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Abstract 

An error correction model is specified having only exact identified parameters, some of 
which reflect a possible departure from a cointegration model. Wald, likelihood ratio, 
and Lagrange multiplier statistics are derived to test for the significance of these 
parameters. The construction of the Wald statistic only involves linear regression, and 
under certain conditions the limiting distribution of the Wald statistic differs from the 
limiting distributions of the likelihood ratio and Lagrange multiplier statistics. A special 
ordering of the variables is recommended so that equal limiting distributions of the three 
different test statistics are obtained. The applicability of the derived testing procedures is 
illustrated using real demand for money, real GNP, and bond and deposit interest rates 
from Denmark. 
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1. Introduction 

Recently, several models and estimation methods have been introduced for 
the analysis of multivariate economic time series where each of the individual 
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series exhibits a possibly nonstationary character but a linear combination may 
be stationary (see, e.g., Box and Tiao, 1977; Engle and Granger, 1987; Stock 
and Watson, 1988; Boswijk, 1990; Johansen, 1991a, b; and Phillips, 1991). The 
distinction between the nonstationary individual series and the stationary linear 
combinations of these series is especially relevant for long-term prediction 
purposes. Examples of series which may be nonstationary individually and may 
behave stationary as linear combinations are long- and short-term interest rates 
(see Engle and Granger, 1987) and real demand for money, real GNP, and 
interest rates (see Johansen and Juselius, 1990). 

The methods for analysing possibly cointegrated time series differ in several 
aspects. There are methods (Engle and Granger, 1987; Boswijk, 1990) which are 
based on single-equation analysis, while others (Box and Tiao, 1977; Stock and 
Watson, 1988; Johansen, 1991a; Phillips, 1991) make use of a complete system 
analysis. The distinction between testing for cointegration in single equations or 
m.ultiple equations is crucial because in multiple-equations analysis one has to 
overcome a certain identification problem. The methods in the literature which 
test for cointegration in multiple-equations systems rely on ‘data-parametric 
techniques’ as principal components and canonical correlations. The method 
proposed in this paper solves the identification problem by a parametric 
restriction on the unknown parameters of the equation system (see Kleibergen 
and van Dijk, 1993a). The exact identification of the equation system parameters 
allows one to find Maximum Likelihood (ML) estimators and perform the 
likelihood-based testing procedures, i.e., Wald, Likelihood Ratio, and Lagrange 
Multiplier. The cointegration testing procedure is based on the addition of 
parameters to a cointegrating Error Correction Model and testing the signifi- 
cance of these additional parameters. The cointegration tests are therefore 
related to the ‘Error Correction Tests’ referred to by Davidson et al. (1978). 

The contents of the paper are organized as follows. In Section 2 the parametric 
specification of a possibly cointegrating Error Correction Model is introduced. 
Wald, Likelihood Ratio (LR), and Lagrange Multiplier (LM) statistics to test 
the null hypothesis of cointegration against the alternative of stationarity are 
constructed in the third section. In Section 4 the limiting distributions of the 
different parameter estimators and test statistics involved in the construction of 
the Wald statistic are discussed. It is shown that the regression-based cointegrat- 
ing vector estimator has a biased limiting distribution and that the limiting 
distributions of the regression-based cointegrating vector estimator and the 
Wald statistic change when there is a certain rank deficiency in the long-run 
multiplier matrix of the data-generating process. Apart from these limiting 
distributions, a test procedure which allows for sequential testing for the number 
of cointegrating relationships using the Wald statistic is constructed. The 
importance of Granger long-run causality which affects the interpretation of 
certain outcomes is discussed, and to prevent these interpretation issues, the 
series are suggested to be ordered according to their Granger long-run causal 
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relationships. The fifth section contains the limiting distribution of the LM 
statistic which is equal to the limiting distribution of the LR statistic. It is also 
shown that the equality of the limiting distributions of the Wald, LR, and LM 
statistics for cointegration testing does not always hold. In Section 6 the 
cointegration testing procedures are applied to the Danish series of real demand 
for money, real GNP, and bond and deposit interest rates for which another 
cointegration study by Johansen and Juselius (1990) exists. The sensitivity with 
respect to the chosen variable ordering and test statistic is investigated for these 
series. The seventh section concludes. 

We end this introduction with a notational remark. To save on indices, the 
data series are depicted as row vectors in the formulas contained in this paper. 
Also the common expression for the long-run multiplier U/I’ is replaced by flu, 
where p stands for the cointegrating vectors. 

2. Specification of a parametric error correction model 

Cointegration in Vector AutoRegressive (VAR) models amounts to a rank 
deficiency of the long-run multiplier matrix, which is defined as the sum of 
different parameter matrices (see, e.g., Engle and Granger, 1987). A class of 
models which is observationally equivalent with the standard VAR models and 
for which the long-run multiplier is directly estimable is the class of Error 
Correction Models (ECM). When there is cointegration, the ECMs are only 
defined in terms of stationary variables which is another attractive property. 
A standard formulation of a pth-order k-dimensional ECM (see, e.g., Johansen, 
1991a) reads 

dx,f(L) = c + td + _x~_~H + c,, t = l,...,T, (1) 

(2) 

.Y,, t 1, . . , T, a 1 k row of time generated by 
ECM. 

The literature focuses the parameter n because, 
that all of the VAR polynomial outside the circle 

or equal to (nonexplosive finite behaviour), the 
character of analysed series is determined n. If rank of is equal 
r which less than the implicit polynomial contains - r roots and 

can then specified as product of full-rank k r matrices, 

rl = pr, [j, r’: k x r (3) 

The time-series x, are said to be cointegrated with cointegrating vector p, if 
0 < r < k. Cointegration implies that the variables X, are nonstationary while 
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the variables X,b are stationary (see Engle and Granger, 1987). Because the 
number of parameters in fia (2kr) does usually not equal the number of param- 
eters in Il (k’), one is confronted with an identification problem when testing 
for the number of cointegrating vectors or estimating the cointegrating vectors. 
The methods proposed in the literature so far overcome this identification 
problem in the manner outlined in the introduction. An alternative manner to 
overcome the identification problem is by choosing a suitable decomposition of 
the long-run multiplier II (see Kleibergen and van Dijk, 1993a). The resulting 
specification of ll is strictly parametric and allows for the construction of the 
likelihood-based cointegration testing principles ~ Wald, LR, and LM. This 
model specification is closely related to the incomplete simultaneous-equations 
model (see Kleibergen, Urbain, and van Dijk, 1993). The likelihood analysed by 
Johansen (1991a) is also similar to the likelihood resulting from an incomplete 
simultaneous-equations model which shows that the result is quite natural. The 
decomposition of I7 reads 

=[ 

Xl1 Ml2 

-B 2x11 1 -B2@,2+x22 

(4) 

where (k-r)xr, rxr, r (k r), (k r) - are 
unrestricted. 

r = II a rank and specification fl fir 
similar the used with = - and = ri2). 

x22 0, interpretation p not with cointegrating 
Tests the of vectors be by 
whether = for values r. 

II,, full there a correspondence the 
of and fl, ML of parameters r p be 
from ML Ordinary Squares estimators II, 

of parameters x p also constructed 
a procedure. the step this an for 
cointegrating is In second the cointegrat- 

vector, is to the between estimated 
and cointegration The procedure shows change 
interpretation occurs respect some the compo- 

once roots assumed be 



F. Kleibergen, H.K. V(IN DijklJournd of’ Econometrics 63 (1994) 61-103 

(1) Estimate 

AX 1 = ICI + td, + Zf, +(X, XJMP n,, 
[ 1 17 + El 

21 

= zr1 + [(X, + x,n,,a;&, + zcla;,’ + sd,a;~‘Ja, 1 + E] 

= 22-1 + [(Xl - x&)_p - Z/l] - z6, ]a11 -t El. 

Construct 
^ ^ 

= 1~2 + TdZ + (X, 
n12 

[ I n + ~2 
22 

(7) 

Z (dX_, . . dX_,,-l,), I = (1 . . I)‘, T = (1 . . T)‘, X = (Xl X2), E 

(zl Ed); tl, Tx r; TX (k - r). When = 0, 
in the second ser of equations, of linear 

growth term 
in the second 

is of a = 0, 
while in the first 

of interpretation. of the different 
be obtained by constructing the 

implied vector of X, when clz2 = 0. 

