
Coote et al., 1972; Ganong. !972; Loeffler et al., 1972; LaGrange eta!., 1973) 
also promotes renin release. 
The same effect can be brought about by stimulation of vasomotor centers in 
the medulla oblongata (Pas so et a!., 1971 ), mesencephalon (Veda eta!.. 1967) 
and pons (Richardson eta!., !973b, 1974). It has been suggested that serotonin 
may play a role via central pathways in renin release (Epstein and Hamilton. 
1977). On the contrary, stimulation of suprabulbar vasodepressor areas 
resulted in a decrease of plasma renin activity (Zehr and Feigl, 1973). The 
activity of this area, in tum, could be dependent on the firing rates of vagally 
innervated cardiopulmonary receptors (Mancia and Donald. 1975; Mancia et 
al .. 1975; Zehr et al .. 1976). Indeed, renin secretion rises after vagotomy (Yun 
et a!., !976). possibly by an increase in renal nerve activity after such a 
procedure (Clement et al .. !972: Mancia et al .. 1973). Undoubtedly neural 
influences also contribute to the renin release during the first minutes after a 
sudden decrease in renal perfusion pressure (Stella et al .. 1976). during tilting 
or upright posture ( Gordon et al .. 1967: Michelakis and McAllister. 1972: 
Stella et a! .. 1974), vasodilatation (Pettinger et a!., 1973: Pettinger and 
Mitchell. 1975; Wester et al .. 1976b) and after sodium depletion (Vander. 1967: 
Brubacher and Vander. 1968; Mogil et al .. 1969; Stella et al.. 1974) or 
hypoglycemia (Otsuka et al .. 1970; Assay keen et al .. 1970: Lowderet a!.. 1975. 
1976). 
The physiological role of the renal sympathetic nerves in the experiments 
mentioned above, seems to be confirmed by in vitro studies on kidney slices 
(Aoi et al., 1976). Many studies have revealed that in the animal intravenous or 
intra-arterial infusion of catecholamines increases renin release (Vander, 1965; 
Wathen et al .. 1965; Bunag et al .. 1966: Ueda et al.. 1970: Winer eta!.. 1971: 
Johnson et al .. 1971: Tanigawa eta!., 1972: Reid et al .. 1972; Chokshi eta!.. 
1972). In man the same effect occurs (De Champlain et al .. 1966). 
Adrenergic agents have also been shown to stimulate renin release in vitro 
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kidney preparations (Michelakis et al., 1969; Rosse! and Veyrat, 1971; Veyrat 
and Rosse!, 1972; Aoi et al., 1974; Nolly et al., 1974). 
Controversy still exists about the type of receptor involved in these reactions. 
Although there is general agreement that beta-receptors can mediate renin 
secretion (Winer et al., 1969, 1971; Assaykeen et al., 1970, 1974; Otsuka et al., 
1970; Pas so et al., 1971; Ganong, 1972; Reid et al., 1972; VanDongen et al., 
1973; Aoi et al., 1974; Nolly et al., 1974; Tanaka and Pettinger, 1974; 
VanDongen and Peart, 1974; Pettinger and Mitchell, 1975; Weinberger et al., 
1975; Capponi and Valloton, 1976; Johnson et al., 1976), it is still unsettled 
whether extrarenal or intrarenal receptors are involved. 
The studies of Reid et al. ( 1972) provided evidence for extrarenal beta­
receptors mediating renin release, but on the other hand strong evidence for 
intrarenal beta-receptors is available from studies with kidney slices (Rosse! 
and Veyrat, 1971; Aoi et al., 1974; Nolly et al., 1974), renal cell suspensions 
(Michelakis et al., 1969) and intrarenal infusions (VanDongen et al., 1973; 
VanDongen and Peart, 1974; Assay keen et al., 1974; Johnson et al., 1976). It is 
not excluded that in the intact organism both receptors, if they really exist, 
come into play. 
The opinions about the role of alpha-receptors are far more divergent. While 
some authors suggested a stimulatory effect of alpha-receptors (Winer et al., 
1969, 1971; Coote et al., 1972), most other investigators support the concept 
that these receptors are inhibitory in origin (Nolly, et al., 1974; VanDongen and 
Peart, 1974; VanDongen and Greenwood, 1975; Pettingeret al., 1976). Studies 
with alpha-blocking agents have sometimes revealed the stimulatory role of 
alpha-receptors (Winer, et al., 1969, 1971; Coote, et al., 1972) butthis could not 
be confirmed in other studies (Assaykeen et al., 1970; Michelakis and 
McAllister, 1972; Tanigawa et al., 1972; VanDongen et al., 1973; Nolly et 
al.,l974; Capponi and Valloton, 1976; Johnson et al., 1976). Recent data 
support the hypothesis that the alpha-adrenergic effect predominates and can 
effectively inhibit the action of the beta-receptor(Capponi and Valloton, 1976; 
Strange! al., 1977; Strang, 1978). 

8.2 .4. Humoral factors (electrolytes, angiotensin, antidiuretic hormone). 

Alterations in plasma sodium concentration have been shown to influence 
renin secretion; an inverse relationship was found between plasma sodium 
concentration and plasma renin concentration (Brown et al., 1965a; Nielsen 
and Moller, 1967) or granulation of the juxtaglomerular cells (Pitcock and 
Hartroft, 1958). However, the effect of the sodium ion is overrided by changes 
in fluid balance and body fluid, since expansion of the extracellular volume 
decreases, plasma renin (Meyer et al., 1966a; Newsome and Hartter, 1968; 
Rosenthal et al., 1968; Gordon and Pawsey, 1971) even if this is accompanied 
by a decline in plasma sodium concentration. It is, however, quite probable 
that sodium plays a role in regulating renin release independently of its ability 
to expand intravascular volume (Nash et al., 1968; Yamamoto et al., 1969; 
Krakoff et al., 1970; Shade et al., 1972; Tuck et al., 1974). Salt loading which 
increases plasma volume (Lyons et al., 1944; Grant and Reischsman, 1946) 
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leads to a reduction in renin while salt depletion has the opposite effect (Brown 
et al., 1963; Grosset al., 1965; Peart, 1965; Genest et al.,l965; Laragh et al.. 
1966; De Champlain et al., 1966; Nielsen and Moller, 1967; Gunnels et al., 
1967; Brubacher and Vander. 1968; Michelakis and Horton, 1970; Laragh et 
al., 1972a; Omvik et al., 1976). The relative contribution of pressure, sym­
pathetic nerves and macula densa in this response is not fully known. 
The potassium ion also has a suppressing effect on renin release (Veyrat et al., 
1967; Brunner et al., 1970; Dluhy eta!., 1970; Vander, 1970; Abbrecht and 
Vander, 1970; Sealey, et al., 1970) an effect which is independent of changes in 
aldosterone secretion (Brunner et al., 1970) or in sodium balance (Abbrecht 
and Vander, 1970). The action of potassium presumably is intrarenal at the 
level of the tubules (Vander 1970; Schneider eta!., 1972; Shade et al., 1972). 
A direct feed-back inhibition of renin release is exerted by angiotensin II 
(Vander and Geelhoed, 1965; Genest, eta!., 1965; De Champlain eta!., 1966; 
Bunag et al., 1967; Tanaka et al., 1969; Blair-West eta!., 1971; Shade et al., 
1973; Bing, et al., 1973; VanDongen et al., 1974; Oates et al.. 1974; Sen et al., 
1974; McDonald et al. 1975). The site of action is presumably intrarenal 
(Genest et al., 1965; Michelakis and Horton, 1970; Michelakis, 1971; Blair­
west et al., 1971; Rosse! and Veyrat, 1971; VanDongen et al., 1974) and 
independent of sodium metabolism (Shade et al., 1973). 
An inhibitory effect on renin secretion is also shown by vasopressin (Bunag et 
al., 1967;Vander, 1968; Tagawa et al., 1971; Shade et al., 1973). This effect 
does not require alterations in sodium concentration at the macula densa 
(Shade, et al., 1973). Although the site of action can be intrarenal (VanDongen, 
1975, Hesse and Nielsen, 1977) some investigators favor the view that 
expansion of plasma volume is prerequisite for the effect (Newsome and 
Bartter, 1968; Khokhar et al., 1976a). 
Still other factors may be involved in renin release like calcium (Ketchen et al., 
1974, 1977; Watkins et al., 1976) and hydrogen (Kisch et al., 1976), which 
suppress renin secretion. Whether this is a direct effect or mediated through 
changes in distal sodium delivery remains to be settled. 

8.3 Aldosterone 

Four determinants of aldosterone secretion are known: the renin-angiotensin 
system, adrenocorticotrophic hormone (A.C.T.H.), potassium and sodium. 
The renin-angiotensin system has been thought to be the most important 
modulator of aldosterone secretion. 
Recently, evidence has been gathered that the above mentioned factors 
interact and that under certain circumstances A.C.T.H., sodium and 
potassium can even become the major regulating factor (Bayard et al., 1971; 
McCaaetal., 1972;Kemetal., 1973;Katzetal.,I975;Hataetal., 1976). 
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8.3.1. Renin-angiotensin system 

This is still one of the major stimuli for aldosterone secretion and in many 
situations where renin and angiotensin are elevated. there is secondary 
increase in aldosterone production (Laragh et al.. 1960; Gowenloch and 
Wrong, 1962; Barraclough et al., 1965; Ames et al., 1965; Laragh et al., 1966; 
Brown et al., 1972a). The factors regulating renin release have already been 
described. 

8.3.2. A.C. T.H. 

This pituitary peptide appears to have a permissive role in aldosterone secre­
tion. At physiologic doses A.C.T.H. stimulates aldosterone release (Katz et 
al., 1975; Kern eta!, 1975; Nicholls et al., !976). This has even been demon­
strated in patients with adrenal adenomas (Wenting et al., 1976). Higher doses 
initially increase aldosterone secretion but after a short time enhance its 
disappearance from the circulation (Liddle et al., 1956; Venning et al., 1962; 
Tucci eta!.. 1967; Newton and Laragh, 1968; Biglieri et al., 1969) by an effect 
on the metabolic clearance rate (Pratt eta!., 1976; Messerli et al., 1976a). 

8.3 .3. Potassium 

Hyperkalemia induces aldosterone secretion and hypokalemia suppresses it 
(Funder et al., 1969; Dluhy et a!., 1972; Scholer eta!.. 1973; Himathongkam et 
al.. 1975). Not only the potassium level in the serum, but also the intracellular 
potassium level in the zona glomerulosa appears to be responsible for this 
mechanism (Boyd and Mulrow, 1972). 
In the salt depleted state potassium seems as important as the renin angiotensin 
system in regulating aldosterone release (Diuhy et al., 1974). 

8.3.4. Sodium 

The sodium ion per se seems to regulate aldosterone only at very low concen­
trations (Davis et al., 1963) where it stimulates, or at high concentrations 
during extreme dehydration (Schalekamp et al., 1976), where it inhibits. 

Sodium balance appears to influence the response to angiotensin II; the 
systemic pressor response to A II is impaired by sodium depletion and 
enhanced by sodium loading (Davis et al., 1962; Blair-West eta!., 1962; Kaplan 
and Silah, 1964; Reid and Laragh, 1965; Barraclough eta!., 1967; Bianchi eta!., 
1968 Hollenberg eta!., 1972, 1974b; Strewler et al., 1972; Oelkers et al., 1972; 
Samweret al., 1974; Thurston and Laragh, 1975; Slack and Ledingham, 1976). 
Studies with isolated vascular preparations have made it reasonable that this 
phenomenon is not due to systemic effects (Strewler et al., 1972). The 
mechanism of this "desensitization" is not yet clear, but is probably related to 
saturation of A II receptors (Thurston. 1976). 
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While the receptors in the vascular wall and in the adrenal cortex differ from 
each other (Williams et al., 1974; Steele and Lowenstein, 1974; Bravo et al., 
1975, 1976) several studies indicate that the adrenal cortex is sensitized by 
sodium depletion (Oelkers et al., 1974; Hollenberg et al., 1974b; Tuck et aL, 
1974). 
A dissociation between the renin-angiotensin system and aldosterone under 
certain circumstances has also been observed by others (Chinn et aL, 1970; 
Best et aL, 1971; Epstein and Satura, 1971; Boyd et al., 1972a; Mendelsohn et 
al., 1972). It has been suggested that during volume changes factors, other than 
the renin-angiotensin system modulate aldosterone release (Birkhiiuser et aL, 
1973; Muller and Valloton, 1974). Except for A. C.T.H. and potassium this has 
been attributed to alterations in metabolic clearance rate (Gaillard et al., 1976) 
and to an as yet still hypothetical factor (Blair-West et aL, 1973; McCaa et aL, 
1974). 

8.4 Results 

8.4./. Introduction 

In this chapter we shall investigate the possible role of the renin-angiotensin­
aldosterone system in our patients with essential hypertension. 
Originally, in our laboratory total plasma renin concentration was assayed (as 
described in Chapter 2) after an acidification step to pH 3.3. This procedure has 
been followed for the group of 226 patients which have been described in the 
preceding chapters. As already mentioned in Chapter 2. I, we have selected a 
second group of 59 patients (mean age 43 years) in whom specifically active 
renin was measured. Furthermore, in most of these patients the same 
haemodynamic investigations were carried out as in the original group. Both 
groups will be referred to as group land ll for the larger (original) and smaller 
group, respectively. 

8.4.2. Relations with age 

Plasma renin concentration 

In a mere 11 patients of group l no values for T.P.R.C. were obtained; in most 
cases, this was due to incorrect handling of material at the time of sampling or 
during the technical procedure. Data from the remaining 205 patients are 
plotted against age in figure 40. There is a tendency for T.P.R.C. to decline with 
age (r = -0.!5; p<0.05). Low renin values are most often encountered 
between 40 and 60 years of age. When the patients are divided according to 
their glomerular filtration rate the following pattern is observed. When 
glomerular filtration rate remains above 55 ml/min/m2 , the relation ofT.P. R.C. 
versus age is more pronounced (r= -0.25; p <0.001 ), while in those patients 
where G.F.R. has fallen below that limit, renin levels tend to increase with age 
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although this is only of borderline significance (n = 30; r = 0.32; 0.05 <p<O.I 0). 
Arbitrarily we considered a G.F.R. of less than 55 ml/min/m 2 as an index of 
depressed renal function. 
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Fig. 40 Relationship between total renin concentration and age. The regression line 
indicates this relation in patients with normal GFR. 

In group II total renin concentration also declined with age (r= -0.39; p 
<0.01). In this group active renin was also measured and this again exhibited 
an inverse relation with age (n = 39; r = -0.37; p <0.025). 
The ratio active/total renin was not related to age. In none of the patients were 
renin levels abnormally high. 

Plasma aldosterone 

From the total of 100 observations in group I there is no obvious relation with 
age (fig. 41). The values for aldosterone are within normal limits in 89 patients. 
In the remainder, we observed no development of clinical hyperaldosteronism 
during follow-up in the hypertension clinic. The parients in group II also did not 
exhibit a relation of aldosterone with age. 

101 



P.Aido 

50 

ng/lOOml 
40 

30 

20 

10 .. ... 
0 

20 30 40 

I -.,. 

.. .. 

50 60 70 

Age years 

Fig. 41 Relationship between plasma aldosterone and age. 

8.4.3. Interrelations 

Renin and aldosterone 

A significant direct relationship was observed between total and active renin 
(r = 0.74; p <0.001; fig 42). On the average active renin made up 33% of total 
renin; this value was not affected by the absolute level of total renin. From 
figure 43. it is apparent that there is no relation between. total or active renin 
concentration and aldosterone. In group II. the same phenomenon was 
observed. Moreover, no relationship was found between active or inactive 
renin and aldosterone. 

Renin versus systematic haemodynamics 

The relationship between total renin concentration and mean arterial pressure 
is presented in figure 44. For the entire group no significant relationship could 
be detected. 
However, this pattern seems to be disturbed, in a way, by only a few patients. 
In one of them. G.F.R. was lower than 55 ml/min/m2 , while in another renal 
haemodynamics had not been measured. If these patients are omitted from the 
analysis an inverse relationship between renin and mean arterial pressure is 
apparent. 
In group II, active renin tended to decrease at higher levels of blood pressure 
but this relation was not significant. 
Total and active renin are unrelated to cardiac output and peripheral resi­
stance, although there was a tendency for plasma renin concentration to 
decline with higher levels of peripheral resistance, provided that G.F.R. had 
not fallen below 55 ml/min/m2 
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Fig. 42 Relationship between total and active renin concentration in peripheral 
venous blood (closed circles) and in arterial samples (open circles). 

Renin versus renal haemodynamics 

Total renin concentration is inversely related to G.F.R. (r = -0.22; p<0.005), 
as shown in figure 45. On the other hand, renin levels are not related to renal 
blood flow or filtration fraction. even when corrected for the effect of 
glomerular filtration rate. In figure 46, the relation between renin and renal 
vascular resistance is given, which appears to be a complex one. Again a 
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distinction is made between patients with normal and those with subnormal 
G.F.R. While the former group exhibits an inverse relation between renin and 
R. V.R. (r = -0.28; p<O.OOI). a positive though not significant relation is found 
in the latter group (r = 0.24; n.s.). 
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tration. 

Partial regression analysis 

Since renin is inversely related to age and G.F.R., we have two opposing 
factors, for G.F.R. is also inversely related to age. Moreover, the relations 
with blood pressure should be corrected for these trends. 
The inverse relation between renin and age remains even when we eliminate 
either the effect of blood pressure or the effect of G.F.R. When both these 
factors are eliminated the regression coefficient is -0.20 (p<0.005). The 
relation between renin and G.F.R. still exists when the effects of both age and 
blood pressure are eliminated (r = -0.24; p<0.005). 
The relationship between renin and blood pressure becomes stronger when we 
correct for the effect of G.F.R. Although eliminating the effect of age alone 
abolishes this relation, simultaneous elimination of age and G.F.R. yield a still 
significant inverse relation. 
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Fig. 46 Relationship between renal vascular resistance and total renin concentra­
tion in patients with normal (closed circles) and reduced (open circles) 
GFR. 
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Renin and aldosterone versus body fluid volumes 

Renin and aldosterone are not related to plasma (or blood) volume; however, in 
the subgroup of patients with a reduced G.F.R., renin is positively related to 
plasma volume (r = 0.37; p<0.05), but not to interstitial or total extracellular 
volume. Aldosterone is not related to mean arterial pressure and shows a direct 
relationship of borderline significance with extracellular and interstitial fluid. 
It is not related to the quotient P. V./I.F. 

8.4.4. Renin secretion rate 

In 10 patients (age range 29-68, average 47 years) the secretion of total and 
active renin by the kidney was determined. Concentration of total renin 
averaged Ill ± 18 !LU/ml in renal arterial and 123 ± 18 !LU/ml in renal venous 
blood. Values for active renin were 30 ± 4.7 J.LU/ml and 36 J.LU/ml respectively. 
Secretion of total renin ranged from 0 to 13.920 ILU/min (average 6189 !LU/min) 
and of active renin from 0 to 10.270 !LU/min (average 3407 ILU/min). Per 100 
grams of tissue mass these values were 0 to 5046 (average 2495) J.LU/min and 0 
to 3744 (average 1395) ILU/min. The relative amount of active renin was 28 ± 
3.2% in arterial and 29 ± 3.2% in venous blood. This did not differ from the 
percentage of active renin in peripheral venous blood (24 ± 2.5%), the latter 
samples being drawn on a sepearate day. 
In view of the wide range of data in this series, it is not possible to obtain any 
significant difference in absolute concentrations of renin in arterial and venous 
blood. Therefore, another approach was chosen. The total amount of renin in 
renal venous blood was expressed as a percentage of that in arterial blood. 
When the levels in arterial blood are taken as 100% then the amount of total 
renin increased to 112 ± 2.5% in renal venous blood (p<0.005) and that of 
active renin to 121 ±5 .I% (p<0.005). Inactive renin rose by 9 ± 4.1 %. this not 
being significant. Secretion patterns appeared not to be related to age, level of 
blood pressure or haemodynamic parameters. 

8.5 Discussion 

Several different methods are available to estimate plasma renin. The measure­
ment of plasma renin concentration according to the method of Skinner ( 1967) 
involves an acidification step to pH 3.3. However, it has been shown by 
Lumbers ( 1971) that acidification increases the assayed concentration of renin. 
The increase apparently is due to activation of an inactive prorenin (Lumbers. 
1971; Skinner eta!., 1975; Day eta!., 1975; Boyd, 1977) and occurs only when 
the pH falls below 4. This result was shown not to be caused by inactivation of 
angiotensinases. [t has been suggested that acidification destroys an inhibitor 
of active renin. This would account for the higher molecular weight renin found 
by several investigators (Boyd, 1972; Leckie, 1973; Day and Luetscher, 1974, 
1975; Leckie and McConnell, 1975; Day et al., 1976). Although inactive renin 
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has been found in several species, including man (Boyd, 1974, 1977; Leckie 
and McConnell, 1975; Morris and Johnston, 1976; Day et al., 1976; Derkx et 
al., 1976; VanDongen et al., 1977) the origin of this compound is still obscure. 
The presence of inactive renin in anephric man suggests an extrarenal source 
(Weinberger et al., 1976; Deheneffe et al., 1976). 
·similarly, VanDongen et al., (1977) could not detect inactive renin in the 
venous effluent of the isolated perfused rat kidney, whilst this was demon­
strable in peripheral plasma samples. Apparently, our study in I 0 subjects with 
essential hypertension is too small to draw firm conclusions about secretion 
patterns of active and inactive renin by the kidney. However. it could be 
demonstrated that the amount of total and active renin was significantly higher 
in blood leaving the kidney than that entering it. In contrast, the differences 
were not significant for inactive renin. 
This may indicate that renin is predominantly secreted in the active form, at 
least under basal conditions. This is at variance with the observations ofDerkx 
et al. (1976), who suggested that both active and inactive renin were secreted 
by the kidney. However, in that study no direct arterial-venous concentration 
gradients across the kidney were measured. 
Still we are inclined to believe that the kidney is able to secrete inactive renin, 
since in some cases the actual A-V difference for this substance was too large 
to be explained by experimental error. In one other patient secretion of total 
renin was zero, while there was secretion of active renin. 
These observations suggest that in vivo there is a continuum between inactive 
and active renin, both forms probably being in dynamic equilibrium. It seems 
reasonable to suggest that the inactive part of renin serves as a buffer for 
situations such as tilting or acute vasodilatation where an prompt increase in 
active renin is required (Derkx et al., 1976). This would also fit the observation 
ofThurau et al. (1972). 
Under steady state conditions about one-third of the total amount of renin 
circulates in the active form. This relation in our patients was not disturbed by 
age or the height of blood pressure. Therefore. the estimation of total renin 
quite accurately reflects the amount of active renin present. This is in 
agreement with the abservation of others (Skinner eta! .. 1975; Leckie et al., 
1976; Fagard et al., 1977). At high concentrations of plasma renin, however, 
the equilibrium may shift to the active form (Derkx eta!., 1976), although our 
study failed to reveal such a mechanism. 

Much interest has been focussed on the possible role of the renin-angiotensin 
system in the development and maintainance of essential hypertension. 
However, only a limited number of patients have elevated plasma renin levels 
(Frohlich eta!., 1970; Molzahn eta!., 1972; Brunner et al., 1972; Esler and 
Neste!, !973a)_ 
Values for renin, angiotensin and aldosterone are within normal limits in most 
patients with essential hypertension, although rather wide ranges are found 
(Laragh et a!., !960a; Cope eta!., 1962; Genest eta!., 1964; Helmer, 1964; 
Brown et al., 1965, 1966a; Meyer eta!., 1966b; Creditor and Lotschky, 1967; 
Gunnells eta!., 1967; Ledingham eta!., 1967; George et al., 1968; Fishman et 
a!., !968; Streeten eta!., 1969; Doyle and Jerums, 1970; Nielsen and Jacobsen, 
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1970; Cat! et al., 1971; Diisterdieck and McElwee, 1971; Kotchen et al., 1971; 
Boyd et al., 1972b; Khokhar et al., 1976b). In about one-third of the hyper­
tensive population plasma renin is abnormally low (for references see Dunn 
and Tannen, 1974), this not being due to decreased substrate concentration. 
Such a distribution in itself already argues against a primary role for the 
renin-angiotensin system in essential hypertension. Nevertheless, hyper 
tensive patients have been classified according to their renin levels (Brunner et 
al., 1972). It was suggested that in high-renin hypertension (HRH) arteriolar 
vasoconstriction was responsible for the hypertension, the circulating volume 
being contracted. Arteriolar dilatation and volume expansion were thought to 
exist in low-renin hypertension (Laragh, 1973). Laragh and associates have 
argued that cardiovascular complications from hypertension mainly occur 
when renin is high (Brunner et al., 1972. 1973; Laragh, 1973). This view has, 
however. been severely critisized (Schalekamp and Birkenhiiger. 1972; Doyle 
et al., 1973; Genest et al., 1973; Mroczek et al., 1973; Stroobandt et al., 1973; 
Birkenhager, et al., 1977a). Moreover, a follow-up study conducted at our 
hospital revealed that patients in whom hypertension was complicated by 
myocardial infarction had even slightly lower renin levels prior to the event 
than those without such a complication (Birkenhager, et al.. 1977"; de Leeuw 
et al., 1978). 
Of special interest is the group with low renin levels; in these patients renin is 
suppressed and unresponsive to stimuli such as sodium restriction and tilting 
(Helmer, 1964. 1965; Ledingham et al., 1967; Channick et al.. 1969; Jose and 
Kaplan. 1969; Jose eta!., 1970; Williams et al.. 1970; Espiner et al., 197 I; Spark 
and Melby, 1971; Crane et al., 1972; Gavras et al., 1976). Stronger and 
prolonged stimuli, however, do raise the renin level (Helmer and Judson, 1968; 
Lowder and Liddle, 1974; Spark et al., 1974; Gavras et al.. 1976). 
Different stimuli have been used to identify low renin hypertension (LRH). 
Unfortunately, these different methods do not precisely divide the same 
patients into the same subgroups (Crane et al.. 1972; Drayer et al., 1975; 
Woods et al., 1976). 

