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Abstract

In several disciplines, as diverse as shape analysis, location theory,
quality control, archaeology, and psychometrics, it can be of interest to
fit a circle through a set of points. We use the result that it suffices to
locate a center for which the variance of the distances from the center
to a set of given points is minimal. In this paper, we propose a new
algorithm based on iterative majorization to locate the center. This
algorithm is guaranteed to yield a series nonincreasing variances until a
stationary point is obtained. In all practical cases, the stationary point
turns out to be a local minimum. Numerical experiments show that
the majorizing algorithm is stable and fast. In addition, we extend the
method to fit other shapes, such as a square, an ellipse, a rectangle,
and a rhombus by making use of the class of I, distances and dimension
weighting. In addition, we allow for rotations for shapes that might be
rotated in the plane. We illustrate how this extended algorithm can
be used as a tool for shape recognition.

Subject Classifications: Mathematics: functions: majorizing functions. Fa-
cilities: location: continuous. Engineering: shape analysis.
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1 Introduction

The central problem of this paper can be described in a simple manner:
given a set of points, what is the best circle through these points. This task
is equivalent to finding a center point such that its distance to all of given
points is equal. It turns out that this problem appears in several disciplines.
For example, in location analysis, this objective is known as the balancing or
equity objective (Eiselt and Laporte 1990) and is often applied to decisions
where the public needs to be served in a fair manner. An example is finding
a location for a new library such that it is located at more or less the same
distance for all its users. In the domain of pattern recognition, this criterion
is known as least squares orthogonal distance fitting, see, for example, Ahn,
Rauh, and Warnecke (2001) with applications in image processing. The
problem of finding a circle that comes closest to a set of points forms a special
case, with applications for example in archeology (Rorres and Romano 1997),
computerized roundness inspection (Van-Ban and Lee 1991, Yeralan and
Ventura 1988) and unfolding (Van Deun et al. in press).

Several algorithms have been proposed that solve the minimum variance
problem. Many of these algorithms are computationally slow and strongly
depend on the starting position (Ahn, Rauh, and Warnecke 2001). Often
they are developed for a specific shape in a certain dimensionality usually
chosen to be two or three. In this paper, we will show how the numerical
optimization technique of iterative majorization can be used as a robust
and computationally inexpensive tool to fit different shapes. Here, we will
consider the two-dimensional shapes of circles, ellipses, squares, rectangles,
and rhombi that are possibly rotated. Even though this paper is limited to
two-dimensional shapes, the proposed algorithms can be used for more than
two dimensions as well.

Consider the situation that a circle needs to be fitted through a given set
of points where the coordinates of n points are given by the rows of the n x 2
matrix Z and row ¢ is given by the row vector z,. Throughout this paper,
we shall denote vectors by boldface lowercase roman letters and matrices by
boldface uppercase roman letters. If all z; lie exactly on a circle, then there
exists a center point x and a radius R such that all the distances d; between
x and z; equals R. Therefore, the minimization of

L R) = (di— RY. 0

i=1
has a global minimum of zero whenever the points z; fit exactly on a circle.
If the points are almost on a circle, then (1) can be used as a least-squares
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Figure 1: Contour line for points with unity distance to the origin. The
different panels refer to different [, metrics.

model to fit a circle. Note that the size of the circle is not important as it
is modelled by the radius R.

To fit a circle, d; needs to be defined as the Euclidean distance. Here,
we propose to use its generalization, the Minkowski or /,-distance

m 1/19
d; = (Z |uis|p) , 2)
s=1

with p > 1 the so called Minkowski parameter, m the dimensionality (through-
out this paper m = 2), and

Ujs = Tg — Zig- (3)

Special cases of the [,-distance are the Euclidean distance for p = 2, the
rectangular or city-block distance for p = 1, and the infinity norm or dom-
inance distance for p = co. The different shapes that can be fitted by (1)
for different choices of p are given in Figure 1. The shape corresponding
to the Euclidean distance (l2) is the well known circle, for the rectangular
distance (I;) a diamond (in two dimensions a rotated square), and for the
dominance distance (l») a square. For example, minimizing (1) for p = 1
implies searching for the best fitting diamond.

