
 
 

 

New Applications for Real-Time Three-Dimensional 

Echocardiography 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ashraf Mohammed Anwar Ali 



ISBN  : 978-0-615-32933-8  
Cover  : Ashraf Mohammed Anwar Ali 
Lay out : Ashraf Mohammed Anwar Ali 
Illustrations : Ashraf Mohammed Anwar Ali 

Printed by Multichoice Est.

© 2009 of this book is to Ashraf Mohammed Anwar Ali, Rotterdam, The 
Netherlands, all rights reserved. The copyright of the published articles has been 
transferred to the publisher of the corresponding journals. No part of this book may be 
reproduced by, stored in any retrieval system of any nature or transmitted in any form 
by any means, electronic, mechanical, photocopying, recording, or otherwise, without 
the prior permission in writing of the author or the corresponding journal when 
appropriate.



 
 

New Applications for Real-Time Three-Dimensional 

Echocardiography 

 

Nieuwe toepassingen van 3D echocardiografie 

 

Thesis 

 

to obtain the degree of Doctor from the  
Erasmus University Rotterdam  

by command of the  
Rector Magnificus 

 

Prof.dr. H.G. Schmidt 

 

and in accordance with the decision of the Doctorate Board 
 
 

The public defence shall be held on  
 
 
 

Wednesday, November 25 2009 at 15.30 h. 
 
 

By 
 

Ashraf Mohammed Anwar Ali 
born at El-Minia, Egypt 

 
 
 
 

 



  

Doctoral Committee 

 

Promoter:   Prof.dr. M.L. Simoons. 
  

Other members: Prof.dr. N. de Jong 
Prof.dr.ir. H. Boersma 
Prof.dr. A.C. van Rossum 

 
 
Copromoter:   Dr. F.J. ten Cate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Financial support by the Netherlands Heart Foundation for the publication of this 
thesis is gratefully acknowledged. 
 
 
 



To  

Soul of My Parents 
 

Who were: 

 The Source Of  Morals And Goodness 

 The Lovely Heart  

 The River Of Kindness And Mercy 
 

My Pray To Be Together In Paradise 

**** 





Table of Contents 

 

Chapter 1 Introduction and outline of the thesis 9 

Chapter 2 Assessment of tricuspid valve annulus size and shape using real-

time three-dimensional echocardiography  

15 

 Interactive Cardio-Vascular and Thoracic surgery 2006;5:683-

687 

 

Chapter 3 Value of assessment of tricuspid annulus: real-time three-

dimensional echocardiography and magnetic resonance imaging  

25 

 International Journal of  Cardiovascular Imaging 2007; 

23(6):701-705 

 

Chapter 4 Evaluation of rheumatic tricuspid valve stenosis by real-time 

three-dimensional echocardiography  

35 

 Heart 2007;93:363-364  

Chapter 5 Assessment of normal tricuspid valve anatomy by real-time 

three-dimensional echocardiography  

41 

 International Journal of  Cardiovascular Imaging 2007; 
23(6):717-724  

 

Chapter 6 True mitral annulus diameter is underestimated by two-

dimensional echocardiography as evidenced by real-time three 

dimensional echocardiography and magnetic resonance imaging  

51 

 International Journal of  Cardiovascular Imaging 2007; 23(5): 

541-547 

 

Chapter 7 Assessment of mitral annulus size and function by real-time 

three-dimensional echocardiography in cardiomyopathy: 

comparison with magnetic resonance imaging  

61 

 Journal of the American Society of Echocardiography 2007; 

20(8): 941-948 

 

Chapter 8 Validation of a new score for the assessment of mitral stenosis 

using real-time three-dimensional echocardiography  

75 

 (Submitted)  

Chapter 9 Assessment of pulmonary valve and right ventricular outflow 

tract with real-time three-dimensional echocardiography  

93 



 International Journal of Cardiovascular Imaging 

2007;23(2):167-175 

 

Chapter 10 Assessment of left atrial volume and function by real-time three-

dimensional echocardiography  

105

 International Journal of Cardiolology 2007;           

Chapter 11 Left atrial Frank Starling law assessed by real-time three-

dimensional echocardiographic left atrial volume changes  

119

 Heart 2007; 93(11):1393-1397  

Chapter 12 Assessment of left atrial ejection force in hypertrophic 

cardiomyopathy using real-time three-dimensional 

echocardiography  

131

 Journal of the American Society of Echocardiography 

2007;20(6):744-748) 

 

Chapter 13 Summary and Conclusion     141

 Samenvatting, Conclusies en Toekomstperspectief 145

 Acknowledgments 151

 CurriculumVitae & publication list 153

   

 

 



CHAPTER 1 

 

 

GENERAL INTRODUCTION AND OUTLINE OF THE THESIS 

 

 

Ashraf M. Anwar; MD, MSC 
 
  
Department of Cardiology, Thoraxcenter,  
Erasmus University Medical Center, Rotterdam, The Netherlands 
Department of Cardiology, Al-Hussein University Hospital, Al-Azhar University, Cairo, Egypt 
 

 

 



Chapter 1 
 

Background 

Conventional two-dimensional echocardiography (2DE) has been established as the most widely 

diagnostic tool in clinical cardiology practice. Its application helps in morphological and functional assessment 

of cardiac chambers and valves. The advancement in technology of echo machines and its software analysis 

minimized many difficulties and limitations. However, 2DE application still carries many limitations. It requires 

mental conceptualization of a series of multiple orthogonal planer or tomographic images into an imaginary 

multidimensional reconstruction for better understanding of complex intracardiac structures and their spatial 

relation with surroundings (1). Many of 2DE formula used for volume quantification and ejection fraction 

calculation especially for left ventricle are based on geometric assumption that may not true providing varied 

results in the setting of chamber dilatation or distortion and in the presence of regional wall motion abnormalities 
(2). Interobserver variability for 2DE images interpretation is still due to different ways of data interpolation 

especially for measurement of mitral and aortic valve orifice area (3,4). These limitations encourage numerous 

investigators to obviate it by the attempt to obtain three-dimensional images. Three-dimensional 

echocardiography was developed since more than 15 years provide more accurate assessment of ventricular 

volume, mass and function and provide a more complete view of the valves. Despite these advantages, it 

remained a research tool due to many limitations like electrocardiographic and respiratory gating, motion 

artifacts, time consuming offline analysis and reconstruction. Over the last few years, the advances in transducer 

and computer software technology led to enhancement of real-time three-dimensional echocardiography 

(RT3DE) to be applied for clinical utility. The recently developed matrix array transducer consists of 

approximately 3,000 firing elements improved the contrast resolution and penetration. By this transducer, the 

entire heart image could be obtained by a pyramidal full-volume acquisition of four cardiac cycles. The 

development in software made the data off-line analysis faster and easier.  

 

Clinical Application 

Numerous application of RT3DE have been proposed and well studied. It allows accurate assessment of 

ventricular volume and ejection fraction comparable to angiography, CT and MRI (5-7). It was also applied for 

accurate and feasible evaluation of left ventricular mass among patients with a broad range of cardiac diseases 
(8,9). Many studies showed feasibility of RT3DE for assessment of right ventricular volume and function (10,11). 

The other major area in which RT3DE has been used for anatomical assessment is in congenital heart disease 

with considerable evidence of the superiority of it over 2DE (12,13). Through RT3DE imaging planes and 

projections of the interatrial septum, accurate assessment of atrial septal defect including localization, number, 

size and rims could be obtained (14). This assessment helps in selection of therapeutic strategy either surgical or 

transcatheter closure (15). RT3DE application for assessment of ventricular septal defect is encouraging (16,17). 

RT3DE application in valvular heart disease became standard due to its more feasibility and accuracy than 2DE 

especially for mitral valve assessment. By its enface views, full anatomical description of the mitral valve 

annulus, subvlvular apparatus, leaflet surface, tethering distances and tenting volumes could be obtained (18-20). It 

helps in accurate calculation of mitral valve area comparable to catheterization with low interobserver and 

intraobserver variability (21,22). The qualitative and quantitative assessment of RT3DE expands its use before and 

after mitral valvuloplasty and before surgical treatment (23).  
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General introduction and outline of the thesis 

Outline of this thesis 

The aim of this thesis was to expand the use of RT3DE for anatomical and functional assessment of 

other important cardiac structures little or not studied before. It also discussed the feasibility and clinical 

applicability of RT3DE assessment of these structures.   

 

Chapter 2. The study provided the actual description of the tricuspid valve annulus morphology as seen by 

RT3DE. Its shape was evident as an oval-shaped and not completely circular. Measurement of tricuspid annular 

diameter by 2DE was nearly matched with the minor diameter by RT3DE and significantly smaller than the 

major diameter. Through the ability to study the cyclic changes of the annulus area and diameter during systole 

and diastole, the annular function could be evaluated by fractional area change and fractional shortening.  

 

Chapter 3. The study compared the measurement of tricuspid annulus area and diameter by RT3DE and MRI. 

Both techniques were well correlated and comparable. It was concluded that 2DE measurement of tricuspid 

annuls diameter could not be relied on due to underestimation compared to MRI and RT3DE. Annular function 

was correlated with the right ventricular systolic function, and thus it can be used as a marker of right ventricular 

function.  

 

Chapter 4. The study described the use of RT3DE for evaluation of rheumatic tricuspid valve stenosis and 

assessment of its severity. Through RT3DE enface view, a detailed morphological assessment of mobility, 

thickness and calcification of all tricuspid valve leaflets. The unique RT3DE functional assessment of the valve 

could also be obtained through measurement of valve orifice area, and the three commissural widths. 

 

Chapter 5. The study aimed to apply RT3DE for quantitative and qualitative assessment of the normal tricuspid 

valve and to standardize the normal values. The qualitative assessment included morphologic description of the 

three leaflets shape, position and their relation to each other and to the surrounding structures. The quantative 

assessment included measurements of tricuspid valve area, commissural width, tricuspid annular area and 

diameter. This paper described inconsistent findings in the echocardiographic textbooks on TV leaflet 

identification and set a new gold standard regarding the identification of each leaflet in each 2DE views. 