Although angiotensin II levels in the hypertensive population show a similar 
distribution as renin levels (Padfield eta!.. 1975a; Beevers eta!., 1977). it is not 
certain whether the close relation between renin and angiotensin under 
different clinical conditions Swales and Thurston. 1977) also applies to low­
renin hypertension (Walker eta!., 1976). 
The mechanisms causing the low renin state, have not been unequivocally 
elucidated.Defective sympathetic stimulation has been proposed as an 
explanation for LRH (Collins et al., 1970a; Esler and Neste!. 1973a; Esler et 
al., 1976; Lowder eta!., 1976; Noth and Mulrow, 1976) but Mitchell et al. ( 1977) 
did not find evidence for such a mechanism. 
Weidmann et al. ( 1977) found a decreased urinary adrenaline excretion rate in 
LRH, but this does not necessarily reflect a causal relationship. 
A plausible explanation for the low-renin state would be mineralocorticoid 
excess as is observed in primary hyperaldosteronism (Conn et a!.. !964). 
Aldosterone secretion and excretion are. however, normal in LRH (Channick 
eta!., 1969;Woodsetal., 1969;Collinsetal..l970b;Joseetal., 1970;Kotchen 
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et al., 1971; Laragh eta!., !972b; Schalekamp et al.. 1974; Padfield eta!., 
1975b,c). 
In some patients aldosterone is unresponsive to alterations in sodium intake 
(Weinberger eta!., 1968; Collins eta!., !970b; Williams eta!., 1972; Kloppen­
borg eta!., 1974; Helber eta!., 1974), but this abnormality sometimes also 
occurs with normal renin levels. Moreover, the fixed aldosterone levels rather 
seem to be the result of unresponsive renin. Nowaczynski eta!. ( 1971) reported 
on a decreased metabolic clearance rate (M.C.R.) of aldosterone in patients 
with essential hypertension (not categorized according to renin levels). 
However, others found that aldosterone M.C.R. was normal in L.R.H. 
(Lommer et a!., 1972; Brown 1976). The concept of aldosterone excess in 
essential hypertension is further invalidated by the demonstration of suppress­
ed aldosterone at higher levels of blood pressure (Walker eta!., 1976). 
Other steroids have also been claimed to produce hypertension (Woods eta!., 
1969; Brown eta!., 1972b; Genest eta!., 1972; Melby eta!., 1972; Liddle and 
Sennett, 1974) but the evidence is not conclusive and even not credible, since 
one would expect aldosterone sugpression as well in these cases (Shade and 
Grim, 1975; Khokhiir eta!., 1976 ). Neither is there support for a role of the 
potassium ion in low-renin hypertension (Carey eta!., 1972; Distler eta!., !974; 
Kloppenborg eta!., 1974; Schalekamp eta!., 1974b). 
Volume expansion or a higher exchangeable sodium in L.R.H. was suggested 
in earlier reports (Woods eta!., 1969;Jose eta!., 1970) but more defined studies 
have rejected this view (Helmer and Judson, 1968; Jose and Kaplan, !969; 
Lebel eta!., 1974; Schalekamp eta!., 1974; Distler eta!., 1974; Weidmann et 
a!., 1975, 1977). 
So far all attempts to characterize low-renin hypertension as a distinct noso­
logical entity have failed to provide conclusive evidence for such a condition. 
Renin concentration (or activity) has been found to vary inversely with age in 
hypertensive patients (Schalekamp et a!., 1971. 1974; Birkenhiiger et a!., 
!972a, Sambhi eta!., 1973; Tuck eta!., 1973; Abe eta!., 1975; Padfield eta!., 
1975; Guthrie eta!., I 976; Woods eta!., 1976). In a few studies, on the contrary, 
this pattern has not been found (Jose eta!., 1970; Wisenbaugh eta!., !972; 
Pedersen and Komerup. 1976; Fagard eta!., 1977; Weidmann et al., 1977). It 
must be emphasized that any age-related trend could, as well, represent the 
result of a physiological ageing process. Indeed, an inverse relation between 
renin and age has also been described for normotensives (Hayduk eta!., !973; 
Sambhi eta!., 1973; Noth et al., 1975; Abe eta!., 1975; Weidmann eta!., 1975, 
1977; Crane and Harris, !976; Mitchell et al.. 1977), although this also is not 
found by all investigators (Schalekamp eta!., 1971, 1974; Tuck eta!., !973; 
Padfield et al., 1975; Woods eta!.. 1976), probably because the main reduction 
occurs in early life. 
Low renin levels with a diminished response to stimulation have been found in 
normotensive subjects (Noth eta!., 1975), but it seems that renin is suppressed 
in hypertension more markedly. In our study renin levels were also inversely 
related to age and even more so when glomerular filtration is within the normal 
range. On the basis of these observations it can be postulated that the low renin 
state is a stage in the development of essential hypertension; in support of this 
idea is the negative relationship between renin and blood pressure observed in 
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a number of studies (Bloomfield et a!., 1970; Schalekamp et a!., 1971; 
Stroobandt eta!., 1973; Tuck eta!., 1973; Klaus eta!., 1974; Kolsters eta!., 
1975; Fagard eta!.. 1977; Walkeret a!., 1976). 
In other studies, however, this relationship was not found (Dustan eta!., 1970; 
Brunner eta!., 1972; Wisenbaugh eta!., 1972; Lucas eta!., 1974; Pedersen and 
Kornerup, 1976; Weidmann eta!., 1977). In our study renin was also not clearly 
related to blood pressure, when all patients were considered together. 
However, such a relationship was revealed when the effect of glomerular 
filtration rate was taken into account. 
This suggests some feed-back suppression of renin at higher levels of blood 
pressure, as long as glomerular filtration is not compromised. In view of the 
inverse relationship between renin and G.F.R., it is probable that blood 
pressure per se is not the only determinant of renin secretion. Since G.F.R. 
declines with age one would expect an increase in renin with age. Yet, the 
opposite is found. This indicates that there is a suppressing factor which 
overrules the effect of G. F.R. This suppressing factor could be ageing alone. In 
support of this idea is the observation that the inverse relationship between 
renin and blood pressure is abolished by eliminating the effect of age, while the 
inverse relationship between renin and age is independent of blood pressure. 
However, such an interpretation implies that renin levels are bound to 
decrease with age, irrespective of the presence of hypertension. If we assume, 
on the other hand, that the effect of age actually is the effect of hypertension, 
then the absence of an apparent relationship between renin and blood pressure 
indicates that the stimulating effect of a reduction in G.F.R. counteracts and 
effectively balances the influence of the elevated pressure. !twill be apparent 
that the problem cannot be solved simply in terms of statistical relations, since 
the juxtaglomerular cells only respond to the net influence of various different 
stimuli acting simultaneously. 

It has been reported that renin levels correlate positively with renal blood flow 
and inversely with filtration fraction and renal vascular resistance (Schale­
kamp et al., 1970. 1971, 1977: Molzahn et al., 1972: Pedersen and Kornerup, 
1976). 
These findings have been interpreted in favour of the baroreceptor theory on 
renin release. In this large study we failed to observe a relationship between 
renin and renal blood flow or filtration fraction. However, a significant inverse 
relation was found between renin and glomerular filtration rate. This may 
indicate that renin secretion is governed by the combined effect of intravas­
cular pressure and the sensing of the macula densa. 
A reduction in glomerular filtration rate decreases the filtered load of sodium 
and therefore, presumably sodium load to the distal tubule. In accordance with 
the concept of Vander and Miller (1964) this could stimulate renin release. A 
diminution ofG .F.R. at the same time coincides with an elevated intravascular 
pressure as shown in Chapter 5. This in turn suppresses renin secretion by the 
baroreceptor mechanism and this can happen because the pressure is trans­
mitted along the renal vessels (Lowenstein eta!., 1970). 
Apparently, the effect of the baroreceptor dominates. However, the drop in 
arterial pressure along the vascular tree in the kidney is dependent on the 
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resistance of the intrarenal vessels. Therefore, the height of the blood pressure 
at the level of the juxtaglomerular apparatus does not necessarily reflect the 
pressure as measured in a peripheral artery. 
As long as G.F.R. is intact, blood pressure seems to be transmitted quite well, 
as can be concluded from the inverse relation between renin and renal vascular 
resistance in these patients. Apparently, beyond a certain age and, conse­
quently beyond a certain level of renal vascular resistance. blood pressure is 
less easily transmitted along the renal vessels which coincides with more 
impaired glomerular filtration and consequent stimulation of renin secretion. 
At this stage. renin could well be involved in a further increase in renal vascular 
resistance, as may be the case in those patients who exhibited extremely high 
values for the R.V.R. One could argue that sodium intake could disturb the 
other relations by influencing renin secretion. However, all our patients were 
in sodium balance during the studies. They received 60 mmol of sodium a day. 
From the original description of Laragh's group (Brunner et al., 1972), where 
plasma renin activity is related to urinary excretion of sodium, it is apparent 
that at an excretory level of about 60 mmol of sodium, a good differentiation 
can be made between low, normal and high renin levels. lt should be borne in 
mind, however, that sodium restriction could affect plasma volume more 
readily in those subjects who exhibit a low renin state. Our low sodium intake 
regime can, therefore, have disturbed a negative relationship between plasma 
volume and plasma renin concentration. 
Another objection to the results could be that over the years the results of the 
P.R. C. determination may have been fluctuating. We have therefore, frequent­
ly tested our samples and even checked the relationships for three periods of 
three years. These tests did not cause any differences in the relationships 
observed. 
' It has been stated that aldosterone levels and aldosterone secretion rate are 
lower in older (normotensive) age groups (Flood et al., 1967; Weidmann et al., 
1975; Crane and Harris, 1976; Mitchell et al., 1977) and at higher diastolic 
pressures (Walker et al., 1976). The effect of age on aldosterone in patients 
with essential hypertension is not yet clear. While Mitchell et al. (1977) 
reported a decrease with age, this was not apparent in the study of Guthrie et al. 
(1976). This discrepancy may be due to differences in sodium intake. Since 
aldosterone secretion is dependent on several factors, including the renin­
angiotensin system, most studies on this hormone have a dynamic, rather than 
a static character. In hypertensive subjects, the role of aldosterone production 
has mainly been investigated in the low-renin state. In these patients aldos­
terone secretion and excretion have been reported to be normal and sometimes 
less responsive than renin (Woods et al.. 1969; Chan nick et al., 1969; Collins et 
al., 1970b; Jose et al., 1970; Kotchen et al., 1971 ; Williams et al., 1972; Laragh 
et al., 1972b; Luetscher et al.. 1972; Helber et al., 1974; Kloppenborg et al., 
1974; Schalekamp et al., 1974; Padfield et al., 1975b,c). On the other hand, 
Walker et al. ( 1976) demonstrated suppression of aldosterone at higher levels 
of blood pressure, thus simulating the renin pattern. This finding argues against 
the concept of aldosterone excess in low-renin hypertension. In our study, 
aldosterone was not related to age, blood pressure or plasma renin concen­
tration. The latter is in keeping with the finding ofGuhrie et al. (1976). 
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Considering all these observations, it is unlikely that the renin-angiotensin­
aldosterone system is of primary importance in the elaboration of essential 
hypertension. Moreover, no relationship could be detected between circula­
ting renin levels and peripheral vascular resistance. As soon as substantial 
vascular alterations occur, the system apparently becomes geared into action, 
even before the onset of malignant hypertension. 

8.6 Conclusions 

From the data presented in this chapter, the following conclusions can be 
drawn. 

I. Under basal conditions approximately 30% of the circulating renin is 
found to be in the active form. The kidney mainly secretes active renin, 
although sometimes secretion of inactive renin is found. 

2. Renin levels in patients with essential hypertension usually are normal or 
low. There is no convincing evidence that the renin-angiotensin system is 
primarily involved in the pathogenesis of essential hypertension. 

3. Renin secretion seems to be dependent on intravascular pressure 
(baroreceptor mechanism) and glomerular filtration rate (macula densa 
mechanism). The actual renin level is the result of the interaction 
between these mechanisms which oppose each other during the progres­
sion of hypertension. 

4. The functional importance of the baroreceptor exceeds that of the 
macula densa as evidenced by the inverse relationship between renin and 
renal vascular resistance in patients with normal glomerular filtration. 

5. The discrepancy between age, blood pressure and renin may in part be 
due to the fact that insufficient account has been given to glomerular 
filtration rate. 
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CHAPTER 9 

The adrenergic system in essential hypertension 

I Biochemical evaluation 

9.1 Introduction 

At various levels, the autonomic nervous system is involved in blood pressure 
control. Although interest has mainly been focused on the sympathetic part, 
several experiments indicate that the lbossibility of parasympathetic inhibition 
cannot be ignored (Julius et al., 1971 . 1975; Korner et al., 1973). An exag­
gerated activity of the sympathetic nervous system could easily explain some 
of the features of essential hypertension, especially in its early phase. Even if 
cardiac output is not swept up. the elevated vascular resistance could be the 
result of increased alpha-adrenergic tone. To further our insight into the role of 
the sympathetic system in the development and maintainance of essential 
hypertension, two kinds of approach are possible: biochemical and functional. 
Since reliable methods for determination of circulating catecholamines have 
become available only recently. much knowledge of the sympathetic nervous 
system stems from functional studies. We will first discuss the biochemical part 
and the receptors of the system. 

9.2 Catecholamines 

9.2. I. Biosynthesis of catecho/amines (fig. 47) 

L-noradrenaline is synthesized from phenylalanine in the axoplasm of post­
ganglionic sympathetic neurones. Oxidation of tyrosine to dopa is catalyzed by 
tyrosine hydroxylase, this reaction being the rate-limiting step in the bio­
genesis of the catecholamines; subsequent decarboxylation to dopamine 
occurs under the catalytic influence of an aromatic L- amino acid decar­
boxylase, which action is dependent on the presence of pyridoxal phosphate. 
Finally, 3 .4-dihydroxyphenylethylamine-beta-hydroxylase (or dopamine-beta 
hydroxlase, D.B.H.) converts dopamine to noradrenaline (NA). 
Methylation of NA to adrenaline is catalyzed by phenylethanolamine-N­
methyl-transferase, utilising S-adenosylmethionine as methyldonor. 
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Fig. 4 7 Biosynthesis of noradremi.line. 

Adrenaline is mainly found in the adrenal medulla, which contains three to ten 
times as much adrenaline as noradrenaline. In the sympathetic nerve endings 
noradrenaline is stored in small vesicles. Adrenaline is found in nervous tissue, 
in the adrenal medulla and in chromaffin cells throughout the body. 

9.2.2 Factors governing release of neurotransmitter substance (fig. 48) 

The principle transmitter substance released from sympathetic nerve endings 
is noradrenaline. When an electrical impulse reaches the presynaptic nervous 
membrane, noradrenaline stores release their contents. This is thought to 
occur via exocytosis (Viveros et al., 1968; Weinshilboum er al., 1971 ). 
The neurally released noradrenaline passes into the synaptic cleft, where it is 
now known to act on at least two sides. Firstly, it combines with the post­
synaptic receptor sites, where it triggers a response (alpha or beta depending 
on the type of receptor) and secondly, it reacts with presynaptic alpha­
adrenoreceptors which then exert an inhibiting effect on noradrenaline release. 
This second reaction, therefore, can be considered as a negative feed-back 
mechanism, depressing the release of NA when its concentration in the 
synaptic cleft rises too much (Kirpekar and Puig, 1971; Enero et al., 1972; 
Farnebo and Hamberger, 1973; Hiiggendal, 1973; Kirpekar et al., 1973; 
Langer, 1973, 1974; Starke, 1973; Stjiirne, 1973; Starke and Monte!, 1974). 
Recently, evidence has been presented which favors the existence of a 
presynaptic beta-receptor mediating a positive feed-back mechanism (Adler­
Graschinsky and Langer, 1975; Yamaguchi et al.. !977). The transmitter­
receptor interaction represents a dynamic situation: continuous bombardment 
of the receptor surface by noradrenaline results in another equilibrium 
between occupied place and nonoccupied places. 
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Pharmacologically, NA can be released from its stores by tyramine, 
amphetamine and ephedrine (Bevan, 1969; Trendelenburg, 1972). 
Although not uniformly accepted, it has been hypothesized that the liberation 
of N A by sympathetic firing is mediated by acetylcholine, which would be 
released first (Bum et al., 1959; Ferry, 1966). 

9.2 .3 Metabolism of catecholamines 

NA can be eliminated from the synaptic cleft by several processes. including: 

- re-uptake 
diffusion into the circulation 
metabolisation 

The re-uptake of NA into the nerve therminal (uptake I) which is an active 
process, is by far the most important mechanism in the inactivation of this 
substance. Only by re-uptake the local excitatory action of released NA is 
terminated (Iversen, 1973). 
Although, the catecholamines are mainly metabolized in the liver, some 
enzymatic destruction occurs locally (Wurtman, 1965). Besides this "direct" 
elimination part of the amount ofNA is removed by diffusion into the circula­
tion (Iversen, 1967) and subsequent extraction by the liver. Finally, NA can be 
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taken up into extraneuronal peripheral tissues, such as muscle (uptake Il; 
Iversen, 1967), a process blocked by steroids (Kalsner, 1964). 
Cholesterol blocks a similar process in heart muscle (Salt and Iversen, 1972). 
While uptake I is followed by retention of NA, uptake II is followed by 
metabolism (Iversen, 1973). Inhibition of one of these processes leads to a 
compensatory increase in the other (Gillespie, 1973). Three mechanisms are 
involved in the break-down of the neuronal hormones, namely; a-methylation, 
oxidative deamination and conjugation. The different metabolic pathways are 
shown in figure 49. 0-methylation by S-adenosylmethionine (catalyzed by 
catechol 0-methyltransferase, C.O.M.T.), is the major pathway for adrenaline 
and oxidative deamination (enzyme: Mono-amine oxidase, M.A.O.) for nor­
adrenaline. The metabolites are excreted either as free compounds or con­
jugated via the bile and via the urine. 

PNMT 

I SAM l 
Noradrenaline Adrenaline 

MAO COMT 

metabolites 

Fig. 49 Metabolism of noradrenaline. 

Noradrenaline makes up about 80% of the total plasma catecholamine level 
(Engelman et al., 1970); the major sources of plasma noradrenaline seem to be 
the sympathetic nerves of the heart (De Quattro and Sjoerdsma, 1968). The 
plasma level ofNA is dependent on the following parameters:rate of diffusion 
into the circulation and rate of removal from the circulation. The former is 
further influenced by release by nerve terminals, post-synaptic binding, re­
uptake and local enzymatic break-down. 
The rate of removal depends on the integrity of the metabolic processes, 
especially in the liver. Although it can be seen that the plasma level can change 
when any of the above mentioned variables alters, it is still thought that NA 
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levels are, at least qualitatively, a reliable index of sympathetic nervous 
activity (Yamaguchi et al., 1975). 
Whether urinary excretion of catecholamines runs parallel with changes in 
plasma concentration, remains a subject of controversy. The amount of nor­
adrenaline and adrenaline, excreted in the urine, is affected by changes in 
glomerular filtration rate and perhaps also by tubular processes (Rennick and 
Pryor 1965; Overy et al., 1967). In addition, it is still unknown to what extent 
the kidney participates in the metabolism of catecholamines and therefore by 
its function per se determines the excretion of metabolites (lkoma, 1965). 
Despite these theoretical objections, there is ample evidence that urinary 
excretion of noradrenaline is proportional to its plasma level under various 
clinical conditions (Engelman et al., 1970; Fluck, 1972; De Quattro and Chan, 
1972; Vide back et al., 1972; Esler et al., 1973c; Louis et al., 1973; Cuche et al., 
1974). 

9.3 Adrenergic receptors 

9.3.1 General remarks 

Dale (1906) first conceived the adrenergic receptor to explain his experiments 
with an ergot alkaloid. Although, in the following years, many physiological 
responses to catecholamines became known, it was not until 1948 that the 
amount of data was put together and organized within a conceptual framework 
(Ahlquist, 1948). On the basis ofpharamacological studies, namely the relative 
potency of different catecholamines to evoke physiologic processes, the 
adrenergic effects were divided into two main groups, mediated by two 
different receptors, which were called alpha and beta. 
The alpha-receptors appeared to be stimulated by adrenaline and noradrena­
line, but not by isoproterenol (isoprenaline); adrenaline was the most potent of 
these drugs. On the contrary, beta-receptors were most sensitive to isoprena­
line, while showing relatively few responses to adrenaline and noradrenaline. 
The naturally occurring catecholamines (adrenaline and noradrenaline) are 
able to stimulate both receptors; for this reason the physiologic response of 
each of these receptors has been studied mainly by administration of phar­
macological agents, which possess either alpha- or beta agonistic, c.q. 
antagonistic effect. The beta-adrenergic responses have been further sub­
divided into beta-! and beta-2 (Lands et al., 1967). Beta-! receptors are almost 
equally stimulated by adrenaline and noradrenaline, while beta-2 receptors are 
far more sensitive to the action of adrenaline. 
Isoprenaline acts on both beta-receptors; its relative potency over nor­
adrenaline is greater for beta-2 than for beta-1 receptors. 
Recently, a third type of adrenergic has been added to the list; this one has been 
called dopaminergic, since it is stimulated by dopamine, the direct precurserof 
noradrenaline (Iversen, 1975; Reid, 1977). 
Although molecular characteristics are unknown the adrenergic receptors 
could be considered as specific structures within or at the surface of certain 
cells. These structures are able to bind natural catecholamines and synthetic 
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(agonistic or antagonistic) agents with an appropriate complementary struc­
ture. The drug-receptor interaction is a dynamic process, based on forces 
between molecules which probably lead to conformational (stereo-isometric) 
changes; these, in tum, are thought to induce a sequence of intracellular 
biochemical reactions. ultimately leading to a specific effect (Ariens and 
Simonis, 1976). 
The chain of interacellular events, evoked by stimulation, is best known for 
beta-receptors, where activation enhances the activity of the enzyme 
adenylate cyclase. This results in an elevation of the intracellular level of cyclic 
A.M.P., the "second messenger" (Sutherland and Rail, 1960). By this 
substance a number of enzymes are activated, which are involved in the 
metabolism of substrates mediating the responses to many hormones and 
drugs (Langan, 1975). Responses of dopaminergic receptors seem to follow the 
same pathway (Iversen, 1975; Reid, 1977), but alpha-adrenergic receptors 
differ somewhat in that they probably accumulate cyclic G.M.P. upon 
stimulation (Goldberg et al., 1975). 

93 .2. Distribution and effects of adrenergic receptors 

Adrenergic receptors are still hypothetical entities, which means that we do 
not know anything about their chemical or structural characteristics. Even 
histological studies cannot yet unequivocally demonstrate the existence of 
such specialised elements. The lack of exact knowledge about them is fur­
thermore reflected by the fact that the precise location and the number of 
receptors is unknown. All that is known about receptors mainly depends on the 
interpretation of drug interactions with physiological processes. 
Recently studies with radioactively labeled beta-adrenergic antagonists have 
indicated that the number of beta-receptors in the human leucocyte approxi­
mates 2000 (Williams et al., 1975). Sympathetic innervation is not a prere­
quisite for tissues to contain adrenergic receptors, since their presence has 
been demonstrated not only in circulating cells like leukocytes (Williams et al., 
1975), but also in uterine smooth muscle (Tsai and Fleming, 1964). which is 
devoid of sympathetic innervation (van Oriel et al., 1973). 
Although the adrenergic receptors are widely distributed throughout the body, 
we will deal in this section only with those involed in circulatory control. 

Peripheral alpha-receptors 

These are located in blood vessels and smooth muscle; they are stimulatory in 
nature, thus leading to vasoconstriction and arteriolar muscle contraction. 

The vasoconstriction is most pronounced in the vascular bed of the kidney and 
the skin; the effect is least in skeletal muscle and totally absent in the cerebral 
circulation (Ahlquist, 1976). The effect on the coronary circulation has been 
the subject of debate; although it has been stated that neurogenic control of 
coronary arterial tone is of relatively little importance (Berne, 1964; Berne et 
al., 1965; Gellai et al., 1973), it has been established quite firmly that the 
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coronary arteries are supplied with both alpha- and beta-receptors (Pitt et al., 
1967;Feigl, 1967;Vatneretal., 1970;McRavenetal., 1971;Marketal., 1972), 
the fonner being predominant in the lal'ger vascular segments (Zuberbuhler 
and Bohr, 1965; Bohr, 1967). Coronary alpha-receptors indeed are sensitive to 
catecholamines (Gaal et a!.. 1966) and recently they were attributed patho­
physiological significane in the syndrome of variant angina pectoris (Yasue et 
a!., 1974, 1976). 
Administration of alpha-agonists causes systemic hypertension by an increase 
in peripheral vascular resistance. Heart rate slows due to baroreceptor 
reflexes. Alpha-receptors are stimulated both by noradrenaline and adrena­
line, the latter being the most potent. There are several pharmacological agents 
with either stimulate (e.g. phenylephrine) or block (e.g. phenoxybenzamine) 
the alpha-receptors. Practically no chemical relation exists between 
endogenous catecolamines and alpha-blocking drugs (Ariens, 1967; Ariens and 
Simonis. 1967) which are chemically more close to cholinergic or histaminergic 
receptors. 
It is thought that noradrenaline, as the neurotransmitter substance, activates 
the receptors in response to stimulation of sympathetic nerves, whereas 
adrenaline is likely to activate those which are not in connection with sym­
pathetic nerve fibers (Ariens and Simonis, 1976). On the basis of these dif­
ferences, one could postulate two types of alpha-receptors, which are sensitive 
either to the transmitter or the circulating honnone. 