Drezner, Steiner, and Wesolowsky (2002) showed that minimizing (1) is
equivalent to minimizing,

=1 7
2
n 1 n
= > d - - (Z@) (4)
i=1 i=1



Table 1: Coordinates for 9 points.

VA VY4 Z3 Z4 Zs Z¢ Z7 1Zg Zg
First dimension -9 -11 2 -1 4 9 7 7 10
Second dimension | 2 -1 10 -10 9 -5 7 -7 1

Variance

Figure 2: Variance in function of the center coordinates. The stars indicate
the given points z;

which is equal to the variance of the distances if L(x) is divided by n.
The advantage of (4) over (1) is that we do not longer need to estimate
the radius but only the coordinates of the center. In addition, (4) allows
us to graphically display L(x) as a function of the two center coordinates.
Consider the data reported by Drezner, Steiner, and Wesolowsky (2002) of
nine points that lie approximately on a circle (see Table 1). Figure 2 shows
the value of the loss function as function of the center coordinates x. Note
that the nine points are also plotted as stars in the horizontal plane. In
Figure 2, it is easy to see that L(x) is not necessarily convex and has a steep
decline in the region bounded by the given points.

This paper is organized as follows. First, we will develop an iterative
majorization algorithm that can be used to find the point with minimum
variance of the distances to a fixed set of points. Then, the algorithm is
applied to the problem of finding the circle that comes closest to a set
of points and we compare it with a Newton-Rhapson approach developed
by Drezner, Steiner, and Wesolowsky (2002). Finally, we will show how
our algorithm can be extended to model different shapes, such as squares,
ellipses, and rectangles. For these shapes, we also allow for rotations. As a
possible application, we consider the problem of shape recognition.



2 Minimizing L(x) by Iterative Majorization

To solve the problem of finding coordinates for the center that minimize (1)
or, equivalently, (4) an iterative majorization procedure is developed. First,
a general description of iterative majorization is presented. Then, we will
show how a majorizing function that is quadratic in the coordinates can be
obtained.

2.1 Iterative Majorization

Iterative majorization is a guaranteed descent method that has been mostly
developed in the area of psychometrics and statistics. For a general in-
troduction to iterative majorization, we refer to De Leeuw (1994), Heiser
(1995), Lange, Hunter, and Yang (2000), and Kiers (2002). Here, we give a
short description. The main idea is to replace in each iteration the objective
function by an auxiliary function (called the majorizing function) that is
easier to minimize such as a quadratic function. Then, an update of the
majorizing function is easy to find. By choosing the majorizing function in
a special manner, the important property of iterative majorization can be
proven, that is, the property that the function value will never increase in
subsequent iterations. In other words, for almost all practical applications,
iterative majorization guarantees that the function values decrease. If the
original function is bounded below by zero, as (4), the sequence of function
values converges.

Let the majorizing function be denoted by g(x, X¢), where X is called the
supporting point which is the current known estimate of x. The majorizing
function has to have the following properties:

1. The majorizing function g(x,x() should be easier to minimize than
the original function f(x).

2. The majorizing function is larger than or equal to the original function,
that is, f(x) < g(x,xq) for all x.

3. The majorizing function touches the original function at the support-
ing point xg, that is, g(xo,%0) = f(x0)-

Let x™ be the minimum of g(x,xg). From the two last properties it follows
that
f(x™) < g(x*,%0) < g(x0,%0) = f(xo) (5)

which is called the sandwich inequality by De Leeuw (1994). By choosing
xo of the current iteration as x from the previous iteration, it follows that



a majorizing algorithm yields a nonincreasing sequence of function values.
Even though it can only be guaranteed that the algorithm will stop at a sta-
tionary point (provided that the function is differentiable), the guaranteed
descent property is in almost all practical applications sufficient to stop at
a local minimum.

Generally, the difficult part of iterative majorization lies in finding the
majorizing function. However, one can use the overview of building blocks
for majorizing functions given by Kiers (2002) and Groenen (2002).