  
Chapter 6. The study explained the feasibility and reliability of RT3DE for assessment of the true mitral 

annulus area and diameter. Its shape was seen as D-shaped and not completely circular. MRI measurements of 

mitral annulus were used as a gold standard to compare between 2DE and RT3DE measurements. It showed 

underestimation of 2DE while RT3DE was superior to it and comparable to MRI. The accuracy of RT3DE 

measurements was obtained with good interobserver and intraobserver agreements   

 

Chapter 7. The morphological and functional changes of mitral annulus in both dilated and hypertrophic 

cardiomyopathy were described compared to normal subjects. The annulus increased in size and became flat due 

to over stretching in both types. Assessment of mitral annulus function by RT3DE calculation of fractional area 

changes and fractional shortening showed augmented function in hypertrophic cardiomyopathy and impaired in 

dilated cardiomyopathy. RT3DE measurements were comparable with MRI measurements with good 

interobserver agreement.  
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Chapter 8. The study was designed to apply a new RT3DE score for evaluation of mitral valve stenosis. By this 

score, each part of the two leaflets could be assessed separately regarding mobility, thickness, and calcification if 

any. Subvalvular apparatus affection was included in the score by assessment of chordal mobility, thickness nd 

separation at three levels. The study described the value of this score application for patients before percutaneous 

mitral valvuloplasty compared it with the standard 2DE Wilkins' score. The new RT3DE score is simple, less 

subjective with less interobserver variability. Its application added more valuable information needed before 

valvuloplasty and could predict the outcome (results and complications).   

 

Chapter 9. The study clarified the role of RT3DE for anatomic description of right ventricular outflow tract and 

pulmonary valve. The morphologic assessment of outflow tract, pulmonary valve annulus, pulmonary valve, and 

proximal pulmonary artery was achieved in a considerable number of patients. RT3DE measurements of the 

outflow tract and pulmonary valve annulus diameter were higher than that obtained by 2DE. Measurement of 

area of both right ventricular outflow tract and pulmonary annulus may aid in selection of therapeutic strategy. 

 

Chapter 10. The study described feasibility and reliability of RT3DE for assessment of left atrial volume and 

function. Functional assessment included both active and passive left atrial function through the volumetric 

changes during the cardiac cycle. RT3DE assessment of left atrial volume does not rely on assumption and thus 

depict the actual left atrial shape. RT3DE measurements were compared with 2DE measurements. It is so 

difficult by 2D planimetry to exclude left atrial appendage and pulmonary veins totally during volume 

calculation. This can explain the higher value of left atrial volume measurements by 2DE than that obtained by 

RT3DE.        

 

Chapter 11. Assessment of left atrial volume at three phases of cardiac cycle (maximum volume, minimum 

volume, and pre-atrial contraction volume) was obtained by RT3DE. RT3DE assessment of cyclic changes of 

left atrial volume and indices of passive and active function may help in understanding the left atrial physiology. 

The existence of left atrial Frank-Starling mechanism was described through RT3DE measurement and 

evidenced by an increase in left atrial contractility in response to an increase in preload up to a certain point, 

beyond which the left atrial contractility decreased.  

 

Chapter 12. The study assessed the calculation of left atrial ejection force in hypertrophic cardiomyopathy 

patients. This assessment depends on a standard formula used the mitral orifice (annulus or valve) area, 

transmitral velocity and blood viscosity. The calculation of ejection force by the formula used RT3DE 

measurement of mitral annulus diameter showed that hypertrophic cardiomyopathy is associated with higher 

ejection force than normal, and higher in obstructive HCM than non-obstructive indicating a higher atrial 

workload. The study concluded that ejection force should be determined in HCM patients by annulus area-

derived formula instead of valve area-derived formula due to annular dilatation. So, RT3DE measurement of 

atrial ejection force through annuls area is recommended as a better indicator for left atrial work in HCM 

because it is more accurate and logic than 2DE measurement 
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Chapter  2 

ABSTRACT 

Tricuspid annulus (TA) evaluation continues to be a major problem in the surgical decision-making process. 

Obviously, 2-dimensional transthoracic echocardiography (2D TTE) is limited in TA visualization due to its 

complex 3D shape. The study aimed to determine TA morphology, size and function with real-time three-

dimensional echocardiography (RT3DE) in 40 patients divided into two equal groups (I: normal TA and II: 

Dilated). 2D TTE measurements included TA diameter (TAD) at apical 4 chamber (AP4CH) and parasternal 

short axis (PSAX) views. RT3DE measurements included TA area (TAA), major TAD and minor TAD. TA 

fractional shortening (TAFS), and TA fractional area change (TAFAC) were calculated from End-systolic and 

end-diastolic measurements. RT3DE allowed visualization and measurement of the entire oval-shaped TA in all 

patients irrespective of its size (normal or dilated). 2D TTE measurement of TAD at both AP4CH and at PSAX 

views was significantly smaller than the major TAD measured by RT3DE (P <0.0001) and nearly matched with 

the minor TAD in all patients. Calculation of TAFS was comparable with both techniques. TAFAC was 

significantly higher than TAFS (P <0.0001). So, RT3DE could be relied on more accurately than 2D TTE in the 

assessment of TA size and function which may aid in decision-making and selection of proper surgical 

procedure when indicated. 
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Tricuspid annulus size, shape and function by RT3DE 

INTRODUCTION 

The tricuspid valve (TV) is composed of three leaflets (anterior, posterior and septal) attached to a fibrous 

annulus1. The three-dimensional (3D) shape of this tricuspid annulus (TA) is complex and does not conform to a 

flat ring2. Tricuspid regurgitation (TR) is the most common pathology affecting the TV. An understanding of the 

pathological process underlying TR is necessary to determine the optimal management strategy. Usually, TR is 

secondary to left-sided valvular pathology (mostly mitral valve disease) with pulmonary hypertension and right 

ventricular dilatation 3,4.  Because the TA is a component of the right ventricle it will dilate also. However, since 

the septal leaflet is fixed between the fibrous trigones, the TA can only lengthen and dilate along the attachment 

of the anterior and posterior leaflets 5-7. Unfortunately, TV evaluation continues to be a major problem in the 

surgical decision-making process 8. Guidelines for TV repair include TA assessment (indexed TA size 

>2.1cm/m2 and TA fractional shortening <25%)3 . At the time of surgery the decision to repair the TV may be 

changed due to discrepant TA diameter (TAD) findings between pre-operative two-dimensional transthoracic (or 

transesophageal) echocardiography (2D TTE) and direct surgical visualization3. Obviously, 2D TTE is limited in 

visualizing the complete TA. Since real-time 3D echocardiography (RT3DE), has become available for clinical 

practice, it is now possible to examine the TV more completely 9. The present study aimed to determine actual 

TA morphology, size and function with RT3DE and to compare the results with standard 2D TTE findings. 

 
SUBJECTS AND METHODS 

 
The study included forty consecutive patients with good image 2D TTE quality in whom also RT3DE was 

performed. Indications for echocardiography included follow-up for adult congenital heart disease (n = 12), 

valvular heart disease (n = 10), cardiomyopathy (n = 8), and analysis of shortness of breath (n = 10). 

2D TTE Examination 

2D TTE was done with a Sonos 7500 ultrasound system attached to a S3 transducer (Philips, Best, The 

Netherlands). The TV was imaged from apical and parasternal views with the patient in the left lateral decubitus 

position. In each patient, the following variables were measured by two blinded observers: (1) TAD, obtained 

from the apical 4-chamber (AP4CH) and parasternal short axis (PSAX) views at an end-diastolic and end-

systolic still frame, and (2) TA fraction shortening (TAFS) defined as (end-diastolic TAD - end-systolic TAD) / 

end-diastolic TAD obtained from the AP4CH and PSAX. 
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RT3DE Examination 

RT3DE was done with the same ultrasound system attached to a X4 matrix array transducer capable of providing 

real-time B-mode images. A full volume 3D data set was collected within approximately 5-10 seconds of breath 

holding in full volume mode from an apical window. The 3D data set was transferred for off-line analysis with 

TomTec software (Unterschleissheim, Munich, Germany). Data were stored digitally and subsequently evaluated 

by two blinded observers (AMA, OIIS). Data analysis of 3D images was based on a 2D approach relying on 

images obtained initially from the apical view. The TA was sliced between two narrow lines to exclude other 

tissues on the 2D image leading to clarification of annulus by a 3D image. This image was viewed and traced 

from the ventricular aspect, in 6 patients (15%) the atrial aspect was used because of better quality. Manual 

tracing of the inner border of the tricuspid annulus was done from the atrial aspect and once this is completed the 

surface area was automatically calculated and could be visualized from different points of views. Manual 

modification was made to correct any inconsistence. 

The following RT3DE variables were obtained from both an end-diastolic and end-systolic still frame: (1) 

TA area (TAA3D), (2) major TAD3D defined as the widest TAD3D (see Figure 1), and (3) minor TAD3D defined 

as the smallest TAD3D (see Figure 1).  Subsequently, TAFS3D was calculated from major TAD3D data and TA 

fractional area change (TAFAC3D) was calculated from systolic and diastolic TAA3D. 

  

STATISTICAL ANALYSES  

All data obtained by 2D TTE and RT3DE are presented as mean  SD. A paired t-test was performed for 

comparing means of variables. The level of significance was set to P <0.05. A SPSS statistical package was used 

(SPSS, version 12.1, SPSS Inc, Chicago). Interobserver agreement for 2D TTE and RT3DE measurements was 

assessed according to the Bland and Altman principle 10. 

 

RESULTS 

In Table 1, the clinical and echocardiographic parameters of all patients are displayed. Patients were classified 

into two groups; group I included 20 patients with normal end-diastolic TAD2D-AP4CH (<35mm) and group II 

included 20 patients with dilated end-diastolic TAD2D-AP4CH (35mm). There were no significant differences in 

clinical variables (age, gender) between the two groups. All echocardiographic parameters were significantly 

higher in group II patients (all P <0.0001). 
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Tricuspid annulus size, shape and function by RT3DE 

RT3DE acquisition 

Acquisition and post-processing of RT3DE data was performed successfully in all patients in a reasonable time 

(approximately 1 minute for acquisition and 5 minutes for data analysis). The TA was clearly delineated in all 

patients and, as seen in Figure 1, its shape was not circular but oval, both in normal sized and in dilated TA 

(Figure 2). 

 
 

Fig (1): (a) Tricuspid annulus with two lines inside, 
line 1 is TAD by 2DE in AP4CH and line 2 is 
major TAD by RT3DE, with large difference in 
measurements, (b) surgical view of tricuspid 
annulus and leaflets, (c) tricuspid annulus and 
leaflets as seen by RT3DE, and (d) simple diagram 
of tricuspid annulus and the three leaflets of the 
valve 

Fig (2): Real time 3D echo showed the morphology 
of the normal tricuspid annulus (A) and dilated 
annulus (B) as visualized from the ventricular 
aspect with delineation of its inner border. Both 
tricuspid annuli appeared as oval in shape. The 
horizontal line inside is the major tricuspid annular 
diameter (TAD) and vertical line is the minor TAD 
as measured by RT3DE. (C): Tricuspid annulus 
with the line measured at apical 4 chamber by 2DE 
inside it, which appeared away from the true 
diameter. (D): Tricuspid annulus with the line 
measured at parasternal short axis by 2DE inside it, 
which appeared away from the true diameter.