Peripheral beta-receptors 

These are located in the heart. blood vessels and smooth muscle; the cardiac 
receptors are stimulatory and are called beta-!; the smooth muscle receptors 
are called beta-2: they have a relaxant action. Thus beta-! stimulation aug­
ments cardiac contractility, and increases heart rate and cardiac output; 
stimulation of beta-2 receptors results in a fall in peripheral resistance due to 
vasodilation. 
Noradrenaline also acts as neurotransmitter substance for beta-receptors; it is 
as potent as adrenaline in stimulating betha-1 receptors, but considerably less 
potent in stimulating beta-2 receptors. As for the alpha-receptors the possibi­
lity exists that the relative sensitivity of beta-receptors for endogenous cate­
cholamines depends on the degree of sympathetic innervation. 
A large number of pharmacological agents has been synthesized with an effect 
on beta-receptors. Isoprenaline. for instance. stimulates both beta-receptors; 
beta-adrenergic blocking agents appeared to be relatively selective for beta-! 
(atenolol. practolol) or beta-2 (butoxamine) receptors, whereas others were 
not selective at all (e.g. propranolol). Agents which block or stimulate beta­
receptors do show a chemical relationship. with a hydroxy-ethylamino-group 
as a common constituent. 

Peripheral dopaminergic receptors 
These newly discoverd receptors are encountered mainly in the renal vascu­
lature. They are most potently stimulated by the noradrenaline precursor 
dopamine, while haloperidol inhibits this effect. Catecholamines, alpha- and 
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beta-antagonist, have little effect on these receptors. Dopamine administration 
augments myocardial contractile state with relatively little effect on heart rate 
(Rosenblum et al., 1972; Goldberg, 1972). It also increases renal blood flow 
(Talley et al., 1969; Breckenridge et al., 1971; Goldberg, 1972; Hollenberg et 
al., 1973) and sodium execretion while systemic vascular resistance is further 
reduced through coeliac and mesenteric vasodilation (Rosenblum et al., 1972). 

It must be emphasized that above mentioned characteristics are related to 
peripheral adrenoceptors. Similar receptors are found in the brain and these 
contribute to neuroendocrine control of the circulation and other vital func­
tions. This matter will not be pursued in this thesis. 

9.4 Dopamine beta hydroxylase (D.l.I.H.) 

This enzyme is responsible for the conversion of dopamine into noradrenaline 
(Levin et al., 1960). It is firmly bound to the catecholamine storage vesicle 
membrane (Kirshner, !957), but there is also a soluble form of this protein 
(Ouch et al., 1968; Viveros eta!., 1968; Hortnagl eta!., 1972; Wooten and 
Cardon, 1973). It is released together with the catecholamines in equal 
amounts by exocytosis (Viveros et al., 1968). Presynaptic innervation of 
chromaffin cells in the adrenal medulla not only controls secretion of cate­
cholamines and D.B.H., but also its rate of synthesis (Viveros et al., 1969; 
Kvetnansky et al., 1971). 

In the sympathetic nerve fibers the storage vesicles are formed in the perika­
ryon; at this moment they do not contain catecholamines, but they do have 
D.B.H. (Kopin et al., 1976). The catecholamines are formed as the vesicles 
travel down to the nerve terminal. When the latter is depolarized, the soluble 
contents of the vesicle are secreted into the synaptic cleft; the same exocytotic 
process is operative in the nerve terminal and in the adrenal medulla (Smith and 
Winkler, 1972; Weinshilboum et al., 1971). Unlike noradrenaline, D.B.H. by 
its protein structure, is not able to diffuse rapidly into the circulation. Except 
for some organs with large endothelial gaps (such as in the adrenal medulla and 
in the spleen), through which D.B.H. can leak away, most of it enters the 
circulation by way of the lymphatics (Ngai et al., 1974). Animal studies have 
shown that plasma D.B.H. is derived mainly from the sympathetic nerves 
(Weinshilboum and Axelrod, 197la). In man. this is also probable (Noth and 
Mulrow, 1976). 

Studies on the turnover rate of this enzyme (Rush and Geffen, 1972: Reid and 
Kopin, 1974, 1975) thus far, did not yield conclusive data. However. since only 
soluble D.B.H. is implicated in these studies and since the behaviour of the 
membrane bound fraction is still unknown, it cannot be excluded that this latter 
fraction maintains plasma D.B.H. levels by some mechanism, unrelated to the 
secretory process. 
In fact, this has been proposed (Kopin et al., 1976) to explain the observation 
that alterations of plasma D.B.H. do not always run parallel with greater or 
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lesser release of catecholamines (De Quattro eta!., 1975). Whether D.B.H. 
levels in plasma reflect sympathetic activity remains unclear. Although a rise 
in D.B.H. during exercise (Plantz et a!., 1975) or after assumption of the 
upright posture (Okada eta!., 1974) was noted, these observations have not 
generally been confirmed (Ogihara and Nugent, 1974; Leon eta!., 1974: Noth 
and Mulrow, 1976) and changes in D.B.H. are not always related to changes in 
noradrenaline (Lake eta!., 1977a). 
Moreover, the amount of D.B.H., determined by radio-immunoassay, does 
not correlate with its enzymatic activity (Geffen, 1974). Despite these cri­
ticisms, D.B.H. is still considered by several authors to be an index of the 
activity or the sympathetic nervous system (Weinshilboum and Axelrod, 
1971b; Geffen et al., 1973; Wooten and Cardon, 1973; Planz et a!., 1975; 
Schanberg and Kirshner, 1976; Mathias et al., 1976). 

It is extremely difficult to assess the possible role of serum D.B.H. in essential 
hypertension, since in normal man there is already a wide variety in serum 
levels. There is strong evidence that this is highly influenced by genetic 
determinants (Lamprecht eta!., 1973; Ross eta!., 1973; Weinshilboum et al., 
1973; Ogihara eta!., 1975). D.B.H. levels tend to increase with age in early life 
(Weinshilboum et al., 1971, 1973; Wetterberg eta!., 1972; Ross eta!., 1973) till 
about the 15th year, whereafter, it decreases (Ogihara eta!., 1975). to rise again 
in the sixth decade (Freedman et al., 1972). In individual studies over a 
relatively short period, D.B.H. levels remain remarkably constant; further­
more, it tends to decrease when hypertension develops (Lamprecht et a!., 
1975). 

The above mentioned variables have, in general, not been taken into account in 
studies on D.B.H. in hypertension and this could be an explanation for the 
rather conflicting results. Schanberg and coworkers (1974) found a positive 
correlation between elevated D.B.H. levels and the lability of blood pressure; 
a positive relation between D. B. H. and blood pressure has been reported by 
Geffen eta!. (1973). Such a relationship could not be confirmed in another 
study (Horwitz eta!., 1973). Although the mean D.B.H. level is sometimes 
reported to be elevated in essential hypertension (Wetterberg eta!., 1972; De 
Quattro and Miura, 1973;) In other series there was no significant difference 
(Nagatsu eta!.. 1970: Horwitz eta!., 1973; Aberg eta!., 1974; Ogihara eta!., 
1975; Alexandre eta!.. 1975: Lake eta!., J977a) Or even a decrease (De Quattro 
eta!.. !975) as compared with a normotensive control group. 
In borderline hypertension the situation is also unclear, D.B.H. being found 
elevated (Stone eta!., 1974) and normal (Horwitz eta!., 1973; Geffen eta!., 
1973). 
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9.5 Results 

9.5.1 Introduction 

In this chapter we will investigate the role of the sympathetic system in 
essential hypertension, as assessed by measurements of noradrenaline in 
plasma under basal conditions. This was done in the group of 59 patients, 
which was described in chapter 8. In view of the drawbacks mentioned above 
for the determination and interpretation of D.B.H. levels we have confined 
ourselves to the measurement of noradrenaline. 
In addition, we were interested in the kidney as a potential source of nor­
adrenaline secretion. Such a mechanism would be quite possible in view of the 
dense connections between the sympathetic system and the kidney. 
Moreover, it has been suggested recently that in a number of patients with mild 
blood pressure elevation the urinary excretion of free catecholamines, sup­
posed to be of renal origin, is increased (Kuchel eta!., 1976). Finally, it has 
been demonstrated that the kidney contains appreciable amounts of dopa­
decarboxylase and M.A.O. (Sandler and Ruthven 1969), which points to active 
metabolism. These observations prompted us to study the renal release of 
noradrenaline in blood. 

9.5.2 Relation with age 

The average noradrenaline level was 0.28 ± 0.02 ng/ml. In two patients (one 
man and one woman) rather high values for plasma noradrenaline were found 
but without an apparent cause. No relationship was found between noradrena­
line concentration and age (fig. 50). 
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Fig. 50 Relationship between noradrenaline levels and age. Age years 
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9.5.3 Interrelations 

Noradrenaline versus systemic haemodynamics 

Noradrenaline levels were not related to 10 am blood pressure. In 45 patients 
the relationship of noradrenaline and diurnal variation of blood pressure (cf. 
Chapter4) was assessed. 
Noradrenaline was not relate to basal blood pressure. Although there was a 
tendency towards an inverse relationship between absolute or relative dia­
stolic variability and noradrenaline, these relations were not significant. 
However, despite a wide scatter, significant inverse relations were obtained 
between noradrenaline and absolute (r= -0.35; p<0.02) or relative (r= -0.37; 
p<0.02) systolic variability. A similar pattern was found for the relation 
between noradrenaline and variability of mean arterial pressure either expres­
sed in mm Hg (r= -0.37; p<0.02) or as a percentage (r= -0.35; p<0.02). 
Moreover, noradrenaline exhibited an inverse relationship with pressor range 
(fig. 51), irrespective of its expression in mm Hg (r= -0.34; p<0.025) or as a 
percentage (r= -0.31; p<0.05). No relations were found between NA and 
depressor range. 
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Fig. 51 Relationship between pressor range and noradrenaline. 

Noradrenaline levels were not related to heart rate. stroke volume, cardiac 
output and total peripheral vascular resistance. 

123 



Noradrenaline versus the renin-angiotensin-aldosterone system 

No relationships were found between noradrenaline levels and total, active or 
inactive renin (fig. 52). Neither is there a relation between noradrenaline and 
aldosterone. 
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Fig. 52a Relationship between noradrenaline levels and active renin concentration. 
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Noradrenaline versus renal haemodynamics and plasma volume 

No relationships were found between noradrenaline levels and either renal 
plasma flow, glomerular filtration rate, renal vascular resistance, filtration 
fraction, renal fraction and plasma volume. 

Noradrenaline versus intrarenal haemodynamics and noradrenaline secretion 
by the kidney 

In I 0 patients the relation of noradrenaline to intrarenal haemodynamics could 
be assessed. When the arterial levels of noradrenaline were plotted against 
renal plasma flow and total renal blood flow no significant relations were 
found. In contrast, arterial noradrenaline levels exhibited an inverse rela­
tionship with c1 (r= -0.72; p<0.05) and M.B.F. (r= -0.65; 0.05<p<O. 10) but 
not with C2 or C3. Noradrenaline levels in renal arterial blood also showed an 
inverse relationship of borderline significance with % C 1 (r= -0.65; 
0.05<p<O. 10). 
No significant relationship was found between arterial noradrenaline and 
absolute cortical blood flow (r= -0.58; n.s.), However, when the peripheral 
venous level of noradrenaline (the sample being drawn on a separate day) was 
substituted in these relations, it appeared that similar patterns were found with 
the exeption that the relation between C 1 and noradrenaline became weaker 
(r= -0.65; 0.05<p<O. 10), while the relation between absolute cortical flow 
and noradrenaline became stronger (r= -0. 76; p<0.05). (lig. 53). 
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Fig. 53 a Relationship between renal cortical blood flow and peripheral noradrena­
line levels, the sample being drawn on a separate day. 
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The average concentration of noradrenaline in arterial blood was 0.25 ± 0.02 
ng/ml; in renal venous blood this amounted 0.27 ± 0.02 ng/ml. Due to the 
scatter of data this difference was not significant. When the venous level was 
expressed as a percentage of the arterial concentration this level was 118 ± 2% 
(or 115 ± 2% depending on which the "negative secreters" were considered to 
have 100% or below.) In both cases the increase was significant. Noradrenaline 
secretion rate on the average was 18.6 ± 1.9 ng.min. 
Noradrenaline secretion rate was not related to age, blood pressure or any 
haemodynamic parameter. Moreover, no relationship was found between 
secretion of noradrenaline and active or inactive (or total) renin. 
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Fig. 53b Relationship between renal cortical blood flow and arterial noradrenaline 
levels. 
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9.6 Discussion 

When labeled noradrenaline is infused, the plasma disappearance rate appears 
to be higher in essential hypertensives than in normotensive subjects (Gitlow et 
al., 1964). Urinary excretion, on the other hand, is increased in the hyper­
tensive group (Gitlow et al., 1969), when noradrenaline is administered in low 
doses. From these observations it has been concluded that hypertensive 
subjects exhibit a diminished uptake or retention of (exogenous) noradrena­
line. When apparent "NA secretion rate" is calculated in such experiments, it 
appears to be decreased (Wolfe! al., 1967). 
However, there are several methodological objections to these kinds of ex­
periments, as has recently been reviewed by Mendlowitz and Lachakis ( 1976). 
The only fact, which remains valid, is the enhanced disappearance ofNA from 
the circulation in essential hypertension. Whether this is due to increased 
turnover or mainly to diminished retention has still to be settled. 
Early studies on the excretion of catecholamines and their metabolites in 
patients with essential hypertension frequently gave results which are within 
(Von Euler et al., 1954; Griffiths and Collinson, 1957; Sato et al., 1961; 
Sjoerdsma, 1961; Brunjes et al., 1963; Brunjes, 1964; Stott and Robinson, 1967) 
or slightly above (Von Studnitz, 1960) the normal range. On the other hand, 
elevated urinary catecholamine excretion was described (Neste! and Doyle, 
1968; Kuschke, 1961) in patients with "borderline" hypertension. Initially 
plasma levels were also reported to be normal (Hoobler et al., 1954; Manger, 
1962). However, recently more sensitive methods have become available to 
determine plasma and urinary catecholamines. 
Urinary excretion of catecholamines usually is normal in essential hyper­
tension (Lorimer et al., 1971; Bing et al., 1977), only a small portion of the 
patients showing an increase in catecholamine excretion (Kuchel, 1977). In 
view of the tubular reabsorption ofNA (Overy et al., 1967) and the relationship 
between noradrenaline excretion and urine flow (Kuchel, 1977) serious doubt 
raises against the usefullness of such an assessment. [t seems preferable, 
therefore, to measure plasma catecholamines. 
Several authors using different new techniques demonstrated an increased 
level of noradrenaline in hypertensive patients (Engelman et al., 1970; De 
Quattro and Chan, 1972; De Quattro and Miura, 1973; De Quattro et al., 1975; 
Jiang er al., 1973; Louis et al., 1973. 1974: Esler and Neste!, 1973C; Cuche et 
al., 1974; De Champlain et al.. 1976), although this could not always be 
confirmed (Christensen and Christensen, 1972; Pedersen and Christensen, 
1975). 
Moreover, Louis et al. (1973, 1974) found a significant direct relationship 
between resting plasma NA and systolic and diastolic blood pressure. A 
correlation between NA and diasolic blood pressure has also been reported by 
De Quattro et al. (1975). It appeared from several of the above mentioned 
studies that noradrenaline was more often raised in patients with "esta­
blished" hypertension than in those with "labile" hypertension. 
This suggests the possibility of a physiological increase of sympathetic activity 
with age. Indeed such trends have been observed both in normotensives and in 
hypertensives (Pedersen and Christensen, 1975: Lake et al., 1977b; Weidmann 
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et al., 1977). In contrast, Sever et al. (1977) found such a trend only in 
normotensives. 
In our study no relations were found between noradrenaline and either age or 
blood pressure. This may in part be explained by selection of patients. More­
over, some of these differences may be due to sodium intake. In most studies 
cited, sodium intake was not controlled~ yet sodium restriction is known to 
raise noradrenaline levels (Bennett et al., 1976; Biihler and Lutold, 1976). In 
the study of Cuche et al. (1974) patients received a fixed amount of 135 meq. 
sodium. Although urinary excretion of catecholamines was not affected by 
age, those patients considered to have "labile" hypertension showed an 
enhanced excretion of noradrenaline, while plasma noradrenaline was lower 
than in the patients with "stable" hypertension. In the same study, however, it 
was shown that the latter group also excreted less sodium. Finally, the time of 
sampling may have played a role. 
Our study also indicates that the pattern of blood pressure variability may have 
influenced various studies. The relations between blood pressure variability 
and noradrenaline levels were rather weak, but this could be caused by the fact 
that noradrenaline samples were drawn only once on the day of study. Never­
theless, we found an inverse relationship between plasma noradrenaline and 
variability of mean blood pressure. Moreover, a similar relationship existed 
between noradrenaline levels and pressor range. If it is assumed that pressor 
reactions are due to an increase in vascular resistance, this precludes a role of 
the sympathetic system in this aspect of blood pressure variability. On the 
other hand, one could argue that the results indicate that alterations in pressor 
range are accompanied by parallel changes in urinary excretion of noradrena­
line. This would then account for the fact that in older age groups plasma 
norddrenaline is more often found to be raised while urinary excretion of this 
substance is normal and also support the direct relationship between varia­
bility of blood pressure and enhanced excretion of adrenaline (DeGuia et al., 
1973). However, such a mechanism seems unlikely since one would expect 
more pronounced variations in the urinary excretion of noradrenaline. More­
over such an assumption is contradictory to the reported direct relationship 
between plasma and urinary catecholamines. Finally. Aronov et al. ( 1973) did 
not find a consistent diurnal variation in levels of plasma and urinary nor­
adrenaline. 
Another possibility would be that noradrenaline secretion is stimulated or 
inhibited (by feed-back) to compensate for alterations in vessel wall tone 
induced by another mechanism which has yet to be defined. Such a mechanism 
could be evoked by presynaptic stimulation of alpha-receptors leading to a 
decrease in noradrenaline release. Alternatively, re-uptake of noradrenaline 
could be affected by local changes in vascular tone. Except for these local 
regulations one could think of reduced sympathetic outflow from the central 
nervous system, caused by baroreceptor reflexes. In this respect the study of 
Lew (1976) is of interest. In genetically hypertensive rats this investigator 
found noradrenaline levels in the hypothalamus to vary inversely with diurnal 
blood pressure variations. 
Whatever the exact mechanism, the sympathetic nervous system in essential 
hypertension seems to be related more to daily pressor reactions rather than to 
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the "absolute" level of blood pressure. So no firm evidence is found that the 
system is pathogenetically involved in this disorder. This is also confirmed by 
the lack of a relationship between noradrenaline and vascular resistance. The 
arguments cited by Bing eta!. (1977) fit this view. 
On the other hand, from a view point of methodology any conclusions at this 
time are bound to be premature. Firstly, the absence of a relation between NA 
and vascular resistance does not prove that such a relation indeed does not 
exist, since NA can affect cardiac output simultaneously. Secondly, it is still 
possible that NA levels do not reflect sympathetic activity. H must be borne in 
mind that plasma NA only mirrors the overflow from synaptic clefts, which is 
only manifest "after the action". 
In respect to renal function we found a tendency for the cortical circulation to 
be reduced at higher levels of noradrenaline. Jntrarenal infusion of NA also 
causes a progressive decrease in mean renal blood flow and C 1 flow rate 
(Hollenberg et a!., 1972). Whereas no relations were found between nor­
adrenaline and total renal blood flow or renal vascular resistance, the highly 
significant inverse relationship between endogenous NA and cortical flow 
point to an extreme sensitivity of the renal cortical vessels. Since it can be 
reasoned that it will be rather difficult to demonstrate such a relationship in the 
intact human being, the actual finding suggests a direct causality. So a high 
degree of fuctionalvasoconstiction in this area seems to be at least in part 
dependent on sympathetic activity. This agrees with the assumption of 
Hollenberg and Dams (1976) on cortical vascular tone. 
It further demonstrates that studies on the intrarenal circulation can no longer 
be interpreted without paying attention to sympathetic involvement. This has 
to be emphasized in appreciating the results of our Xe-washout studies. Of 
further interest is the observation that the kidney is able to release NA. a fact 
which has not been reported hitherto. Lake eta!. (1976) found that NA levels 
were higher in blood samples drawn from the superior vena cava than in 
arterial blood, which was explained by removal of NA through the lungs. 
However. no attempt was made to find a source for the venous catechola­
mines. Although it is not excluded that other organs contribute to the higher 
venous level of noradrenaline. at least the kidney is one of its origins. Since NA 
production was quite independent of several factors. including age, level of 
blood pressure and arterial or peripheral venous level of noradrenaline, we 
seem to be faced here with an independently acting mechanism. lfNA produc­
tion would merely reflect sympathetic tone and overflow of transmitter. one 
would expect more directional relations between noradrenaline production 
and flow patterns. No relationship was found between NA secretion and renin 
secretion. Peripheral samples did not correlate either. This is in contrast with 
the observations of others. The relationship between NA and plasma renin 
levels varies in the literature from positive (De Quattro and Miura, 1973) to 
negative (Louis eta!., 1974), thus suggesting that there is no relation at all. 
When patients were stratified according to their renin levels, average nor­
adrenaline levels have more often been found to correlate with the average 
renin level (Esler eta!., 1976, !977; De Quattro eta!., 1976) although again the 
data are conflicting (Mitchell et a!., 1977). At present there is insufficient 
evidence for a role of the sympathetic system in regulating basal levels of renin 
in hypertension. 

129 



9. 7 Conclusions 

From the data presented this chapter the following conclusions can be drawn. 

1. Plasma noradrenaline levels are not increased in patients with essential 
hypertension when compared to normotensive controls. 

2. Noradrenaline levels are not related to age or blood pressure, but vary 
inversely with variability of mean (and systolic) blood pressure and 
pressor range. 

3. Whereas haemodynamic parameters, in general, do not correlate with 
noradrenaline levels, outer cortical blood flow through the kidney 
appears to be highly dependent on sympathetic tone. 

4. At least in patients with essential hypertension, the kidney is able to 
release noradrenaline regardless of other factors like blood pressure of 
sympathetic activity. 

5. There is no firm evidence that renin levels under basal conditions are 
related to sympathetic activity. 
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CHAPTER 10 

The adrenergic system in essential hypertension 

II Functional approach 

10.1 Introduction 

In the previous chapter it was shown that there is still insufficient evidence for 
a causative role of the sympathetic nervous system in essential hypertension. 
Catecholamines are only raised in a minority of patients with essential hyper­
tension and sometimes normotensive persons also appear to have increased 
amounts of catecholamines. This raises the possibility that there is an in­
creased sensitivity or reactivity to sympathetic stimuli in hypertension. 
One problem is that plasma levels of NA or D.B.H. may fail to reflect sym­
pathetic activity. In view of the complex mechanisms involved in release and in 
activation of N A. it could be argued that only an excessive sympathetic drive 
will lead to an increase in plasma NA. Indeed, the studies of Louis eta!. lend 
some support to this hypothesis. On the other hand, a normal sympathetic 
impulse could be related to an abnormal release or defective re-uptake of 
neurotransmitter. The first possibility is unlikely, since tilting produces similar 
increases in N A in normotensive and hypertensive subjects (De Quattro and 
Chan, 1972). A defective re-uptake ofNA cannot be completely ruled out, but 
if this were the case. D.B.H. levels, whatever their significance, would be in 
the normal range, since this enzyme is not affected by the re-uptake 
mechanism. 
The data of Geffen eta!. (1973) contradict this re-uptake defect. On the other 
hand, the wide variation in D.B.H. levels could possibly mean that there is a 
more or less defective re-uptake in some patients with essential hypertension. 
An increase in sensitivity to sympathetic stimuli implicate either alpha­
receptors or beta-receptors. While the former are involved in vasoconstric­
tion. the latter may account for a hyperdynamic circulation. Under normal 
circumstances the interplay between both divisions of the sympathetic system 
is thought to be balanced carefully by baroreceptor reflexes and other feedback 
mechanisms. This balance could be disturbed in essential hypertension. 
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10.2 Adrenergic reactivity 

10.2.1. Vascular reactivity 

Experimental studies on isolated vascular segments have revealed that the 
vasoconstrictor response to noradrenaline can be potentiated by low density 
lipoproteins (Bloom eta!., 1976) and by angiotensin II (A II) (McGregor, 1965; 
Panisset and Bourdois, 1968; Zimmerman eta!., 1972; Malik and Nasjletti, 
1976). The facilitation of adrenergic transmission by A II follows enhanced 
synthesis (Roth, 1972) and release (Zimmerman and Gisslen, 1968; Starke et 
al., 1969; Hughes and Roth, 1971) of NA, while inhibition of there-uptake 
process (Khairlallah, 1972) could also participate. This phenomenon probably 
reflects a local A II mechanism (Malik and Nasjletti, 1976). When NA is 
released by tyramine, the pressor response is still increased by A I! (McCubbin 
and Page. 1963; Page, eta!., !966; Kaneko, eta!., !966). 
Another possible cause for the increased vascular sensitivity is an alteration in 
muscle cell properties and this, in fact, has been found by Jones (1973, 1974) in 
spontaneously hypertensive rats. These rats, originally bred by Okamoto and 
Aohi (1963), show features which are very similar to those of human essential 
hypertension (Grollman. 1972). lt appeared that the turnover of K and CL was 
increased, while intracellular NA was accumulated in excess in spontaneously 
hypertensive rats, as compared to a normotensive strain of rats. These 
observation have been extended by Hermsmeyer (1976) who discovered an 
alteration in membrane potential in arterial vascular muscle cells of spon­
taneously hypertensive rats, presumably due to increased membrane permea­
bility of NA, K and CL ions. Experiments with noradrenaline revealed a 
greater depolarization in spontaneously hypertensive rats as a result of the 
altered membrane potential electrogenesis. 
These observations link together current insights in molecular physiology and 
the old concepts about the finding of sodium accumulation in vascular walls 
(Tobian and Binion, 1952, 1954; Tobian and Redleaf, 1958; Tobian eta!., 1961). 
It has been suggested that the ratio between intracellular and extracellular 
sodium would either narrow mechanically the vessel lumen or increase the 
sensitivity to pressor substances (Raab, 1952; Friedman eta!., 1959; Tobian, 
1960). The present evidence. relating membrane polarisation to vascular tone 
seems to confirm an old hypothesis (Bacq and Monnier 1935). In addition, 
anatomical changes alter the normal reactivity to pressor agents (Folkow. 
1971; Tobian, 1972). 
There is some evidence that in a number of hypertensives the vascular re­
sponse to exogenous catecholamines is increased (Goldenberg et a!., 1948; 
Greisman, 1952; Doyle and Smirk, !955; Duff, !957; Mendlowitz and Naftchi. 
!958; Doyle eta!., 1959; Mendlowitz eta!., !965; Sivertsson and Olander, 1968; 
Suck eta!., 1971 ). Release of endogenous NA by tyramine produces the same 
results (Mendlowitz eta!., 1967). This reaction pattern, however, is not always 
present (Gombos et a!., 1962) and also occurs in normotensive off-spring of 
hypertensive patients (Doyle and Fraser, 1961). This phenomenon, therefore. 
may be related rather to genetic determination than to the hypertension as 
such. In addition, the hyperresponsiveness probably is not cofined to the 
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action, of noradrenaline, since adrenaline (VIachakis et al., 1974; De Guia et 
al., 1973) and angiotensin (Mendlowitz et al., 1961) are capable of inducing an 
exaggerated response as well. The influence of stress on blood pressure and 
catecholamines is also more pronounced in hypertensive subjects (Neste!, 
1969; Lorimer eta!., 1971). 
Although initially hyperresponsiveness was not demonstrated in renal vessels 
(Gombos et al., 1962), more recent investigations seem to contradict this 
finding (Hollenberg and Adams, 1976; Collis and Vanhoutte, 1977). In 
"borderline" hypertension, tilting (Esler an Nestel, 1973; Frohlich et al., 
1967), mental arithmetic (Nestel, 1969) and a negative pressure in the lower 
part of the body (Market al., 1975) all reveal hyperresponsiveness of the 
peripheral resistance vessels. As indicated before. it is still unclear whether the 
sensitivity to NA is determined by genetic factors, hypertension per se or by 
smooth muscle hypertrophy (Sivertsson and Olander, 1968). 