2.2 Obtaining a Majorizing Function for L(x)

We now develop a majorizing function for L(x). We use the fact that ma-
jorizing functions can be majorized themselves as well and the algorithm
remains convergent. Below, we develop the majorizing function in steps.
First, we majorize L(x) to obtain a function that is either quadratic in d;
or is a sum of —d;. Then, we majorize d? and —d;. Finally, these results are
combined to obtain a quadratic function in x.

The first term of L(x) consists of a sum of d?. The second term of L(x),
—n~1(X" , d;)?, can be seen as n~! times minus the square of (31, d;).
Developing the inequality c(t — tg)2 > 0 gives

c(t? + 2 — 2tty)

—ct?

0

>
< —2cttg + ct?,

where c is a positive value. Substituting ¢t =), d; and tg = ), d;o gives

L(x) < zn:df _2 (i di> < ) diO) + ka1, (6)
; 1

=1 1=

with d;o the distances based on x (the previous estimation of x) and k =
n~1(3; dio)?. Thus, the right hand part of (6) gives a majorizing function
that consists of squared distances and a weighted sum of minus the distances.

We now focus on majorizing —d;. Making use of Hoélder’s inequality,
Groenen, Heiser, and Meulman (1999) found a majorizing function for —d;
given as

—d; < =) Uisuisobg) (7)
s=1
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where ;40 is defined by (3) using the previous estimate x instead of x and

|uisolP =2 /iy if Juiso| > 0 and 1 < p < o0,

p(1) _ 0 if |uisol =0 and 1 < p < o0, (8)
s |uiso| =t if Juiso| > 0,p = 00, and s = s*,
0 if (Juiso] = 0 or s # s*) and p = oo,

where s* is defined for p = oo as the dimension on which the distance is
maximal, i.e., d; = |ujs=|.

For d? Groenen, Heiser, and Meulman (1999) also gave a quadratic ma-
jorizing function by

m m m
2
2 < aii?, — 23 uisuisob) + 3 cis 9)
s=1 s=1 s=1
where
|Uiso|p_2/dzigo_2 if Juiso| > eand 1 < p < 2,
|e[P=2/db if [ugs0] < eand 1< p <2,
ais =< 2(p—1) 2 <p< oo, (10)
[wigr0/ (|tigr0] — [wigo0]) If [tigr0] — [wige0| > € and p = oo,
([uigyol +€)/e if |uig 0] — |tigy0| < € and p = oo,

with ¢, an index that orders the values of |u;s| decreasingly (thus |ug, 0 >
‘ui¢20|)a

0 if1<p<2
, Qis — |ui80]p_2/dfo_2 if |uiso| > 0 and 2 < p < o0,
bgs) =<0 if Juisol =0 and 2 < p < o0, (11)
Qs if s # ¢1 and p = o,
Ais|Uigoo] /| Ui 0] if s = ¢1,p = o0,
and
0 if1<p<2,
Cis = Dos AisUzyg — d2 if 2 < p < oo, (12)

Zs(2bz(§) - a’is)uzzso + d120 if p = 0.

For the proof that (7) and (9) are indeed majorizing functions, we refer to
Groenen, Heiser, and Meulman (1999) . Note that if |u;s0] = 0 for all s,
then d;o = 0 so that dfo_ 2 appearing in a;s is not defined. In this case, we
simply replace |u;so| = € for some small € so that d;p > € in a;5. Strictly



speaking this adaptation violates the majorization requirements. However,
by choosing € sufficiently small the majorizing algorithm remains convergent
in practice.

Applying the majorizing inequalities of (7) and (9) into the right hand
part of (6) gives

L(x) < > di— % <Z di) (Z diO) + k1
i=1 i=1 i=1
< > agsul, — 2 uishis + ko, (13)

where bis = [(n71Y; dio)bg) + b(2)]uiso and ko = k1 + >, cis. Inserting

xs — zs for u;s in the right hand part of (13) gives
L(x) < g1(x,%0)
Z ais(xs - Zis)2 -2 Z(l‘s - Zis)bis + k2

= Zﬂl‘z Z(Zis - QZ-TS Z(aiszis + b’LS) + k3a (14)

where k3 = ko + ;5 aisz2 +2 3, zishis. Inspecting g1 (x, xo) shows that the
majorizing function in the right hand part of (14) is indeed quadratic in z;.
The minimum of a quadratic function can easily be obtained by setting the
derivative equal to zero and solving for x,, giving the update

>oilaiszis + bis)

= ) 1
xg S an (15)

The iterative majorization algorithm is given by

1. Choose initial x(?). Set iteration counter [ := 0 and set the convergence
criterion €cony to a small positive constant.