                   
 
 
 
                                                                                        
Comparison between 2D and 3D measurements 

Diastolic value  

There was a good correlation between end-diastolic TAD2D-AP4CH and TAD2D-PSAX (R = 0.79, P 

<0.0001). Major TAD3D was well correlated with end-diastolic TAD2D-AP4CH and TAD2D-PSAX (R = 0.74, P 

<0.0001 and R = 0.75, P <0.0001, respectively). As seen in Table 1 and Figure 2, major TAD3D measurements 

in both patients groups were significantly larger than end-diastolic TAD2D-AP4CH and TAD2D-PSAX. Also when the 

largest TAD2D was compared to TAD3D, 3D measurements were significantly larger (44.9  11.3 and 39.0  

10.3 mm, P <0.001). After reclassification of the patients according to major TAD3D findings only 10 patients 

could be classified as normal (major TAD3D <35mm). In these 10 patients actual TAD2D-AP4CH and TAD2D-PSAX 
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values were 30.6  6.0 and 29.1  6.4 mm, respectively. Importantly, in patients with normal TAD2D, 65% of 

them had grade 1-2 TR (see Table 1) whereas in normal TAD3D only 30% of patients had grade 1-2 TR. 

.0001). 

Systolic values  

There was an excellent correlation between end-systolic TAD2D-AP4CH and TAD2D-PSAX (R = 0.89, P 

<0.0001). Major systolic TAD3D measurements correlated well with end-systolic TAD2D-AP4CH and TAD2D-PSAX 

(R = 0.80, P <0.0001 and R = 0.66, P <0.05, respectively). As seen in Table 1, major systolic TAD3D 

measurements were in both patients groups significantly greater than end-systolic TAD2D-AP4CH and TAD2D-PSAX. 

Fractional shortening  

There were no significant differences between TAFS2D-AP4CH (14.2  7.1%), TAFS2D-PSAX (14.6  

9.2%), and TAFS3D (17.8  13.2%). TAFAC3D was significantly higher than the aforementioned TAFS2D or 

TAFS3D measurements (26.6  12.7 %; P <0

 Minor TAD 

No significant differences were detected between end-systolic and end-diastolic minor TAD3D versus 

TAD2D-AP4CH and TAD2D-PSAX in both groups (Table 1). 

Table 1. Clinical and echocardiographic data of all patients.  

 
All patients 

(n = 40) 
Group I 
(n = 20) 

Group II 
(n = 20) 

Clinical characteristics    
  Age (yr) 29.8  11  26.3  9 33.1  14 
  Male gender (%) 17 (43%) 10 (50%) 7 (35%) 
Diastolic echo values     
  TAD2D-AP4CH (mm) 37.7  10.2  29.1  3.2* 45.4  7.9 ** 
  TAD2D-PSAX (mm) 35.7  9.1 29.6  6.1* 41.2  8.0* 
  Major TAD3D (mm) 45.0  11.3 38.6  9.3 50.7  10 
  Minor TAD3D (mm) 37.3  11.6 30.7  9.2 43.7  10.0 
  TAA3D (mm2) 159.7  84.3 105.8  67.5 208.3  81.7 
Systolic echo values    
  TAD2D-AP4CH (mm) 32.4  9.5 25.4  3.9 ** 38.3  7.1*** 
  TAD2D-PSAX (mm) 30.2  7.8 24.9  3.5* 34.4  6.7* 
  Major TAD3D (mm) 36.0  9.5 25.4  5.3 41.7  8.5 
  Minor TAD3D (mm) 30.5  8.5 25.4  5.3 35.6  8.1 
  TAA3D (mm2) 117.9  66.9 81.4  44.2 150.8  67.5 
Fractional shortening    
  TAFS2D-AP4CH  14.2  7.1 13.5  5.7 15.0  8.2 
  TAFS2D-PSAX 14.8  9.2 14.6  8.8 15.1  8.8 
  TAFS3D major TAD 17.8  13.2 18.5  14.3 16.6  10.4 
  TAFAC3D 26.2  12.9 23.7  13.4 27.9  12.2 
Tricuspid regurgitation      
  None 7 (17%) 7 (35%) 0 (0%) 
  Grade 1-2 23 (58%) 13 (65%) 10 (50%) 
  Grade 3-4 10 (25%) 0 (0%) 10 (50%) 
Group I included patients with normal tricuspid annulus diameter, Group II included patients with dilated (>35mm) tricuspid 
annulus diameter. AP4CH: apical 4-chamber view, FS: fractional shortening, PSSAX: parasternal short axis view, TAA: 
tricuspid annular area, TAD: tricuspid annular diameter, TAFAC: tricuspid annular fractional area change. * P <0.001 
compared to RT3DE; ** P <0.01 compared to RT3DE, *** P <0.05 compared to RT3DE 
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Interobserver agreement  

As seen in Figure 3, the limits of interobserver agreement for major TAD3D (mean difference -0.5  1.7 mm, 

agreement –3.9 to 2.9) were comparable to end-diastolic TAD2D-AP4CH (mean difference 0.1  2.0 mm, 

agreement –3.9 to 4.1). The limits of interobserver agreement for TAD2D-PSAX (mean difference 1.0  4.8 mm, 

agreement –3.8 to 5.8) were worse, in particular for lower TAD values. 

 

 

Fig (3): Interobserver correlation and agreement according to Bland and Altman principle for measuring 

tricuspid annular diameter (TAD), A): TAD in apical 4-chamber (P4CH) by two dimensional echocardiography 

(2DE), B): TAD in parasternal short axis (PSAX) by 2DE, C): Major TAD by real time three dimensional 

echocardiography (RT3DE). 
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DISCUSSION 

In the present study, the morphological and functional aspects of the TA were assessed by RT3DE. The main 

findings of our study are (1) TA shape was not circular but oval, both in normal sized and in dilated TA, (2) 

TAD is underestimated by 2D TTE, and (3) TAFS measurements are comparable for 2D TTE and RT3DE. 

TAD measurements are of critical importance in the TV surgical decision-making process 11-13. Absence 

of TR or the presence of only mild TR does not mean that the TV is free of any abnormality such as TA 

dilatation. At a given time, even considerable TA dilatation may not always result in significant TR (11,12). Not 

only the selection of patients undergoing surgery for TR is dependent on echocardiographic TAD assessment (11), 

but also the type of surgical technique (valve plication or ring placement) is influenced by measurements of TA 

function and TAD 3,14. 

Although 2D TTE is helpful to assess TV function and to detect TR severity it has important limitations 

in describing TV morphological details, such as TAD (13,14). It is well known that after mitral valve surgery 

patients may clinically deteriorate due to underestimated TV pathology and significant residual or developing 

TR 15-. RT3DE may yield more detailed anatomical information. In the present study, the TA was visualized well 

in all subjects allowing even measurements of its area, both at end-systole and end-diastole. This is in 

accordance with a 3D study by Schnabel et al. (9) in which TA visualization was well or at least sufficiently in 

over 90% of patients. When TAD2D measurements were compared with the TAD3D measurements, 2D 

measurements were significantly smaller than the major TAD3D measurements (diameter measured from the 

antero-septal to the antero-posterior commissure). In fact, TAD2D measurements corresponded more with the 

minor TAD3D measurements. In 2D TTE studies it was shown that the normal value for TAD is <35mm14. 

However, in our study half of the patients with a normal TAD2D had an actual TAD (measured with 3D) larger 

than 35mm. So, 2D TTE cannot be relied on defining TAD as normal. It seems necessary to re-establish normal 

TAD values with 3D imaging. Importantly, interobserver agreement for TAD3D measurements was comparable 

to TAD2D-AP4CH measurements and better than TAD2D-PSAX measurements. If 2D TTE is the only available 

assessment tool for TAD, the apical 4-chamber view seems preferred because of better interobserver agreement 

compared to TAD2D-PSAX and more alignment with TAD3D measurements. 

Like other cardiac structures, cyclic changes occur in TAD during systole and diastole (3,11,15). 

Calculation of TAFS from systolic and diastolic TAD showed no difference between 2D TTE and RT3DE. This 

is because end-systolic and end-diastolic TAD3D values are to an equal extent increased compared with 2D 

values. 
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Calculation of TA function by TAFAC3D was significantly higher than that measured by diameter 

changes either in 2D TTE or RT3DE. This could be explained by the accuracy of global function by area percent 

changes than single distance percent changes especially when more lengthening occur.  

In accordance with previous study (12) that reported no relation between presence and severity of TR and 

degree of TA dilatation when 2D TTE was relied on as 65% of normal TAD2D had grade 1-2 TR. but with 

normal major TAD3DE, the percentage decreased to 30%. 

 

STUDY LIMITATION  

The main limitation of this study is that RT3DE data were not compared with a “gold standard” such as magnetic 

resonance imaging or surgical findings. Nevertheless, our main findings (oval shape of the TA, larger TAD3D) 

were consistently found in the large majority of patients. Also, RT3DE images more critically depend on image 

quality than 2D TTE images and the value of RT3DE should be assessed in a more non-selected (image quality) 

population. 

CONCLUSION 

The TA is an oval structure with a major and a minor diameter. 2D TTE underestimates TAD, regardless 

whether it is measured from the apical 4-chamber or parasternal short axis view. This may have important 

implications in the TV surgical decision-making processes. 
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ABSTRACT 

Aim: To detect the accuracy of real-time three-dimensional echocardiography (RT3DE) and two-

dimensional echocardiography (2DE) for tricuspid annulus (TA) assessment compared with magenetic 

resonance imaging (MRI). 

Methods: Thirty patients (mean age 34 ± 13 years, 60% males) in sinus rhythm were examined by 

MRI, RT3DE, and 2DE for TA assessment. End-diastolic and end-systolic TA diameter (TAD) and TA 

fractional shortening (TAFS) were measured by RT3DE, 2DE, and MRI. c TA area (TAA) and TA 

fractional area changes (TAFAC) were measured by RT3DE and MRI. End-diastolic and end-systolic 

right ventricular (RV) volumes and ejection fraction (RV-EF) were measured by MRI. 

Results 

The TA was clearly delineated in all patients and visualized as an oval-shaped by RT3DE and MRI. 