Theorem I. When p = unci = 0, 
( C/MA) representation of the system equation (I) becomes 

XT C tD + t2E + C Ezi(pZ I,-,) + VI,P(L), (10) 

;=I 
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c = ( - $lUl - @;)(I, - @l)~2~12 + X,O)(BZ I,-, .I 

+ (Pl + $lU, - @:)(I, - @1)-l + ~O@lO), 

D = (P2 + $,(I, - @l)Y’%2 + t62)(/32 I&,) + (61 O), 

E = 92(P2 Ikmr), 

$2 = - S2B2 3 

1-l r-n- 1 1-l 

Ol,P(L) = c C’ln 1 @{-‘cCl2(fi2 I&J.) + C t’lt-i@l 0 3 

n=l j=O i=o 

@l = (1, + 311 - ~l,BZ)> 

$1 = dl(Ir + Xl1 - %2P2) - P2P21 

L’li = Eli - &2*P2. 

Proof Respecify the ECM, AX, = (XI, - X2IP2 - Pl - f~l)(~ll E12) + 

~~(0 I,_,) + t6,(0 I,_,) + c,, as the observationally equivalent invertible VAR 
model, ((XI, - X2*/32 - Pl - [al) dX2l)(lk - ‘!A(@‘1 0)’ (a’12 0)‘) = ($1 P2) 

+ t(1,!12 (52) + (ult cZr), and invert this latter model to obtain the VMA specification. 

3. Likelihood-based cointegration test statistics 

In the proposed parametric cointegration model, tests for cointegration with 
r cointegrating vectors (k - r unit roots) correspond with testing the hypothesis 
H,,: y22 = 0 against the alternative hypothesis of stationarity H1: x22 # 0. Given 
that the hypothesis only concerns a directly estimable parameter, we can apply 
the three likelihood-based testing principles, i.e., Wald, LR, and LM, for testing 
the hypothesis of cointegration versus stationarity. Except for certain specific 
conditions, each of the three different testing procedures leads in large samples 
to the same kind of inference. We proceed with the construction of each of the 
three different test statistics. 

First, the Wald statistic for testing for cointegration is constructed. A general 
formula of the Wald statistic to test the hypothesis Ho: 8 = Ho against H1: 0 # B0 
(see Engle, 1984) reads 

fur = (6 - 0,)Y(rj)(i, - 0”). (11) 

where I(6) stands for the information matrix evaluated in the ML parameter 
point i. The model for testing the cointegrating relationships has an one-to-one 
correspondence with the linear ECM. When the disturbances E,, t = 1, . . . , T, are 
independently normally distributed with mean zero and covariance matrix 
R (which is assumed throughout the whole paper), the information matrix of the 
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parameter Il in the ECM reads 

I(vec($) = (6-1@X’_,M~Z W,X_P), (12) 

where MV= IT- V(V"V)mlV', 6= TmldX'Mc, w x_p,dX, W=(l T), and 
V = (2 W). The information matrix of the transformed parameters can be 
obtained by constructing the quadratic form of the Jacobian matrix of the 
transformation of the original parameters towards the transformed parameters 
with respect to the information matrix of the original parameters, 

(13) 

The Jacobian matrix of the transformation from (vec(I7r r)’ vec(I7,,)’ 
vec(H2r)’ vec(n,,)‘)’ to (vec(cc, ,)’ vec(a,,)’ vec(p2)’ vec(ccz2)‘)’ (see Magnus and 
Neudecker, 1988, for details on matrix differential calculus) reads 

J(fl, B> Lx) = 
a(vec(Z7, ,)’ vec(ZZ,,)’ vec(ZZ,,)’ vec(ZZ,,)‘)’ 

?3(vec(x, ,)’ vec(u12)’ vec(/j*)’ vec(uz2)‘) 

I 
I II 0 0 0 

z 0 I r(k 11 0 0 
(14) 

- (I,OBz) 0 - (~‘llO~k~r) 0 

0 - (II,---,OB2) - (a’12@Ikbr) I(k-r)(k-r) 1 

The information matrix of the parameters (yI ,, x1 2, pz, c(~~) can be obtained by 
constructing the quadratic form of the Jacobian matrix in (14) with respect to 
a slightly respecified information matrix (12), which has to be respecified because 
the ordering in vet(H) does not correspond with the ordering used to construct 
the Jacobian matrix. The information matrices of the different parameters x1 r, 

x12, B2, and uz2 can then be constructed from the joint information matrix by 
calculating the inverses of the diagonal blocks of the inverse of the joint 
information matrix (partioned inverses), 

I(&,,) = (~,,‘o(X,)‘~,M,, w (x&X,)&) = U&I), (15) 

I@,,) = (.%‘@Wd~,M~z w ~x,,_,,~Wl)L,,) = Ufi,2), (16) 

I(B2) = (G’l I &l’% I@ Gf2)‘~,M,z w (x,~x,p,,~,,,(Xz)~~), (17) 

z(o;22) = (([ - ;::;12]‘q - ;:i’,;12])-’ 
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where 6 11 = T-‘dX;M,z w X_,) AX1 and fizz = T-‘AX;MtZ w x_,,AX,. The 
Wald statistic to test the hypothesis of r cointegrating relationships, H,,: az2 = 0, 
against H,: czz2 # 0 then becomes 

vec(oi,,)'Z(6,,) vec(oi22) 

where g2 the residuals the second of (k r) equations when # 0 
E2 are residuals when = 0. formula in shows close 

blance with well-known F in the linear model only 
differs these F in the that a covariance matrix 
used to for the of j2 in the set of 

The likelihood statistic is to calculate equals the 
trace statistic and Juselius, Given normally 

uted errors, can derive the LR is equal 

t LR = T ~nCl~l/l~ll~ (20) 

where 6 = Tm ’ AX’M( z w ~Xl-xaz,_p,AX and p2 is estimated using the ML 
estimator of b2 when az2 = 0. We note that the ML estimator of p2 when 
a,, = 0 cannot be constructed by means of linear regression. It needs to be 
calculated using some other technique like for example canonical correlations 
(see Johansen, 199 1 a). 

The Lagrange multiplier statistic for testing for cointegration is somewhat 
more difficult to construct analytically than the LR statistic. A standard formula 
of the LM statistic to test the hypothesis Ho: 0 = 13~ against Hl: 0 # 8,, (see 
Engle, 1984) reads 

(21) 

The information matrix of c(22 used in (21) has to be constructed in a different 
manner than the information matrix in (18) because c(22 = 0 in (21). The suitable 
information matrix of c122 for (21) is proportional to the information matrix of 
a parameter x21 stemming from an auxiliary regression of E2 on (X2)-,, where E2 
are the residuals of the second set of (k - r) equations resulting from the 
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estimated ECM with clz2 = 0. The information matrix of cc22 reads 

a lnl(cr22 = 0) 

a vec(cLzz)’ 
= vecC(X2)‘,M, w (x,-x,Bl,-,,~X2~~~l’. (23) 

The LM statistic for testing for r cointegrating relationships then becomes 

t - tr LM - [S2”,;‘dX;M V w w-x2P*)-p)v2)LP 

x((X,)‘,M,z w (x,-x282~~p~~~2~-p~-1~~2)lp 

x Me w (x1-x2P2)Lp) AX21 

= T[tr b2”2;1(5222 - Gz2)] 

= T[(k - r) - tr(S2;,‘fi2,)], (24) 

where 6,, = T-‘AX;M Cz w ~x,_x282~_P~AX2 and /I2 is estimated using ML for 
both equations simultaneously under the assumption that a22 = 0. As shown 
in (24) the LM statistic can be computed from an auxiliary regression of (X2)_, 
on &. 

For most stationary models it is known that the limiting distributions under 
H,, are the same for the Wald, LR, and LM statistics (see Engle, 1984). In the 
following sections each of the test statistics is discussed in more detail, and it is 
shown that the LR and LM statistics have equal limiting distributions under Ho, 
while the limiting distribution of the Wald statistic is different when the de- 
composition in (4) is invalid, i.e., when T;Iii has lower rank. 

4. Wald statistic using two-step estimators 

The construction of the Wald statistic (19) exactly follows the two-step 
estimation procedure (7)-(9). At first the cointegrating vector including the 
optional deterministic components is estimated using the first set of equations. 
Conditional on the estimated cointegrating vector (including its deterministic 
components), in the second step the departure from a cointegration model is 
estimated. Since the different estimators and test statistics are constructed in two 
distinct steps, we discuss the convergence behaviour of the estimators and test 
statistics for each step separately. 