2. 1:=1+1.

3. Calculate the update xt using (15) where xg = x(~1.

4. X(H—l) — oxt _ X(l_l).

5. Check for convergence: If ||x=1) — x®|| > e.ony g0 to Step 2.

As a rational starting point for x(9), we use the centroid of the data points,
ie, xO =n=1% 2.



Step 4 is an acceleration method that can be used with iterative ma-
jorization (De Leeuw and Heiser 1980, Heiser 1995). It can be proved that
the use of the so-called relaxed update still guarantees a nonincreasing se-
quence of the variance of the distances (see Groenen, Mathar, and Heiser
1995) while experience shows that the number of iterations will be approxi-
mately halved.

2.3 Minimizing the Variance of Euclidean Distances by Iter-
ative Majorization

For fitting circles, we have to use Euclidean distances. In this case, the
update (15) of the majorizing algorithm simplifies considerably. In fact, for

p:27

ais = 1,
0 {d;l if djp > 0,
is 0 ifdp=0,
by =0,
cis = 0,

yielding the update
rf = nt Z(zis + bis). (16)

For Euclidean distances, the majorizing function is illustrated in Figure
3 where both the original loss function L(x) and the majorizing function
from the right hand side of (14) are plotted for the small data example of
Table 1. Here the supporting point is chosen as x;, = [2  0]. As can be seen
in Figure 3a, the majorizing function is a quadratic function that lies above
the original loss function. In Figure 3b, we see that the majorizing function
indeed touches the original function at the supporting point xg.

3 Application: Finding the Best Fitting Circle

We illustrate our algorithm by applying it to the problem of finding a circle
that fits some given points. Several solutions have been proposed that min-
imize the variance of the distances of the center to the given points (see for
example Ahn, Rauh, and Warnecke 2001, Drezner, Steiner, and Wesolowsky
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Figure 3: Plot of the original loss function and the quadratic majorizing
function with supporting point x{, = [2 0] (Panel a). Panel (b) shows a
detail.

2002, Rorres and Romano 1997). Here, we limit our comparison to the iter-
ative majorization algorithm and Newton-Raphson algorithm proposed by
Drezner, Steiner, and Wesolowsky (2002). At the end of this section, we will
further investigate the performance of the iterative majorization approach
in a simulation study.

First, we compare the sensitivity of the two algorithms for the starting
values of x(©). Again, we use the nine points reported in Table 1. Both
algorithms were stopped when the difference between the L(x) values in two
subsequent iterations was less than 1075, This weaker convergence criterion
was chosen for reasons given here below. To check the sensitivity for the
start configuration, we started both algorithms from all points on a grid
defined for z; and x2 between [—20,20] in steps of 2. Then, the final L(x)
after convergence was noted. Figure 4a shows these values on the z—axis for
the Newton-Raphson algorithm of Drezner, Steiner, and Wesolowsky (2002)
and for the majorization algorithm in Figure 4a. It can be seen clearly that
the Newton-Raphson algorithm strongly depends on the starting position.
Only for starting positions not too far from the center, the global minimum
of L(x) is found. Note that for some starting values, there is a gap in the
figure. This gap is due to numerical problems which turn out to be more
severe for stronger convergence criteria. The majorizing algorithm shows a
flat surface indicating that from all starting positions with —20 < z; < 20
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Figure 4: Value of the objective function for different starting positions. The
left panel stems from the Newton Raphson approach and the right panel from
the iterative majorization approach. The stars indicate the given points.

and —20 < z9 < 20, the global minimum of L(x) is found. So even starting
outside the circle leads to the global optimum.