There was a good correlation between TADMRI and TAD3D (r = 0.75, P = 0.001), while TAD2D was 

fairly correlated with TAD3D and TADMRI (r = 0.5, P = 0.01 for both). There were no significant 

differences between RT3DE and MRI in TAD, TAA, TAFS, and TAFAC measurements, while 

TAD2D and TAFS2D were significantly underestimated (P < 0.001). TAFS2D was not correlated with 

RV-EF, while TAFS3D and TAFAC3D were fairly correlated with RV-EF (r = 0.49, P = 0.01, and r = 

0.47, P = 0.02 respectively). 

Conclusion 

RT3DE helps in accurate assessment of TA comparable to MRI and may have an important implication 

in the TV surgical decision making processes. RT3DE analysis of TA function could be used as a 

marker of RV function. 



Value of TA assessment by RT3DE and MRI 

INTRODUCTION 

Evaluation of tricuspid annulus (TA) continues to be a major problem in the surgical decision-making 

process due to its complex three-dimensional shape1-3. Accurate assessment of TA has many values in 

clinical application. For example, the decision of tricuspid valve repair may change due to discrepancy 

between pre-operative measurement of TA diameter (TAD) by two-dimensional transthoracic (or 

transesophageal) echocardiography (2DE) and direct surgical visualization4. Several studies described  

a strong correlation between TA motion and right ventricular (RV) function 5-8. Analysis of TA 

velocity by tissue Doppler imaging has been found useful for RV functional assessment9,10. In these 

studies, the assessment of TA motion was relied on 2DE, M-mode and tissue Doppler recording. Since 

RT3DE has become available for clinical practice, it is now possible to examine the TV more 

completely11. This study aimed to use RT3DE in evaluation of TA morphology, size and cyclic changes 

during cardiac cycle. It also aimed to correlate TA function with RV function that was assessed by 

magnetic resonance imaging (MRI). 

 

SUBJECTS and METHODS 

The study included 30 patients (mean age 34 ± 13 years, 60% were males) who were scheduled for 

routine MRI examination for evaluation of right ventricular function (10 patients with congenital heart 

disease, five with chronic pulmonary disease, five with multivalvular affection, and 10 normals). 2DE 

and RT3DE were performed at the same day of MRI examination after their informal consent for 

assessment of TA. The inclusion criteria for selection were good 2D image quality, sinus rhythm and 

mild to moderate tricuspid regurgitation. 

 

MRI Examination 

MRI studies were performed with a 1.5 T MRI (General Electric, Milwaukee WI; Signa 1.5 T MRI) 

equipped with a four-element torso coil. A cardiac-triggered, steady-state, free-precession sequence 

(FIESTA; temporal resolution and time of echo of 3.5 and 1.3 ms, respectively, flip angle of 45 

degrees) was used for quantitative analysis. 10 cine short axis slices were acquired (slice thickness 10 

mm, gap 0 mm). Additional imaging parameters were a field of view of 320 to 380 mm and a matrix of 

160 X 128. These series of high quality images encompassing the right ventricle (RV) produced a 

three-dimensional data set with sharp edge between the blood pool and myocardium.  Quantitative 
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analysis was performed using standardized software (MassPlus, Medis Inc., Leiden, NL). By this 

software, manual tracing was done for TA and right ventricular (RV) endocardial border on all images 

(end-diastolic and end-systolic). The following measures were obtained at end-diastolic and end-

systolic: (1) TA area (TAAMRI), (2) TADMRI, (3) RV volume, (4) RV ejection fraction (RV-EF) was 

calculated as (RV end-diastolic volume- RV end-systolic volume/RV end-diastolic volume) · 100%, (5) 

TAfractional shortening (TAFSMRI) defined as (enddiastolic TADMRI–end-systolic 

TADMRI)/enddiastolic 

TADMRI · 100% and (6) TA fractional area changes (TAFACMRI) defined as (end-diastolic 

TAAMRI–end-systolic TAAMRI)/end-diastolic TAAMRI · 100%. 

Transthoracic 2DE 

2DE was done with a Sonos 7500 ultrasound system attached to a S3 transducer (Philips, Best, The 

Netherlands). The TV was imaged from apical 4-chamber view with the patient in the left lateral 

decubitus position. The following measures were obtained: (1) TAD2D was defined as the distance 

between the insertion sites of septal and anterior TV leaflets and obtained at an end-diastolic and end-

systolic still frame and (2) TA fraction shortening (TAFS2D) defined as (end-diastolic TAD2D–end-

systolic TAD2D)/enddiastolic TAD2D · 100% 

Transthoracic RT3DE  

RT3DE was done with the same ultrasound system attached to a X4 matrix array transducer capable of 

providing real-time B-mode images. A full volume 3D data set was collected within approximately 5-

10 seconds of breath holding in full volume mode from an apical window. The 3D data set was 

transferred for off-line analysis with TomTec software (Unterschleissheim, Munich, Germany). Data 

were stored digitally and subsequently evaluated by two blinded observers (AMA, OIIS). Data analysis 

of 3D images was based on a 2D approach relying on images obtained initially from the apical view. 

The TA was sliced between two narrow lines to exclude other tissues on the 2D image leading to 

clarification of annulus by a 3D image. TA was viewed and traced manually from the atrial aspect and 

once this is completed the surface area was automatically calculated and could be visualized from 

different points of views. Manual modification was made to correct any inconsistence. The following 

RT3DE variables were obtained from both an end-diastolic and end-systolic still frame: (1) TA area 

(TAA3D), and (2) TAD3D defined as the widest TAD (see Figure 1), Subsequently, TAFS3D and TA 

fractional area changes (TAFAC3D) (%) were calculated by the same formula used in 2DE. 
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STATISTICAL ANALYSES  

All data obtained by MRI, 2DE and RT3DE are presented as mean  SD. A paired t-test and was 

performed for comparing means of variables. The level of significance was set to P <0.05. A SPSS 

statistical package was used (SPSS, version 12.1, SPSS Inc, Chicago). Pearson’s coefficient was used 

for correlation between RT3DE and MRI data. Interobserver agreement for RT3DE measurements was 

assessed according to the Bland and Altman principle12. 

 

RESULTS 

Acquisition of RT3DE data was performed in all patients in a reasonable time (approximately 1 minute 

for acquisition and 5 minutes for data analysis). The TA was clearly delineated in all patients. An oval 

shaped TA (not circular) was visualized by RT3DE and MRI (Figure 1). TAD3D was obtained with 

very good interobserver agreement (mean difference – 0.4 ± 1.5 mm, agreement –3.4–2.6). There was a 

good correlation between TADMRI and TAD3D (R = 0.75, P = 0.001), while TAD2D was fairly 

correlated with TAD3D and TADMRI (R = 0.5, P = 0.01 for both). There were no significant 

differences between RT3DE and MRI in TAD, TAA, TAFS, and TAFAC measurements, while 

TAD2D and TAFS2D were significantly underestimated (P < 0.001) (Table 1). TAFS2D was not 

correlated with RV-EF, while TAFS3D and TAFAC3D were fairly correlated with RV-EF (r = 0.49, P 

= 0.01, and r = 0.47, P = 0.02 respectively). 
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DISCUSSION 

In the present study, the morphological and functional aspects of TA were assessed by MRI and 

RT3DE. The main findings of our study are (1) TA shape was not circular but oval, (2) TAD 

measurement by RT3DE is more accurate than by 2DE, and (3) TA function was fairly correlated with 

RV function. 

TAD measurements have an important role in the TV surgical decision-making process not 

only for the selection of patients undergoing surgery, but also the type of surgical technique (valve 

plication or ring placement)13-15. Although 2DE is helpful to assess TV function and to detect TR 

severity it has important limitations in describing TV morphological details, such as TAD14,15. RT3DE 

may yield more detailed anatomical description of TA morphology and function 16, 17. In the present 

study, the TA was visualized well in all subjects allowing even measurements of its area. This is in 

accordance with Schnabel et al. 11 who reported well or at least sufficient TA visualization in over 90% 

of patients. The measurements of TAD by RT3DE and MRI showed good correlation without 

significant difference between both techniques. When TAD2D measurements were compared with the 

TAD3D and TADMRI measurements, 2D measurements were significantly underestimated. Analysis 

of TA motion by M-mode, 2DE and tissue Doppler imaging has been studied as a feasible marker for 

RV function reflecting the longitudinal RV shortening and lengthening. All these analyses described 

the physiological behavior of TA plane systolic motion towards the apex along the RV long axis 5–10. 

The TA plane systolic displacement is not influenced by its complex structure and asymmetrical shape 

18. In the present study TA circumferential and horizontal motion along the RV short axis was assessed 

by RT3DE. TA motion along the RV short axis, which was fairly correlated with RV function that was 

assessed by MRI as a standard method for assessing RV ejection fraction. Fair and not good correlation 

may be explained by the meridional motion of the muscles and other structures of the RV inflow 

region. Furthermore, the myocytes are disposed longitudinally in the inflow region and more sensitive 
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to meridional stress 19. Despite this fair correlation, the summation of TA motion along both RV long 

and short axes increases the accuracy and correlation values for estimation of RV function 20.  

Study Limitations  

The main limitation of this study is that RT3DE images more critically depend on image quality than 

2DE images and the value of RT3DE should be assessed in a more non-selected (image quality). Due 

to the high cost of MRI, a small number of patients were included. 

 

CONCLUSION 

RT3DE helps in accurate assessment of TA comparable to MRI, while 2DE could not be relied on due 

to underestimation. This may have important implications in the TV surgical decision-making 

processes. RT3DE analysis of TA function could be used as a marker of RV function. 
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INTRODUCTION 

Rheumatic heart disease causes tricuspid valve (TV) stenosis in up to 8% of patients 1. Unfortunately, 

TV stenosis is easily missed at clinical examination except in advanced cases when a high degree of 

clinical suspicion exists 2. Undetected and thus uncorrected TV stenosis may lead to postoperative low 

cardiac output despite successful relief of left sided valve disease and carries a high mortality and 

morbidity 3. Two-dimensional echocardiography (2DE) can detect thickened TV leaflets and a reduced 

TV orifice diameter, and continuous-wave Doppler allows estimation of the tricuspid transvalvular 

pressure gradient 4. However, in most patients it is not possible to visualize all three TV leaflets 

simultaneously with 2DE 5.  Transthoracic real-time three-dimensional echocardiography (RT3DE) 

may be a valuable imaging modality for the examination of stenotic TV valves because all leaflets can 

be seen simultaneously and studied from both atrial and ventricular aspects. This study aimed to apply 

RT3DE for TV assessment in patients with rheumatic TV heart disease. 