4.1. Limiting behaviour of the two-step cointegrating vector estimator 

The limiting behaviour of the two-step cointegrating vector estimator is 
discussed for four different Data Generating Processes (DGP). These four 
DGP’s cover the cases that a cointegrating vector is estimated while (i) the 
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process is stationary, (ii) the process is cointegrated and (xii has full rank, 
(iii) the process is cointegrated while a1 i = 0, and (iv) the process is difference- 
stationary. 

(i) If the process is stationary, standard asymptotic theory can be applied. 

lim r”‘(fi - L’) *n&l, Q@Q- ‘), Q = Frn, T~‘X’L,M~Z w,X_,, (25) 
T-x + 

where * indicates weak convergence (see Billingsley, 1968); in fact, the conver- 
gence behaviour is_even somewhat stronger as indicated here. The cointegrating 
vector estimator p2( = - fi,,fi,,‘) equals the ratio of two estimators, both of 
which have a normal limiting distribution. We note that _the asymptotic theory 
to be applied to the cointegrating vector estimator bz is identical to the 
asymptotic theory developed by Phillips (1989) to describe the limiting behavi- 
our of the estimators in an incomplete simultaneous-equations model. When 
LI,, has full rank, the limiting distribution of fi2 becomes 

where Pz2 = lim,,, T-‘(X,)~,II~~~ w tx, _xzp2~_p~(X2)_p. It follows from Phil- 

lips (1989) that certain linear combinations of fi2 converge to noncentral Cauchy 
distributed random variables when Lr 1 1 has a lower rank value. The expression 
for the convergence behaviour of f12 when Hii = 0 (17,, = - P2a1 i = 0) reads 

where Qii,j = Qii - QijQjj ‘Qji, and the two normal distributed random variables 
are of course not independent. Because of the correlation between the two 
normal distributions, lj2 converges to a noncentral Cauchy distribution. Note 
that Il 11 = 0, n2, = 0 implies a lower rank value of II and consequently 
cointegration. The limiting distribution in (27) refers to a stationary model, 
however. Thus, it does not correspond with the case II,, = 0, Lr2i = 0. The 
importance of a full rank value of II1 1 is, however, most easily understood under 
stationarity, and from the stationary case it can be extended to the case of 
nonstationarity (see below). 

(ii) Under nonstationarity the asymptotic results become somewhat more com- 
plicated and amongst others depend on the deterministic components which are 
present in the DGP and the estimated model. The asymptotic distribution of the 
cointegrating vector estimator (f2 ,L’i 8,)’ will therefore be discussed for three 
different structures of the deterministic components in the DGP. 
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Theorem 2. When the DGP (7))(9) is such that cc22 = 0 and ofll full rank, the 

limiting distributions of the cointegrating vector estimator (k2 ,C; S;)‘for the proper 

value of r become: 

(1) When p2 # 0, 6, = 0, cS2 = 0, and the estimated model does not contain 

a linear time trend, d, = 0, the limiting behaviour of pz follows: 

(2) When p2 = 0, o1 = 0, b2 = 0, and the estimated model does not contain 
a linear time trend, dl = 0, the limiting behaviour of (b2 ~;)‘,follows: 

$-‘( [ T&p,] - [TV!&]) 

+ _ [“fi2 y]( iGIG)-’ 

(3) When /12 # 0, d1 # 0, a2 = 0, and the estimated model does contain a linear 
time trend, d, # 0, the limiting behaviour of’(B; $I1 $‘,)‘follows: 
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where F = ((P - S;P(t)dt) (Q - ~;QWW, G = (Sx I), H = (SE z r), 
p = s21G2u32 IkbAP2 Ik-r)‘?, Q = V2(82 Ik-r)@2 zkbr)‘r& s22 - 

w(o, Ik-r), s21 - wo, IkbFl), s22 = (S21 s221, s22 - WA 11, s1 - WA I,), 

W(0, Zj) is a jth-dimensional Brownian motion with mean zero and 
covariance matrix Zj dejined on (0, 1); t(t) = t, l(t) = 1, o<t 
< 1; U = (U, U,) = SC”‘, C = B’QB, B = (p(O Zk-r)‘), S = (S, S2& 

- u1 - u2 ‘G: CZl, 

(;;;,,)‘, = 0. 

y: (k - r) x (k - r - l), such that p2(b2 Zk_,) 

Note that just like in Phillips and Durlauf (1986) and Johansen (199Za), the time 
indices in most of the processes are skipped. 

Proof: See Appendix. 

When_ c122 = 0, the OLS regression estimator of the cointegrating 
vector, p2 = - ii, ,ii;,‘, is, in general, not equal to the ML estimator of 
fi2. Phillips (1991) shows that only the ML estimators, under the imposition 
of the proper number of unit roots, have unbiased limiting distributions, 
while estimation of the unit root parameters leads to biased limiting 
distribution;. The limiting distribution of the cointegrating vector 
estimator, p2, is biased as a consequence as can also be concluded from 

Theorem 2. Because F and U2 in the first part of Theorem 2 are dependent, 
while F and LJ,,, are independent, there will be a bias in the limiting 
distribution_ of /I2 unless Q12 = 0, i.e., X1 and X2 are weakly exogenous. The 
estimator BZ does therefore not belong to the so-called Locally Asymptotic 
Mixed Normal (LAMN) family, but is a member of the Lim_iting Gaussian 
Family (LGF). As a, result of the biased limiting distribution of fi2, test statistics 
using elements of pZ will not have a x2 limiting distribution as is the case for 
estimators belonging to the LAMN family. The test statistics using p2 will have 
noncentral x2 limiting distributions for which almost no tabulated critical values 
exist. As a consequence testing hypotheses formulated on elements of /I2 is 
recommended to be performed using ML estimates of /I2 obtained under the 
imposition of the hypothesized number of unit roots. These kind of test statistics 
namely have central x2 limiting distributions (see Johansen, 1991a; Phillips, 
1991). 

The first part of Theorem 2 also shows that the limiting distribution of b2 will 
be normal when a linear time trend is present and r = k - 1. The approximation 
of this limiting distribution by the empirical distribution of fi2 in small samples 
is, however, quite inaccurate unless the linear time trend dominates the stochas- 
tic trend considerably. 

Although the_ limiting distribution of j?, is biased, the order of convergence 
indicates that /I2 is still a superconsistent estimator of f12,: This phenomenon is 
also visible in Fig. 1, where the distribution function of p2 for a nonstationary 
bivariate DGP with one cointegrating vector and 01~ r # 0 is drawn for different 
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0.9 - 

0.8 - 

0.7 - : :: 
0.6 - ,: 

:,: 

0.5 - J 

0.4 - 

0.3 - 

0.2 - 

0.1 - ./’ ,’ 
,,. ,’ 

9’ .8 1.9 , . . .._.--. 1.95 _: 1.85 2 2.05 2.1 2.15 L. 

Fig. 1. Distribution functions j2 = - fi,,fii,l for bivariate DCP with one cointegrating vector 

and T = 100 (-), 250 (--), 500 (.-); pz = 2 

numbers of observations. Fig. 1 shows that the convergence of jZ towards /I2 is 
very fast, which indicates the superconsistent convergence of /I*. 

(iii) As shown in Theorem 2, the limiting distribution of b2 depends quite 
c_rucially on CI~ r. When c(r 1 has a lower rank value, the convergence behaviour of 
p2 changes quite dramatically. For statipnary processes we showed that, when 
clll = 0, /I2 will be inconsistent and p2 converges to a Cauchy distributed 
random variable, For the stationary model with xI1 full rank, the order of 
convergence of p2 is proportional to T”‘. So when Barr converges from a full 
rank value to zero, the order of convergence of /I2 decreases by a factor 
proportional to T 112 For nonstationary processes the decrease in the conver- 
gence behaviour turns out to be proportional to the same kind of factor, Pi’. 
The order of convergence of B2 when tlr 1 has full rank is proportional to T such 
that the resulting degree of convergence of /j2 when CI~ r = 0 will be proportional 
to T”‘. 

Theorem 3. Whsn the DGP (7)-(9) is such that clz2 = 0 and txll = 0, the limiting 
distribution of /I2 for the proper value of r becomes: 

When p2 # 0, 6, = 0, ~5~ = 0, and the estimatpd model does not contain a linear 
time trend, dI = 0, the limiting behaviour of p2 follows: 
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x[ (bF’dui.2) + (d F’dci,)n;:o,,] 

x[( ~(xir)ii)‘d+‘~2(L O)‘]-‘(var(x, p)). 