10.2 .2 Beta-adrenergic hyperreactivity 

Besides the vascular (alpha-receptor) hypersensitivity, an hyperresponsive­
ness of beta-receptors has been described in young patients with "labile" 
hypertension. It must be admitted that some clinical features, in particular, a 
rise in heart rate and/or stroke volume, indeed, suggest adrenergic overacti­
vity. Safar et al. (1975), however, found the "chronotropic" dose of isopro­
terenol to be normal in patients with "labile" hypertension in comparison with 
normotesives. In contrast, the dose appeared to be increased in patients with 
more sustained hypertension. 
Frohlich et al. (1966. 1969, 1970) described a hyperresponsiveness of cardiac 
beta-receptors in hypertensive patients. after infusion of isoproterenol. 
However, in the studies of Frohlich only a minority of the patients had 
"hyperkinetic borderline hypertension". Moreover, in a number of patients 
with "borderline" hypertension and an elevated cardiac output, no exag­
gerated rise in heart rate and cardiac output was found after infusion of 
isoproterenol. 
Isoproterenol has also been shown to produce exaggerated rises in cyclic 
A. M.P. and renin (Messerli er al., 1976b; Kuchel, 1977) in a number of patients 
with "borderline" hypertension. This may implicate a generalized hyper­
responsiveness of beta-receptors. At present, however, there is little evidence 
to assimilate a beta-adrenergic hyperresponsiveness with hypertension. 

10.3 Baroreceptor reflexes 

The adrenergic system is involved in several reflex arches and feed-back 
mechanisms regulating vasomotor control. blood flow distribution, renin 
release and possibly renal excretion of water and electrolytes. 
The most extensively studied division has been the baroreceptor reflex arch. 
The baroreceptors, located in the aortic arch and carotid sinus, serve to 
maintain blood pressure within fairly constant limits. If blood pressure falls. 
the altered rate of discharge tends to diminish the inhibitory action on 
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sympathetic nerve fibers. The resultant features are increased vasoconstric­
tion and tachycardia. 
Conversely, a rise in blood pressure will lead to less active vasoconstriction 
and cardiac slowing. Although in man the discharge from the baroreceptor 
cannot be determined directly, the sensitivity of the system to acute alterations 
in blood pressure either by postural changes or by injecting pressor substances 
can be established quite well. Baroreceptor sensitivity is undoubtedly reduced 
by age and also by high blood pressure itself(Gribbin et al., 1971). Bristow et al 
(1969) clearly demonstrated that baroreceptor function is diminished in 
established hypertension; whether this is also true for the early phase is still 
controversial. Studies from different laboratories have yielded conflicting 
results, both in favour of this theory (Gribbin et al., 1971; Takeshita et al., 1975) 
and against (Julius et al., 1975). 
A high variability of blood pressure which is especially encountered in younger 
patients with essential hypertension is also compatible with diminished baro­
receptor functioning, as has been suggested by the results of animal studies 
(Cowley et al., 1973). According to some investigators the baroreceptor can be 
"reset" to allow a higher level of blood pressure (McCubbin et al., 1956; 
Komeret al., 1974). 

In the experimental animal this resetting can occur by stimulation or destruc­
tion of certain brain areas (Reis and Cuenod, 1965; Folkow and Rubinstein, 
1966; Gebberand Snyder, 1970; Dobaand Reis, 1973). There is, however, also 
evidence that the baroreceptor in itself is malfunctioning (Aars, !968; Angeii­
James, 1973; Sleight et al., 1975). 

Whether in man this mechanism is of primary importance for the development 
of essential hypertension or merely is the result of the elevated pressure is still 
unsettled. 

In spontaneously hypertensive rats baroreceptor resetting has also been 
demonstrated (Nosaka and Okamoto, 1970; Nosaka and Wang, 1972; Coote 
and Sato, 1977; Brown et al., 1976). However, this phenomenon probably is 
secondary to the elevated blood pressure and related to aortic hypertrophy 
(Sapru and Wang, 1976). 

10.4 Propranolol, an anti-adrenergic agent 

10.4.1 Introduction 

In the treatment of hypertension a large number ofpharmaca have been used. 
Their mode of action has sometimes provided new insight in pathophysiologi­
cal processes. Of particular interest is the group of beta-blocking agents. The 
development of this class of drugs started in the fifties with the discovery of 
dichloroisoprenaline, which inhibited the relaxation of tracheal smooth muscle 
and the fall in arterial pressure, produced by isoprenaline (Powell and Slater, 
1958). It also inhibited the effect of adrenergic agents on the heart (Moran and 
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Perkins, 1958). These drugs, however, also had a marked sympathomimetic 
action (Moran and Perkins, 1958; Glover eta!., 1962). Shortly after pronethalol 
was synthesized, which counteracted the effect of sympathetic stimulation 
and, in addition, did not exhibit stimulant activity (Black and Stephenson, 
1962). Its clinical significance, however, was curtailed by its ability to produce 
thymic tumours (Alcock and Bond, 1964). The next stage was the development 
of propranolol, which, while being more active than its predecessors, did not 
exhibit carcinogenic properties (Black et a!., 1965). Propranolol has become 
the standard beta-adrenergic blocking agent and has withstood the test oftime 
despite the introduction of many related compounds. For several reasons, the 
main one being the experience with this drug in-our department, propranolol 
has been selected as the drug of choice in our study. 

10.4.2 Properties of propranolol 

Chemical structure 

From the structural formulas given in figure 54 it can be inferred that pro­
pranolol shows similarities with the beta-stimulating agent isoprenaline. The 
side chain determines interaction with beta-adrenoceptors. Owing to the 
asymmetric carbonatom two optically active enantiomers occur and, as is the 
case with catecholamines, the L-isomer of propranolol has considerably more 
activity than the D-isomer (Howe and Shanks. 1966; Patil, 1968; Buckner and 
Patil, 1971). 

OH /CH3 
'y"'y CH-CH2-NH-CH 

~ C)H "cH3 
OH 

ISOPRENALINE 

/CH3 
0-CH2-CH-CH2-NH-CH 

o) I -..... 
OH CH3 

# 

PROPRANOLOL (lnderal) 

Fig. 54 Structural formulas of isoprenaline and propranoloL 
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The two hydroxyl groups in the 3-4-positions in the aromatic ring of isoprena­
line are optimal for stimulating activity (Innes and Nickerson, 1970). The fused 
aromatic ring in the place of these hydroxyl groups and the insertion of the 
methylenoxy bridge (O-CH2) between the aromatic ring and the asymmetric 
carbon atom greatly reduces the stimulating activity (Clark, 1976). 

Effect on beta-adrenoceptors 

Propranolol binds with beta-1 as well as beta-2 receptors. It does not react with 
alpha-receptors. Since it acts by competitive antagonism, complete blockade 
can never be reached for increasing the dose of a simultaneously administered 
agonist (like isoprenaline) can overcome the blockade. The dose-response 
curve for the agonist is shifted to the right by propranolol (Cleaveland and 
Shand, 1972; George et al., 1972; Clark, 1976). The potency of this drug can be 
assessed both in vitro and in vivo but since this is only meaningful when 
compared to another drug, we will leave this from the discussion. 

Pharmacokinetics of propranolol 

When propranolol is administered orally, it is completely absorbed trom the 
gut (Paterson et al., 1970) and transported to the liver by the portal vein. 
Complete bioavailability, however, does not occur owing to a high hepatic 
extraction, known as presystemic (or "first pass") elimination (Rowland, 
1972). In man, a single dose higher than 30 mg, saturates the hepatic removal 
process, resulting in a larger fraction reaching the systemic circulation (Shand 
and Rangno, 1972). Nevertheless, even under chronic treatment the systemic 
availability of propranolol is not higher than 20-50% (Nies and Shand, 1975). 
Since the hepatic uptake remains saturated for several hours, repeated 
administration results in accumulation of the drug in the blood (Evans and 
Shand, 1973a). In the steady state during continuous oral administration, drug 
concentrations are proportional to dosage (Chidsey et a!., 1975; Nies and 
Shand, 1975; Shand, 1976). In the blood, propranolol is bound to albumin for 
about 90% (Evans and Shand 1973b; Evans eta!., 1973). Still, its distribution 
volume approximates about 250 liter (Evans et al., 1973; Shand and Rangno, 
1972). 
It is obvious therefore that there must be a significant accumulation of the drug 
in extravascular tissues. This occurs predominantly in liver and lung (Hayes 
and Cooper, 1971). In this chapter we will describe the results of two types of 
investigations with respect to sympathetic activity. In the first, we have 
stimulated the system by tilting, while in the other, we studied the haemo­
dynamic and endocrinological responses to beta-adrenergic blockade with 
propranolol. 
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Fig. 55 Example of hormonal changes during tilting. 
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Fig. 56 Example of hormonal changes during tilting in an other patient. 

138 



10.5 Tilt studies 

/0.5.1 Study protocol 

Studies were carried out in six subjects (aged 26 to 63 years) with blood 
pressures between 120 and 200 mm Hg systolic and between 70 and 120 mm Hg 
diastolic. After an overnight fast subjects were transported in a recumbant 
position to the investigation room. At 09.00 a.m. indwelling catheters were 
inserted for haemodynamic investigations. After 2!6 hours subjects were tilted 
to 30' for 30 minutes and subsequently to 60' for another 30 minutes. Samples 
for renin, aldosterone and noradrenaline were drawn before tilting, twice 
during the first ten minutes and at the end of each tilting period. In two patients 
we could not complete the protocol because of syncope shortly after tilting to 
60'. Before and after tilting blood samples were drawn for determination of 
hippuran to estimate renal plasma flow. 

10.5.2 Results 

During tilting blood pressure did not show marked variations. In all patients 
renal blood declined and renal vascular resistance increased. Although not 
significant in a statistical way, the increase in renal vascular resistance was 
more closely associated with the rise in noradrenaline (r ~ 0.73) than with the 
rise in active renin (r ~ -0.01 ). Examples of the hormonal changes are 
presented in figures 55 and 56. Tilting to 30' proved to be a rather weak 
stimulus. During this manoeuver levels of noradrenaline, renin and aldos­
terone remained either unchanged or showed a moderate increase. In contrast, 
tilting to 60' usually was accompanied by a substantial rise in hormone levels. 
Noradrenaline levels reached their peak values within the first five minutes of 
tilting, while both total and active renin concentration arrived at a zenith 
between five and fifteen minutes. Total and active renin followed a similar 
course and their respective changes were related to each other (r ~ 0.79: 
p<O.OOI). 
Aldosterone closely followed the pattern of renin and peak values coincided 
with those of renin. There was no relationship between changes in noradrena­
line and in total plasma renin concentration. However. a highly significant 
relation was observed between alterations in noradrenaline and in active 
plasma renin concentration (r ~ 0.90: p<0.002) as shown in fig. 57. 
Changes in plasma aldosterone were significantly related both to alterations in 
total (r ~ 0.64; p<0.02) and active (r ~ 0.88: p<O.OOI; fig. 58) renin concen­
tration and to those in noradrenaline (r ~ 0.81: p<O.OOI). 
Changes in inactive renin were not related to any of the above mentioned 
variables. 
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Fig. 58 Relationship between changes in active renin concentration and aldoste­
rone during tilting. 

10.6 Beta-blockade 

10.6.1 Study protocol 

From the group of patients described in the first part of this thesis. 45 subjects 
were treated with the beta-adrenergic agent propranolol. The average daily 
dose was 240 mg and the duration of the treatment 17 days. Before and after 
two weeks of treatment a number of the determinations as referred to in 
chapter 2 were carried out. Active renin and noradrenaline were measured in a 
minority of these patients. after the methods had become available. 

/0.6.2 Results 

Effect on systemic haemodynamics 

Individual data are presented in table A-19. Systolic, diastolic and mean blood 
pressure decreased significantly during propranolol treatment. However, the 
individual response was quite variable. When responders are defined as those 
patients showing a decrease in mean blood pressure of 10 mm Hg or more, it is 
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apparent that at the start of the treatment the responders tended to have a 
higher blood pressure than the non-responders. No significant changes were 
observed in the parameters of blood pressure variability before and during 
treatment, with the exception of a decrease in systolic pressure variability. 
Pulse pressure was slightly lower during treatment, but the difference with 
pre-treatment values was not significant. Heart rate declined in all but two 
patients. Although the reduction in heart rate exhibited a wide scatter, the 
difference between pre- and post-treatment level was highly significant. 
Although in the entire group average cardiac output decreased by slightly more 
than 0.5 I/ min.; this reduction was not significant. However, when the data are 
scrutinized more closely, it appears that the response of cardiac output varied 
between a decrease and an increase. In view of the variability of test results 
(Ch. 3), we would consider only changes of more than 10 percent as sub­
stantial. When the patients who responded with a fall in cardiac output are 
compared with those who exhibited an increase in cardiac output during 
treatment,the first groups had a significantly higher cardiac output at the start 
of the study. In this group the fall in cardiac output was statistically significant. 
Stroke volume increased moderately, but again the response was variable. 
Total peripheral resistance on the average remained essentially unchanged, 
half of the patients showing a reduction and the other half an increase. 

Effect on renal haemodynamics and plasma volume 

Glomerular filtration rate, renal plasma flow and filtration fraction did not 
exhibit significant changes during treatment. By contrast, renal blood flow 
decreased from 895 ± 248 ml/min to 803 ±248 ml/min (p<0.05, as assessed by 
Student's one-paired t test). Renal vascular resistance as a consequence rose 
slightly. but the increase was not significant. The renal fraction was, on the 
average, not affected by beta-blockade. lt must be emphasized that for all these 
variables, marked variations (both upwards and downwards) were found. The 
same pattern was found with respect to plasma volume. 

Effect on renin, aldosterone and noradrenaline 

Total renin concentration decreased in some patients, while it increased in 
others; for the total of observations there was no significant difference in pre­
and post-treatment values. For active renin there was a more marked tendency 
to decrease although the difference between pre- and posttreatment values was 
not statistically significant. The relative amount of active renin. however. 
decreased from 32% to 23% (p<0.0025). Aldosterone levels were markedly 
reduced during propranolol treatment (p<0.0025), but noradrenaline levels 
remained practically unchanged. 

Predictability of response (fig. 59-66). 

For all variables there was a significant direct relationship between pre-and 
post-treatment values, with the exception of the so-called depressor range. 
The response of mean blood pressure was not related to such factors as age and 
control values of heart rate, cardiac output, peripheral vascular resistance, 
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renin or variability of blood pressure. Even noradrenaline levels failed to 
predict the observed fall in blood pressure. 
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Fig. 59 "Predictive" value of age with respect to the decrease in blood pressure 
during treatment with propranolol. 
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Fig. 60 "Predictive" value of variability of blood pressure with respect to the 
decrease in blood pressure during treatment with propranolol. 
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Fig. 61 Reduction in blood pressure during propranolol treatment and initial 
cardiac output. 
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Fig. 62 Reduction in blood pressure during propranolol treatment and initial total 
renin concentration. 

144 



However. the change in mean arterial pressure was inversely related to its 
initial value (r = -0.46; p<0.005). The decrease in heart rate was also inversely 
related to its pre-treatment level (r = -0.79; p<O.OOI). Similar relationships 
were found for stroke volume (r = -0.52; p<0.005), renal plasma flow (r= 
-0.33; p<0.05). renal fraction (r = -0.61; p<O.OOI ), total renin concentration 
(r = -0.39; p<0.005), active renin concentration (r = -0.61; p<O.OO!), per­
centage amount of active renin (r = -0.85: p<O.OOI), inactive renin concen­
tration (r = -0.44; p<0.025), plasma aldosterone (r = -0.72; p<O.OOI) and 
plasma noradrenaline (r = -0.61; p<O.OOI). For total peripheral and renal 
vascular resistance the relations did not reach statistical significance. 
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Fig. 63 Relationship between decrease in heart rate and initial value during pro­
pranolol treatment. 
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Fig. 66 Relationship between changes and initial value for the percentual amount 
of active renin during propranolol treatment. 

One could hypothesize that these relations correspond to the statistical­
epidemiological phenomenon of "regression towards the mean·· and would 
therefore be devoid of physiological significance. This possibility can be ruled 
out, however. by taking into account the lack of such patterns in sequential 
analyses in untreated subjects. (Ch.3) 

In terre/a tions 

The fall (or rise) in blood pressure was not related to changes in heart rate. 
stroke volume or cardiac output. Neither was there a relation between blood 
pressure changes and alterations in renin or noradrenaline concentration. No 
relationship was observed between changes in cardiac output and in renal 
blood flow. 
Changes in glomerular filtration rate were not related to changes in renal 
plasma flow. Alterations in filtration fraction and in plasma volume exhibited a 
direct relationship (r = 0.52: p<0.02). Changes in hormonal levels were not 
related to each other nor to the other variables. Shifts in pressor range (cfCh.4) 
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were inversely related to changes in noradrenaline concentration (fig. 67). (r = 

~0.61: p<O.OOl ). Although less significant, a direct relationship was observed 
between changes in depressor range and in noradrenaline concentration (r = 

0.42: p<0.05). No relationship was observed between alterations in 
noradrenaline and basal blood pressure. 
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Fig. 67 Relationship between changes in pressor range and in noradrenaline levels 
during propranolol treatment. 
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Effect on intrarenal haemodynamics 

In 23 Patients with essential hypertension (mean age 46 years) who were on 
propranolol therapy for at least two weeks, intrarenal haemodynamics were 
measured by the Xe-washout technique. 
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Fig. 68 C1 flow rate in control subjects, untreated hypertensives and patients 
on propranolol treatment. 
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Fig. 69 Percentage C1 flow rate in control subjects, untreated hypertensives and 
patients on propranolol treatment. 

Mean values for c 1 and %C 1 were 377 ± 109 ml/min/100 grand 83 ± 9% 
respectively (Fig. 68 and 69). Mean blood flow averaged 322 ± 95 ml/min/100 
gr. In this group of patients c 1 decreased with age (r = -0.48; p<0.0025) and 
with increasing blood pressure. The latter relation, however, was only of 
borderline significance when the effect of age was eliminated. C 1 did not 
correlate with the arterial noradrenaline levels, but absolute cortical blood 
flow did show a relationship with noradrenaline (r = -0.74; p<0.02) (Fig. 70). 
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Fig. 7Qa Relationship between cortical blood flow and peripheral noradrenaline 
levels in patients on propranolol. 
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Fig. ?Qb Relationship between cortical blood flow and arterial noradrenaline levels 
in patients on propranolol. 
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When the data for intrarenal haemodynamics are comparend with those of 
normotensives and untreated hypertensives studied in our laboratory (Kol­
sters, 1976) no significant differences appear to exist in these three groups with 
respect to C1, MBF and% c 1. 

Effect on renal secretion of pressor hormones 

In 16 of the patients in whom intrarenal haemodynamics were measured, total 
renin secretion was measured. The arterial level of this substance was 106 ± 61 
1-'U/ml and the renal venous level 110 ± 651-'U/ml. In terms of percentage this 
level increased from 100% to 106 ± 5% (p<0.0005). 
Active renin concentration also increased significantly from 100% to 112 
± 15%. Inactive renin was essentially of the same order in renal arterial and 
venous blood (86 ± 381-'U/ml vs. 85 ±351-'U/ml). Percentage amounts of active 
renin were 20 ± 12% and 21 ± 15% respectively. When these values for renin 
secretion are compared with the values in untreated hypertensives (Ch.8), the 
only significant difference which is found is a reduced secretion of total renin in 
the propranolol group (fig. 71 ). Although active renin. both as a percentage of 
total renin and in terms of secretion appeared to be reduced in the propranolol 
group, the difference with the untreated group was not significant. 
It must be emphasized, however. that in five of the nine patients on propranolol 
active renin secretion was actually zero. As for release ofnordrenaline, a more 
consistent pattern of secretion was found. The average arterial level was 0.26 
± 0.15 ng/ml and the venous level 0.32 ± 0.020 ng/ml. This represents an 
average increase of 131 ±52% (p<0.025). Total secretion of noradrenaline was 
26 ±44 ng/min. Although this was higher than in the untreated group ( 19 ± 6 
ng/min), the difference was not significant. 
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Fig. 71 Secretion patterns of renin and noradrenaline by the kidney in untreated 
hypertensive patients and those on propranolol. 
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10.7 Discussion 

In chapters 8 and 9 some relations between the sympathetic system and the 
renin-angiotensin system have been outlined. Obviously, such neuro-humoral 
mechanisms could act in concert during the short-term regulation of blood 
pressure, although it is difficult to demonstrate such interrelations in the intact 
orgamsm. 
During tilting several factors could contribute to the rise in renin levels. Among 
these, a fall in renal perfusion pressure could be a major factor. Since systemic 
arterial pressure does not change much, one has to assume that renal vascular 
resistance rises to such a degree that blood pressure falls at the level of the 
juxtaglomerular apparatus. Indeed, renal blood flow was found to decrease 
during tilting, which in the face of an unaltered blood pressure indicates renal 
vasoconstriction (Molzahn eta!., 1972). In our study renal vascular resistance 
also increased. However, assuming a pressure drop at the level of the 
juxtaglomerular apparatus would not be compatible with the discussion in 
Chapter 8. For we have reasoned that blood pressure can be transmitted along 
the renal vessels, and such a marked vasoconstriction which would impede 
further transmission of blood pressure did not occur during tilting. Moreover, 
the rise in renin levels is far in excess of that which would be explained by 
changes in renal haemodynamics per se. There might be several other ex­
planations. A relationship between changes in plasma renin and changes in 
effective blood volume during tilting was considered by Brown et al. (1966b), 
but denied by Nielsen and Moller ( 1968). The latter authors explained the rise 
in renin by a concomitant increase in colloid-osmotic pressure. Although we 
did not measure colloid-osmotic pressure, it would be very unlikely that this 
factor is responsible for renin secretion, since it remains quite stable after 
assuming the upright posture (Nielsen and Moller, 1968), while in our study 
renin levels exhibited a much more variable pattern. 

Serum electrolytes do not change consistently and therefore are unrelated to 
the renin response. Plasma A.D.H. rises rather than decreases (Davies eta!., 
1976a) and can therefore not have mediated the renin response. In constrast, a 
neural stimulus would be a most likely mechanism. It is common experience 
that tilting by reducing venous return increases sympathetic activity. In some 
cases the alpha-adrenergic response was found to be accompanied by an 
increase in plasma noradrenaline levels (Molzahn et al., 1972) or urinary 
excretion of catecholamines (Esler and Neste!, 1973). Although it is believed 
that orthostasis in the intact human being stimulates renin release through 
increased adrenergic activity (Brown eta!., !966b; Kuchel eta!., 1967; Gordon 
et al., 1967; Cohen et al., 1967; Oparil et a!., 1970; Salvetti et al., 1971; Molzahn 
et al., 1972; Esler and Neste!, 1973) definite evidence is still lacking. In favour 
of this theory is the observation that the increase of plasma renin with posture 
can be blunted by means of adrenergic blocking agents (Winer eta!., 1969; 
Michelakis and McAllister, 1972; Tober! et al., 1973; Leonetti et al., !975; 
Davies and Slater, 1976; Davies et al., 1976b). 
Molzahn et al., ( 1972) reported a positive relationship between changes in 
plasma noradrenaline and plasma renin concentration during a45' head-up tilt. 
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However, this observation was based on only 8 paired data and the relationship 
was of borderline significance. In the present study we failed to observe a 
relation between changes in levels of noradrenaline and those in plasma renin 
concentration. On the other hand, the alterations in noradrenaline were signifi­
cantly related to changes in active plasma renin concentration. Although there 
was a rise in total and in active renin, the absolute increase in active renin 
exceeded that of the total amount of renin. 
As a consequence inactive renin decreased, which is in keeping with the 
findings of Derkx et al. ( 1976). It is apparent that under conditions of tilt the 
adrenergic system is mainly concerned with the active part of renin. Although a 
causal relationship is not proven, the results are in favor of such a mechanism, 
since other known factors are unlikely to have caused the relation. Diminished 
hepatic clearance is unlikely since the clearance of noradrenaline and active 
renin is affected in exactly the same way but differently from inactive renin. 
Moreover, it should be pointed out that hepatic blood flow during tilting does 
not alter sufficiently to explain the amplitude of the changes we observed. We 
therefore are inclined to favour the interpretation that the available data 
indicate a direct effect of enhanced adrenergic activity on the regulation of 
active renin concentration during tilting. It is too early to exclude the possibi­
lity that the reverse causal sequence may also be true. A mutual amplification 
of the response would guarantee an optimal flexability of both systems in the 
face of sudden variations in gravitational factors. From this study it can also be 
concluded that the release of aldosterone by angiotensin is mediated through 
active rather than inactive renin. 