 
PATIENTS AND METHODS 

 
Five patients (mean (SD) age 33 (7) years, four men) with an established diagnosis of rheumatic TV 

disease were examined by 2DE (Philips Sonos 7500 with S3 probe, Best, The Netherlands) and RT3DE 

(same system with X4 probe). These patients were compared to eight patients (mean (SD) age 35 (4) 

years, five men) with rheumatic heart disease without relevant TV involvement and 13 controls (mean 

(SD) age 31 (6) years, eight men) without rheumatic heart disease. With 2DE, the TV was assessed 

from the apical 4-chamber and parasternal short axis views. 2DE data obtained were: (1) TV leaflet 

separation (TV-LS2D) defined as the distance between the TV tips at maximal opening obtained from 

an apical 4-chamber (TV-LS2D-AP4CH) and parasternal short-axis window (TV-LS2D-PSAX), (2) tricuspid 

annular diameter (TAD2D) obtained from an apical 4-chamber (TAD2D-AP4CH) and parasternal short-axis 

(TAD2D-PSAX) view at an end-diastolic still-frame, and (3) descriptive morphology of the TV leaflets 

including thickness, mobility and calcification. Each descriptor was graded as mild when less than one 

whole TV leaflet was involved, moderate when a one or two whole TV leaflets were involved and 

severe when all three TV leaflets were involved. 

The apical recorded full volume three-dimensional data set was analysed with TomTec 

software (Unterschleissheim, Munich, Germany). RT3DE data obtained were: (1) TAD3D defined as 

the widest TAD that could be measured from an end-diastolic still frame, (2) maximal tricuspid annulus 
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area (TAA3D) obtained from an end-diastolic still frame and measured by manual planimetry, (3) TV 

area (TVA3D) defined as the narrowest part of the TV at the time of maximal TV opening and 

measured by manual planimetry, (4) descriptive TV morphology as described before in the 2DE section 

but now separately scored for each TV leaflet, and (5) commissural width for each TV commissure 

(antero-septal, antero-posterior, and postero-septal), obtained from an end-diastolic still frame. 

 

RESULTS 

TV-LS2D-AP4CH and TV-LS2D-PSAX were well correlated (r = 0.89, P <0.05) with comparable mean  (SD) 

values for TV-LS2D-AP4CH and TV-LS2D-PSAX (11.8 (2.6) vs. 11.8 (3.4) mm, respectively). As Table 1 

shows mean TV-LS2D values were not significantly different in the three studied groups. 

Acquisition and post-processing of RT3DE data was successfully performed in all patients. 

TAD3D was larger than TAD2D in all TV stenosis patients, regardless of the 2DE view used (mean 

values were 46 mm for TAD3D, 38 mm for TAD2D-AP4CH, and 35 mm for TAD2D-PSAX). Mean (SD) 

TVA3D in the patients with significant TV stenosis was 216 (61) mm2, correlated well with mean TV-

LS2D (r = 0.95, P <0.01). Due to the small number of patients, TVA3D was not significantly related to 

the transtricuspid mean pressure gradient (r = -0.76). 

RT3DE and morphological description (including thickness, mobility, calcification, and 

position) was possible for each separate TV leaflet. The grade of TV leaflet affection scored with 2DE 

and RT3DE were similar in terms of thickness, mobility, and calcification. However, RT3DE could 

also assess individual TV leaflet position (relative to other TV leaflets) and the extent of TV affection. 

In addition, all three commissures could be adequately evaluated with RT3DE including assessment of 

commissural width during maximal TV opening. As seen in the Table, patients with TV stenosis had 

significantly smaller commissural width. 

Table 1. Comparison of patients with rheumatic heart disease with tricuspid valve stenosis, without 
significant tricuspid valve stenosis, and controls. 
 

 

 
Rheumatic HD 

TV with stenosis 
(n = 5) 

 

Rheumatic HD 
TV without stenosis 

(n = 8) 

Controls 
(n = 13) 

Male sex, n  (%) 4 (80) 5 (63) 8 (62)  
Age (years) 33 (7) 35 (4) 31 (6) 
TV-LS2D (mm) 11.8 (2.9) 12.0 (4.8) 15.0 (3.3) 
TVA3D (mm2) 216 (61)* 381 (92) 518 (207) 
3D commissural width (mm) 2.6 (0.2)* 4.1 (0.5) 5.9 (1.6) 
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2D, two-dimensional; 3D, three dimensional; HD, heart disease; LS, leaflet separation; TV, tricuspid 
valve; TVA, tricuspid valve area.  
Values are represented as mean (SD) unless otherwise specified. 
*P <0.005 versus patients with rheumatic HD without significant TV involvement and P < 0.0001 
versus controls. 

 

DISCUSSION 

Rheumatic TV inflammation causes scarring and fibrosis of TV leaflets with fusion of its commissures 

resulting in TV stenosis. Estimation of the transtricuspid pressure gradient is usually only performed 

when a morphologically abnormal TV is seen. Therefore, good morphological imaging and description 

of the TV is essential to identify TV stenosis. With RT3DE, each separate TV leaflet can be assessed 

with regard to thickness, mobility, calcification, and its relation to other TV leaflets. In addition, 

RT3DE provides unique TV measurements such as TVA3D and commissural width at the time of 

maximal TV opening. This distance between the TV commissures during diastole may be a new 

indicator of TV stenosis severity. Although the TV leaflets can sometimes be visualised simultaneously 

by 2DE from an angulated subcostal view, measurement of TVA is only rarely possible because even 

when all leaflets are visualised simultaneously the image cross section will not be at the correct TVA 

level. Unfortunately, from all other 2DE views, including the atypical parasternal projection 5, only two 

TV leaflets can be visualized simultaneously. In our study, TVA3D had better discriminative value than 

TV-LS2D for the separation of rheumatic heart disease patients with TV involvement versus rheumatic 

heart disease patients without TV involvement or normal control subjects (see Table). Importantly, in 

rheumatic TV involvement TVA3D best correlated to the mean transtricuspid pressure gradient than 

mean TV-LS2D. Obviously, our findings should be confirmed in larger studies and some of our findings 

should be validated using a gold standard such as magnetic resonance imaging. By combining all 

information obtained by RT3DE the diagnostic and therapeutic decision-making process regarding the 

TV may be facilitated. 
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ABSTRACT 

Background: The tricuspid valve (TV) is a complex structure. Unlike the aortic and mitral valve it is not 

possible to visualize all TV leaflets simultaneously in one cross-sectional view by standard two-dimensional 

echocardiography (2DE) either transthoracic or transesophageal due to the position of TV in the far field. 

Aim: Quantitative and qualitative assessment of the normal TV using real-time 3-dimensional echocardiography 

(RT3DE). 

Methods: RT3DE was performed for 100 normal adults (mean age 30 ± 9 years, 65% males). RT3DE 

visualization was evaluated by 4-point score (1: not visualized, 2: inadequate, 3: sufficient, and 4: excellent). 

Measurements included TV annulus diameters (TAD), TV area (TVA), and commissural width. 

Results: In 90% of patients with good 2DE image quality, it was possible to analyse TV anatomy by RT3DE. A 

detailed anatomical structure including unique description and measurement of tricuspid annulus shape and size, 

TV leaflets shape, and mobility, and TV commissural width were obtained in majority of patients. Identification 

of each TV leaflet as seen in the routine 2DE views was obtained.  

Conclusion: RT3DE of the TV is feasible in a large number of patients. RT3DE may add to functional 2DE data 

in description of TV anatomy and providing highly reproducible and actual reality (anatomical and functional) 

measurements 

 42



Normal tricuspid valve anatomy in adults by RT3DE 

INTRODUCTION 

The tricuspid valve (TV) is a multi-component complex structure 1. In classic anatomic studies the anterior, 

septal and posterior TV cusps were described 2,3. Unlike the aortic and mitral valve it is not possible to visualize 

all TV cusps simultaneously in one cross-sectional view by standard two-dimensional transthoracic 

echocardiography (2DE)4. During transesophageal two-dimensional echocardiography small changes in 

transducer angle, probe position and rotation may bring to light some additional TV details 5,6. However, because 

of the position of the TV in the far field, transesophageal echocardiography can still only provide limited 

information and can also not visualize all TV cusps simultaneously. In three-dimensional (3D) transesophageal 

image reconstruction and intracardiac echocardiography studies this goal could be achieved but at the cost of 

some procedural risks and an increase in procedural duration 7,8. Real-time three-dimensional echocardiography 

(RT3DE) can visualize the atrio-ventricular valves from both the ventricular and atrial side in detail without 

these limitations 9. This study aimed to apply RT3DE for quantitative and qualitative assessment of normal TV 

anatomy. 

 
SUBJECTS AND METHODS 

 
In one hundred patients (mean age 30  9 years, 65% males) the TV was examined by transthoracic RT3DE after 

an informed consent. All patients had sinus rhythm and normal right-sided heart (normal right ventricular 

dimensions and function, normal right atrial dimension, trivial or absent tricuspid regurgitation and normal 

tricuspid valve function). Patients with good 2DE image quality only were included.  

Transthoracic RT3DE 

RT3DE was done with a commercially available ultrasound system (Philips Sonos 7500, Best, The Netherlands) 

attached to a X4 matrix array transducer capable of providing real-time B-mode images. The 3D data set was 

collected within approximately 5-10 seconds of breath holding in full volume mode from an apical window and 

transferred for off-line analysis with TomTec software (Unterschleissheim, Munich, Germany). Data analysis of 

3D images was based on a two-dimensional approach relying on images obtained initially from the apical 4-

chamber view. The images were adjusted to put the TV in the center of interest. To exclude non-relevant tissue, 

the TV was sliced between the two narrowest lines by which all parts of the TV leaflets were still in between. 

The TomTec software allows in this way visualization of the short-axis TV view in a 3D display (see Figure 1). 

RT3DE gain and brightness were adjusted to improve delineation of anatomic structures. The following points 

were checked for visualization: 1) tricuspid annulus diameter and area, 2) TV leaflets (number, mobility, 

 43



Chapter 5 

thickness and relation to each other), 3) TV area, and 4) TV commissures (antero-septal, antero-posterior, and 

postero-septal) including the position of their closure lines. All these structures were classified according to a 

subjective 4-point scale for image quality (1 = not visualized, 2 = inadequate, 3 = sufficient and 4 = good). 