Proof See Appendix. 

Theorem 3 shows that p2 is no longer a superconsistent estimator of B2, but 
a consistent one when xl1 becomes equal to zero. Similar arguments can be 
derived wh_en ai i # 0, but has a lower rank value. The cointegrating vector 
estimator r(j2 is in that case superconsistent in certain directions, while in other 
directions it is only consistent (see also Phillips, 1989, where a similar phenom- 
enon is discussed for the incomplete simultaneous-equations model). Note that 
also, when c(ii = 0, there is still one direction in which p2 converges supercon- 
sistently, i.e., fhe direction of the linear trend term pLz. 

Although p2 is still a consistent estimator of p2 when ~ii = 0, the limiting 
distribution indicates a very slow convergence because it is very fat-tailed. The 
limiting distributions are namely equal to the product of a function of Brownian 
motions with nonzero mean (unless Q12 = 0) and the inverse of a normal 
distributed random matrix with mean zero. In case that both processes would be 
normal, the resulting product would have a noncentral Cauchy distribution, 
whose probability density function has fat tails resulting in an infinite mean and 
variance. The random process described by the limiting distribution will have 
even fatter tails than the mentioned noncentral Cauchy because the tail behav- 
iour of the Brownian motion functional exceeds the tail behaviour of a normal 
probability density function. So the mean and variance of the limiting distribu- 
tion will be infinite. Also the mode of the limiting distribution is unlikely to be 
equal to zero because of the nonzero mean of the Brownian motion functional. 
To show the convergence of fi2 when x1 i = 0, we simulated series from a bivari- 
ate DGP with M,, = 0 for different sample sizes. In Fig. 2 the distribution 
functions of az are shown for three different sample sizes. Through the fat tails of 
the limiting distribution there is only a very small degree of visible convergence. 

One can conclude from the slow convergence of p2, when xi, = 0, that one 
should try to have an ordering of the variables such that xi, is likely to have 
a full rank value for the hypothesized number of cointegrating vectors. 
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Fig. 2. Distribution functions /?* for bivariate DGP with one cointegrating vector and rl, = 0, 

7- = 100 (-), 250 (--), 500 (.-); fi2 = : 

As shown in the Appendix, the limiting distribution of &r r( = I?, r) is a 
normal probability density function in case of the proper number of 
unit roots even when clll = 0. To show the limiting behaviour of &, I, in 
Figs. 3 and 4, the distribution function of the ‘t-values’ for the hypothesis, 
Ho: Br, = r*rr, for a bivariate DGP with one cointegrating relationship for 
c(rr #O(Fig.3)andrI, = 0 (Fig. 4) are shown. In these figures the ‘t-values’ are 
shown because we want to focus on the normality issue of limiting distribution, 
which through the convergence of !?r 1 towards %I 1 becomes less visible if we 
choose to analyse the distribution of iII. 

Fig. 3 shows that the distribution of till converges quite fast to a symmetric 
(normal) distribution function when u r1 # 0, while the distribution of &, , 
converges much slower when a,, = 0. Only for T = 500 does the distribution 
function of ir 1 seem to be symmetric when rl r = 0. This indicates that the 
limiting distribution of ~2~ 1 is indeed normal regardless of the true value of x1 r, 
but that the small sample approximation of the limiting distribution does 
depend on the true value of x1 ,. The distribution functions do indicate however 
that an ordering of the variables using the t-values might be a good heuristic 
strategy for prevention of calculation of cointegrating vectors when x1 r = 0 or 
lower rank and that the limiting distributions of the test statistics for testing the 
rank of x1 1 ( = I7, ,) are ;y2. 

(iv) When the process is difference stationary, the long-run multiplier matrix, n, 
equals zero. In case of no incorporation of any deterministic components in the 
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Fig. 3. Distribution functions (Sr, I - a, ,) (var(&, !))- “’ for bivariate DGP with one cointegrating 

vector and ~1~~ # 0, T = 100 (-), 250 (--), 500 (.-) 

DGP and the estimated model, the limiting distribution of fir = (fi’r, fii2r)’ 
then becomes (see Phillips and Durlauf, 1986) 

(28) 

where S _ W(0, Zk). These models, where Il = 0, are known as spurious regres- 
sion models, and it is known that cointegrating vector estimators converge to 
random variables for these spurious regression models (see Phillips, 1989). Just 
like the other cointegrating vector estimators, the estimator p2 = - fi2rfi;r 
converges to a random variable when IZ = 0, 

a - (0 zk-&-1’2’ (is%)-‘( bS’dS)R1”(1. O)j 

.[(Z,O)Q-‘;‘( bS’S)-‘( ~S’dS)n’.2(I,0)f]-‘. (29) 
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Fig. 4. Distribution functions c?, 1 (var(8,,)~“‘) for bivariate DGP with one cointegrating vector 

and c(ll = 0, T= 100 (-_b 250 (--), 500 (.-) 

The basic convergence properties of the cointegrating vector estimator, j2, are 
covered with the four different case_s discussed. The convergence properties of 
the cointegrating vector estimator fiZ for other cases are usually equal to linear 
combinations of the discussed limiting distributions. 

4.2. Limiting behaviour of the Wald statistic for cointegration 

The discussion of the limiting distributions of the Wald statistic and the 
estimator kZ2 is again performed along the lines of the four different DGP’s 
discussed in the former section. 

(i) When the process is stationary, p 22 # 0 and the limiting distribution of 
. 
zZ2 = ii,, - ii,,fi;,‘ii,, = fi,, + fi2fi12 is again normal in case of a full rank 
value of I71 1 and noncentral Cauchy when III1 1 = 0. The limiting distribution of 
the Wald statistic will be noncentral 31’ in this case because vec(&,,) (19) is not 
taken in deviation from its mean vec(c(22) but in deviation from zero. 

(ii) The limiting distributions under a nonstationary DGP again depend on the 
deterministic components present in the DGP and the estimated model. Because 
of the change in the interpretation of certain deterministic components once unit 
roots become present (Q~ = 0), it is common practice to jointly test for 
unit roots (cxZ2 = 0) and equality to zero of certain deterministic component 
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parameters, pLz, 6,. The Wald statistic to test these hypotheses again stem from 
formula (19) where only F& ( = disturbances second set of equations when HO is 
true) and .E2 ( = disturbances second set of equations when H 1 is true) need to be 
changed for (19) to be applicable to the case of joint testing for deterministic 
components and unit roots. The limiting distributions of the estimator measur- 
ing the departure from a cointegration model, k12, and the Wald statistic, 
incorporating deterministic components for some instances, for the three differ- 
ent DGP’s of Theorem 2 then become: 

Theorem 4. When the DGP (7))(9) is such that q2 = 0 and aI1 ,full rank, the 

limiting distributions of the parameters reflecting a departure from a cointegration 

model and the Wald statistic,for testing such departures become: 

(1) In the DGP 1 from Theorem 2, the limiting hehaviour of oizz follows: 

The limiting behaviour ofthe Wald statistic to test the hypothesis Ho: xz2 = 0 

under the DGP 1 from Theorem 2,follows: 

lim tw =, tr 
T+X, 

(. i V’dS u)'(d V'V)-'(d VrdSII). 

(2) In the DGP 2from Theorem 2, the limiting behaviour of(&;, &)‘,follows: 
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The limiting behaviour ofthe Wald statistic to test the hypothesis H,: c122 = 0, 

,u2 = 0 under the DGP 2 from Theorem 2 follows: 

lim tw * tr 
T-tZC 

(3) In the DGP 3 from Theorem 2, the limiting behaviour of (& $‘J’fbllows: 

The limiting behaviour ofthe Wald statistic to test the hypothesis Ho: c(22 = 0, 
d2 = 0 under the DGP 3 from Theorem 2 follows: 

lim tw +tr SEdS 
T-CL 

(1 ’ x)( iEE)-‘( bE.dS,,). 

where V= ((S,, - 

(7 - J; T(t)dt)). 

&Mt)dt) (7 - @(t)dt)), E = ((SE - &S,,(t)dt) 

Proqf: See Appendix. 

Theorem 4 shows that, when a1 1 has full rank, the limiting distribution of tw 
under Ho equals the limiting distribution of the Johansen trace statistic for 
testing the same kind of hypothesis (see Johansen, 1991a,b). Thus the asymp- 
totic critical values of the Johansen trace statistic tabulated by Johansen and 
Juselius (1990) can be used as asymptotic critical values for the Wald 
statistic. 