A different way to assess sympathetic system involvement in cardiovascular 
homeostasis is to monitor the effect of beta-blockade which we also did in this 
study. It is well known that propranolol lowers blood pressure. cardiac output 
and renin. A causal relationship between these actions has frequently been 
suggested but never been proven. 
The anti-hypertensive mechanism of propranolol is still unclear. lt would be 
incorrect to discuss ail theoretical and empirical aspects of current theories 
since this has been the subject of several recent reviews (Birkenhager et al., 
1976b, 1977; Gross, 1977; Prichard. 1976: Lorimer et al., 1976; Lewis, 1976). 
Nevertheless, it is quite relevant to present some thoughts on the predictability 
and nature of the response. 
It is well known that propranolol lowers blood pressure mainly after some 
delay (Ulrych et al.. 1968; Hansson et al., 1974) and that hypotension due to 
overdosage does not occur (Wermut and Wojcicki, 1973). Morover, the blood 
pressure lowering effect in normotensives is only small. On the other hand, 
individual doses needed to achieve a certain level of blood pressure reduction 
may vary greatly (Zacharias et al., 1972). yet the decrease in diastolic blood 
pressure is proportional to plasma concentrations (Leonetti et al., 1975). These 
considerations suggest that, except for differences in bio-availability of the 
drug, the response is mainly dependent on the strength of the feedback me­
chanisms responsible for the maintenance of blood pressure or, more specifi­
cally, the balance between alpha- and beta-receptors. The haemodynamic 
basis for an adequate fall in blood pressure cannot be related to a reduction of 
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cardiac output per se. First of all. cardiac output is reduced to the same extent 
in responders and non-responders (Tarazi and Dusten. 1972) and secondly. 
pre-treatment values of cardiac output do not predict the hypotensive response 
to propranolol (Birkenhager et al., 1971; Tarazi and Dustan, 1972; Hansson et 
al., 1974; Ibrahim et al., 1975). All these observations actually confirm our 
proposal that cardiac output is not of major importance in the pathogenesis of 
essential hypertension. In our study the effect of propranolol could also not be 
predicted on the basis of age, heart rate, (cardiac output), or variability of 
blood pressure. However, our results indicate a more pronounced effect when 
the initial blood pressure is higher. The relationship is rather weak for the blood 
pressure decrements, but for heart rate and cardiac output such relations are 
much stronger. This again raises the possibility of predicting the response. 
Whereas all investigators have judged the predictive value of several 
parameters with respect to the reduction in blood pressure. it is now evident 
that it is unjustified to follow this standard approach. The effect on heart rate 
and cardiac output is predicted to some extent by its pre-treatment value, and 
this regression appeared to be independent of drug dosage. Moreover patients 
responding with an increase in cardiac output had significantly lower pre­
treatment values for cardiac output than the others. The relation between 
absolute change and initial value suggests that we are dealing with a true 
physiological phenomenon. It is interesting that similar reaction patterns were 
found with respect to a number of other variables, including renin and 
noradrenaline. For each parameter the regression line for the relations 
response-initial value can be calculated and this line will cross the X-axis at 
some point. It is tempting to speculate that this point of intersection represents 
the "intrinsic tuning" of the receptors, a point above which sympathetic input 
becomes important. For instance, the point of intersect was found to be 43 
beats minute for heart rate. which agrees reasonably with the frequency of the 
"sympathectomized" heart. 
If the above reasoning is correct. it follows that for a beta-adrenergic function 
the effect of propranolol represents sympathetic input to that particular 
receptor. Conversely, below the "intrinsic tuning" no alterations or even 
changes in opposite direction would occur. Indeed, in a number of patients 
renin concentration increased after beta-blockade. Also. Drayer et al. (1976) 
found unsuspected pressor responses to propranolol in patients in whom the 
initial renin levels were low and insufficiently in suppressed by the drug. 

Along this line of reasoning it is not surprising that the beta-blocking drugs 
have been propagated for patients with a high cardiac output (Frohlich et al., 
1968) or with high renin levels (Buhler et al., 1972). The disagreement of the 
observations of Frohlich and Buhler with the extensive experience of other 
authors probably is due to the fact that the several beta-receptors function 
independently of each other. For example, a patient can respond to pro­
pranolol with a substantial decrease in cardiac output but with an increase in 
renin levels. The predictive response was most pronounced for the ratio 
active/total renin concentration. This suggests that this ratio is under neuro­
genic control, a conclusion which was already reached on the basis of the tilt 
studies. Sympathetic control was also evident for heart rate. An interesting 
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observation was that the response of plasma aldosterone was also highly 
dependent on its pretreatment value. This raises the possibility of a neural 
mechanism regulating aldosterone secretion, since changes in aldosterone 
levels were not related to changes in active, inactive or total renin and not to 
changes in plasma volume or electrolytes. 

The sympathetic influence on renin levels was most pronounced for active 
renin and less for inactive and total renin. This again supports the concept that 
the adrenergic system is mainly operative in regulating the active part of renin. 
From the catheterization studies it is also evident that propranolol exerts its 
effect predominantly on active renin. Although secretion of active renin was 
not different in the untreated and treated group, there was a strong indication 
that such a mechanism does exist. Apparently the size of the population is still 
too small to substantiate such a difference in statistical terms. Whereas 
peripheral noradrenaline levels show a beta-receptor sensitivity effect in their 
response (in relation to pre-treatment values), the kidney shows a tendency to 
produce more noradrenaline during propranolol treatment. Again the dif­
ference with the untreated group was not significant and further studies are 
needed to confirm this impression. 
Beta-blockade did not have adverse effects on kidney function. Both total and 
cortical flow were well preserved. In addition, it was apparent that even under 
conditions of beta-blockade the cortical blood flow depends largely on the level 
of circulating (arterial) noradrenaline. Figure 53 and 70 depict this relation both 
for untreated and treated subjects. The response of renal blood flow and renal 
fraction is also dependent on initial values but to a lesser degree than the 
'"direct" beta-adrenergic functions. These changes presumably reflect the 
effect of therapy on cardiac output (Sannerstedt and Conway, 1970). An effect 
on glomerular filtration rate was not apparent in our study, but has been 
reported by Ibsen and Sederberg-Olsen (1973). These authors found a reduc­
tion in glomerular filtration, which they ascribed to a decrease in renal blood 
flow, although they did not measure the latter variable. ln the same study, 
however, no effect on plasma volume was observed. No change or a reduction 
in plasma volume has been observed by Tarazi et a!. ( 1971). In our study 
plasma volume increased by approximately ± I 00 ml and this was not 
significant. 

With respect to blood pressure variability it can be concluded that beta­
blockade does not affect this aspect of blood pressure control. This is in 
keeping with the findings of others (Clement eta!., 1976; West eta!., 1976; de 
Leeuw et a!., 1977). In view of the result from Chapter 9 it seems that 
propranolol has shifted the equilibrium between noradrenaline and pressor 
range. Whether this effect is exerted primarily through reduction of central 
sympathetic activity or to a direct influence on vessel wall tone cannot be 
determined at this stage. 
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HI.S Conclusions 

From the data presented in this chapter the following conclusions can be 
drawn: 

I. During activation or inhibition of the sympathetic system some relations 
with other components of cardiovascular control are revealed which are 
not evident in the basal state. 

2. The combined results of beta-blockade and tilting suggest that the sym· 
pathetic nervous systeem is involved in the regulation of active renin 
secretion, possibly by an effect on intrarenal beta-receptors. 

3. It is hypothesized that the release of aldosterone is partly under neural 
control. 

4. The effect of propranolol on blood pressure variability and sympathetic 
function suggests a shift in the physiological equilibrium. 

5. Although the effect of beta-blockade cannot be predicted in terms of 
blood pressure, the responses of separate parameters of beta-adrenergic 
functions can be predicted on the basis of their initial values. 
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SUMMARY 

The natural history of essential hypertension is known from its end-points but 
this does not provide information on possible changes in the functions of blood 
pressure control mechanisms. Although many studies have been carried out 
with respect to haemodynamic and endocrine variables in hypertension, most 
of them deal with limited areas. 
In this thesis an attempt is made to study an extensive set of variables concern­
ed with circulatory control. For this purpose more than 250 patients with 
uncomplicated essential hypertension were investigated. 
Prior to the investigation itself we have assessed the validity of our methods 
which have been described in Chapter 2. 
The reproducibility of the methods used has been described in Chapter 3. 
Day-to-day variability was 107r· for cardiac output (as assessed by the imped­
ance method). 8.8% for glomerular filtration rate. 6.8'/c, for renal plasma flow. 
increasing to R.8% when the measurements after angiography were consider­
ed. 10% for renal cortical blood flow per 100 g. 97< for mean renal blood !low 
per 100 g. (measured by the Xe-washout) and 7'/f for the percentual distribu­
tion of renal blood flow towards the outer cortex. 
Variability was 4.20} for determinations of plasma volume. 167r-· for total 
and 14% for active renin concentration. 28o/r· for aldosterone and 120 for 
noradrenaline. It is evident that reproducibility is good for all methods used 
with the exception of plasma aldosterone. which shows considerable intra­
individual variation. 
This might be explained by the multiplicity ofbctors which control its release. 
In the next chapters the results of the haemodynamic and endocrinological 
determinations in a population of hypertensive patients are described. 
In the first part 226 patients (group l) with essential hypertension are studied. 
We studied 138 men (age range 17-74 years) and ~8 women (aged 19-73 
years). All subjects were selected on an out-patient basis, their diastolic blood 
pressure being repeatedly I 00 mmHg or more. 
All patients were admitted to a metabolic ward where they were studied under 
standardized conditions. Sodium intake was fixed at 60 mmol daily ad no 
medication was given. 
The following parameters were determined: blood pressure (either intra-arte­
rially or indirectly with the Arteriosonde). 24 hour variability of blood -
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pressure, cardiac output, renal plasma flow, glomerular filtration rate, plasma 
volume and plasma levels of total renin concentration and aldosterone. 
In Chapter 4 the results of the measurements of systemic haemodynamics are 
studied in order to define the 24 hour variability of blood pressure and the 
haemodynamic abnormality underlying e>Sential hypertension. When the 10 
am blood pressure was plotted against age, a direct relationship was found (r ~ 
0.44; p < 0.001), there being no difference between direct and indirect estima­
tions. 
Blood pressure shows marked diurnal variations which in absolute terms do 
not show a relation with age. No justification was found in separating entities of 
,labile" and ,fixed" hypertension. The 24 hour blood pressure pattern was 
further analyzed and a distinction was made between basal blood pressure 
(taken immediately after waking) and the maximum and minimum levels of 
blood pressure. 
Maximum values usually occurred during daytime while minimal values al­
ways occurred during sleep. When basal blood pressure is taken as a reference 
point, the maximal upward variations during daytime (called pressor range) 
appeared to decline with age (r ~ -0.35; p < 0.01) while depressor range 
(maximum nocturnal fall in blood pressure) increased with age (r ~ 0.31; p < 
0.025). 
These trends are caused by the fact that basal blood pressure rose steeper with 
age than maximal blood pressure. 
Although cardiac output was higher in the younger hypertensives we could not 
find evidence for a cardiac factor in the pathogenesis of essential hypertension. 
When the inverse relation between cardiac output and age as found in this 
study (r ~ -0.31; p < 0.00 I) is compared with such data in normotensives 
(adapted from the literature) similar regressions are found. 
Total peripheral vascular resistance rises with age (r ~ 0.41; p < 0.001) but 
even at an early stage, when cardiac output is still n01mal or even sometimes 
elevated the increase in vascular resistance is already apparent. An increase in 
total peripheral vascular resistance seems, therefore, the basic hypertensive 
mechanism. 
To see whether the general haemodynamic pattern was reflected in a single 
organ, namely the kidney. we also studied renal haemodynamics (Chapter 5). 
Renal plasma flow decreased with age ( r~ -0.53; p < 0.00 I) and so did 
glomerular filtration rate (r -0.21: p < 0.01). Renal vascular resistance rose 
with age (r ~ 0.43; p < 0.00 I) and filtration fraction also (r ~ 0.51; p < 0.00 I). 
Thus with respect to renal function it was also found that an increase in 
vascular resistance is demonstrable as an early expression of the hypertensive 
process. This refers particularly to the resistance offered by the vessels in the 
outer cortex of the kidney. 
Despite the decrease in renal blood flow, glomerulartlltration rate remains well 
preserved in patients with uncomplicated hypertension and even better than in 
normotensives. Consequently, filtration fraction rises with age in hypertens­
ives. This is primarily explained by tlltration disequilibrium in the human 
kidney. With hypertension of longer duration and especially after 40 years of 
age, an increase in glomerular capillary porosity contributes to an elevation of 
glomerular filtration rate. 
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As is described in Chapter 6, plasma volume does not exhibit a relationship 
with age or systemic haemodynamics. There is, however, a direct relation 
between plasma volume and filtration fraction (r ~ 0.25; p < 0.005). The 
long-term regulation of plasma volume is therefore possibly dependent on 
filtration chardcteristics. 
In association with the rise in filtration fraction.plasma volume increases, but 
this increase is only small and effectively counterbalanced by other factors 
since there is no indication that body fluid volumes increase with age in 
hypertensive subjects. 
It is thus concluded in Chapter 7 that essential hypertension basically is a 
vascular disease. Although structural changes may play a role in the increased 
resistance, there is ample evidence that functional factors are also involved. 
Since it is unlikely that the vasoconstrictor stimuli originate from autoregula­
tion, the next step was to look for enhanced activity of pressor systems. 
In Chapter 8 the renin-angiotensin-aldosterone system has been studied. There 
is. at present. little support for implicating this system as an important factor in 
the pathogenesis of essential hype11ension. On the contrary, renin levels 
decrease with age (r ~ 0.15; p < 0.05). 
Renin levels do not correlate with the height of blood pressure, but there 
appears to be an inverse relationship between glomerular filtration rate and 
renin (r ~ -0.22; p < 0.005). 
In patients with a filtration rate above 55 ml/min/m 2

, renin levels vary inversely 
with renal vascular resistance (r ~ -0.28; p < 0.001). 
When the effects of both age and glomerular filtration rate are eliminated, renin 
concentrations are inversely related to blood pressure. 
It seems, therefore, that there is feed-back suppression (baroreceptor mecha­
nism) of renin levels in older age groups, who show more advanced hyperten­
sion. More-over, there is no relation between renin and total peripheral vasc­
ular resistance. 
A fall in glomerular filtration rate again stimulates renin release (rna cula densa 
mechanism). 
Since methods for measurement of active renin and noradrenaline became 
available only recently. a second group of 59 patients (40 men and 19 women) 
was selected (group II) in whom specifically these hormones were measured 
together with most other parameters. It was found thaL under basal condi­
tions, about 30% of renin circulates in an active form. Active and total renin 
concentration are closely correlated (r ~ 0.74; p < 0.001). 
In a separate study the secretion of renin by the kidney was measured in 10 
patients. From the results it was concluded that renin is secreted mainly in the 
active form, this not being related to age or any haemodynamic variable. 
Aldosterone levels were normal in the majority of patients from group I and II 
and there was no indication that this hormone was involved pathogenetically in 
hypertension. 
The role of the sympathetic nervous system has been studied in Chapters 9 and 
10. 
In Chapter 9 the results of the noradrenaline assays are presented. Noradren­
aline levels did not correlate with blood pressure, systemic vascular resistance 
or cardiac output. 
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Although noradrenaline levels were not related to total renal blood flow or 
renal vascular resistance, a highly significant inverse relationship was found 
between absolute blood flow through the outer cortex of the kidney and the 
peripheral noradrenaline level (r = -0.76; p < 0.05). A similar relationship 
existed with the arterial noradrenaline concentration. 
In addition, it was found that the kidney is able to release noradrenaline, 
although the significance of this finding is not yet clear. 
Since the adrenergic and the renin-angiotensin-aldosterone system show com­
plex interrelations, it might be that under steady state conditions no conclu­
sions can be drawn about the part of each system in maintaining vascular tone. 
To study some of these interrelations we challenged the system by stimulation 
(tilt studies) as well as by inhibition (beta-blockade). The results of these 
studies are described in Chapter I 0. 
Both studies revealed a high degree of interrelation between the adrenergic and 
the renin-angiotensin-aldosterone system. This is not necessarily reflected in 
the level of blood pressure. 
It was found for example that during tilting both total and active renin increase 
while inactive renin decreases. 
It is suggested that active and inactive renin are in dynamic equilibrium which 
shifts as a function of beta-adrenergic activity. 
When beta-receptors are blocked by propranolol, the relative amount of active 
renin changes, like some other beta-adrenergic parameters, in a predictable 
way. It seems as if the different beta-receptors are intrinsically tuned to a 
certain level on which sympathetic activity is superimposed. 

Taking all results together. it is not yet possible to assess the quantitative role 
of both pressor systems in the elaboration of vascular tone. 
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SAMENVATTING 

Essentiele hypertensie kan worden beschouwd als een haemodynamische 
ontsporing die in zijn vroege (ongecompliceerde) stadium geen noemenswaar­
dige klinische verschijnselen geeft. 
Het natuurlijk beloop van essentiele hypertensie is bekend wat betreft zijn 
complicaties; hieruit kunnen echter geen conclusies getrokken worden ten 
aanzien van de veranderingen in de regulatie-mechanismen die daaraan vooraf 
gaan. 
Hoewel in vee! studies de haemodynamische en endocriene aspecten van 
essentiele hypertensie ter sprake komen, beperkt men zich veelal tot een klein 
onderdeel hiervan. 
In dit proefschrift word! een paging gedaan om een groat aantal variabelen 
welke betrokken lijken te zijn bij de regulatie van de bloeddruk te bestuderen 
en in onderling verband te plaatsen. Daartoe werden ruim 250 patienten met 
ongecompliceerde essentiele hypertensie onderzocht. 
Yoorafgaande aan dit eigenlijke onderzoek hebben wij de reproduceerbaarheid 
van onze meettechnieken welke beschreven worden in hoofdstuk 2 nagegaan. 
De resultaten hiervan zijn beschreven in hoofdstuk 3. Uitgedrukt als percen· 
tage is de reproduceerbaarheid van de metingen als volgt: 10% voor het 
hartminutenvolume (gemeten met de impedantie techniek), 8,8% voor de 
giomerulaire filtratiesnelheid. 6,8% voor de plasmastroom door denier (8 ,8% 
wanneer de bepalingen na angiografie worden beschouwd), 10% voor de 
corticale doorstromingssnelheid van de nier, 9% voor de gemiddelde nier­
doorbloeding per I 00 gram en 7% voor de procentuele verdeling van de 
bloedstroom naar de buitenste schorslaag. De variabiliteit bedroeg 4.2% voor 
de bepaling van het plasma-volume, 16% respectievelijk 14% voor de be paling 
van to tale en actieve renine concentratie, 28% voor aldosteron en 12% voor 
noradrenaline. 
Het blijkt derhalve dat de uitkomsten binnen een periode van enkele dagen niet 
in belangrijke mate varieren. Een uitzondering hierop vormt de aldosteron­
spiegel in het bloed, die aanzienlijke schommelingen kan tonen. Dit zou ver· 
klaard kunnen worden door het feit dat bij de regulatie van de aldosteron­
secretie vele factoren tegelijk betrokken zijn. 
In de volgende hoofdstukken worden de resultaten van het haemodynamische 
en endocrinologische onderzoek beschreven. In het eerste deel wordt het 
onderzoek bij 226 patienten met essentiele hypertensie bestudeerd. Deze 
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groep (groep I) bestond uit 138 mannen (leeftijd 17 tot 74 jaar) en 88 vrouwen 
(leeftijd 19 tot 73 jaar). 
Aile patienten werden geselecteerd op poliklinische basis wanneer hun diasto­
lische bloeddruk bij herhaling I 00 mm kwik of meer bedroeg. Aile geselecteer­
de patienten werden opgenomen op de ,Metabolic Ward", waar zij onder 
gestandaardiseerde condities werden bestudeerd. De zoutinname werd be­
perk! tot 60 mmol per dag en geen van de patienten kreeg medicamenten. 
De volgende parameters werden bepaald: bloeddruk (hetzij intra-arterieel, 
hetzij indirect met de Arteriosonde gemeten). 24 uurs variabiliteit van de 
bloeddruk, hartminutenvolume renale plasma doorstroming, glomerulaire fil­
tratiesnelheid, plasma volume, en plasma spiegels van totale renine concentra­
tie en aldosteron. 
In hoofdstuk 4 worden de resultaten van het algemene haemodynamisch 
onderzoek bestudeerd. Daarbij wordt getracht de variabiliteit van de bloed­
druk vast te leggen. Tevens wordt gezocht naar de haemodynamische afwij­
king welke ten grands lag ligt aan de bloeddruk verhoging. Wanneer de bloed­
druk, genomen rond 10 uur 's morgens wordt uitgezet tegen de leeftijd word! 
een directe relatie gevonden (r = 0.44: p < 0.001 ). Er is geen duidelijk verschil 
tussen directe en indirecte metingen. 
De bloeddrukschommelingen gedurende de dag blijken zeer aanzienlijk te zijn 
en in absolute zin niet afhankelijk van leeftijd ofhoogte van de bloeddruk. Het 
blijkt derhalve niet mogelijk een onderscheid te maken tussen .. labiele" of 
.. gefixeerde" hypertensie. De basale bloeddruk, opgenomen direkt na het 
ontwaken, stijgt met de leeftijd en wei sterker dan de maxi male bloeddruk. Als 
gevolg hiervan werd een negatieve relatie gevonden (r = -0.35: p < 0.01) 
tussen de opwaartse schommelingen gedurende de dag ( .. pressor range") en 
de leeftijd. Daarentegen neemt de , ,depressor range'' (maximale daling van de 
bloeddruk gedurende de nacht) toe met de leeftijd (r = 0.31: p < 0.025). Deze 
trendmatige veranderingen zijn een gevolg van het feit dat de basale bloeddruk 
welke als referentiepunt gold sterker stijgt met de leeftijd dan de maximale 
bloeddruk. 
Hoewel het hartminuutvolume hoger was in jonge patienten met essentiele 
hypertensie konden wij er geen aanwijzingen voor vinden dat dit van pathofy­
siologische betekenis is bij het ontstaan van de aandoening. Wanneer de 
negatieve relatie tussen hartminuutvolume en de leeftijd (r = -0.31: p < 0.001) 
zoals deze door ons vastgesteld is, verge\eken wordt met soortge\ijke re[aties 
bij groepen personen met normale bloeddruk (gegevens verkregen uit de 
literatuur), dan blijken deze praktisch samen te vaHen. 
De totale perifere vaatweerstand stijgt met de leeftijd (r = 0.41: p < 0.001). 
maar zelfs in een vroeg stadium wanneer het hartminuutvolume nog normaal of 
zelfs iets verhoogd is. is deze toename in vaatweerstand a! aantoonbaar. Een 
toeneming in to tale perifere vaatweerstand lijkt derhalve van wezenlijke bete­
kenis voor het ontstaan van bloeddrukverhoging te zijn. 
In hoofdstuk 5 wordt nagegaan in hoeverre zich haemodynamische verande­
ringen in denier manifesteren. 
De renale plasmadoorstroming neemt afmet de leeftijd (r = -0.53; p < 0.001) 
terwijl de niervaatweerstand met de leeftijd stijgt (r = 0.43; p < 0.001). De 
glomerulaire filtratiesnelheid neemt af met de Jeeftijd (r = -0.21; p < 0.01). 
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doch de filtratiefractie stijgt met de leeftijd (r = 0.51; p < 0.00 I). Oak met 
betrekking tot de nierfunctie kan gesteld worden dat een toename in de vaat­
weerstand a! vroeg merkbaar is. Dit betreft met name ook de weerstand in de 
buitenste nierschors. 
Ondanks de daling in nierdoorbloeding blijft de glomerulus filtratie redelijk 
gehandhaafd en bij ongecompliceerde hypertensie zelfs nag iets beter dan bij 
normotensieve personen. Dit leidt tot een toeneming van de filtratie-fractie bij 
hypertensiepatienten. Dit kan verklaard worden door de veronderstelling dat 
in de menselijke nier geen filtratie-evenwicht word! bereikt zolang de nierdoor­
bloeding niet beneden een kritische waarde komt. Naarmate de hypertensie 
Ianger bestaat en met name na het veertigste Jevensjaar, draagt een toeneming 
in de doorlaatbaarheid van de glomeruluscapillairen waarschijnlijk bij aan de 
relatief hoge filtratiesnelheid. 
Zoals beschreven wordt in hoofdstuk 6 is er geen relatie tussen het plasma­
volume en de leeftijd; noch is er een relatie tussen plasma-volume en systeem 
haemodynamica. Er bestaat echter een directe relatie tussen het plasma-volu­
me en de filtratie fractie (r = 0.25; p < 0.005). 
In hoofdstuk 7 wordt aandacht besteed aan de interpretatie van haemodyna­
mische gegevens. 
Hoewel structurele veranderingen in de vaatwand zeker verantwoordelijk 
kunnen zijn voor een toegenomen weerstand zijn er toch duidelijke aanwijzin­
gen dat functionele factoren hier ook bij betrokken zijn. Het is onwaarschijnlijk 
dat de prikkel tot vaatvernauwing het gevolg is van autoregulatie. De volgende 
stap bestond derhalve uit het vastleggen van de activiteit van pressor hormo­
nen. 
Hoofdstuk 8 handelt over het renine-angiotensine-aldosteron systeem. Wij 
hebben geen aanwijzingen gevonden voor de veronderstelling dat dit systeem 
rechtstreeks betrokken is bij de pathogenese van essentiele hypertensie. Re­
nine spiegels correleren namelijk negatief met de leeftijd (r =~ 0.15; p < 0.05) 
en positiefmet de glomerulaire filtratiesnelheid (r = 0.22; p < 0.005). 
Bij patienten met een filtratiesnelheid boven 55 ml/min/m'. bestaat een nega­
tieve relatie tussen renine spiegel en vaatweerstand (r = ~0.28; p < 0.001). 
Wanneer de effecten van zowel \eeftijd a\s glomerulaire filtratiesnelheid wor­
den geelimineerd blijkt er een negatieve correlatie te bestaan tussen renine 
concentratie en bloeddruk. Het lijkt daarom aannemelijk dat de renine secretie 
gesupprimeerd wordt door de hoge druk (baroreceptor mechanisme). Een 
daling in de glomerulaire filtmtiesnelheid stimuleert vervolgens wederom de 
renine secretie. Er bestaat geen relatie tussen reninespiegels en de vaatweer­
stand. Aangezien wij slechts kortgeleden zijn overgegaan tot het bepalen van 
actief renine en noradrenaline werd een tweede groep van 59 patienten (40 
mannen en 19 vrouwen) samengesteld (groep II) bij wie specifiek deze hormo­
nen werden bepaald. Het blijkt dat onder basale omstandigheden ongeveer 
30% van het renine in een actieve vorm circuteert. De concentratie van actief 
en totaal renine zijn nauw gerelateerd (r = 0.74; p < 0.001 ). In een afzonderlijke 
studie werd de secretie van renine door denier bij 10 patienten bepaald. Het 
blijkt dat onafhankelijk van leeftijd of haemodynamische status het renine 
voomamelijk in de actieve vorm wordt gesecerneerd. 
De aldosteron spiegel was normaal in het merendeel van de patienten uit groep 
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I en II en er waren geen aanwijzingen dat dit hormoon betrokken is bij de 
pathogenese van essentiele hypertensie. 
De rol van het sympathisch zenuwstelsel werd bestudeerd in hoofdstuk 9 en I 0. 
Hoofdstuk 9 handelt over de resultaten van de noradrenaline bepaling. Nor­
adrenaline spiegels bleken niet te correleren met de bloeddruk, vaatweerstand 
en hartminuutvolume. 
Hoewel er geen relatie bestond tussen nierdoorbloeding of niervaatweerstand 
met de noradrenalinespiegel, bleeker een hoog significante negatieve re\atie te 
zijn tussen het noradrenaline gehalte en de absolute doorstroming door de 
buitenste nierschors. Er werd bovendien gevonden dat de nier in staat is 
noradrenaline af te geven, hoewel de betekenis van dit fenomeen nog niet 
geheel duidelijk is. 
Aangezien er vele interrelaties bestaan tussen het adrenergische en het renine­
angiotensine-aldosteron systeem, is het zeer goed mogelijk dat men onder 
basale omstandigheden nimmer een uitspraak zal kunnen doen over het aan­
deel van be ide systemen in de vaattonus. Om dan ook meer inzicht te krijgen in 
de onderlinge afhankelijkheid van beide werd het sympathisch zenuwstelsel 
geactiveerd tijdens kiepproeven en geremd door middel van de beta-blokke­
rende stofpropranolol. De resultaten van deze proefnemingen die beschreven 
worden in hoofdstuk 10, tonen aan dat inderdaad onder sommige omstandig­
heden een opmerkelijke samenhang aantoonbaar is tussen beide genoemde 
systemen. Dit is niet altijd afte lezen aan de hoogte van de bloeddruk. 
Zo werd b. v. tijdens kiepen gevonden dat zowel het totale als het actieve renine 
toenemen, terwijl het inactieve renine afneemt. Verondersteld wordt dat het 
actieve en inactieve renine in dynamisch evenwicht zijn waarbij het evenwicht 
onderhevig is aan variaties in beta-adrenerge activiteit. 
Daamaast suggereren de uitkomsten tijdens beta-blokkade dat de diverse 
beta-receptoren in het organ is me ieder een intrinsieke gevoeligheid hebben; 
waarschijnlijk is de z.g. sympathische activiteit hierop gesuperponeerd. 