Next, we compare both algorithms for starting positions close to the op-
timum. As a convergence criterion we take the distance between the updated
center and the previous one: when this distance is smaller then 107>, the
iterative procedure is stopped. One thousand starting positions were gen-
erated uniformly on the disk centered around the optimum and with radius
equal to one. The results are reported in Table 2. For each algorithm the
minimum value of L(x), the range of the L(x) values, the minimum number
of iterations, the maximum number of iterations and the total computing
time are given. In terms of convergence, the Newton-Rhapson approach is
faster as can be seen from the number of iterations and the range of the vari-
ance. However, in terms of CPU time the iterative majorization algorithm
is about as fast.

We further investigate the performance of the iterative majorization ap-
proach in a small simulation study. In this study three factors are varied:

e the number of given points is varied (n = 3, 4, 6, 10, 20),
e the noise level (e =no noise, 5 percent), and
e the angle the given points cover on the circle (a = 90, 180, and 360

degrees).
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Table 2: Some measures of performance of the algorithms for the Drezner
data. The first line shows the results for the Newton-Rhapson approach,
the second line for the iterative majorization algorithm.

Algorithm Min fit Range fit Min iter Max iter Time

Newton-Raphson 0.19883320109211 9.5e-16 3 4 19.92
Iterative Majorization  0.19883320109211 6.4e-13 4 7 20.12
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Figure 5: Boxplots of the distances between the true center and the center
located by the algorithm in the simulation study for different n and a for
error free data.

Per case, 100 times n points were generated on a part (covering a degrees)
of the circle with origin (0,0) and radius one plus e. For each case, a
starting point x(9was generated uniformly on the disc with radius one. The
algorithms terminate using €cony = 107°. In this study, the true center
location was known a priori. Therefore, the success of the algorithm can
be measured by the Euclidean distance between the center location found
by the algorithm and the true origin at (0,0). Figures 5 and 6 show the
distribution of these distances by Boxplots for the various combinations of
the factors in this study. Note that because the distributions are highly
skew, a log scale is used in these Boxplots.

To investigate what effects are important we did an analysis of variance
(ANOVA) using the log of the distances as the response variable, see Table
3. The number of given points n is treated as a random factor while both the
coverage angle a and the error level e are treated as fixed factors. The effect
size reflects the proportion of variance of the log distances that is accounted
for by the effect. In total, 86 percent is accounted for. The main effects
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Table 3: Analysis of variance table for log distances in the simulation study.

Source SS DF MS F  Effect size
e 3712 1 3712 330.76 0.52
a 1156 2 578  558.79 0.16
n 654 4 163  502.00 0.11
exa 311 2 155 68.63 0.04
exn 45 4 11 34.43 0.02
axmn 8 8 1 3.17 0
exaxmn 18 8 2 6.96 0
Residual 968 2970 0.33

Total 6873 2999

account for almost all explained variance, with 52 percent accounted for by
the error level.

There is a large difference between the case with and without error: in
absence of error, the solution lies clearly closer to the true origin. For the
error free case (see Figure 5), both the angle and the number of points are
influential. The solutions are clearly closer to the true solutions for a larger
number of points and for larger coverage angles. This is less so for the case
with error (Figure 6).
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4 Extensions of Majorization

So far we have seen how the best fitting circle through a number of given
points can be found. The loss function we used is based on [, distances and
we derived a majorizing function that is easy to minimize for [, distances
with p > 1. This majorizing function was used to solve the minimum vari-
ance problem for Euclidean distances with as an application the problem
of finding a circle. Minimizing the variance for other [, norms, allows us
to fit different shapes such as the ones given in the first row of Figure 7.
For example, taking l; or [, distances can be used to find the best fitting
diamond or square respectively.

The loss function can be extended to include dimension weights and ro-
tations. Dimension weights are used to differentially stretch the dimensions
so that instead of a circle, diamond, or square we can fit an ellipse, rhom-
bus, or rectangle (see the second row of Figure 7). The effect of rotations is
illustrated in the third row of the same figure while the combined effect of
dimension weighting and rotating results in the shapes in the bottom row
of Figure 7. Note that the order of the transformations has to be respected,
this is first apply dimension weights to the basic shapes of the top row in
Figure 7 and then rotate to obtain the shapes in the bottom row.

In the remainder of this section, we will first introduce rotations and
dimension weighting formally. Then we will illustrate how the algorithm
can be used to solve the problem of shape recognition for a restricted class
of shapes. An extension of the majorizing algorithm that searches for opti-
mal center coordinates, dimension weights, and rotation is developed in the
appendix.