The approximation of the small sample distribution of &22 under DGP 1 by 
the limiting distribution of d22 from Theorem 4 is often inaccurate. In the limit 
the deterministic trend dominates the stochastic trend, but this does in general 
not hold for small samples. The small sample distribution of the Wald statistic 
to test the hypothesis H,: az2 = 0 for series whose stochastic trend is not dom- 
inated considerably by their linear trend, is as a consequence often much 
better approximated by (~S22dS22)‘(~S22 S,,)-’ (JS;,dS,,), where Sz2 = 
S22 - Js,,(t)dt (see also Johansen and Juselius, 1990). 

The same kind of arguments made to explain the bias in the limiting distribu- 
tion of /I2 can again be made concerning the limiting distribution of kz2. The 
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bias in the limiting distribution of B,, is of course very natural given that kZ2 is 
an unit root estimator and that estimation-of unit roots leads to biased limiting 
distributions (see Phillips, 1991). Just like f12, B 22 is a superconsistent estimator 
of its true value o/22( = 0) when x22 is estimated for the proper number of cointe- 
grating vectors. 

(iii) As shown in Theorem 4, the limiting distribution of uZ2 depends on a,,, 
while the limiting distribution of the Wald statistic, tw, seems to be insensitive to 
alI. The question is therefore: what happens with the limiting distribution of biZ2 
and tw when c(ll has a lower rank value or is equal to zero? 

Theorem 5. When the DGP (7)-(9) is such that ccz2 = 0 and uI1 = 0, the limiting 

distribution of oil2 and tw for the proper value of r can be characterized as: 

When u2 # 0, o1 = 0, 6, = 0, r = k - r, and the estimated model does not contain 

a linear time trend, d, = 0, the limiting behaviour of oiz2 follows: 

x ~(X(t)p)‘dS).Q1~‘(Z,. o)!]~ ‘fvar(x,p)Jr12. 

The limiting behaviour of the Wald statistic to test the hypothesis H,,: cxz2 = 0 

under the DGP outlined above follows: 

lirntwjtr jWdS 
T-a 

(1 ’ l>((~W~W)+(~W.dS,)[~Y(l)‘dS,]-’ 

Proof. See Appendix. 

Theorem 5 shows that a22 is no longer estimated superconsistently because 
the order of convergence is now proportional to T”‘, except for the direction of 
the linear trend term. As shown in the proof of Theorem 5, the limiting 
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Fig. 5. Distribution functions Wald statistic, t,, for bivariate DGP with p1 # 0, p2 = 0, a1 1 = 0, 

T = 100 (-.), 500 (--), limiting (-) 

distribution of oiz2 = fi,, + p^,ii,, is proportional to the limiting distribution of 
p2 when a, 1 = 0 and r = k - r. This results from the consistent estimation of fi2 
whena,, = 0, while /I2 is estimated superconsistently when CI~ 1 has full rank. As 
a consequence the limiting distribution of tw is also affected by the limiting 
distribution of j12, which does not occur when lj2 is estimated superconsistently. 
In the former section we showed that the limiting behaviour of fi2 is even more 
volatile than a noncentral Cauchy random variable when al1 = 0. The same 
holds as a consequence for oiz2 such that, although oiz2 is a consistent estimator, 
it will converge only very slowly. The limiting distribution of the Wald statistic 
in Theorem 4 does not depend on aI1, but Theorem 5 shows that the limiting 
distribution of the Wald statistic changes when olll = 0 and Y = k - r. The 
inverse normal random variables, already appearing in the limiting distributions 
of b2 and oizt when LX 11 = 0, also enter the limiting distribution of the Wald 
statistic when c(11 = 0. The same kind of results can be derived for a,, lower 
rank and/or Y # k - r, in which cases the limiting distributions will be equal to 
a mixture of the limiting distributions stated in Theorems 4 and 5. As a con- 
sequence the Wald statistic for cointegration shows the well-known property 
that the Wald statistic is not invariant under parameter transformations (see 
Cox and Hinkley, 1974). Different orderings of the analysed series may lead to 
different limiting distributions of the Wald statistic for cointegration. 

To show the consequences of these results for the small sample distribution of 
the Wald statistic, in Fig. 5 the empirical and limiting distributions of the Wald 
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statistic to test the hypothesis Ho: c(*~ = 0, pz = 0 in DGP 2 from Theorem 2 are 
shown. The distributions shown in Fig. 5 indicate that the limiting and empiri- 
cal distributions of the Wald statistic indeed change considerably when rl 1 = 0 

or has a lower rank value compared with the distributions associated with full 
rank values of a,i shown in Fig. 7. 

The problems arising with the empirical and limiting distributions of the 
Wald statistic, tw, again emphasize the importance of a proper ordering of the 
observed variables such that the resulting a ii parameter will have a full rank 
value for the proper number of unit roots. 

(io) Unlike the cointegrating vector estimator, /j2, for a difference-stationary 
process, the unit root estimator, CI *22, is still (super)consistent. The cointegrating 
vector estimator, fi2, tries to estimate the nonexisting stationary relationships, 
while Bz2 estimates the existing unit roots in the process. The (in)consistency of 
the two different estimators is explained by these arguments. The limiting 
distribution of gz2 can directly be obtained from Theorem 5 when neither the 
process nor the estimated model contain any deterministic components, 

(30) 

The discussion of the two-step estimation/testing procedure so far has been 
focused on theoretical issues. In the following section practical aspects of the 
two-step procedure will briefly be discussed. 

4.3. Two-step procedure in practice 

In Fig. 6 a flow diagram of the two-step estimation/testing procedure is 
shown. The flow diagram shows the different steps of a sequential testing 
procedure for the number of unit roots, cointegrating vectors, and the resulting 
structure for the deterministic components. The optional structure for the 



F. Kleihergen, H.K. van D[jklJournal oj Econometrics 63 (1994) 61-103 83 

A’ = (xl...xk), T = k 
4 

1. r = I‘ - 1 

x, = (x,...~~),~x* = (x,, ,‘.. Xk) 
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t e, 

c 
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If r > 0, go to 1, stop otherwse 

Fig. 6. Flow diagram for sequential cointegration testing 

deterministic components is put between braces (( )) to indicate that one can 
choose the proper specification for the analysed series. 

The two-step estimation procedure developed and discussed in the former 
sections and shown in Fig. 6 is by no means unique. In case of testing for 
r cointegrating relationships in k different series, 

different variable orderings exist, each of which leads to different two-step 
estimators. The question now is in which instances these two-step estimators 
could lead to different conclusions. In the former section we saw already that c~i 1 
lower rank could give different kind of results, and that one should order the 
variables such that c(i 1 has full rank for the hypothesized number of cointegrat- 
ing vectors. As shown, test statistics testing hypotheses on cur 1 have limiting x2 
distributions such that tests on CL 1 1 are easily performed. The remark that zi 1 
should have full rank for the presumed number of cointegrating vectors is quite 
important because, if one starts a sequential testing procedure for testing for unit 
roots, one starts with testing whether the hypothesis H,,: r = k - 1 (number of 
cointegrating vectors equal to total number of series minus one) can be rejected 
and, if not, one proceeds with testing the hypothesis H,: r = k - 2. If the true 
number of cointegrating vectors is less than k - 1, the true value of zil used in 
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this first step of the sequential testing procedure has a lower rank value. These 
situations should not give any problems for the suggested testing procedure. 

Another difficulty which may arise concerns the Granger long-run causality 
relationships between the different analysed variables. For example, if k = 2r, 
two possible decompositions of the long-run multiplier II are 

Testing the hypothesis of r cointegrating relationships or k - r unit roots can 
now be performed using g22 and ~ii [there exist even [z] - 2 different other 
parameters on which the hypothesis of r cointegrating relationships can be 
formulated, but because of expository purposes we just focus on c122 and pi J. In 
the former sections we saw that, when u22 has lower rank and c~i 1 full rank, it is 
preferred to test the hypothesis using c122 and vice versa. This is, however, not 
the only circumstance in which a certain specification is preferred. Another 
reason for preferring a particular specification depends on the Granger long-run 
causality relationships. Assume for (31) that X, Granger long-run causes 
X,,LI,, # 0, but X1 does not long-run Granger cause X2,1Zi2 = 0 (see Urbain, 
1992). The parameters used in (31) then become 

Iz= [E:: L2,1- 
a11 = n,,, 12 = 0, 02 = - n2117111, a22 = n22, 

(32) 
a 

K22 = n223 Yl =o, K21 - - n21, ~~~ = n,,. 