Wanneer men de in dit proefschrift beschreven uitkomsten onder een noemer 
tracht te brengen dan blijkt het vooralsnog niet mogelijk om het aandeel van 
beide genoemde pressor-systemen in de vaattonus in maat en getal uit te 
drukken. Er zal naar nieuwe invalshoeken moeten worden gezocht om de 
relatieve betekenis van deze en andere systemen voor de vasoregulatie vast te 
leggen. 
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NAWOORD. 

Toen Prof. Birkenhager mij in september 1974 benaderde met het ver­
zoek om het eertijds door Dr. G. Kolsters opgezette onderzoek naar 
intrarenale circulatie-patronen voort te zetten, maakte de bereidwillig­
heid daartoe al snel plaats voor twijfel over de juistheid van deze be­
slissing. Slechts dankzij de plezierige samenwerking met de collegae 
Cremer, Kho, Wester en Zaal en de continue inspiratie van Prof. Bir­
kenhager lukte het uiteindelijk om enig inzicht te krijgen in de proble­
matiek van het hypertensie-onderzoek. 
Dr. B. Speyer ben ik zeer erkentelijk voor de wijze waarop hij mii ge­
leerd heeft katheterisaties volgens Seldinger uit te voeren. 
Het beheersen van deze techniek bleek, ook buiten het eigenlijke onder­
zoeksproject, van nut te zijn. 
Dr. G. Kolsters maakte wij wegwijs in de theorie en de praktijk van de 
Xenon-uitwas studies. 
Tijdens de katheterisaties was de hulp van An Maas, J canine Ornee en 
later ook van Elma van der Giessen en Joke v. Vliet onmisbaar. 
Ook de technische bijstand van Herman Kammeraat en Theo Emens 
bleek onontbeerlijk. 
In dit proefschrift worden ook de resultaten beschreven van diverse 
andere experimenten. Hoewel aile gegevens, welke hier vermeld zijn, 
door mijzelf werden opgespoord en herberekend, is het toch de ver­
dienste van vele anderen geweest dat dit verzamelwerk mogelijk was. 
Zander aile artsen en verpleegsters die, met name onder auspicien van 
Prof. Birkenhager en Dr. Schalekamp, hieraan hebben meegewerkt, 
tekort te willen doen, moeten met name loch de "dames" van de onder­
zoekcentrale genoemd worden: Tony Edixhoven, Anneke Quaak, Ada 
Willemstein, Lidwien Baar, Engelien Sparnaay en Jenny Moor. 
Het vele bloed dat zij de patienten ontnamen werd ten dele door hen­
zelf "bewerkt", ten dele belandde dit bij het tweede echelon : het as­
sisten tenlaboratorium. 
Aldaar vonden de hormoonbepalingen plaats, verricht door: Rene 
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Punt, Julia Vaarties, Truus van Soest, Joan van der Wey, Bert Kleinjan, 
Aleid Muller en Dory Fawzi. 
Het laatste jaar geschiedde zulks onder he! toeziend oog van de bio­
chemicus Dr, H. E. Falke. 
Nadat aile resultaten vergaard en bewerkt waren wist dan de heer R. 0. 
Halt zijn kwaliteiten als tekenaar volledig uit te buiten, waarbi.i materiaal 
noch nachtrust werden gespaard. 
Oat hij daarbij ook nog optreedt als fotograaf word! eigenlijk te vaak 
als vanzelfsprekend ervaren. 
Ans van Poelvoorde stond voor de schier onmogelijke taak een groat 
gedeelte van het manuscript te ontcijferen. Haar tiksel vorrnde de basis 
van waaruit het verdere proefschrift werd opgebouwd. 
Nadal het concept kritisch was beoordeeld door Prof. Birkenhiiger, 
werd de definitieve tekst snel en goed aan het papier toevertrouwd 
door Bonny Steenhuis. 
Tevens kreeg ik van haar, alsmede van Ann Lustig, heiden uit Amerika 
afkomstig, nuttige stilistische adviezen. 
Het samenstellen van de literatuurlijst was niet mogelijk geweest zonder 
de hulp van Herrnien ter Riel. 
De inzet van Truus van Soest en Julia Vaarties bewoog zich niet aileen 
op he! chemische vlak. 
Aan de (nachtelijke) uren die ik met hen doorbracht houd ik niet aileen 
plezierige herinneringen, doch ook de Appendix uit dit proefschrift over, 
De co-referenten, Prof. Dr. J. Gerbrandy en Prof. Dr, A. Amery ben ik 
zeer erkentelijk voor de bereidwilligheid waannee zij he! uiteindelijke 
werk hebben beoordeeld. 
Nu dit proefschrift dan door Gerrit Worrngoor met zeer grate inspan­
ning in zijn uiteindelijke vorrn is gegoten, rest mii nog !wee "vergeten" 
groepen te bedanken. 
In de eerste plaats allen (collegae, zusters, patienten) die de gevolgen 
van mijn afwezigheid actief of passief moesten dragen en daardoor toch 
mede dit proefschrift hebben mogelijk gemaakt. 
In de laatste plaats een woord van dank aan hen die eigenlijk vooraan 
horen: de patienten, hypertonici, om wie het allemaal begonnen was, 
die zeer bereidwillig aan he! onderzoek hebben meegedaan en die wel­
lich t meer perspectief verwacht hadden dan dit boekje hen kan geven. 
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CURRICULUM VITAE. 

De auteur van dit proefschrift werd in 1948 te Yelp (Gld.) geboren. 
Na een kortstondig verblijf in het land Gelre bracht hij zijn verdere 
jeugd door in Zeeland, waar het Luctor et Emergo resulteerde in het 
behalen van het einddiploma gymnasium te Middelburg. Deze gebeur­
tenis, welke in 1967 plaatsvond, werd gevolgd door inschrijving aan 
de Medische Faculteit Rotterdam. 
De periode van de medische studie werd opgeluisterd door student­
assistentschappen bij de afdelingen Anatomie (hoofd Prof. Dr. J. Moll) 
en Huisartsgeneeskunde (hoofd destijds Dr. M. J. van Trammel). 
In 1973 werd het artsdiploma behaald. 
Vanaf februari 1974 is de promovendus als assistent werkzaam op de 
afdeling Inwendige Geneeskunde van het Zuiderziekenhuis te Rotter­
dam, waar hij bij Prof. Dr. W. H. Birkenhiiger opgeleid word! tot in­
ternist. 
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Table A-1. 

Variations of cardiac output measured by the impedance method on 
two separate days. 

Nr. First measurement Second measurement 
!/min. !/min. 

4,8 4,6 
2 4,8 4,6 
3 5,0 4,2 
4 4,8 6,4 
5 3,4 3,8 
6 4,6 5,0 
7 7,4 7,6 
8 5,5 5,8 
9 5,0 4,2 

10 3,0 3,0 
11 5,4 4,8 
12 3,8 4,1 
13 5,2 5,3 
14 7,0 6,8 
15 6,6 6,0 
16 4,6 3,1 
17 5,7 5,8 
18 5,6 5,1 
19 3,7 3,3 
20 5,8 6,0 
21 5,4 5,2 
22 4,7 6,4 
23 4,3 3,8 

Mean and 5,0±1,1 5,0± 1,2 
S.D. 

Standard deviation of the paired observations, calculated as Vd/2n 
(where d is the difference of the two measurements and n is the num­
ber of observations) is 0,5 !/min. or 10%. 
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Table A-2. 

Variations in glomerular filtration rate when measured on two separate 
days. 

Nr. Method First measurement Second measurement 
ml/min. ml/min. 

I 57 co 145 ll8 

2 57 co 177 165 

3 57 co 108 112 

4 57 co 117 96 

5 57 co 89 97 

6 57 co 89 85 

7 Inulin 106 105 

8 Inulin 102 IIO 

9 Inulin ll2 120 

10 Inulin 74 93 

I I Inulin 122 134 

---------------------------
Mean and 113 ± 28 II2 ± 22 
S.D. 

Standard deviation of the paired observations: 9,5 ml/min. or 8,8'/o. 

II 



Table A-3. 

Variations in renal plasma flow when measured on two separate days. 

Nr. First measurement Second measurement 
ml/min. ml/min. 

361 320 
2 369 364 
3 671 689 
4 493 535 
5 391 304 
6 480 507 
7 200 192 
8 405 403 
9 671 749 

10 1196 1200 

II 248 304 
12 645 621 
13 369 379 
14 579 589 
15 363 352 
16 519 541 

Mean and 498±233 503±242 
S.D. 

Standard deviation of the paired observations: 27 ml/min. or 6,8%. 
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Table A-4. 

Differences in estimated renal plasma flow when measured after renal 
arteriography and on a separate day, as an isolated procedure. 

Nr. Control After angiography 
ml/min. ml/min. 

655 696 
2 304 304 
3 693 556 
4 483 457 
5 643 592 
6 347 390 
7 624 488 
8 535 526 
9 373 332 

10 476 407 
II 493 481 
12 364 375 
13 499 524 
14 208 221 
15 437 434 
16 424 422 
17 595 473 
18 485 421 
19 419 507 
20 556 486 
------------------ --------

Mean and 481 ± 126 455±105 
S.D. 

Standard deviation of the paired observations: 46 ml/min. or 8,8%. 
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Table A-5. 

Variations in intrarenal blood flow during two successive measurements 
with a fifteen-minute interval. 

Cl M.B.F. "loCI 
First Second First Second First Second 

Nr ml./min./IOOg mi./min./ I OOg 

1 356 353 327 325 92 92 

2 316 342 265 306 81 89 

3 489 418 417 363 84 86 

4 534 519 514 461 96 88 

5 248 334 214 286 85 84 

6 357 411 332 374 92 90 

7 307 351 271 311 87 88 

8 349 288 240 255 57 88 

9 543 451 460 410 84 90 

10 378 342 318 291 83 84 

11 436 433 380 395 85 91 

12 438 421 399 354 91 84 

13 408 409 352 342 86 83 

14 306 268 285 249 92 93 

Mean 378 373 328 326 85 88 
and S.D. 97 73 97 72 9 3 

Standard deviation for the paired observations: 

Ct 35 ml/min/100 g or 10% 

MBF : 29 ml/min/ I 00 g or 9 % 

%C1 : 7% (without pat. 8): 3% 
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Table A-6. 

Variations in plasma volume determination on two separate days. 

Nr. First determination Second determination 
mi. mi. 

I 2678 2470 
2 1255 1261 
3 2821 3086 
4 2895 3046 
5 3960 3925 
6 3005 2909 
7 2061 2273 
8 2306 2387 
9 2083 2135 

10 2184 2033 
II 3071 3328 
12 2401 2507 
13 3700 3805 
14 2690 2678 
15 2084 1884 
16 2970 3163 

Mean and 2635±666 2680±707 
S.D. 

Standard deviation of the paired observations: II 0 mi. or 4,2'/o. 
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Table A-7. 

Variations in the determination of the extracellular volume on two 
separate days. 

Nr. 

I 

2 

3 

4 

5 

Mean and 
S.D. 

First determination 
I. 

6,4 

14,6 

18,8 

9,6 

10,4 

12,0±4,8 

Second determination 
I. 

6,9 

13,5 

15,6 

9,6 

10,0 

11,1±3,4 

Standard deviation of the paired observations: I, I I or 7, I% . 
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Table A-8. 

Variations in the plasma level of total renin concentration on two separate days. 

Nr. 

2 

3 

4 

5 

6 

7 

8 

9 
!0 

ll 

12 

13 

14 

IS 

16 

17 

18 

!9 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

Mean and S.D. 

First sample 
ng/ml.hr. 

!3,0 

19,4 

!5,5 

4,3 

!0,7 

8,7 

3,5 

2,9 

!1,6 

7,7 

9,5 

3,6 

4,3 

8,0 

9,4 

5,0 

!3,5 

!0,3 

8,7 

5,8 

1,4 

3,6 

!7,4 

8,3 

5,3 

8,6 

25,9 

ll ,5 

10,8 

9,2±5,5 

Standard deviation of the paired observations: 1 ,6 ng/ml.hr. or 16%. 

Second sample 
ng/ml.hr. 

14,0 

16,3 

8,3 

3,3 

12,8 

8,8 

3,4 

2,5 

10,9 

6,9 

9,7 

3,7 

5,4 

8,3 

8,6 

4,5 

13,0 

!0,4 

7,7 

11,4 

2,0 

4,4 

13,7 

9,1 

5,0 

6,9 

23,0 

9,0 

8,1 

8,7±4,6 

VIII 



Table A-9. 

Variations in the plasma level of active renin concentration on two 
separate days. 

Nr. First sample Second sample 
pU/ml. ,uU/ml. 

I 15,2 22,6 

2 24,0 20,4 

3 13,6 10,4 

4 24,7 28,6 

5 43,5 53,6 

6 30,7 25,3 

7 20,1 17,0 

8 5,6 7,1 

9 6,5 5,6 

10 19,3 20,2 

II 14,0 12,1 

12 70,3 73,4 

13 20,6 19,8 

14 27,6 26,5 

Mean and S.D. 24,0± 16,6 24,5±18,4 

Standard deviation of the paired observations: 3,0 pU/ml. or !4'1o . 
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Table A-10. 

Variations in the plasma level of aldosterone on two separate days. 

Nr. 

2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

Mean and S.D. 

First sample 
ng/100 mi. 

14,2 
31,8 
10,0 
18,3 
32,2 
15,6 

5,0 
9,6 

13,4 
15,2 
10,1 
11,1 
3,9 
8,9 

12,1 
13,3 

5,3 
18,9 
9,8 

10,4 
21,8 
16,4 
11 ,2 
6,5 
4,6 
7,3 

11,4 
13,5 
7,5 

14,0 
7,3 
9,0 

10,9 

12,4±6,6 

Standard deviation of the paired observations: 4,5 ng/1 00 mi. or 280/o. 

Second sample 
ng/100 mi. 

10.7 
10,4 
9,1 

17,2 
25,7 

9,0 
5,3 
7,2 

11,2 
15,6 
13,5 
15,3 
4,7 

14,7 
7,4 

11,8 
27,4 
23,6 

9,8 
12,7 
12,5 
15,4 
10,8 
7,4 
2,7 
6,5 

13,6 
11 ,6 
11,2 
16,2 
6,8 
8,7 

13,6 

12,1± 5,6 

X 



Table A-11. 

Variations in the plasma level of noradrenaline on two separate days. 

Nr. 

2 
3 
4 
5 
6 
7 

8 
9 

10 
II 
12 

Mean and S.D. 

First sample 
ng/ml. 

0,19 
0,60 
0,17 
0,26 
0,21 
0,12 
0,33 
0,27 
0,48 
0,40 
0,35 
0,16 

0,30±0,14 

Second sample 
ng/ml. 

--------

0,20 
0,52 
0,14 
0,30 
0,20 
0,13 
0,32 
0,28 
0,54 
0,58 
0,31 
0,21 

0,31 ± 0,16 

Standard deviation of the paired observations: 0,05 ng/ml. or 12% . 
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Table A-12. 

Individual (raw) data obtained in normotensive control subjects. 

XII 



"' 0 0 0 ,; .: " ~ 

4 " '" ·" ': "' "' n 0 
,; 0 n ': ~ " " 0 ~ " g > 0 " " " ID co ,; 
"' 

0 " '" '" 
z ~ " "' 0 H "' ~ 8 ., 

1 F 16 151 2062 3618 
2 "' 18 173 3081 5312 
3 F 19 157 2495 3960 
4 F 19 204 2550 4250 

F 20 176 2512 4052 
6 1>1 21 171 136 22 22,6 0,25 

7 >I 22 166 2859 4929 
8 l·l 22 173 220 67 27,5 0,34 

9 >I 23 197 2760 4678 11,9 
10 >I 23 186 2985 5632 13,2 

ll H 24 181 656 1171 124 120 
12 }<' 24 173 7,9 
13 ,. 26 173 521 868 2595 4325 101 63 16,0 0,18 

14 l'i 27 177 2645 4560 13,2 
15 M 27 211 2895 4907 14,6 
16 F 28 171 2430 4190 
17 l'l 28 173 9,9 
18 11 30 186 2775 4784 9,8 
19 F 30 173 25 9 4,7 0,21 

20 M 31 176 2780 5148 12,3 

21 'I 31 176 835 143 135 
22 l'i 31 173 15,7 
23 M 32 199 3004 5270 15,8 219 
24 }'[ 32 175 2780 5148 12,3 
25 jYj 32 164 2373 3955 
26 M 33 173 556 1158 2128 4433 270 12,8 

27 M 34 173 2401 4140 
28 F 35 181 3100 5167 

29 M 35 173 31 8,9 
30 F 37 161 2323 3872 

31 M 38 180 2519 4269 12,3 231 
32 l'l 38 173 3071 5388 
33 M 39 lY1 2648 4904 10,6 106 
34 M 39 197 2697 4732 14,1 225 
35 M 39 173 2084 3932 
36 M 41 206 3320 6036 14,7 
37 F 42 165 2590 4317 8,5 
38 M 42 186 3863 



"' " 
D 0: 

" " ,; .; 0 

4 . ., ": "' "' 
~ 0 

n n z 

" 
K 0 m "' ~ ~ 8 ": ": D ": "' "" 0 " 0 ,; z ~ "" ~ "' "' D H "' "' '" 8 "" " 

39 M 42 181 2685 4331 12,5 
40 F 43 173 3,8 
41 F 43 173 8, 7 
42 F 44 184 2448 3948 
43 M 46 176 2419 4320 10,9 
44 F 46 173 99 13 6,4 0,20 

45 M 47 176 583 940 136 2600 4407 13,2 

46 M 48 206 3318 5530 
47 M 50 169 3018 4868 
48 F 52 176 2212 3814 
49 F 52 165 2755 4238 
50 F 52 148 2606 4343 
51 M 52 192 384 674 112 118 3264 5829 11.7 82 5,0 
52 M 53 187 521 930 112 129 1809 3174 10,8 272 
53 M 54 208 887 1478 135 50 
54 M 54 173 211 23 5,3 0,14 

55 M 54 173 12.6 

56 M 56 174 2330 4315 ll.O 142 
57 F 56 185 2725 4007 

58 M 58 189 3419 5605 
59 F 58 173 80 8 3,2 0,19 

60 F 60 151 2678 3800 
61 M 60 186 3669 5396 
62 M 61 179 387 667 91 298 75 14,6 0,57 
63 M 62 184 3143 5238 
64 M 62 173 46 16 17,7 0,23 
65 F 63 154 303 473 122 77 2164 3548 9,6 51 
66 F 63 202 2690 4410 
67 M 64 212 559 1016 152 115 278 
68 F 65 173 14,6 
69 M 67 200 490 891 98 252 
70 F 68 159 3120 4800 

7l F 69 157 2306 3719 
72 F 71 172 2785 3868 
73 M 72 172 268 412 70 78 1,1 
74 F 72 173 10,9 
75 M 74 173 11,4 
76 F 80 173 25,8 





Table A-13. 

Individual (raw) data, obtained in the patients with essential hyper­
tension. (group I) 
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Nr. Sex Age B.S A 

1 

2 

3 

4 

5 

6 
7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

M 

M 

F 

M 

F 

M 

M 

F 

M 

F 

M 

M 

M 

F 

M 

F 

M 

M 

M 

M 

M 

F 

M 

F 

M 

M 

M 

F 

M 

M 

M 

F 

M 

M 

M 

F 

M 

F 

M 

M 

17 

16 

19 

21 

21 

22 

23 

23 

23 

23 

24 

24 

24 

24 

24 

25 

25 

25 

25 

26 

26 

26 

27 

27 

27 

28 

28 

28 

28 

29 

29 

29 

29 

29 

29 

30 

30 

30 

30 

31 

31 

190 

172 

162 

193 

201 

152 

205 

195 

164 

187 

172 

193 

193 

157 

157 

190 

180 

228 

169 

193 

200 

215 

170 

197 

167 

210 

195 

204 

166 

226 

200 

170 

162 

218 

173 

200 

160 

203 

152 

183 

184 

l'l.A.P. H B 

105 

120 

123 

95 

121 

115 

104 

130 

130 

95 

105 

105 

105 

115 

125 

116 

118 

110 

120 

129 

127 

124 

122 

121 

105 

114 

112 

114 

92 

107 

117 

137 

160 

115 

120 

82 

~103 

88 

59 

84 

70 

60 

86 

70 

110 

105 

80 

66 

70 

70 

60 

60 

115 

80 

58 

75 

90 

90 

109 

85 

64 

72 

78 

72 

75 

78 

c.o. 
Dye. Imp. 

8,2 

6,85 

3,86 

5,8 

4,3 

9,1 

7,6 

5,92 

8,4 

4,2 

5,93 

6,0 

7,2 

7,3 

5,4 

4,2 

7,7 

4,6 

5,28 

4,98 6,6 

7,8 

5,58 

7,8 

10,4 

7,37 

5,28 

8,7 8,8 

4,2 

7,7 

5,5 

4,6 

4,6 

7,1 

T.P.R. 

1024 

1315 

11:!22 

1810 

1407 

2155 

1793 

2419 

987 

923 

1105 

1412 

2000 

1192 

2200 

1592 

1600 

1955 

1411 

1992 

1251 

1735 

1077 

877 

1216 

1720 

846 

2229 

1993 

2783 

2000 

1352 

P.V. 

2914 

2432 

2392 

3303 

3842 

2207 

2971 

291/:l 

1780 

272b 

3180 

1957 

2483 

2747 

2370 

2924 

2994 

2970 

2327 

3288 

2431 

3634 

2360 

3070 

3148 

2994 

3431 

2565 

2407 

3366 

2660 

3100 

2295 

2967 

2184 

2571 

2660 

B.V. 

5024 

4504 

4054 

5795 

7115 

3560 

5305 

5305 

2825 

4956 

4818 

3495 

4356 

5087 

3823 

5221 

5758 

5500 

4082 

5573 

4191 

6730 

4214 

5117 

4919 

4990 

5916 

4750 

3946 

5905 

5216 

5849 

3825 

5395 

3702 

4944 

4361 



G.F.R. 
E.C.V. cyano. Inulin. R.P.F. R.B.F. R.V.R. 