4.1 Rotations and Dimension Weighting

Let T be a rotation matrix. Note that for any rotation matrix T is or-
thonormal, that is, T/T = T~!T = I. In two dimensions, T can be written
as

(17)

| cosa —sina

| sina  cosa
where « is the rotation angle anticlockwise. Thus, ZT is an anticlockwise
rotation of Z by a degrees. Choosing T as the identity matrix I leaves ZT =
Z1 = 7 unrotated. We also consider dimension weighting by a diagonal
matrix W, so that, in ZW the coordinates of Z along dimension s are
weighted by the factor ws. Rotations and weighting can be combined by

14
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Figure 7: Some shapes that can be fitted with /,, distances for p > 1, allowing
for dimension weighting and orthogonal rotations. Each column illustrates
a certain [, norm. The rows show the shape that can be fitted, whether it
is weighted (by w; = 1 and we = 0.3) or unweighted (w; = 1 and wy = 1)
and rotated by 30 degrees or not.

ZTW, which simply means first rotate Z by T and then weight the rotated
axes by W.

To adapt the variance function for different rotations and dimension
weighting, we have to minimize

n n 2
Ly(x,T,W) = de—i(Zc&) (18)
i=1

i=1
with u;s in (2) defined as
Ujs = Ts — wszgtS’ (19)

where t; is column s of the rotation matrix T. Here, the right order of
operations is to first rotate and then weight the data. Only in this way
we obtain a I, ball with minimum variance of the distances to the center.
Some precaution is necessary, since minimizing Lo(x, T, W) will trivially
be zero when choosing x = 0 and W = 0. Therefore, we impose the

15



additional restriction that tr W2 = 3" _w? = m to avoid the degeneracy. As
preliminary experimentation showed that occasionally solutions occurred
with only one nonzero weight, we further impose the restriction that ws >
Wnin for all s. wp, is a small positive constant. In appendix we develop
an iterative majorization algorithm that can be used to find x, T and, W
such that Lo is minimized.

4.2 Shape Recognition

So far we considered the problem of fitting a predefined shape but the al-
gorithm could also be used for shape recognition. For example, in reverse
engineering (with applications in reproduction and redesign) the goal is to
model engineering parts according to the original design (see for example
Langbein et al. 2001) while in graphics recognition (see for example Fonseca
and Jorge 2001) one wants to digitally recognize hand-drawn shapes. Apart
from the problem that the model has to be noiseless, the shape has to be
recognized under rotations and unknown scale. In the appendix, we devel-
oped an algorithm that can be used to solve this problem for a restricted
class of shapes. Although we can fit any of the shapes in Figure 7 to our
data (and all other [, balls with p > 1), we limit it to the case of the last
row in Figure 7 (thus allowing for rotation and dimension weighting) for
p=1,2, and oo.

The proposed algorithm can be used to fit a weighted and rotated [, ball
to the given points. By doing this for different p, the shape with the highest
fit can be found. It is this shape that we will retain as the origin of the
points. As a measure of fit we will consider a normalized variance. This is
the variance of the cd; where c is chosen such that the mean distance (and
thus the radius R) equals one. In this way, the variances are comparable
between different data sets. We give a small illustration for noiseless data.

Twelve points were generated on each of three different shapes: a dia-
mond, an unrotated ellipsis (with weights wq = 1.35 and wy = 0.41) and a
rotated (a = 30 degrees anticlockwise) rectangle. We use the majorization
algorithm given in appendix to find the center, weights, and rotation angle
of the ball. In order to avoid local minima, 200 solutions were generated on
the basis of random initial parameters. The numbers shown in Figure 8 are
based on the solution with the lowest variance. For each shape, three rows
are given with the estimated weights, rotation angle, and the scaled variance
for one of the following norms: [, ls or l,,. The shapes are well detected
as the original norm is recovered and as the parameter values approximate
the underlying ones well. For example, in case of the ellipsis we find the