Testing hypotheses using c122 = I722 is still a proper cointegration test. When 
testing hypotheses using ~~ i, nonrejection of r cointegrating vectors again raises 
some problems. When lcll = n, 1 becomes equal to zero, there is no cointegra- 
tion between X1 and X2 because Xl is difference-stationary and X2 is stationary 
when IZ22 has full rank. To check for these kind of problems-one should 
therefore always test whether the cointegrating vector estimators p2 and f1 are 
different from zero. If /I2 and fl are not different from zero, also ~1~ 1 and ~~~ need 
to be tested and have nonnormal limiting distributions in that case. The tests on 
p2, $l can be performed using the standard form_ula of the Wald statistic, (1 l), 
and the definition of the information matrix of p2, (17). As pointed out in the 
former section, the limiting distributions of the Wald statistics for f12 are 
noncentral x2, but large values of the Wald statistics will indicate significant 
values of bZ, yl. To partly circumvent the problem of both the lower rank values 
of ml 1 and the Granger long-run causality, a heuristic ordering of the variables 
using the t-values and parameter estimates of the long-run multiplier II can be 
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very practical. We suggest therefore to order the variables in X = (x1 . . . ,xk) 
such that each variable Granger long-run causes at least one of the variables in 
the preceding columns and each variable is Granger long-run caused by at least 
one variable from a latter column. So Xk should at least Granger long-run cause 
one of the variables in X 1, . . . , Xk_ 1 and XZ should Granger long-run cause X1. 
Also X1 should at least be Granger long-run caused by one variable from 
X 2, . . . , X,, and Xk _ 1 should be Granger long-run caused by Xk. The Granger 
long-run causality condition can also be reflected as: Zji # 0 for at least one i and 
one j with, j > i, j = 2, . . . , k. To finish with a cointegrated system for which ~1~ 1 
has full rank, the variables in X should be ordered such that not only the 
Granger long-run causality ordering is kept but that also the upper diagonal 
elements of ZZ are likely to be different from zero. 

The ‘data-parametric’ cointegration testing techniques discussed in a former 
section, like Johansen’s procedure, do not suffer from these causality issues 
because they do not normalize the system (and consequently put a causality 
ordering on the variables) a priori. These methods work with non-identified 
cointegrating vectors however, and if one wants to put an identifying structure 
on the cointegrating vectors, the same kind of problems arise. 

5. Limiting distributions of the likelihood ratio and Lagrange multiplier statistics 

The asymptotic theory to be used for the estimators and test statistics used in 
the construction of the LR and LM statistics for cointegration has to a large 
extent been documented in the literature so far. The LR statistic, for example, 
equals the Johansen trace statistic whose limiting distributions are discussed in 
Johansen (1991a, b) and equal the limiting distributions of the Wald statistic, tw, 
when ccl1 has full rank. The limiting distribution of the cointegrating vector 
estimator when c122 = 0 is discussed in Johansen (1991 a) and Phillips (1991). The 
cointegrating vector estimator used in both the LR and LM statistic is estimated 
under the imposition of the tested number of unit roots such that it belongs to 
the LAMN family. As a consequence test statistics which test hypotheses on the 
cointegrating vector estimator have central x2 limiting distributions contrary to 
the limiting distributions of the test statistics using the two-step cointegrating 
vector estimator which are noncentral x2. The only limiting distributions which 
are not documented in the literature concern the limiting distribution of the LM 
statistic and the estimator measuring the departure from the cointegration 
model used for the construction of the LM statistic. 

Theorem 6. When the DGP (7)-(9) is such that c(22 = 0, the limiting distributions 
of the parameters resulting from an auxiliary regression rejecting departures from 
a cointegration model and the Lagrange multiplier statistic for testing such 
departures become: 
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(1) In the DGP 1 from Theorem 2, the limiting hehaviour of Ez2 follows: 

The limiting hehaviour qf the LM statistic to test the hypothesis H,: cx22 = 0, 

under the DGP I .from Theorem 2,fOl/ows: 

(2) In the DGP 2,from Theorem 2, the limiting hehaviour of’(6ii2 fi’J’,fbllows: 

The limiting hehaciour of the LM statistic to test the hypothesis Ho: x22 = 0, 

uI = 0 under the DGP 2from Theoretn 2,f~~llows: 

limt,,=lr( d G’dS22)( d G(G)-‘(d G’dS,,). 
T-X 

(3) In the DGP 3 from Theorem 2, the limiting hehaoiour af (85;2 6’J’follo\F.s: 

The limiting hehauiour af the LM statistic to te.st the hypothesis Ho: c(22 = 0, 

6, = 0 under the DGP 3,from Theorem 2,fOllows: 

Proaf Straightforward using Appendix, and auxiliary regression using the 
model z2 = {r/l2 + 762) + (X2)_,,lxz2 + v2, where E2: Tx(k - r) are the (k - r) 

residuals of the equations of dX2 resulting from the estimated cointegration 
model containing r cointegrating vectors [(k - r) unit roots] and ji,,, ji2, and 
g2 are the OLS estimators of the parameters in the auxiliary regression model. 
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Fig. 7. Empirical distribution function tw (-), tLR (--), tLM (-.) for bivariate model corresponding 

with DGP 2, with rl, # 0 

(X, not necessarily needs to correspond with the variables multiplied by B2 in 
the cointegrating relationship.) 

Theorem 6 shows that the well-known phenomenon that the Wald, LR, and 
LM statistics have the same limiting distribution under hypotheses which imply 
stationary series extend towards hypotheses which reflect a certain amount of 
nonstationarity when cur 1 has full rank. The limiting distribution of Ez2 shown in 
Theorem 6 is unlike the limiting distribution of kz2 discussed in Theorems 4 and 
5 independent from the values of c(rr and z12. This is the result of the indepen- 
dent estrmatron of gz2 from c(rr and z12, while Cz2 = ii,, - fiiT2rfi~r1fiIt partly 
is a function of the variables rll( = IZ, ,) and r12( = Z7,J. 

Although the limiting distributions of the Wald, LR, and LM statistics for 
cointegration are the same when 5y1 1 has full rank, in small samples the results 
from the three statistics will differ. To get an idea to what extent the different 
cointegration testing statistics could differ we simulated the empirical distribu- 
tion of the three different test statistics for a bivariate DGP with one cointegrat- 
ing vector (DGP 2 from Theorem 2) and 100 observations, with rl r # 0 (Fig. 7) 
and xI1 = 0 (Fig. 8). Fig. 7 shows that for a , r # 0 the empirical distribution 
functions of the three different statistics are almost the same (and almost equal 
to their limiting distribution), while the empirical distribution of the Wald 
statistic differs from the other two distributions when clll = 0, as was to be 
expected. Fig. 7 also shows that, when c(rl has full rank, the well-known 
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Fig. 8. Empirical distribution function tw (&), t,, (--), tLM (-.) for bivariate model corresponding 
with DGP 2, with a,, = 0 

inequality relationship for standard linear models, tw < tLR < tw, also tends to 
hold for the cointegration tests. Although the results obtained from the three 
different statistics will not differ much when the DGP corresponds with the 
model under Ho, the power functions of the three different statistics could differ 
considerably. Because of the vast number of reasonable alternatives for which 
the power of the different statistics could be calculated, we did not perform such 
an exercise. 

6. Application 

To show the applicability of the derived testing procedures, we applied the 
method described in the former sections on a set of data series. The data set 
consists of real demand for money, real GNP, and bond and deposit interest 
rates in Denmark, starting in the first quarter of 1974 and ending in the last 
quarter of 1987 (55 observations). These series are used to be able to compare 
the results from the testing procedure proposed in this paper with the results 
obtained by Johansen and Juselius (1990) in their cointegration study of these 
four series. 