10,7 

12,4 

9,3 

12,6 

9,8 

13,9 

8,9 

11,1 

12,5 

13,6 

9,6 

13,2 

10,8 

9,8 

9,8 

12,6 

9,6 

9,6 

10,0 

127 

121 

122 

86 

125 

95 

143 

155 

66 

121 

133 

129 

106 

112 

165 

161 

100 

107 

93 

133 

121 

100 

108 

143 

76 

80 

137 

87 

101 

105 

160 

131 

130 

98 

141 

105 

117 

141 

99 

118 

74 

99 

b84 

549 

667 

676 

660 

396 

568 

577 

484 

816 

779 

1023 

440 

444 

731 

540 

752 

844 

757 

660 

749 

980 

387 

707 

505 

773 

847 

907 

888 

535 

667 

561 

693 

491 

493 

363 

505 

671 

1140 

980 

1093 

1186 

1217 

660 

1014 

1089 

849 

1511 

1764 

733 

783 

1354 

870 

1367 

1407 

1402 

1200 

1362 

1849 

645 

1309 

1082 

1487 

1366 

1744 

1531 

892 

1112 

1058 

1308 

767 

836 

648 

935 

1137 

7368 

9796 

9003 

6408 

7921 

13939 

8205 

9550 

12250 

SOlO 

4762 

11405 

12218 

7386 

10608 

6906 

6254 

6847 

8600 

5495 

15380 

7456 

8946 

5649 

0676 

5138 

6108 

8251 

7098 

8847 

8379 

19753 

9840 

8433 

F.F. 

0,18 

0,18 

0,16 

0,21 

0,18 

0,20 

0,24 

0,22 

0,20 

0,18 

0,15 

0,20 

0,23 

0,19 

0,18 

0,24 

0,17 

0,13 

0,25 

0,19 

0,21 

0,18 

0,16 

a,2o 
0,18 

0,25 

0,20 

0,24 

0,20 

0,20 

0,20 

Ren. 
Fract. 

14 

13 

20 

28 

18 

26 

19 

20 

20 

23 

12 

16 

16 

21 
23 

23 

23 

26 

13 

17 

19 

19 

13 

24 

29 

10 

28 

25 

24 

14 

20 

16 

T.P.R.C. P.Aldo 

15,9 

11,4 

4,1 

17,4 

10,2 

7,4 

7,9 

5,3 

5,3 

14,8 

4,3 

8,0 

13,2 

9,3 

15,0 

8,0 

8,0 

15,9 

16,0 

15,7 

24,6 

5,1 

21,6 

9,8 

15,2 

5,1 

34,1 

8,0 

24,8 

7,5 

17,4 13,2 

12,2 

14,4 

7,5 

10,7 

6,7 

8,7 

11,8 

8,3 

5,4 

13,3 

10,3 

3.5 

7,8 

3,6 

13,0 

5,3 

21,7 

13,7 

10,4 

29,2 

8,9 

6,3 



Nr Sex Am• B.S .A. ., 
43 

44 

F 31 170 

M 

F 

45 M 

46 ~i 

47 1'1 

48 M 

49 F 

50 M 

51 M 
52 F 

53 F 

54 

55 

56 

57 

M 

M 

F 

M 

58 M 

59 M 

60 M 

61 F 

62 F 

63 

64 

M 

F 

65 M 

66 F 

67 M 

68 M 

69 M 

70 F 

71 F 

72 M 

73 M 

74 M 

75 F 

76 F 

77 M 

78 F 

79 F 

80 M 

81 F 

82 M 

31 

31 

31 

32 

33 

34 

34 

34 

34 

34 

35 

35 

35 

35 

35 

35 

36 

36 

36 

36 

36 

36 

193 

155 

191 

183 

195 

187 

156 

216 

173 

172 

174 

206 

180 

172 

169 
200 

198 

186 

143 

151 

194 

151 

37 194 

37 179 

37 202 

37 204 

37 182 

37 153 

38 194 

38 188 

39 182 

39 174 

39 144 

39 160 

39 188 

39 152 

40 162 

40 204 

40 175 

41 192 

M.A.P. H.R. 

124 85 

140 

100 

97 

143 

105 

105 

132 

138 

125 

100 

80 

115 

105 

145 

115 

104 

116 

100 

110 

108 

102 

107 

113 

110 

103 

140 

113 

139 

140 

97 

127 

110 

124 

120 

88 

.102 

85 

85 

63 

71 

69 

86 

75 

60 

so 

92 

96 

90 

67 

92 

74 

56 

76 

57 

52 

56 

68 

70 

59 

69 

90 

87 

c.o. 
Dye. Imp. 'f.P.R. P.V. 

5,28 

6, 7 

7,1 

7,0 

3,8 

7,15 

7,55 

4,82 

7,4 

6,95 

6,62 

4,6 

5,35 

7 ,9 

5,3 

5,8 

6,5 

4, 7 

8,1 

6,0 

6,62 

6,8 

4,2 

4,82 

3,96 

1879 2684 

1672 

4,1 1951 

1096 

1634 

4,2 2210 

1170 

1393 

5,64 2290 

5,3 

4,9 

1351 

1151 

967 

2000 

1585 

2168 

1877 

1053 

1751 

1379 

6,2 1419 

1249 

5,2 1646 

3,9 2318 

1872 

3,49 2361 

5,1 2196 

1116 

2,99 3719 

1867 

1184 

4,3 

2419 

4,6 1913 

205S 

2424 

2981 

2028 

2328 

2618 

2702 

2138 

3615 

2944 

2678 

2955 

2805 

2770 

2790 

3196 

3100 

2000 

2175 

2805 

2067 

2660 

2664 

3621 

3211 

2292 

2895 

3095 

2619 

2745 

2341 

2688 

3838 

1964 

2295 

2851 

2336 

2274 

B.v. 
3834 

5323 

3325 

4392 

4292 

5004 

3341 

6342 

4826 

4463 

5008 

5009 

4074 

4359 

5510 

5741 

3077 

3686 

5100 

3230 

4508 

4298 

6706 

5838 

3952 

4991 

6448 

4762 

4733 

4335 

4556 

6505 

3168 

3531 

5002 

4028 

3610 



G.F.R. Ren. 
E.C.V. Cyano. Inulin. R.P.F. R.B.F. R.V.R. F.F. Fract. T.P.R.c. P.Aldo 

1;4 97 587 947 10475 0,10 18 20,8 

80 573 1023 10498 0,14 15 6,9 

424 BOO 10000 20 21,3 31,5 

18,7 75 472 726 10722 0,16 10 9,7 

120 586 1126 7247 0,20 26 8,8 6,4 

76 70 295 492 0,24 11,2 

16,9 144 716 1256 6662 0,20 18 13,0 

10,3 17,2 
10,8 165 528 866 12748 0,31 18 14,1 6,9 

16,7 134 709 1289 7758 0,19 17 6,1 
9,6 8,6 16,0 

11,3 115 585 929 8611 0,20 13 3,6 

105 653 1146 5585 0,16 17 5,5 

110 436 838 10979 0,25 18 12,6 

126 483 833 10084 0,26 16 7,7 7,4 

132 129 608 1086 0,21 14,0 

10,9 107 336 560 20714 0,32 10 5,7 

106 539 914 10666 0,20 19 8,3 12,2 
9,5 118 458 777 10708 0,26 10 9,7 43,1 
9,6 85 371 580 16000 0,23 11 6,1 8,5 

15,5 123 677 1167 6855 0,18 20 8,0 

524 832 10577 13 3,4 9,4 
12,3 140 128 575 1065 8133 0,22 15,0 7,5 

135 573 1042 7793 0,24 16 5,5 
290 547 15649 11 6,8 9,4 

420 724 12486 19 9,5 13,4 
13,0 148 720 1241 7091 0,21 26 5,6 

139 555 1156 7128 0,25 33 12,4 9,8 
11,0 

225 409 22103 5 16,0 

9,1 75 313 559 19893 0,24 19 12,3 7,5 
119 547 977 11464 0,22 16 8,0 

9,8 124 559 1055 7355 0,22 16 9,1 

493 808 12 3,7 11,7 
8,0 98 411 663 15324 0,24 16 6,4 

142 607 1104 7971 0,23 24 9,5 1,9 
9,6 60 200 339 29263 0,30 7 13,4 16,8 

117 519 944 10169 0,23 24 9,6 



Nr. Sex Age B.S.A. 

83 

84 

85 

8o 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

lOb 

107 

108 

109 

110 

111 

112 

113 

114 

115 

llb 

117 

118 

119 

120 

121 

122 

123 

/>1 41 

M 41 

M 41 

F 41 

F 42 

M 42 

M 43 

M 43 

!>1 43 

M 43 

M 43 

M 43 

F 

F 

M 

43 

43 

43 

M 43 

M 44 

F 

F 

F 

44 

44 

44 

M 44 

F 44 

F 45 

M 45 

M 45 

F 45 

M 45 

M 45 

F 45 

F 45 

M 45 

M 45 

M 45 

F 

F 

45 

46 

1>1 46 

M 47 

F 47 

M 47 

F 

F 

47 

47 

212 

202 

207 

158 

191 

214 

190 

210 

204 

207 

208 

212 

1o2 

lb2 

204 

191 

206 

176 

184 

173 

212 

185 

190 

185 

206 

176 

183 

224 

185 

180 

206 

195 

193 

144 

177 

197 

208 

157 

215 

170 

163 

J'ol.A.P. 

178 

115 

102 

136 

130 

102 

150 

134 

125 

134 

115 

109 

100 

128 

125 

160 

127 

140 

100 

11o 

122 

120 

122 

120 

119 

130 

120 

142 

130 

117 

124 

131 

H.R. 

72 

100 

60 

90 

68 

64 

53 

70 

48 

74 

86 

70 

93 

86 

64 

75 

79 

bO 

74 

96 

68 

c.o. 
Dye. Imp. 

5,88 

7,4 

4,29 

7. 2 

o,5 

4,79 

5,2 

7,85 

3,7 

7,8 

6,87 

7,73 

3,48 

5,8 

5,7 

4, 7 

4,4 

5. 7 

5,1 

5,1 

3,b 

7,0 

5,1 

b,l 

4,2 

3,9 

4,2 

T.P.R. 

2422 

1243 

1379 

2536 

2213 

1855 

14!:l9 

1754 

1649 

1820 

15b9 

1938 

1631 

1992 

2222 

250!:l 

1379 

1231 

1914 

1574 

1386 

2705 

2667 

2229 

1283 

3011 

P.V. B.V. 

3045 5342 

2Cl!:l!:l 5251 

2894 5675 

2636 4321 

361!:l 

2680 

30l:!b 

3420 

3968 

3385 

4093 

2605 

261:!0 

3732 

2223 

2951 

2933 

3257 

2748 

3430 

2274 

2452 

3104 

2431 

2492 

4055 

3336 

3206 

1731 

3103 

2501 

E:.23!:l 

5154 

5321 

b453 

6613 

631:!7 

61:!22 

4915 

471:16 

M47 

3705 

4611 

4583 

5428 

473!:l 

6236 

3728 

4228 

5352 

4502 

4224 

6758 

6415 

61b5 

2984 

4792 

4031 

3384 6385 

2485 4284 

3290 5672 

3473 

2359 

5343 

3932 



G.F.R. 
E.C.V. cyano. Inulin. R.P.F. R.B.F. R.V.R. 

10,9 

14,7 

8,6 

10,2 

13,8 

10,9 

13,5 

7,4 

13,9 

13,9 

12,8 

7,6 

14,1 

10,5 

12,3 

12,2 

6.6 

8,0 

14,6 

120 

143 

125 

120 

139 

134 

75 

185 

117 

124 

167 

154 

116 

108 

164 

146 

141 

89 

129 

106 

125 

118 

120 

122 

116 

146 

147 

113 

129 

107 

100 

158 

110 

127 

106 

107 

128 

103 

138 

743 

561 

376 

645 

736 
586 

673 

557 

608 

555 

773 

328 

229 

599 

521 

577 

361 

507 

453 

763 

828 

608 

537 

581 

381 

333 

783 

490 

487 

420 

427 

504 

368 

247 

576 

432 

620 

1370 

1020 

684 

1057 

1247 

1120 

1202 

1051 

1067 

1009 

1356 

547 

352 

1175 

883 

1030 

645 

805 

719 

1339 

1335 

1030 

1013 

1056 

646 

608 

1450 

846 

812 

712 

854 

933 

566 

441 

1087 

708 

1048 

241 389 

6686 

7843 

15906 

8340 

7247 

11418 

10047 

9911 

7906 

9875 

7767 

12522 

13908 

9588 

9864 

11056 

7576 

14365 

16132 

6621 

11537 

11823 

13371 

12178 

10289 

20071 

9568 

13220 

9466 

Ren. 
F.F. Fract. T.P.R.C. P.Aldo 

0,19 

0,22 

0,31 

0,19 

0,20 

0,21 

0,24 

0,22 

0,33 

0,31 

0,22 

0,25 

0,27 

0,22 

0,19 

0,24 

0,21 

0,22 

0,28 

0,32 

0,21 

0,21 

0,35 

0,26 

0,25 

0,29 

0,43 

0,22 

0,24 

0,22 

19 

18 

16 

26 

27 

26 

15 

18 

21 

18 

20 

15 

17 

20 

29 

17 

9 

19 

17 

13 

10 

13 

28 

17 

14 

5,4 

9,9 

8,b 

5,4 

2,1 

8,8 

8,3 

7,0 

8,8 

16,9 

3,6 

2,6 

9,8 

11,6 

8,5 

2,5 

5,5 

5,0 

5,3 

5,0 

4,0 

9,8 

7,3 

3,5 

9,0 

7,5 

11,3 

7,9 

8,6 

3,6 

9,4 

8,0 

6,6 

8,8 

5,0 

7,5 

10,6 

15,e 

16,9 

21,4 

19,4 

6,4 

12,1 

18,3 

6,3 

5,6 

13,7 

11,8 

34,2 

4,8 

12,7 

14,8 

32,4 

44,9 

15,6 

4, 7 

7,0 



Nr. Sex Age B.S .A. 

124 F 47 148 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

161 

162 

163 

164 

F 

M 

M 

F 

M 

F 

F 

M 

F 

F 

M 

M 

F 

F 

M 

F 

M 

F 

F 

F 

M 

F 

F 

M 

M 

M 

F 

M 

F 

M 

F 

F 

M 

F 

M 

M 

F 

F 

M 

47 

47 

47 

47 

47 

48 

49 

49 

49 

49 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

51 

51 

52 

52 

52 

52 

53 

53 

53 

53 

53 

53 

53 

53 

53 

53 

169 

184 

196 

183 

146 

167 

174 

175 

202 

170 

180 

169 

207 

185 

183 

216 

160 

173 

163 

148 

162 

184 

154 

168 

166 

182 

170 

161 

179 

154 

185 

179 

182 

206 

167 

170 

227 

178 

190 

179 

M.A.P. 

117 

116 

120 

113 

129 

144 

95 

146 
120 

100 

131 

122 

132 

160 

118 

130 

120 

150 

122 

154 

158 

150 

120 

150 

127 

137 

170 

135 

163 

127 

125 

138 

120 

130 

169 

H.l<.. 

53 

63 

73 

85 

72 

61 

71 

87 

72 

74 

70 

85 

88 

90 

68 

66 

65 

53 

53 

100 

60 

58 

62 

56 

76 

66 

80 

70 

82 

90 

c.o. 
Dye. Imp. 

3,66 3,7 

4,6 

5,07 

3,97 

4,33 

6,0 

3,76 

4,34 

5,61 

4,26 

5,07 

4,46 

3,47 

2,62 

4,82 

6,55 

5,12 

5,4 

5,05 

6,3 

4,2 

6,0 

3,6 

3,7 

3,9 

7,1 

4,2 

5,43 

5,0 

5,4 

4,1 

5,5 

4,1 

7,2 

4.4 

3,7 

•r.P.R. 

2546 

2017 

2286 

1507 

2034 

2902 

2111 

2697 

1600 

2162 

2596 

2439 

2282 

22H> 

2051 

1352 

2691 

2324 

3550 

4824 

2·!·00 

1778 

2490 

1545 

2673 

2472 

2534 

2552 

1411 

1852 

2178 

2182 

1051 

3643 

F.V. 

2069 

2924 

3641 

3263 

2203 

1840 

2865 

3229 

2752 

2450 

2939 

3720 

B.v. 
356? 

471.0 

6743 

5438 

3865 

3345 

5026 

5665 

4300 

3952 

4453 

6414 

3011 5018 

2900 4915 

3405 5974 

3568 6732 

2442 4361 

2290 4256 

2804 5392 

2510 3984 

2059 3321 

2395 

2585 

3365 

2594 

2111 

4202 

4700 

5608 

3991 

4491 

2298 3379 

3381 5307 

2517 4195 

2995 4680 

3783 6522 

2580 4808 

2758 

2571 

3093 

4925 

4215 

5333 



G.F.R. Ren. 
E.c.v. Cyano. Inulin. R.P.F. R.B.F. R.V.R. F.F. Fract. T.l'.R.C. P. aldo 

94 92 425 733 12715 0,22 20 3,6 10,6 

427 712 13034 15 2,3 8,4 

116 433 787 12198 0,27 19 7,0 3,4 

156 580 1094 8263 0,27 18 4,2 8,6 

119 614 1059 9737 0,19 21 16,8 

96 86 361 656 17561 0,24 17 6,7 10,1 

112 480 842 9026 0,23 23 4,3 11.8 

10,t> 110 479 812 14384 0,23 19 3,9 

14,8 97 333 5b4 17021 0,29 9 

122 500 926 8639 0,24 25 8,7 14,8 

10,2 93 351 585 17915 0,26 8,0 

111 407 656 14878 0,27 17 2,4 

10,4 87 405 614 17199 0,21 14 5,3 
15,6 110 490 817 15667 0,22 15 2,1 

15,6 

12,7 114 515 888 11712 0,22 18 2,4 

138 892 1538 6242 0,15 22 10,9 16,6 

10,6 70 129 215 55814 0,54 5 7,8 

128 540 982 9939 0,24 23 13,4 20,4 

72 81 289 535 23028 0,28 15 15,9 11,t:! 

7,0 3,8 

108 455 784 15306 0,24 16 2,2 18,5 

101 423 709 12484 0,24 14 13,9 6,3 

124 600 952 12605 0,21 20 3,1 

10,7 107 85 361 547 18501 0,24 8 5,5 

8,7 

435 806 13598 20 4,4 24,3 

123 300 600 22667 0,34 11 10,7 31,9 

b5 268 454 0,24 

415 883 10,0 
9,4 86 418 597 18090 0,21 15 b,8 7,3 

12,8 26,6 3,1 

320 525 19352 7 1.4 13,3 

11,2 142 475 779 12837 0,30 14 3,0 

15,6 141 125 513 933 11790 0,24 18 9,6 

7,9 95 2b1 458 20961 0,36 10 4,1 17,9 

619 1263 8234 20 11,5 

160 608 1105 0,26 5,5 23,3 

11,8 633 1055 14,9 

16,2 127 587 962 14012 0,22 26 9,0 15,2 

100 407 678 0,25 16,0 



Nr. 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

18b 

187 

188 

189 

190 

191 

192 

193 

194 

195 

19b 

197 

198 

199 

200 

201 

202 

203 

204 

205 

Sex Age B.S .A. 

M 54 212 

F 54 158 

LYl 54 202 

M 

M 

M 

M 

F 

M 

M 

M 

M 

M 

M 

F 

F 

M 

M 

F 

F 

M 

M 

54 

54 

55 

55 

55 

55 

55 

55 

55 

56 

56 

56 

56 

56 

57 

57 

57 

58 

58 

58 

M 58 

M 58 

F 58 

M 58 

M 58 

M 58 

M 59 

M 

M 

M 

M 

59 

60 

60 

60 

M 60 

M 60 

M 

F 

F 

M 

F 

60 

61 

61 

61 

62 

183 

191 

181 

197 

184 

173 

200 

180 

226 

173 

184 

154 

190 

202 

199 

161 

173 

186 

167 

194 

189 

155 

158 

16D 
178 

187 

202 

189 

195 

177 

202 

208 

208 

174 

174 

171 

208 

168 

M.A.P. 

140 

123 

120 

138 

131 

144 

140 

125 

135 

129 

110 

147 

115 

120 

87 

165 

126 

145 

145 

122 

121 

100 

102 

155 

112 

120 

120 

135 

160 

160 

140 

110 

145 

134 

130 

175 

H.R. 

74 

64 

110 

56 

70 

180 

62 

78 

66 

64 

78 

60 

63 

72 

63 

58 

72 

61 

69 

59 

54 

87 

65 

95 

87 

c.o. 
Dye. Imp. T.P.R. 

6,53 

5,2 

5,08 

7,8 

3,62 

3,9 

6,4 

5,85 

3,62 

3,08 

5,3 

4,3 

5,13 

5,4 

4,08 

7.1 

4,1 

8,8 

6,5 

3,66 

3,9 

1715 

2523 

1<:146 

211:11 

1344 

3,69 31$2 

6,8 

4,6 

4,0 

4,1 

5,5 

5,1 

3,0 

4,8 

5,1 

3,4 

5,7 

21:>72 

1562 

1846 

21351 

1294 

2557 

2987 

1811 

1619 

1965 

2148 

2109 

2402 

2115 

2667 

2000 

2118 

1577 

2588 

2829 

1218 

1600 

3825 

P.V. 

3657 

2162 

3940 

2911 

3152 

319CS 

3150 

2680 

2323 

3751 

B.v. 
5541 

3664 

6678 

4852 

5530 

5922 

5250 

4542 

4224 

6820 

2918 4784 

3083 5929 

2713 5024 

3106 5860 

2360 

2545 

3289 

2154 

2042 

2349 

2545 

3334 

3145 

3471 

6206 
3916 

351:12 

4271 

4314 

4976 

5616 
3073 5587 

1929 3162 

2751 4510 

2254 4098 

2930 5140 

3b94 6369 

3613 

2b54 

2177 

2955 

2970 

3000 

2336 

6229 

4825 

3456 

5095 

4869 

4688 

4247 



G.F.R. Ren. 
E.c.v. c::r::ano. Inulin. R.P.F. R.B.F. R.V.R. F.F. Fract. T.P.R.C. P.Aldo 

120 501 759 14756 0,24 12 

410 707 13918 18 3,7 22,1 

15,7 175 627 1140 8421 0,28 22 3,4 

12,1 6,1 11.7 

114 96 341 631 0,28 16,1 6,7 

15,2 130 568 979 10705 0,23 13 4,4 

10,1 70 353 579 19896 0,20 16 8,7 8,3 

12,4 112 355 645 17364 0,32 17 4,3 

12,5 155 632 1170 8547 0,25 18 6,4 

134 465 861 12544 0,29 15 2,4 

13,9 151 456 894 11544 0,33 25 11,1 

103 303 561 15686 0,34 8 12,4 10,9 

91 329 62> 18937 0,28 14 15,9 9,4 

8,8 98 484 793 11602 0,20 28 2,2 

19,9 2,5 

419 776 8969 18 8,3 15,6 

53 115 202 65347 0,47 12,2 39,4 

7,7 64 307 512 1%88 0,21 10 8,6 30,8 

15,2 123 412 736 15761 0,30 14 5,3 

82 

114 541 984 9959 0,21 24 12,5 6,5 

101 339 605 18282 0,30 12 15,8 15,0 

87 479 785 10191 0,18 26 15,2 10,1 

105 440 710 11493 0,24 5 '7 
8,9 88 75 305 555 22342 0,25 5,8 

114 368 634 14132 0,31 8,9 18,5 

95 339 584 16438 0,28 12 11,4 9,9 

128 387 717 13389 0,33 3,2 

117 110 455 812 0,24 8,6 

102 345 595 18151 0,30 12 6,2 5,8 

9,7 118 413 700 18286 0,29 7,8 

141 359 865 0,39 .9~1 

14,5 166 113 567 930 13763 0,20 3,6 

16,5 155 493 1059 10576 0,26 15 5,4 

122 519 885 10173 0,24 25 4,3 15,6 

12,7 127 553 916 12664 0,25 22 2,8 

442 807 13333 9 12,7 14,6 

132 509 893 11646 0,20 14 4,0 

9,9 113 188 308 45455 0,60 8 6,4 



c.o. 
Nr. Sex Age B.S.A. M.A.P. H.R. Dye. I mE. T.P.R. P.V. B.V. 

206 M 63 187 2108 4216 

207 M 63 203 175 82 5,85 2393 

208 M 63 200 129 59 4. 71 2191 3309 5515 

209 F 64 175 140 80 5.1 2196 2890 4661 

210 F 64 168 

211 M 64 212 

212 M 64 204 132 70 5,99 1763 2990 5537 

213 M 66 189 137 69 5,9 1858 2839 5357 

214 M G6 206 148 72 4,04 2941 3917 6528 

215 F 68 166 183 2439 4435 

216 F 69 165 142 52 2,82 4028 2730 4789 

217 F 69 204 127 3028 5047 

218 F 69 174 132 80 4,8 2200 2588 4540 

219 F 70 168 122 

220 F 70 200 127 69 6,33 1605 3198 5243 

221 F 70 164 2874 4790 

222 M 70 179 120 79 5,35 5,1 1794 2847 5272 

223 M 72 198 128 66 3,6 2844 3711 6084 

224 F 73 176 134 67 4,68 2299 2895 4523 

225 M 73 181 130 90 5,8 1793 2842 5573 

226 M 74 190 130 



G.F.R. Ren. 
E.c.v. cyano. Inulin. R.P.F. R.B.F. R.V.R. F.F. Fract. T.P.R.C. P.Aldo 

11,9 99 127 329 621 0,39 o,1 

14,8 125 425 708 19774 0,29 12 1,o 

12,8 135 449 748 13797 0,30 16 2,3 

85 70 237 389 28792 0,30 " o,1 12,6 

82 308 550 0,27 

152 115 559 1016 0,21 

12,9 108 4b3 874 1201:l2 0,23 15 10,9 

102 111 453 o71 12583 0,25 15 14,1 18,8 

132 135 339 556 21367 0,40 14 5,6 2,1 

9,4 91 80 227 420 34857 0,35 9,1 

10,9 75 200 339 33510 0,38 12 20,1 36,9 

12,2 74 74 189 295 0,39 11,0 

102 301 528 20000 0,34 11 2,0 

120 110 387 b55 14901 0,30 10,5 

11,1 b3 209 332 30602 0,30 5 10,8 11,2 

17,1 

110 312 578 16609 0,35 11 9' 7 21,5 

477 782 13095 22 3,4 9,0 

145 102 391 611 17610 0,26 13 14,6 13,8 

8,7 90 352 618 16828 0,26 11 13,6 10,3 

73 134 524 873 12308 0,26 11,2 



Table A-14. 