16



Shape norm « w’  Scaled Var

16 [1.00 1.00] 1.0x107°
58 [1.05 0.95] 1.5x 1072
lo 41 [0.98 1.02] 7.3x107*

li 164 [1.37 0.36] 2.9x1073
lo 0 [1.35 0.41] 9.9x107®
lo 121 [1.38 0.32] 7.6x1073

li 32 [140 0.22] 4.0x107?
& l, 29 [1.37 037 14x10°2

lo 30 [1.37 0.41] 3.6x107°

) O

Figure 8: Shape recognition. For each figure at the left, the rotation angle,
the weights and the scaled variance obtained with the majorizing algorithm
are reported. This is done for the [, lo and [, norm.

lowest variance for the Euclidean norm, the rotation angle equals zero and
the weights equal [1.35 0.41]. In this case, the true underlying values are
fully recovered. In case of the diamond, the solution based on dominance
distances fits well too with a rotation angle of almost 45 degrees. This comes
as no surprise given that the diamond is a rotated (by 45 degrees) square.

5 Conclusion and Discussion

We showed how iterative majorization can be used to minimize the variance
of distances which is a popular objective function in location theory and in
pattern recognition. To be able to fit both circular and square shapes we
extended the use of the Euclidean distance to [, distances including the city-
block distance and dominance distance. It was also shown how spherical,
rectangular and, rhombic shapes could be fitted by including dimension
weights in the loss function. In this case, too, iterative majorization was
used to develop an algorithm to minimize the variance of the distances. A
final extension is to include rotations so that the shapes may be rotated in
space.

In a small numerical application on fitting circles, we showed that our al-
gorithm is equally fast but more robust in comparison to a Newton-Raphson
approach that was specifically developed to obtain a fast algorithm. In a
different numerical experiment, we illustrated how our proposed algorithm
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can be used as a tool for shape recognition.

Here, we restricted ourselves to two-dimensional problems but the algo-
rithms can be applied to higher dimensional problems without modification.
In applications where some points may be measured (wrongly) to be far off
the shape, it may be wise to robustify the variance function by changing to
the mean absolute deviation as a loss criterion. In this case, a majorizing
algorithm is possible as well, but it will be necessary to investigate how well
such an algorithm is prone to local minima.

The algorithms in this paper can be applied to any number of given
points n > 2. It remains to be investigated how many points are mathemat-
ically necessary to detect a certain shape and how many points are needed
in practice to guarantee a proper fit. These issues are to be studied in future
research.

18



Appendix: A Majorizing Algorithm for Ly(x, T, W)

The majorization derivations remain the same up to (13). Substituting the
definition of u;s from (19) into (13) gives

Ly(x, T, W) < go(x, T W)
> ais(xs — wezits) —22 — wyzits)bis + ko (20)

Note that the majorizing function go(x, T, W) is quadratic in x, T, and W.
We shall use alternating least squares to update the parameters, that is, x
is updated while T and W are kept fixed, then T is updated while x and
W are kept fixed, and finally W is updated while x and T are kept fixed.
Updating x is analogous to (15). g2(x, T, W) can be written as

(x, T,W) Za: Zaw —QZJISZ (a;swszits + bis) + ks, (21)

where k3 is a constant not depending x, i.e., k3 = Y, aisw3(zits)? +
23, wsbiszits. It can be shown that the optimal update minimizing go(x, T, W)
over x while keeping T and W fixed equals

. / .
2t = Zi(azswszzts + bis) . (22)

3 Zi Qis
To update W for fixed T and x, we write g2(x, T, W) as

X T, W Zaww Z; t — 2Zwsz t ﬂfsazs - bzs) + kuy, (23)

15

where k4 is a constant not depending W, i.e., k4 = Z x? SQis — 2>, Tshis.
Note that W has a length constraint such that S w2 =m. We first rewrite
(23) as

g2(x, T, W)