The results in Table 1 are obtained under the same conditions, lag length 
(p = 2) and seasonal dummies as in Johansen and Juselius (1990). Also the 
hypotheses, which are tested by the Wald, LR, and LM statistics, are the same as 
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Cointegration characteristics for real demand for money (m2), real GNP (Y). bankdeposit rate (id), 
bond rate (i,,) in Denmark 

fi= 

Am2 

~ 0.18 

( - 2.03) 

0.11 

(0.91) 

- 1.04 

( - 2.95) 

0.64 

(1.47) 

Number of cointegrating relationships: 

0 

tw 61.1 
ILR 49.1 
rLM 40.6 

Crit. (95%) 53.4 

Estimated cointegrating vector: 

m2 

Two-step 1.0 

ML 1.0 

A& 

0.014 

(0.41) 

- 0.018 

( - 0.37) 

0.082 

(0.58) 

- 0.17 

( - 0.96) 

A id 

- 0.003; 

( - 0.16) 

0.020 

(0.67) 

0.14 

(1.60) 

- 0.31 

( - 2.87) 

2 3 

13.1 0.06 
8.69 2.35 
2.73 0.005 

20. I 9.09 

4 6 id 

0.61 - 5.76 3.53 
(1.53) ( ~ 3.72) (1.61) 

1.03 - 5.19 4.19 
(5.29) (- 6.12) (2.65) 

A]) 

0.19 

- 2.04) 

- 0.31 

(2.51) 

0.66 

(1.82) 

- 0.65 

- 1.46) 

1 

17.8 
19.1 
15.9 

35.1 

m2 

Y 

ib 

id 

COtI 

8.76 
(3.70) 

6.05 
(5.01) 

The critical values are obtained from Johansen and Juselius (1990, Table A3) 

tested in Johansen and Juselius, i.e., cointegrating relationships containing a con- 
stant term while the series do not contain a linear time trend (DGP 2, Theorem 2). 

The testing procedure is started with the construction of an ordering of the 
analysed series using the estimated value of the Il matrix. The constructed 
ordering corresponds with the ordering of the series in the estimated Ii’ matrix. 
The constructed ordering assures the condition that each series is likely to 
Granger long-run cause at least one series from a preceding column, while the 
zIl matrix for the presumable number of cointegrating vectors (one or two?) 
probably has a full rank value. Using the mentioned ordering, the suggested 
testing procedure in Fig. 6 is started with decreasing values of the number of 
cointegrating relationships. The estimated values of the Wald, LR ( = Johansen 
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Table 2 
Sensitivity cointegration statistics for chosen variable ordering for Danish series 

0 

61.1 
40.6 

61.1 
40.6 

61.1 
40.6 

61.1 
40.6 

I 

17.8 
15.9 

28.5 
15.7 

17.1 
IS.0 

26.8 
15.3 

i 

13.1 
2.73 

13.1 
2.61 

7.48 
3.24 

5.00 
5.73 

3 

0.06 
0.005 

0.06 
0.003 

0.06 
0.004 

0.10 
0.57 

trace), and LM statistics lead to a certain amount of ambiguity with respect to 
the (non)rejection of the hypothesis of zero cointegrating vectors. Using the 
asymptotic critical value, the Wald statistic clearly rejects the hypothesis of zero 
cointegrating vectors with 95% significance, while the LR and LM statistics are 
both below their 95% asymptotic significance levels. So, although the asymp- 
totic distributions of the Wald, LR, and LM statistics under the hypotheses of 
cointegration are the same, in small samples the results from the three different 
statistics can differ substantially. This shows again how careful one has to be 
with the application of asymptotic theory in small samples. The weak foundation of 
the cointegration hypothesis indicated by the LR and LM statistics is of course not 
surprising given the small ‘r-values’ of the elements of the long-run multiplier l7. 

In Table 1 an ordering of the variables was used which was derived from 
‘pre-testing’. In the analysed example the Granger long-run causality relation- 
ships are rather clear because the real variables (m2,~) are not likely to Granger 
long-run cause the monetary variables (i,,, id), while the opposite relation is much 
more likely. The question is how sensitive the results are for the chosen ordering 
of the analysed series because for most other series these relationships tend to be 
much less clear. To show this sensitivity for the analysed series we calculated the 
statistics for four different variable orderings which are shown in Table 2. 

The LR statistic is not contained in Table 2 because of its invariance with 
respect to the chosen ordering of the variables. Although the values of the Wald 
statistic tend to be sensitive to the ordering chosen, the conclusions with respect 
to the (non)rejection of certain hypotheses are not affected by the chosen 
ordering. The conclusions obtained from the use of the Wald statistic for the 
analysed series seem to be quite robust with respect to the chosen variable 
ordering. Yet, one has to bear in mind that Fig. 8 shows that lower rank values 

ofa,, tend to decrease the value of the Wald statistic. This may also explain the 
small values of certain Wald statistics. The LM statistic seems to be almost 
insensitive with respect to the chosen ordering, as was to be expected because 
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the limiting distribution of the LM statistic is independent from the value of 
other parameters (except zz2 of course). 

7. Conclusions 

The paper shows how one can construct Wald, LR, and LM statistics to test 
for cointegration using a parametric ECM. The calculation of the Wald statistic 
only involves linear regression, while the LM statistic stems from an auxiliary 
regression once one has estimated a cointegration model. The LM statistic is 
therefore an interesting and easy to calculate diagnostic. For the calculation of 
the critical values, the limiting distributions of these statistics were constructed, 
which turn out to be equal to one another when z,r has full rank, while the 
limiting distribution of the Wald statistic changes when xl1 has a lower rank 
value. The application of the three cointegration statistics to a Danish data set 
shows, however, that although the limiting distributions are the same, the 
conclusions stemming from the use of the different statistics can be quite 
different from one another. This shows how careful one has to be with the use of 
asymptotic theory in small samples. 

In future work, the parametric cointegration model will be examined for series 
which have a more complicated nature like, for instance, series with hetero- 
scedastic or nonnormal distributed disturbances. The limiting distributions of 
the Wald, LR, and LM statistics are invariant under a certain degree of 
heteroscedasticity/nonnormality, but the testing procedures will lose power 
when one neglects to model the heteroscedasticity/nonnormality properly. In 
the parametric cointegration model it seems less difficult to jointly test for 
cointegration and model heteroscedasticity/nonnormality than in the ‘data- 
parametric’ cointegration techniques used in the literature. We emphasize this 
point because in recent work on unit roots in univariate models the presence of 
unit roots turned out to be quite sensitive to the incorporation of heteroscedas- 
tic or nonnormal disturbances (see Kleibergen and Van Dijk, 1993b). It is shown 
there that the probability of an unit root in the US treasury bill rate increases 
considerably when heteroscedasticity and nonnormality are properly modelled. 
Another interesting issue which also seems to be more straightforward to 
conduct in the parametric cointegration model concerns the issue of the recur- 
sive calculation of the test statistics. This is a topic of further research. 

Appendix 

Some of the proofs in this appendix are informal (heuristic). For more formal 
definitions of certain arguments we refer to Billingsley (1968) Phillips and 
Durlauf (1986) Phillips (1992) and Johansen (1991a, b). 
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Proof of Theorem 2 (only the first part is proved) 

To construct the limiting distribution of the cointegrating vector estima- 
tor , p2 = - fi,,ii;,1, at first we construct the limiting distribution of the 
least-squares estimator, fir = (X’_ ,M,X_ 1)- ‘X’_ IM,AX1 of IZ, = (IT\, I&,)’ 
in the model (for simplicity p = 1 which does not affect the limiting distribu- 
tions). 

AX1 = Cl + x_,n, + e,, ~(hr~2J’htd) = 0, v1t = E1t - a2 2 

AX2 = c2 + X-lZ7z + ~2, &(Vl, &2rY(V1t 4) = .z = B’QB 3 

ii, = (X’_lM,X_l)-‘X’_,M,AX, 

= (B PLY W((B PLY W’X’-,MLl(B PLY D))-’ 

B = (B(O Lr)‘), D = PIP;, D’P,Y = 0, 

[ 

Ml,(l) M12(1) Ml3Ut) 

(P PLY WX’~lMtX-I@ Ply D) = M21(1) M,,(2) M23(‘% > 

M3lUt) M32(2& M33(3) 1 
where M,j(k), Qij(k), O,(k) represent the Tkth-order convergence behaviour of the 
Mij, Qij, Oi block matrices. Using the convergence behaviour of the different 
block matrices, the limiting distribution of the inverse of moment matrix 
(/? ply D)‘X’_ lM,X _ r (/I ply D) can be constructed, 

((P BLV W’X’- lM,X- I(P PLY WF ’ 

[ 

QII( - 1) Q12( - 2) Q13( - 2% 

= Q21(-2) Q22(-2) Q23(-23) . 