Variability of blood pressure. 
Numbers refer to patients in table A-13. 

SYSTOLIC DIASTOLIC MEAN 
Nr. max. min. max. min. max. min, basal 

l 165 125 105 75 122 90 122 

5 200 160 130 110 150 127 127 

6 190 140 100 60 

8 175 100 120 70 137 87 113 

10 165 120 125 80 
11 180 100 115 70 

19 200 120 130 70 157 87 112 

20 210 125 130 75 
22 185 135 115 85 133 lOS 110 

23 180 135 110 65 

24 180 95 110 50 

27 260 175 130 90 163 127 146 
28 150 130 105 90 120 102 103 

29 172 85 94 40 120 55 77 
30 200 130 125 90 150 107 117 

31 175 105 115 65 133 77 117 

32 155 115 105 85 122 98 101 

36 190 150 115 90 

40 190 130 110 80 133 97 107 

41 230 125 120 80 157 98 116 

42 160 90 105 55 123 68 87 

43 180 110 120 60 140 77 77 
44 160 85 105 40 118 62 73 

45 220 145 130 100 158 118 132 

50 155 85 105 65 122 75 91 

55 190 120 120 90 

57 250 195 135 120 170 150 167 

59 200 120 145 80 

64 185 120 110 80 133 95 100 

65 220 140 140 85 153 107 126 

66 150 115 105 65 113 85 85 

67 205 115 130 65 

73 200 120 130 90 147 103 129 

76 205 150 135 95 145 112 135 

77 260 150 140 95 170 113 164 

79 155 120 120 80 

84 150 105 100 70 113 85 101 

86 200 100 120 65 140 77 111 

88 210 120 120 70 150 87 112 

89 185 105 100 70 

90 160 100 100 60 117 70 91 

XIV 



SYSTOLIC DIASTOLIC MEAN 

Nr. max. min. max. min. max. min. basal 

94 220 135 140 100 163 112 138 

97 230 130 135 100 

98 180 120 130 90 

99 195 120 120 75 142 90 120 

104 190 120 no 75 
105 180 75 120 40 137 55 77 
110 190 150 125 100 143 117 133 

111 200 140 120 95 140 112 130 

123 175 100 100 60 

124 210 110 120 60 
127 170 110 130 85 
129 200 100 115 50 132 65 104 

133 200 100 80 40 
136 200 135 135 90 155 107 115 

137 170 120 105 so 123 93 93 
145 200 130 115 70 

147 150 125 100 85 117 103 117 

149 260 215 140 110 

152 160 100 110 45 
153 210 145 140 100 

154 180 100 100 60 123 83 95 
156 220 100 125 45 140 67 101 

157 220 160 140 110 155 127 141 

167 205 150 130 105 153 120 133 
168 150 110 110 75 123 87 100 

171 205 110 130 70 

173 175 130 125 90 
185 170 110 120 65 

199 175 135 130 100 145 112 113 

204 190 105 120 75 140 85 118 

205 160 110 110 70 
206 205 140 115 85 
207 210 135 120 95 150 112 112 

210 155 102 90 54 107 71 84 
212 180 125 125 75 l:i-2 92 100 

214 160 105 125 70 127 82 101 

215 195 140 120 100 142 113 113 

224 170 90 100 50 120 63 85 

225 165 100 100 45 110 68 92 

229 160 130 110 85 130 100 113 



Table A-15. 

Individual (raw) data, obtained in the patients with essential hyper­
tension. (group II) 

c.o. 
Nr, Sex B,S,A. Age M.A.P. Dye. Imp. 

1 

2 

3 

4 
5 
6 

7 
8 

9 

10 
11 

12 
13 
14 
15 
16 

17 
18 
19 
20 
21 
22 

23 

24 
25 
26 

27 
28 

29 
30 

31 

32 

33 

34 
35 
36 
37 
38 

39 
40 
41 

XV 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

F 

F 

F 

F 

M 

F 

M 

F 

F 

F 

M 

M 

F 

F 

M 

F 

M 

M 

F 

M 

M 

M 

M 

M 

M 

F 

M 

M 

M 

M 

193 
193 
220 

210 

169 
218 

200 

183 
191 

181 

178 
172 
178 
198 

179 
188 

144 
168 

145 
221 

214 
160 

185 
216 

177 
202 

208 

157 

184 
167 
183 
171 
202 

162 

208 

194 
182 
170 

21 

21 
27 
28 

28 

29 
29 
30 

31 

31 
31 

33 

34 
34 
36 

37 
38 

39 
39 
39 
40 
42 

44 
45 
45 
46 
46 
47 
47 
47 
47 
48 

48 
48 

49 
50 
51 
51 
52 
52 

95 
88 

105 
122 

87 

117 
137 
115 

115 
100 
112 
105 
138 
120 

105 
110 
103 

139 
115 
112 
110 
130 

100 
122 
110 

142 
102 

130 
107 

120 

95 
148 

115 
100 

150 
110 

117 
137 
170 

4,2 

6,1 
4,0 
7,8 

4,3 
4, 5 
4,2 

5,5 

4,6 
4,1 

3,8 
6,0 

4,8 5~6 

4,3 
5,3 
6,2 

3,5 
3,0 

3,7 
6,8 

4,7 
4,8 
5,1 

5,3 
4,2 

6,2 

3,9 
4,2 

4,2 
2,9 
3,9 

3,7 
5,0 
4,5 
3,7 
4,1 
5,5 

T,P.R. 

1810 

1154 
2100 

1251 

1564 
2229 
1993 

2000 
1951 

2358 
1400 

2295 
2233 
1585 
1419 
2361 

3719 
2486 
1318 

2213 

1667 

1914 
1660 

2705 
1316 
1507 
2038 

2286 
2621 
3036 

2162 

2400 
1956 

2530 
2673 
2472 

P,V. 

3303 
3011 

3634 

2565 

3366 
3100 

2571 
2328 

2549 
3139 
2944 
3028 

3196 

2664 
3095 
2341 
2424 
1904 
3791 
3618 
1487 
2431 
1170 

3163 

3505 
3384 

2485 

3641 

2865 
3303 
2297 

3229 

2290 
3556 
2820 
2585 
3365 

B.v. 
5795 
5018 

6730 

4750 
5905 
5849 

4944 
4392 

4395 
5232 
4826 
4884 
5510 
4299 
6448 
4335 
4253 

6893 
6238 

4502 

4792 
6491 
6385 
4284 

6743 
5026 

5795 

4417 
5665 

4256 
6838 

5127 
4700 
5608 



G.F.R. R.P.F. R.B.F. R.V.R. F.F. T.P.R.C, A.P.R.C. P. a1clo 1:'. nor. 

143 676 1186 6408 0,21 22_8 56 9,8 0,20 
136 571 936 7521 0,24 169 36 4,6 0,12 

975 1773 4738 99 15 11,2 0,12 
707 1309 7456 94 26 21,7 

119 40 9,0 0,17 
106 493 880 7909 0,22 194 75 31,8 0,44 
141 561 1058 8847 0,25 166 66 29,2 0,21 

693 1308 8379 129 61 8,9 o, 33 

176 7l 18,7 0,51 
99 505 935 9840 0,20 162 6,3 0,23 

424 800 10000 259 41 31,5 0,30 
500 862 10394 36 8 2,0 O,l"-

772 1287 6527 65 23,7 0,20 
165 528 866 12776 0,31 176 6,9 0,10 

564 910 10549 45 25 13,4 0,42 
126 483 833 10084 0,26 109 47 7,4 0,26 

524 832 10577 42 18 9,4 0,34 
139 555 1156 7128 0,25 155 9,8 0,25 

75 313 559 19893 0,24 154 7' 5 o,:;_1 
447 784 11735 12 15,4 0,31 
384 674 13294 265 8,4 0,36 
545 991 8880 66 10 12,5 0,20 
736 1247 8340 26 7 19,4 0,34 
493 747 10710 108 41 4,6 0,37 
499 846 11537 185 64 2,4 0,17 
657 1195 7364 92 19 13,2 0,32 

106 368 566 20071 0,29 82 44,9 0,40 
595 1102 7405 131 45 6,2 0,17 

128 576 1087 9568 0,22 62 4,7 0,13 
103 432 708 12090 0,24 94 6,9 0,10 

38 9 6,8 0,21 
116 433 787 12198 0,27 88 0,33 
112 480 842 9026 0,23 54 15 11,8 0,20 

263 453 26137 90 34 34,7 0,12 
556 1069 8606 144 33 11,4 0,35 

122 500 926 8639 0,24 109 48 14,8 0,25 
lOS 455 784 15306 0,24 28 18,5 0,12 

563 1083 8126 121 30 12.5 0,20 
507 922 10152 66 31 14,5 0,28 
435 806 13598 55 24,3 0,28 

123 360 600 22667 0,34 134 49 31,9 0,44 



c.o. 
Kr. Sex B.S.A, Ago M.A.P. Dye. Imp. T,P,R. P.v. B.V. 

42 F 167 53 120 4,4 2182 2580 4868 

43 M 173 56 110 6,8 1294 2713 5024 
44 F 162 56 113 5,8 1559 1832 
45 M 56 
46 F 165 57 135 4,2 2588 2674 5045 
47 M 195 57 130 4,4 2364 3222 5461 
48 M 155 58 100 3,0 2667 1929 3162 
49 N 178 58 112 2930 5140 
50 M 187 59 128 4,9 2090 3300 5893 
51 M 174 60 110 3,4 2588 2970 4869 
52 M 195 60 135 5,1 2118 3613 6229 

53 M 182 61 113 3,6 2511 
54 M 182 61 143 4,6 2487 3144 5716 
55 M 191 63 167 1805 
56 M 178 67 140 2974 5041 

57 F 68 
58 F 72 4,1 

59 F 170 73 130 3,2 3250 



G.F.R. R.P.F. R.B.F. R.V.R. F.F. T.P.R.C. A.P.R.C. P. a1do P. nor. 

98 261 458 20961 0,36 51 17,9 0,93 
103 303 561 15686 0,34 155 10,9 0,18 

330 579 15613 67 6 7. 5 0,55 
13 8 23,7 0,12 

62 205 347 31170 0,30 148 5,1 0,11 
540 915 11366 136 35 2,0 0,19 

87 479 785 10191 0,18 190 7l 10,1 0,76 
114 368 634 14132 0,31 111 40 18,5 0,28 

290 509 20118 70 36 9,9 0,20 
122 519 865 10173 0,24 54 15,6 0,19 
102 345 595 18151 0,30 78 5,8 0,20 

452 853 10598 31 13,5 0,48 
240 436 26239 50 15,2 0,31 
348 621 21514 58 13 5,9 0,34 

90 269 472 23729 0,33 82 12,2 0,18 
62 ll 53,4 0,29 
66 15 4,9 0,41 

245 395 26329 41 11,5 0,15 



Table A-16. 

Follow-up of intrarenal haemodynamics. 

Nr. Age cl c2 M.B.F. 'loCI 
------------------------------------------

25 526 25 488 92 

29 376 38 350 93 

2 41 366 71 328 89 

46 327 27 263 76 

3 34 486 28 422 86 

40 384 28 331 85 

XVI 



Table A-17. 

Intrarenal haemodynarnics and arterio-venous levels of total and active 
renin and noradrenaline in untreated patients with essential hyper­
tension. 

XVII 



Nr. Sex Age B. S .A. T.R.B.F. c1 02 M.B.F. o/ C ,o 1 M.A.P. 

1 M 18 172 980 271 61 233 83 120 

2 M 21 193 856 512 69 447 86 105 

3 M 29 170 877 376 38 350 93 86 

4 M 30 197 1049 784 59 718 91 104 

5 M 31 191 740 240 56 190 75 98 

6 M 36 198 862 361 26 244 66 69 

7 M 40 915 100 

8 F 45 181 890 352 42 324 91 ll8 

9 M 45 216 ll95 497 44 435 87 llO 

10 M 46 202 906 366 27 328 89 120 

ll M 47 1600 100 

12 M 57 195 880 360 40 304 84 130 

l3 F 65 795 105 

14 F 68 180 544 284 47 231 79 100 



TOTAL RENIN CONCENTRATION ACTIVE RENIN CONCENTRATION NORADRENALINE CONCENTRATION 

Nr, peri ph. art. ven. periph. art. ven. periph. art. ven. 

3 104 103 118 32 43 47 ().26 0,33 0,28 

5 266 242 245 41 45 45 0,30 0,30 

7 66 66 70 10 ll 12 0,17 0,15 0,22 

8 185 122 144 64 50 70 0,12 0,14 

9 108 92 109 19 18 25 0,22 0,16 0,18 

10 155 136 165 49 45 48 0,13 0,17 0,20 

ll 39 44 51 ll 18 21 0,21 0,16 0,22 

12 120 156 148 35 35 48 0,19 0,23 0,28 

13 86 87 106 18 20 23 0,63 0,61 0,64 

14 64 66 72 12 17 0,38 0,33 0,29 



Table A-18. 

Sequential values for renin (active and total), aldosterone and nora-
drenaline before and during tilting. 

~ Tilting 30° Tiltinjli 60° 

liE.· lifll:. 
l 0,17 0,26 0,28 0,36 0,33 . o, 23 

2 0,18 0,32 0,40 0,52 0,70 0,80 

3 0,51 0,63 0,58 0,58 0,85 0,81 0,84 

4 0,18 0,34 0,18 0,24 

5 0,12 0,12 0,12 0,14 0,19 0,25 

6 0,48 0,50 0,56 0,49 0,48 0,44 0,45 

Nr. x..&B.:..Q.. 
L 119 104 203 318 392 199 
2 101 121 138 114 174 219 

3 176 164 125 180 164 205 192 

4 167 211 230 256 

5 13 26 26 23 25 35 
6 27 58 30 33 30 42 33 

liE· !.:l.J.hQ. 
l 40 54 62 141 233 82 
2 63 72 109 95 150 206 

3 71 95 87 92 111 155 159 

4 18 31 45 51 

5 8 9 10 12 14 19 
6 13 20 18 21 22 

liE· ~ 
1 9,0 7,6 37,8 62,8 81,0 50,0 
2 16,0 22,1 41,6 65,8 68,0 115,9 
3 18,7 24,5 30,1 26,3 41,0 50,5 34,5 
4 5,3 8,5 21.0 20,4 

5 23,7 16,7 18,1 21,6 27,2 30,4 
6 6,5 4,3 5,7 11,3 5,7 6,5 4,6 

XVIII 



Table A-19. 

Individual data obtained in patients with essential hypertension before 
and after treatment (for 2 weeks) with propranolol. 
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Nr. Sex Age 

1 1'1 18 

2 fyi 21 

3 !'I 2 5 

4 Ill 28 

5 M 29 

6 !•1 29 

7 F 31 

8 r-1 31 

9 N 31 

10 M 34 

11 1'1 36 

12 F 37 

13 M 38 

14 F 39 
15 F 40 

16 M 42 

17 F 44 

18 M 45 
19 F 45 

20 M 45 

21 N 47 

22 r-1 4 7 

23 N 48 

24 M 48 

25 fy] 49 

26 F 50 

27 F 50 

28 E 51 

29 t'I 52 

30 M 52 

31 F 53 

32 M 54 

33 F 56 

34 1'1 56 

'55 N 58 

36 M 58 

37 M 58 
38 ]'] 59 

39 M 60 

40 N 60 

41 M 67 

JVi,A,P. 

B. A. 

120 92 

88 85 

125 120 

122 102 

92 95 
117 82 

140 110 

115 103 

100 100 

105 91 

105 88 

110 88 

103 82 

127 92 

130 132 

160 130 

120 102 

122 113 

100 113 

129 126 

120 93 

95 93 

148 107 

100 110 

122 133 

150 130 

110 102 

137 128 

170 138 

168 137 

140 llO 

115 125 

110 105 

100 82 

112 12) 

120 134 

128 103 

110 93 

140 140 

140 130 

H.R. 
B. A. 

103 79 

57 43 

58 4 7 
85 52 

88 65 

102 54 

65 68 
62 48 

92 58 

57 51 

59 44 
68 48 

74 56 
93 62 
86 70 

63 51 
85 63 

63 47 
61 61 

57 47 
87 68 

72 66 

53 48 

58 46 

62 54 

90 62 

74 55 
64 50 

78 40 

72 60 

69 53 

68 52 

59 47 
87 64 
54 51 

89 64 

c.o. 
B. A. 

7,3 7. 7 

6,1 4,5 
8,4 6,0 

7,8 
8,8 

6,7 

4,1 
7,2 
5,3 
6,2 

4,2 
4,7 
7,8 

7,8 
5,1 

5,1 
5,1 

3' 6 
4,2 
3,7 
3,8 

5,0 

4,1 
5,5 

6,5 
3,1 

3,0 

3,6 

4,5 
3,4 

3' 5 
3,9 

5,2 
6,0 

4,2 

3,6 
6,3 
7,1 
5,4 

4,2 
4,4 
4,8 
5,2 
6,5 

4,0 
4,7 
3,7 
3,3 
3,7 
3,4 
3,4 

3' 5 
4,1 

6,4 
4,4 

3,4 

3,9 
5,8 

4,2 
4,4 
2,9 

G,F.R. R.P.F. 
B. A. B. 

100 120 549 

136 156 571 

105 

80 

99 

144 
126 

119 
98 

154 
164 

119 

116 

122 
111 
108 

123 

127 
120 

96 
103 

87 
114 

122 
102 

90 

731 

707 
105 535 

561 

94 573 

95 505 

424 
141 716 

121 483 

524 
555 

98 547 
98 411 

736 
160 828 

137 783 

499 
581 

120 61~ 

107 43} 

480 
263 

119 500 

108 407 

112 455 

563 
435 

76 360 

120 587 
119 501 

103 484 

105 303 

82 479 
ll9 368 

504 
290 

110 519 

108 345 

99 269 

A. 

668 

611 
757 
655 
512 
732 

583 
512 

372 
697 
444 

512 
643 
623 
375 
584 
471 
692 
317 

443 
463 
493 
487 
246 
409 
284 
400 
578 
462 
367 

544 
472 
544 
279 
364 
380 

432 
336 
488 
328 
264 



P.V. 

B. 

2432 
3011 

3634 
2565 
3366 
2028 
2571 
2328 

3196 
2664 
3095 
2688 
2295 
3618 

A. 

2760 
3250 

3229 
2905 
3264 
2025 
2554 
2516 

3089 
2611 
3010 
2620 
2397 
3705 

2933 3300 
3104 3359 
2431 
3430 

3641 
2865 
3303 
3229 
2450 
2298 

3566 
2585 

3365 
3093 
3657 
2360 
2713 
1929 
2930 

3300 

2813 
3640 

3213 
2898 
3891 
3639 
2595 
2525 
3576 
2988 
3173 
3062 
3854 
2485 
2815 
1895 
3405 

3175 

3613 3732 
2974 3191 

T.P.R.C. 
B. A. 

141 98 
169 176 
188 200 

94 108 
114 150 
166 161 

86 86 
163 138 
259 228 
162 150 

96 79 
42 80 

155 166 
100 74 

80 100 
26 34 
62 32 
94 134 

156 
91 

88 

45 
90 

109 
30 
28 

121 

55 
128 

113 

28 

155 
190 
111 

75 
70 
54 
78 
82 

166 
91 

84 

40 
138 

103 
24 
36 

144 
56 
96 

100 

60 

134 
141 

46 
81 

90 
55 
64 
84 

A.P.R.C. 
B. 

36 

26 
32 
66 

41 

47 
18 

65 

7 

12 

15 
34 
48 

5 
30 

49 

40 
71 
40 

36 
17 

A. 

47 

26 

33 
61 

40 

20 

24 
46 

5 

39 

12 

35 
11 

6 

33 

8 

34 
48 
11 

18 

14 

P. aldo 
B. 

4,2 
4,6 

21,7 
10,4 
29,2 

6,3 
23,5 

7,4 
9,4 
9,8 

19,4 

4, 7 
11,8 

3,4 
10,6 

34,7 
14,8 

18,5 
12,5 
24,6 
31,9 
15,2 

10,9 
10,1 
18,5 

4,9 
15,8 
15,6 
5,8 

12,2 

A. 

4,0 
4,9 

9,4 
6,1 

20,0 

1,8 

12,2 

12,0 

2,0 

7,0 

13,4 

3,9 
4,7 

6,7 
4,0 
3,7 
4,3 

1,7 
7,9 

15,3 
17,6 
19,3 

6' 5 
3,0 

11,0 

2,0 

18,0 
9,6 
7,0 

20,6 

1'. nor. 

B. 

0,12 

0,20 
0,28 
0,40 

0,23 
0,30 

0,26 

0,34 
0,25 

0,34 

0,20 
0,29 

0,33 
0,20 
0,12 
0,25 

0,12 
0,24 
0,28 
0,44 

0,18 
0.76 
0,28 

0.13 
0,19 

A. 

0,17 

0,17 
0,25 
0,23 

0,12 

0,21 

0,33 
0,29 

0,25 

0,29 

0,44 
0,23 
0,15 
0,20 

0,26 
0,18 
0,28 
0,51 

0,13 
0,58 
0,28 

0,22 
0,39 

0,20 0,20 
0,18 0,20 



Table A-20. 

Variability of blood pressure before and after treatment with propra­
nolol. 
Numbers refer to patients in table A-19. 

3yst. Syst. 

nax. min. 

Diast. 

max. 

Diast. 

min. 

J'.1ean Mean :Mean 

max. min. basal 
::r. D. A. B, A. B, A. 3. A, B, A. B, A. B. A. 

1 

2 

3 
4 

5 
6 

8 

11 

12 

13 
19 

20 
22 

23 
24 
25 

27 

29 
30 

31 

34 

35 

36 
38 

39 

XX 

170 150 120 115 lOS 90 
185 140 120 llO llO 95 

zos 160 ns 120 130 no 
185 160 135 llO 115 90 

150 140 115 100 105 95 

180 170 125 120 125 120 

150 135 130 110 105 95 
175 130 105 100 115 90 

155 130 115 105 105 95 
180 110 no no 120 100 

200 180 140 120 120 110 

175 160 130 130 120 130 
175 150 135 110 130 100 
150 140 105 100 100 90 

zzo no 16o no 140 ns 
150 140 110 100 110 110 

205 190 150 140 130 125 

260 220 175 150 130 110 

zso-· zoo 195 165 135 125 

245 220 200 175 160 135 
165 150 125 115 105 105 
150 110 125 95 100 75 

210 210 135 160 120 135 

200 160 140 105 130 120 

160 125 130 115 110 95 
210 225 150 170 120 125 

205 180 155 140 115 110 

80 70 

80 70 

65 60 

85 65 

65 60 

75 70 

90 60 

65 55 

85 65 

60 80 

95 70 
100 100 

100 80 

70 65 

100 80 

75 60 
105 95 

90 75 
120 105 

130 llO 

"75 70 

85 70 

95 105 

95 55 

85 80 

90 95 

75 70 

123 110 93 92 93 

133 110 95 

133 108 108 

113 107 85 

142 137 92 

120 108 102 

133 103 77 

122 103 98 

140 120 77 

140 133 ll2 

138 140 100 

145 117 112 

113 103 85 

167 130 122 

123 120 87 
153 143 120 

163 133 127 

170 14 7 150 

183 163 153 

122 120 90 

117 87 103 
150 160 112 

147 128 112 

83 120 

77 110 

73 85 

87 100 

77 103 

70 117 
80 101 

93 110 

93 130 
113 140 

90 140 

77 101 

90 147 

73 120 
110 180 

107 146 

128 240 

132 183 

85 122 

78 117 

123 112 

75 124 

130 105 100 92 113 

141 158 112 127 170 

145 133 103 93 200 

103 
115 

85 

73 
107 

93 

70 
88 

115 
110 

140 

120 

78 

115 
130 
190 
125 

200 

163 

120 

82 

140 

101 

105 
190 

170 



Table A-21. 

lntrarenal haemodynamics and arterio-venous levels of total and active 
renin and noradrenaline in patients with essential hypertension who 
have been treated with propranolol. 

XXI 



Nr. Sex Age B.S.A. T.R.B.F. cl c2 M.B.F. % cl l1.A.P. 

l M 27 1329 408 36 352 86 95 
2 ll 28 209 1243 384 44 353 91 108 

3 F 31 860 436 64 380 85 100 

4 M 31 184 914 691 46 543 77 103 

5 M 33 184 736 291 40 250 84 127 
6 F 34 906 438 31 399 91 90 

7 F 38 168 666 329 45 286 85 132 
8 M 38 189 1076 548 30 502 91 93 
9 M 45 206 820 337 41 303 89 113 

10 M 46 202 969 498 37 436 87 99 
11 M 47 192 667 268 39 220 80 135 
12 F 48 181 381 297 77 183 51 131 

13 M 48 
14 F 49 350 40 302 85 96 
15 M 49 408 31 335 81 105 
16 M 51 182 591 266 34 211 77 129 

F F 53 793 307 55 272 87 115 
18 M 53 197 461 435 63 345 77 110 

19 M 56 190 742 436 28 400 91 113 
20 M 56 95 
21 M 58 155 543 344 44 300 86 59 
22 M 58 201 708 329 26 291 88 134 
23 M 58 191 778 318 75 248 72 122 
24 M 61 385 19 334 86 145 
25 M 67 6ll 175 29 150 85 120 



TOTAL RENIN CONCENTRATION ACTIVE RENIN CONCENTRATION NORADRENALINE CONCENTRATION 

Nr. periph. art. ven. peri ph. art. ven. peri ph. art. ven. 

l. 118 159 139 24 17 22 0,09 0,09 0,11 

3. 135 122 126 12 10 12 0,14 0,26 0,31 

6. 45 49 54 7 8 7 0,32 0,20 0,21 

10. 21 20 21 o,1s 0,22 0,20 

14. 112 108 114 18 20 20 0,42 0,28 0,26 

15. 182 172 178 32 38 38 0,42 0,43 0,59 

16. 18 36 40 0,28 0,28 0,54 

20. 50 48 48 7 4 3 

21. 144 159 169 58 71 98 0,58 0,31 0,17 

24. 106 116 133 26 40 39 0,75 0,68 0,78 

25. 54 55 55 21 9 11 0,14 0,14 0,16 
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