For quantitative assessment of TV the following RT3DE data were obtained: 1) TV annulus diameter 

defined as the widest diameter that could be measured from an end-diastolic still frame, 2) maximal TV annulus 

area obtained from an end-diastolic still frame and measured by manual planimetry, 3) TV area defined as the 

narrowest part of the TV at the time of maximal opening and measured by manual planimetry, and 4) TV 

commissural width obtained from a late-diastolic still frame using zoom function to avoid underestimation. The 

images were optimized for each commissure along its plane to measure the maximal width of the angle formed 

by the to adjacent TV leaflets. 

To identify the TV leaflets visualized by the standard 2DE images the TomTec quad screen display was 

used. As seen in Figure 1, this screen contains four images; the upper two images are two-dimensional 

echocardiographic images perpendicular to each other, the lower two images are a short-axis two-dimensional 

echocardiographic image and a RT3DE image. From the properly chosen two-dimensional image a mid-diastolic 

frame was selected to visualize the TV leaflets just separated from each other. Each leaflet was defined by a 

marker, after which this marker position was compared with the RT3DE image to detect which leaflet was 

shown in the 2DE images. Analysis of images was done by two experienced echocardiographers (AMA, JSM) 

independently. Each one dealt with the full volume image as acquired from echo machine and the selection of 

cut plane, angulation and gain setting adjustment were dependable on his experience. 
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 STATISTICAL ANALYSES  

All data obtained by RT3DE were presented as mean  SD. Interobserver agreement for the visualization score 

was estimated using kappa values for each morphologic feature and classified as poor (kappa <0.4), moderate 

(kappa 0.4 to 0.7), or good (kappa >0.7). Interobserver variability for RT3DE measurements was assessed 

according to the Bland and Altman method in a randomly selected group of 50 patients 10. 

 

RESULTS 

Acquisition and analysis of the RT3DE data was performed in approximately 10 minutes per patient. The TV 

could be visualized in 90% of patients enface from both ventricular and atrial aspects in relation to adjacent 

cardiac structures. In these 90 patients detailed analysis of the TV was performed including tricuspid annulus 

shape and size, TV leaflets shape, size, and mobility, and commissural width. 

Tricuspid annulus  

Tricuspid annulus visualization was good in 54 patients (60%), sufficient in 27 patients (30%), and inadequate in 

9 patients (10%). As seen in Figure 2, tricuspid annulus shape appeared as oval rather than circular. Tricuspid 

annulus diameter and area could be measured in 63 patients (70%), normal values were 4.0  0.7 cm and 10.0  

2.9 cm2, respectively. 

 

Tricuspid valve leaflets 

Visualization of the three TV leaflets (in motion) was good visualized in 72 patients (80%), sufficient in 9 

patients (10%), and inadequate in another 9 patients (10%). The anterior leaflet was the largest and most mobile 

of the three leaflets and had a nearly semicircular shape. The septal leaflet was the least mobile and had a semi-

oval shape. Its position was parallel to the interventricular septum. The posterior leaflet was the smallest one 

with variable shape. It was clearly separated from the septal leaflet in all patients but in 10% of patients it was 

hard to discriminate the posterior leaflet from the anterior leaflet even during maximal TV opening.  
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From the RT3DE data set all standard two-dimensional TV cross-sections (apical 4-chamber, 

parasternal short-axis and parasternal long-axis right ventricular inflow) were simulated. As seen in Figure 3, in 

the apical 4-chamber view in all patients the septal leaflet was seen adjacent to the septum and the anterior leaflet 

was seen adjacent to the right ventricular free wall. In the parasternal short-axis view, the posterior leaflet was 

seen adjacent to the right ventricular free wall in 92% of patients and in the remaining 8% no leaflet could be 

obtained although modification of the cut plane downward could identify this leaflet. In this view the leaflet 

adjacent to the aorta was the anterior in 52% and the septal leaflet in 48%. In the parasternal right ventricular 

inflow view the leaflets seen were identical to the apical 4-chamber view with in all patients the septal leaflet 

seen adjacent to the septum and the anterior leaflet seen adjacent to the right ventricular free wall. 

 

Tricuspid valve area 

Visualization of the triangular shaped TV area was visualized good in 50 patients (55%), sufficient in 27 patients 

(30%), and inadequate in 13 patients (15%). As seen in Figure 4, the anterior and septal leaflets formed the TV 

area’s angle and the small posterior leaflet formed its base. TV area could be measured in 77 patients (86%) and 

mean TV area in these patients was 4.8  1.6 cm2.  

Tricuspid valve commissures  

As seen in Figure 4, the three TV leaflets were separated from each other by three commissures. The 

commissures and the direction of closure lines were good visualized in 45 patients (50%), sufficient in 18 

patients (20%), inadequate in 18 patients (20%), and not visualized in 9 patients (10%). TV commissural width 

could be obtained in 63 patients (70%), mean commissural width in these patients was 5.4  1.5 mm for the 

antero-septal commissure, 5.2  1.5 mm for the postero-septal commissure, and 5.1  1.1 mm for the antero-

posterior commissure, respectively. Visualization and measurement of commissures was relatively easy for the 
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antero-septal commissure and most difficult for the antero-posterior commissure. All measurements are listed in 

Table 2 as absolute value and indexed to body surface area. 

 

 

 

Table 1: Scores for real-time three-dimensional echocardiography visualization of TV structures.  

Score  
TV 

 Annulus 
TV 

 Leaflets 
TV  

area 
TV  

commissures 
     
Good (4) 60% 80% 55% 50% 
Sufficient (3) 30% 10% 30% 20% 
Inadequate (2) 10% 10% 15% 20% 
Not visualized (1) 0% 0% 0% 10% 
Mean score 3.5 ± 0.7 3.7 ± 0.6 3.4 ± 0.7 3.1 ± 1.0 
Median score 3.0 3.0 3.0 2.5 
 Abbreviations: TV = tricuspid valve 
 

Table 2: Normal (absolute and index) values of TV annulus (diameter and area), TV area, and the width of the 3 
TV commissures.  

Parameter Absolute value Index Value 

   
Tricuspid annulus diameter 4.0 ± 0.7 (cm) 2.2 ± 0.4 (cm/m2) 
Tricuspid annulus area 10.0 ± 2.9 (cm2) 5.5 ± 1.6 (cm2/m2) 
Tricuspid valve area 4.8 ± 1.6 (cm2) 2.7 ± 0.9 (cm2/m2) 
Antero-septal commissure 5.4 ± 1.5 (mm) 2.9 ± 0.8 (mm/m2) 
Postero-septal commissure 5.2 ± 1.5 (mm) 2.9 ± 0.7 (mm/m2) 
Antero-posterior commissure 5.1 ± 1.1 (mm) 2.9 ± 0.6 (mm/m2) 
 

Interobserver variability  

The visualization score between two observers was good for the TV annulus (kappa value 0.91) and TV leaflets 

(kappa value 0.71) and moderate for the TV commissures (kappa value 0.59). As seen in Figure 5, good 
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interobserver correlations were found for measurement of TV annulus (r = 0.98, P <0.0001) and TV area (r = 

0.95, P <0.0001) and fair correlation was found for TV commissural width (r = 0.51, P <0.001). In the same 

Figure, the interobserver agreement for TV annulus diameter (mean difference - 0.28  1.20 mm, agreement: 

2.12, - 2.68), for TV area (mean difference:  0.17  0.52 cm2, agreement: 1.21, - 0.87), and for TV commissural 

width (mean difference: 0.01  0.62 mm, agreement:  1.25, - 1.24) is displayed. 

 

 

DISCUSSION 

Two-dimensional echocardiography is a valuable imaging modality for the functional assessment of TV 11-13. 

However, with 2DE it is not possible to visualize all TV cusps simultaneously in one cross-sectional view nor 

can detailed anatomical information of the TV annulus, leaflets, and commissures be provided. Previous studies 

and case reports described visualization of TV by RT3DE 9,14 in abnormal states, while this study applied 

RT3DE for the morphological assessment of the normal TV anatomy. RT3DE allowed analysis of TV annulus, 

leaflets and commissures in the majority of patients. Beside this morphologic description, quantitative 

assessment could be obtained. However, it should be noticed that only patients with good 2DE image quality 

underwent RT3DE. In our experience these patients represent over 50% of the total number of patients referred 

to our echocardiographic laboratory. Nevertheless, RT3DE allowed TV analysis to a level quite comparable to 

that recently reported by others for the mitral valve leaflets 15. 
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One of the salient findings in our study was the identification of the TV leaflets as seen in the routine 

2DE views. It is still a matter of controversy in echocardiographic textbooks. In one well known 

echocardiographic textbook 16, the leaflet seen in the apical 4-chamber view adjacent to the right ventricular free 

wall was described as being the anterior or posterior leaflet depending on the exact rotation and angulation of the 

image plane. However, in our study this leaflet was consistently found to be the anterior leaflet (see Figure 6 for 

explanation), as described in another textbook 17. Also, in both these echocardiographic textbooks 16,17 in the 

parasternal short-axis view the leaflet adjacent to the right ventricular free wall was described as being the 

anterior. However, as shown in Figure 3 and explained in Figure 6, in all patients in whom a leaflet could be 

identified in our study it was the posterior one. 

In our study tricuspid annulus diameter (and area) could be reliably obtained with RT3DE. Tricuspid 

annulus measurement is of critical importance in the TV surgical decision-making process if a patient is operated 

for mitral valve disease and has concomitant TV regurgitation 18,19. In addition, TV area could be reliably 

obtained and this may have important implications for the diagnosis of tricuspid stenosis 20,21. Visualization of 

commissures and measurement of its width were obtained with difficulty, in particular for the antero-posterior 

commissure. Commissural width also showed weak interobserver correlation. This may be due to differences in 

the commissural levels and tissue dropout. For proper assessment of the three commissures, more cut planes with 

different angles are needed. However, assessment of commissural width may also be a valuable tool for the 

diagnosis, follow up, and selection of therapeutic strategy of tricuspid stenosis. All our RT3DE measurements 

were consistent with the measurements described in anatomical studies 2,3. Our data may potentially take RT3DE 

a step further into clinical routine (providing accurate TV measurements) and may enhance the understanding of 

TV valve morphology. 

Limitation of Study 

The main limitation of this study is that RT3DE data were not compared with a “gold standard” such as magnetic 

resonance imaging, autopsy or surgical findings. Also, RT3DE images more critically depend on 2DE image 

quality. 