= Zw Zawzt 2ZMSZZt (zsais — bis)] + ka
= Zwscs —2Zw87“8+/€5
S S

= WCWwW — 2W'ry + ku, (24)

where w is a vector with elements wg, Cy is a diagonal matrix with diagonal
elements cs = a;5(z;t5)?, and ry, is a vector with elements 3", z/ts(vsa;s—bis).
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Because Cy is generally not equal to I, the update Cy'ry /||Cylrw]| is not
the least squares update, because the metric Cyy, in (24) is not equal to the
metric used for the length constraint. We use an additional majorizing step
to obtain a majorizing function that has I as a metric. Let Ay be the largest
eigenvalue of Cy,. Then, the matrix Cy, — A1 is negative semi-definite, so
that we obtain the inequality (w — wp) (Cw — AwI)(Ww — wp) < 0 with a
strict equality if w = wqg. Expanding this inequality yields

< Aw(wW —wo)'(w — wp)
WCwWw < AyWw — 2 W (Wg — )\;V1CW0)
+wi(Awl — Cyw)Wo (25)

(w —wp) Cw (W — wp)

so that

g(x, T, W) < A\gwW'w — 2 W (wq + )\‘;1 [rw — Cwwo)
wh (AW — Coy)Wo + k. (26)

In the right hand part of (26), the metric of the quadratic part in w does
coincide with the metric of the length constraint, so that the minimum of
(26) subject to the length-constraint is given by

w, =m'*q/|ql, (27)

where q = wo + A [rw — CwWwo]. To impose the additional restriction that
Ws > Wmin, the calculation of the weights should be adapted in the following
way for the case that m = 2:

(28)

wt =w, if Wy, > Wmin

w;; = Wynin and wj)l =[m— (wmn)Q]l/2 if we, < wmin
with ¢s an index that orders the values of w, decreasingly. Note that wy
must be (much) smaller than 1 for a solution to exist. If m > 2, a different
procedure is needed using an adaptation of the explicit solutions for length-
constrained nonnegative least squares discussed in Groenen, van Os, and
Meulman (2000).

Next, we wish to obtain an update for T for fixed x and W. Note
that T is constrained to be orthonormal. Within the frame work of iterative
majorization, Kiers and Groenen (1996) showed that it is helpful to majorize
quadratic functions in T in such a way that the metric is removed. This can
be done by applying again the majorizing inequality of (25). Before we can
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do so, we rewrite (23) as

92(x, T, W)
= Zt; [w? Z aisziz;] ts — 2 Zt; [ws Z Z;(Tsais — bis)| + ka
s 7 s 4
= Y t.Cp ity — 2> thre, + ku, (29)
S S

where Cy, = w2, a;sziz, and ry, = ws Y, 2;(Tsais — bis). Applying (25) to
(29) gives

g2, T,W) < ) A thts — 2> A th(tso + A, [re, — Ce,ts0])
+ D tio(Ae, I = Ce,)tso + ka

S
= > A, —2> tips+kg
S S

— Z Ats — 2tr T,P + ]f5. (30)

where \¢, is the largest eigenvalue of Cy,, ps = At (tso + )\[51 [ry, — Ct.ts0)),
P has columns pg, and ks = kg + >, tho(Ae. I — Ct,)tso. Note that the
simplification A\ tits = A¢, makes use of the property of rotation matrices
that the sum of squares of a column (or a row) equals one. Thus, (30) shows
that go(x, T, W) can be majorized by the linear function in T, —2tr T'P
plus a constant. Let P = K®L' be the singular value decomposition with
K and L orthonormal and ® diagonal with nonnegative diagonal elements.
Then, the minimum of —2tr T'P is obtained for

T+ = KL/ (31)

see, for example, Kiers and Groenen (1996).

This leads to the following algorithm. If dimension weighting is neces-
sary, let 0w := 1 otherwise set dw := 0. Similarly, set d1 := 1 if rotations
are necessary, otherwise set ét := 0.

1. Choose an initial x(©). Set iteration counter [ := 0 and set the conver-
gence criterion €cony to a small positive constant. Set WO = pt/21
and TO =1.

2. 1:=1+1.
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. Calculate the update x* using formula (22) where xo = x(=1), W
WU and T = TU-D, Set x®) .= xt.

. If 5w = 1 calculate the update W using formula (28) where W
WD x =x0 and T = TED, Set W .= W,

. If & = 1 calculate the update T using formula (31) where T
TUD x =xO, and W = WO, Set TW .= T+,

. Check for convergence: If HX(Z*D — X(Z)H > €conv €O tO Step 2.
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