Q31( - 29 Q32( - 24) Q33( - 3) 1 
The limiting behaviour of (p ply D)‘X’_ 1 M, AX1 can be represented as 

(B BLV Q’X’~,M,AXl = (B 81~ W’X’-,M,(X-&,I + ~1) 
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Because the first part of the limiting matrix of (/I ply D)‘XY rM,dX, is 
proportional to the first column of the moment matrix (/I ply D)’ x 
X’L rM,X r(p ply D), the limiting form of the product of ((/J ply D)‘X’_ 1 
x M,X_,(P fily D))-’ and (p fily D)‘X’LIM,dX1 becomes 

QII( - 1)01(i) 
Qd - W,(l) + Qn( - 23VAUi) . 
Qd - 23)0,(l) + Qd - 3)03(1:) I 

The limiting form of the least squares estimator fir then becomes 

(P PLY D) 

ii 

a11 

0 + Qzd - W,(l) + Qn( - 21)03(14) 
0 1 [ 

QII( - l)O,(~~ 

Q32( - 2+)02(l) + QA - 3)03(13) 11 
ii ~11 + QII( - 1)0,(i) = 

- Bz(al, + QII( - lPl(:)) 

+ (Y 11;) 

Q22( - 2) Q23( - 2-t) 

Qd - 24) Qm( - 3) ’ 
while the limiting form of the cointegrating vector estimator 82 = - ii,,ii;, 
becomes equal to 

82 = - fi2,ii,, 

I:i, ;23; I;,:, 
2 33 I[ 1 ;2j;;l (~11 +QII( -1)01(i))-’ 

3 2 

Q22( -2) Q23( -24) O,(l) 

QN( -24) QM( -3) IC 1 O,(li) ET1’. 
To construct the exact functional expression for the limiting distribution of b2 

we need to construct the functional forms of Q22, Q23, Q33, and 02, O3 (see also 
Phillips and Durlauf, 1986; Johansen, 1991a), 
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Q22( - 2) Q23( - 2i) 

x Q32( - %) Qs( - 3) 
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where 

u = (S, sJc1’2, u,.z = u1 - UJ2;1C~~, 

p = P - i P(t)dt, 0 = Q - i QW > 

z1’2(1, /I;) = !2”2(1, 0). 

Proof of Theorem 3 

When ccl1 = 0, 

- 

it B2Q11( - 1)01(t) - (Y 4 Q22( 2) Q23( 

- 

= 
Q 32 (_ 2L) 2 Q 33 (_ 

2;) 1 3) 

02(l) 

x [ 1 03Uf) (QII( - l)O,(f))F’ 1 
Q22( -2) Q23( -2% 02(l) 

Q3A -xi) Q33( -3) I[ 1 03(15) 
(Q~I( -l)o,(+))F1 > 1 

-1 
lim T~l/l’X’LIM,X~lfi *var(X,p) = lim TQll( - 1) , 

T-CC T-X 

Jir”, T- 1i201(f) = lim T-‘~2fi’X’_lM,~, * n(0, Qll 0 var(X,fi)) 
T’FX 

+i((X(t)fl)‘dS)Q’:‘(I, 0)', 
0 

lim T1’2Q11( - 1)0,(f) * n(0, QI1 0 (var(X,b))-‘) 
T-rX 

+ lim T”‘(Bll - rll). 
T-71, 
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The limiting distribution of j?, then becomes 
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lim ~-‘(y T1’2,u’J’(X2)‘_1Mc, tx,-xp,J ,,(XJ(y T1’2~2 3 i F’F , 
T-m ( ) 0 

*imtw= ljztr([ -ff:“12]fj[ efJ~~“])d’ 
T+CC 

x &2(X2)‘- lM,, (X, -xpz,_,,(X2)- 1422 

= +4 [ - ;;;:j12jj[ - yyf12]) -7 

F-2, Tb T”‘,&)‘B;P~~,z ’ T_ 3c I[ lim T-‘(y T’i2p;)‘(X2)‘L 1 

&r( [ FJdS2,)( d F’F)-‘( [ F’d,,,) 

=a( i V’dS,,!‘( d VI’-‘( d Z”dS,,). 

Proof of Theorem 5 

When xl1 = 0 and r = k - r, 

Y’FJLV 0 -’ =2- 
0 I( 1 ; F’F 

P2P;BdG 0 

x Q”‘(1, O)‘[n(O,Q,, @(var(X,p))-‘)I-’ 
I 

xl2 
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1 -1 
x A (W(t)B)‘dSP1’2U, 0)’ 1 (WXrB)bl 2 3 

lim T”‘(p T1’2p2)‘~;/3,&22 
T-z 

= ~imTT1’2(?: ~““~~)‘C(fi~~ + P2a12) + (B242 - P2u12)l 

x j(X(r)p)‘dS)Q’:‘(I,O)’ 
C 1 

-1 

(var(xt8)bl 2 3 

0 

;iy T- ‘(X, - Xzj2)‘1M,W1 - X2/72)-, 

= var(X,B) + $Tm T-1(B2 - ~2)‘(X2)r- ,M,(X,)L ,(P2 - i2) 

+ var(X,fi) + [n(O, Q, 1 @ (var(X,b))- ‘)I “(Ir O)Q1’z’ 

x(d F’dS)(d F’F)-‘(i F’dS) 

xSZ’~~(Z, O)‘[n(O,Q,, O(var(X,/I))~‘)]-’ 
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* var(X,jJ) + (var(X,b)) 1 i (X(t)/I)‘dS)Q1!2(Z,0)’ 1 

11 

(I,O) Q”2’ 

0 

x(d FdS)( d F(F)-‘!d F’dS)Q112(I.0) 

.‘r (X(t)~)‘d,S)L?“‘(l,O)’ 1 
-1 

(var(x,fi)), 

0 

f’-r”T T- ‘(‘,‘2) (y Tm 1'2p'J'(X2)'_1M,(X1 - X2/&_1 

= $L; T- ‘(l/2) (7 7-1’2~4’@‘2)‘- ,M,(X, - X,B2L, 

+ .f$ T- 1(1,2) (i’ T”2~2Y(X2)‘~ ,M,(X,)~ ~(82 - p^2, 

= ,ll?~ T- 1'1'2)(;, T-"'p;)'(X,)'_ 1M,(X2)_,(b2 - j2) 

x [n(O,Q2,, C3(vWftB))F’)1-’ 

lim TmZ(y Tm"2p'J[(X~)'m IM(, (x,~xs~)_,)(XZ)- ~(r Tm “2~‘2)1 
T-x 

= lim Te2(y T~1'2p~)'[(X2)'_1M,(X2)~1 -(X,)'~,M,(X,)_,(~, - a,) 
T- x, 

x [(Xl - X2B2L IM!(XI - X2B2Jm I 

+ (B2 - 82)Wm IMdX2b I(B2 - B2r 1 

x(/J2 - ljJW2L ,M,(X,L ,I(? Tm “2~;) 
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x (var(X,P)) varW,P) + (var(X,B)) i 
-1, 

0 

F’dSJ( 6 F(F)-I( d F’dS)Rli’(Z.O) 

x i (X(t)/3)‘dS)L?1’2(Z,0)’ 1 -l(var(Xt/?)) 
-1 

0 

x (var(X,/?)) i (X(t)/?)‘dS)L?1’2(Z,0)’ 1 - l’(I, 0)Q1’2’ ’ , 
0 

x d (X(t)/?)‘dS)521’2(Z,0)’ 1 -‘(var(X,8)) 

x var(X,D) + (var(X,/?)) i (X(t)B)‘dS)R”‘(Z,O)’ 1 
1, 

(z,o)Q”2’ 

0 

x( d F’dSl( d F(F)-‘( d F’dS)@/‘(Z,O) 

x d (X(r) j?,.dS,a"cZ,O)']- ’ ‘(r,o)nl:“( [ ,‘,,I] (6 F(F)-’ 
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=((d ’ ) (1 ’ ) 1/Z I ffo F F + j FdS R (I 0) ; (X(t)p)‘dS)Q1’2(Z,0)’ 

101 

j (X(t)P)‘dS)52”‘(Z,O)’ 
0 1 -1’(Z,0)f21~z’ (d FdSl)-’ 

x[ j Y(f).dY]-“( d F’dV))-‘, 

where Y(t) = (var(X,fi) “*)X(t)P, 
V = sQ1’*(zI 0)‘. 

var(Y(t)) = I,, JAY(t)‘Y(t)dt = I,, and 

=scc;2(var(X,p))’ i (X(t)~)‘dS)Q1’2(Z,0)’ 1 
11 

U,O)Q(ZrO)' 
0 

x t-f”, T”* (y T”2pC;)‘fi’Jl’oi22 
1 
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;i~; T’!‘(i’ T”2,&)‘~;~l’&22 
1 
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