CONCLUSION 

Three-dimensional imaging of the TV is feasible in a large number of patients. RT3DE may add to functional 

2DE data in description of TV anatomy and providing highly reproducible and actual reality (anatomic and 

functional) measurements.  
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ABSTRACT 

Background: Mitral annulus assessment is of great importance for the diagnosis and treatment of 

mitral valve disease. The present study sought to assess the value of real-time three-dimensional 

echocardiography for the assessment of true mitral annulus diameter (MAD). 

Methods: One hundred and fifty patients (mean age 38 ± 18 years) with adequate two-dimensional 

(2D) echocardiographic image quality underwent assessment of MAD2D and MAD3D (with real-time 

three-dimensional echocardiography). In a subgroup of 30 patients true MAD was validated with 

magnetic resonance imaging (MRI). 

Results: There was a good interobserver agreement for MAD2D (mean difference = - 0.25 ± 2.90 mm, 

agreement: - 3.16, 2.66) and MAD3D (mean difference = 0.29 ± 2.03, agreement = - 1.74, 2.32). 

Measurements of MAD2D and MAD3D were well correlated (R = 0.81; p <0.0001). However, MAD3D 

was significantly larger than MAD2D (3.7 ± 0.9 vs. 3.3 ± 0.8 cm, p <0.0001). In the subgroup of 30 

patients with MRI validation, MAD3D and MADMRI were significantly larger than MAD2D (3.3 ± 0.5 

and 3.4 ± 0.5 cm vs. 2.9 ± 0.4 cm, both p <0.001). There was no significant difference between 

MADMRI and MAD3D. 

Conclusion: MAD3D can be reliably measured and is superior to MAD2D in the assessment of true 

mitral annular size. 
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INTRODUCTION 

The mitral annulus (MA) is a vital component of the mitral valve apparatus and plays a crucial role in 

left ventricular and left atrial function 1. The MA marking the hinge line of the mitral valve leaflets is 

more D-shaped than circular as portrayed by prosthetic rings. The straight border accommodates the 

aortic valve allowing this valve to be wedged between the interventricular septum and the mitral valve. 

Although the term annulus implies a solid ring-like fibrous cord to which the leaflets are attached, this 

is not the case 2. Therefore, some authors used the term “aortoventricular membrane” instead of MA, to 

emphasize that there is an extension of this fibrous cord into the subvalvular region 3. MA assessment 

is of great importance for the diagnosis and treatment of mitral valve disease. MA dilatation is one of 

the main mechanisms for development of mitral regurgitation and selection of the optimal individual 

therapy for mitral regurgitation depends on MA size and function 4,5. This has been studied in both 

animals and humans using echocardiography, sonomicrometry and magnetic resonance imaging (MRI) 

6-11. The present study aimed to assess true MA diameter (MAD) by comparing two-dimensional 

echocardiography (2DE), real-time three-dimensional echocardiography (RT3DE), and MRI as gold 

standard. 

 
METHODS 

 
The study included 150 patients (Table 1) randomly selected from our 3D database that included 

relatively young patients (mean age 38 ± 18 years) with adequate 2DE image quality. Age, gender, 

weight and height of all patients were recorded and body surface area was calculated by the standard 

formula (weight 0.425 in kilograms x height 0.725 in centimeters x 0.007184). In all patients, 2DE and 

RT3DE were performed. 

Table1: Clinical categorization of patients (n = 150) 

Category N (%) 

Normal 52 (34%) 

Congenital Heart Disease 48 (32%) 

Ischemic Heart Disease 20 (14%) 

Valvular Disease 20 (14%) 

Cardiomyopathy 10 (6%) 
 

Transthoracic 2DE 

2DE was undertaken with the patient lying in the left lateral decubitus position using both apical and 

parasternal views. 2DE studies were performed using a 3.5 MHZ probe and a commercially available 
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ultrasound system (Philips Sonos 7500, Best, The Netherlands). The following measures were 

obtained: (1) MA diameter (MAD2D) obtained from an apical 4-chamber view at end-diastole (Just 

before mitral valve closure), and (2) MAD index (MADI2D) calculated as MAD2D / body surface area. 

Transthoracic RT3DE 

RT3DE was done with the same ultrasound system attached to a X4 matrix array transducer capable of 

providing real-time B-mode images. A full volume 3D data set was collected within approximately 5-

10 seconds of breath holding in full volume mode from an apical window. The 3D data set was stored 

digitally and transferred for off-line analysis with TomTec software (Unterschleissheim, Munich, 

Germany). Two blinded observers (AMA, OIIS) subsequently evaluated all data. Data analysis of 3D 

images was based on a 2D approach relying on images obtained initially from the apical view. The MA 

was sliced between two narrow lines to exclude other tissue on the 2D image leading to clarification of 

the MA in the 3D image. The 3D image of the MA was viewed and traced from the ventricular aspect. 

Manual tracing of the inner border of the MA was done and once this was completed the surface area 

was automatically delineated and could be visualized from different points of views. The following 

RT3DE data were obtained: (1) end-diastolic MAD3D defined as the perpendicular line drawn from the 

top of the MA curvature to the middle of the straight MA border (see Figure 1), (2) end-diastolic MA 

area (MAA3D), (3) MAD3D index (MADI3D) calculated as MAD3D / body surface area, and (4) MAA3D 

index (MAAI3D) calculated as MAA3D / body surface area. 

Normal values for MAD2D, MAD3D, MADI3D, MAA3D, and MAAI3D were established in 25 

patients without apparent left-sided heart disease (defined as normal left atrial and ventricular 

dimension and function with normal mitral valve function). 

 

Magnetic resonance imaging 

In a non-selected group of 30 patients, MRI was performed with a 1.5 T MRI (General Electric, Signa 

1.5 T MRI, Milwaukee WI) equipped with a for-element cardio coil. An ECG-triggered, steady state, 

free-precession sequence (FIESTA; repetition time and time of echo of 3.5 and 1.4 ms, respectively, 12 

shots, temporal resolution of 42 ms, flip angle of 45 degrees) was used for quantitative analysis. Ten 

cine short axis slices were acquired (slice thickness 8 mm, gap 2 mm) covering the heart from the base 

to the apex. Additional imaging parameters were a field of view of 320 to 380 mm and a matrix of 160 

X 128. Quantitative measurements were performed using standardized Dicom viewing software on the 
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basal slice demonstrating the mitral valve annulus in end-diastole. MADMRI was defined as described 

before in the RT3DE section (see Figure 1). 

 

STATISTICAL ANALYSES  

All data obtained by 2DE, RT3DE, and MRI were presented as mean ± SD. Data analyses were 

performed using statistical software (SPSS, version 12.1, SPSS Inc, Chicago). A paired sample t-test 

was performed to compare between means of variables of techniques. The difference in values was 

considered statistically significant with the level of P < 0.05. Pearson’s coefficient was used for 

correlation between variables. Interobserver and intraobserver agreements were assessed for MAD2D 

and MAD3D in the first 100 patients and expressed according to the Bland and Altman method 12. 

 

RESULTS 

Acquisition and post-processing of RT3DE data were performed successfully in all patients within a 

reasonable time (approximately 1 minute for acquisition and 5 minutes for data analysis). The MA was 

clearly delineated in all patients and, as seen in Figure 1, its shape was not circular but D-shaped, both 

in normal sized and in dilated MA. As seen in Figure 2, in the total group of 150 patients, 

measurements of MAD2D and MAD3D were well correlated (R = 0.81; p <0.0001). However, MAD3D 

was significantly larger than MAD2D (3.7 ± 0.9 vs. 3.3 ± 0.8 cm, P < 0.0001). 

Surgical validation: In three patients referred for mitral valve repair, MAD3D matched with MAD 

measured by surgeon (blinded with MAD3D measurement) while MAD2D by preoperative transthoracic 

2DE and intraoperative transesophageal echo was smaller than the surgical measurement.     
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MRI validation: In the subgroup of 30 patients who underwent 2DE, RT3DE, and MRI, the D-shaped 

MA was confirmed by the MRI images (Figure 1d). As seen in Figure 3, MAD2D, MAD3D, and 

MADMRI were well correlated. MAD3D and MADMRI were significantly larger than MAD2D (3.3 ± 0.5

and 3.4 ± 0.5 cm vs. 2.9 ± 0.4 cm, both P < 0.001). There was no significant difference between 

MAD

 

 MRI and MAD3D. Also, there was no significant difference between MAA3D and MAAMRI (Table

2). 

Table 2: Comparison between RT3DE and MRI measurements 

 RT3DE MRI 

Diastolic MAA (cm2) 8.7  2.9 9.0  2.3 

Diastolic MAAI (cm2/m2) 4.7  1.8 4.8  2.0 

Diastolic MAD (cm) 3.3  0.5 3.4  0.5 

Diastolic MADI (cm/m2) 1.8  0.5 1.8  0.7 
 

Abbreviation: MAA: mitral annulus area, MAAI: mitral annulus area index, MAD: mitral annulus 
diameter, MADI: mitral annulus diameter index 
 

Normal RT3DE values: Normal values assessed in patients without apparent left-sided heart 

disease were 2.5 ± 0.5 cm for MAD2D, 2.8 ± 0.6 cm for MAD3D , 1.5 ± 0.3 cm/m2 for MADI3D, 8.1 ± 

2.4 cm2 for MAA3D, and 4.3 ± 0.8 cm2/m2 for MAAI3D. 

Interobserver and intraobserver agreements: As seen in Fig. 3, there was a good interobserver 

agreement for MAD2D (mean difference = - 0.25 ± 2.90 mm, agreement: - 3.16, 2.66) and MAD3D 

(mean difference = 0.29 ± 2.03mm, agreement = - 1.74, 2.32). Likewise, there was a good intraobserver 

agreement for MAD2D (mean difference = - 0.23 ± 2.28mm, agreement = -2.51, 2.05) and MAD3D 

(mean difference = - 0.10 ± 3.00mm, agreement = - 3.10, 2.92). 
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DISCUSSION 

Assessment of MA size is an important issue in patients with mitral valve disease. An increase in 

MAD results in reduced mitral valve leaflet coaptation and thus an increase in the incidence and 

severity of mitral regurgitation 13,14. Reduction in MAD is an essential element in mitral valve repair 

and prevention of regurgitation not only in organic mitral valve disease, but also in ischemic mitral 

regurgitation 15,16. Accurate assessment of MAD is crucial for the selection of a proper sized prosthetic 

ring, percutaneous annuloplasty device or stented valve implantation 17-19. The current study showed 

that in patients with adequate 2DE image quality, the MA could be well visualized from the ventricular 

(and atrial) aspect with RT3DE. MAD3D could be reliably measured with excellent inter- and 

intraobserver agreements.  

The main finding in our study was a significant underestimation of true MAD by MAD2D as 

evidenced by MAD3D and MADMRI measurements. Because of the relatively fixed MA trigone, 

changes in MAD size (regardless whether these are due to cyclic changes in the heart cycle or to a 

pathological process such as left ventricular dilatation) 7 occur mainly along the axis represented by the 

perpendicular line drawn from the top of the MA curvature to the middle of the straight MA. As seen in 

Figure 4, it is this MAD that we measure with RT3DE, whereas with 2DE an underestimated MAD is 

measured. MAD3D and MADMRI were well correlated with no significant difference in between these 

measurements. The underestimation of true MAD may explain the frequently encountered discrepancy 

between pre-operative MAD2D assessment and implanted ring-prosthesis size 20.  
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Because of the limited information available in the literature we assessed normal MAD and 

MAA in patients without apparent left-sided heart disease. With variable methods available for MAA 

measurements, the definition of normal MAA is quite variable, probably caused by the complex 

geometry of the MA. MAA2D measurements in other studies 9,21 ranged from 6.9 ± 0.8 to 12.2 ± 3.8 

cm2. In two recent very small studies (with 10 and 7 subjects, respectively) 7,22, normal transesophageal 

assessed MAA3D values were 11.8 ± 2.5 cm2 and normal MAAMRI values were 9.5 ± 1.4 cm2. MAA 

values in fresh human autopsy specimens23 ranged from 6.4 to 8.2 cm2. In our study, MAA3D in normal 

subjects was 8.1 ± 2.4 cm2 or (4.3 ± 0.8 cm2/m2) when corrected for body surface area. 

 

Study Limitations  

The study excluded patients with bad image quality and/ or in non-sinus rhythm because RT3DE is 

totally dependent on 2D images and the analysis of full volume mode will not be achieved with 

variable heart rate. The another limitation was that the surgical measurements of MAD were obtained 

only in three cases  

 

CONCLUSION 

MAD3D can be reliably measured in patients with adequate image quality and is superior to MAD2D in 

the assessment of true MA size. Normal values for MAD3D are 2.8 ± 0.6 cm (or indexed for body 

surface area 1.5 ± 0.3 cm/m2) and for MAA3D 8.1 ± 2.4 cm2 (or indexed for body surface area 4.3 ± 0.8 

cm2/m2). 
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ABSTRACT 

Objective: We sought to assess mitral annular (MA) size and function in hypertrophic (HCM) and 

dilated cardiomyopathy (DCM) using real-time 3-dimensional echocardiography (RT3DE). 

Methods: The study included 30 patients with HCM, 20 patients with DCM, and 30 control subjects. 

RT3DE measurements included end-systolic and end-diastolic MA area (MAA3D), MA diameter 

(MAD3D), MA fractional area change (MAFAC), and MA fractional shortening. In subgroup of 50 

patients, magnetic resonance imaging (MRI) was used for MAAMRI and MADMRI measurement  

Results: End-diastolic MAA3D was larger in HCM than in control group (P <0.0001). Higher MAFAC 

and MAFS were present in HCM than in control group (P = 0.001 and P = 0.006 respectively). End-

systolic and end-diastolic MAA3D in DCM were higher than in HCM and control groups (P <0.0001). 

Lower MAFAC and MA fractional shortening were present in DCM than in HCM and control groups 

(P <0.0001). MAFAC correlated well with left ventricular function in control subjects (r = 0.94, P < 

0.0001), whereas correlation was less in DCM (r = 0.53, P = 0.02) and HCM (r = 0.42, P < 0.01). 

RT3DE and MRI measurements were comparable.  

Conclusion: RT3DE assessment of MA size and function in control subjects and patients with 

cardiomyopathy is accurate and well correlated with MRI. 
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INTRODUCTION 

The mitral annulus (MA) is a vital component of the mitral valve apparatus and plays a crucial role in 

left ventricular (LV) and left atrial function 1. The MA changes its shape from a saddle shape to a more 

flat structure and this leads to pronounced variations not only from heart to heart but also within the 

same heart 2. The MA opposite the area of valvular fibrous continuity tends to be weaker because of 

lack of a well-formed fibrous cord. This area is susceptible to expand under hemodynamic stress, and 

therefore often involved in annulus dilatation. During systole, contraction of the surrounding LV 

muscle causes the annulus to contract. MA physiology assessment is important for diagnosis and 

treatment of mitral valve disease3,4. Several anatomic alterations of mitral valve apparatus are 

frequently presented in hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) 5-

8.Three-dimensional echocardiography (3DE) has the ability to analyse the shape and dynamics of 

normal and abnormal MA 9. It can also assess the MA area (MAA) in short axis paraplanes 10,11. The 

current study aimed to use real-time 3DE (RT3DE) in the assessment of MA size and function in 

patients with HCM and DCM compared with control subjects. To detect the accuracy of RT3DE 

measurement, the RT3DE data were compared to that obtained from magnetic resonance imaging 

(MRI). 

METHODS 

The study included 30 patients (mean age of 38  15 years, 80% males) with established diagnosis of 

HCM12,  20 patients (mean age 39  12 years, 50% males) with established diagnosis of DCM13 and 30 

control subjects (mean age 40  20, 66% males) with normal 2-dimensional echocardiography (2DE) 

study results. Depending on resting LV outflow tract (LVOT) gradient detected by continuous wave 

Doppler, the patients with HCM were classified into two subgroups: A) included 20 patients with non-

obstructive HCM (LVOT gradient <50 mmHg) and B) included 10 patients with obstructive HCM 

(LVOT gradient >50 mmHg). All patients and control subjects were examined by 2DE and RT3DE. In 

a non-selected group of 50 patients (20 normal, 15 HCM patients, and 15 DCM patients), MRI studies 

were performed as gold standard technique for validation of RT3DE measurements.    
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2DE examination 

The 2DE studies were performed using a 3.5 MHZ probe and a commercially available ultrasound 

system (Philips Sonos 7500, Best, The Netherlands). The 2DE examination was undertaken with the 

patient in the left lateral decubitus position using both apical and parasternal views The following data 

measures were obtained: (1) LV fractional Shortening (LVFS2D) was defined as (end-diastolic 

dimension – end-systolic dimension) / end-diastolic dimension x 100% by M-mode, (2) LV ejection 

fraction (LVEF2D) defined as (end-diastolic volume – end-systolic volume) / end-diastolic volume x 

100 % using 2D biplane modified Simpson method, (3) Mitral regurgitation was defined by color 

Doppler and graded according to the maximum regurgitant jet area as mild (jet area< 4 cm2), moderate 

(jet area 4-8 cm2), and severe (jet area> 8 cm2)14  

RT3DE examination 

RT3DE was performed using the same ultrasound system with (X 4 matrix) transducer capable of 

providing real-time B-mode and colour-Doppler. The 3D images were collected within 5 to 7 seconds 

of breath holding in full volume mode. The 3D data were transferred to an offline analysis system 

(Tom Tec, Munich, Germany). Data were stored digitally and subsequently evaluated by two expert 

echocardiographers. Data analysis of 3DE imaging had been based on a 2D approach relying on the 

echocardiographic images obtained from the apical views and on manual tracing of inner border of the 

mitral annulus. Once this is completed the surface area was automatically delineated and could be 

visualized from different points of view. Manual modification was done to correct any image if 

necessary. The following measures were obtained: (1) MAA3D measured from atrial aspect at end-

diastole (just before mitral valve closure) and at end-systole (just before mitral valve opening), (2) MA 

diameter (MAD3D) defined as the perpendicular line drawn from the peak of annular area curvature to 

the middle of its straight annular border (aortic trigone) at the same frames selected for area 

measurement, and (3) MA fractional area changes (MAFAC3D) (%) and MAFS3D (%): calculated by 

the formula used for LVFS2D. 

MRI examination 

In a non-selected group of 50 patients (20 control subjects, 15 patients with HCM, and 15 patients with 

DCM), MRI studies were performed with a 1.5-T whole-body scanner (Sigma, General Electric, 

Milwaukee, Wis) and using a 4-channel phased-array body coil. A retro-triggered, steady state, free-
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precession gradient echo-sequence was used for cine imaging. Image parameters were: repetition time 

of 3,5 milliseconds (ms), echo time 1.4 ms, temporal resolution of 42 ms, flip angle of 45 degrees, slice 

thickness of 8 mm with a slice gap of 2 mm, and an image resolution of 2.0 x 3.0 mm). First, cines with 

a 4-, 3-, and 2-chamber view were obtained. Then, a stack of 10 short axis slices was used for full 

coverage of the LV, planned on the 4-chamber view starting at the level of the mitral valve annulus, 

using the 2-chamber view as second localizer. Quantitative measurement was performed using 

standardized digital imaging and communication in medicine viewing software on the basal short axis 

slice, on which the mitral valve annulus was visualized in end-diastole. MAAMRI and MADMRI were 

defined as described before in the RT3DE section (see Figure 1).  

  

Figure 1: Morphology of mitral annulus in control subject (left), patient with hypertrophic 
cardiomyopathy (middle), and patients with dilated cardiomyopathy (right) as visualized by RT3DE 
(top) and MRI (bottom). Horizontal lines indicate the annulus diameter (MAD). 
 

STATISTICAL ANALYSES  

All data obtained by 2DE and RT3DE were presented as mean  SD. Data analyses were performed 

using statistical software (SPSS, version 12.1, SPSS Inc, Chicago). Independent sample t-test and 

analysis of variance (ANOVA) test were used for comparison between the 3 groups for analysis of 

variance within each group and in-between. The level of significance was set to P <0.05. Interobserver 

agreements for RT3DE measurements were expressed according to the method of Bland and Altman15.    
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RESULTS 

Echocardiographic data of all groups are shown in Table 1. There were no significant differences in age 

distribution. The highest LVFS2D and LVEF2D were present in patients with HCM (38.4  9.6 and 71.1 

 17.7% respectively), whereas the lowest LVFS2D and LVEF2D were present in patients with DCM 

(10.0  2.2 and 18.4  4.1 % respectively). The prevalence and severity of mitral regurgitation were 

comparable in HCM and DCM patient groups and higher than in control group (P <0.0001). 

Acquisition of RT3DE data set was performed successfully in all patients and control subjects (Figure 

1).  

MA in HCM    

End-diastolic MAA3D was significantly larger in HCM group than in control group (11.7 ± 2.8 vs. 8.7 

± 2.9 cm2, P <0.0001), whereas end-systolic MAA3D showed no significant difference. End-diastolic 

MAD3D tended to be higher in patients with HCM than in control subjects but this was not statistically 

significant (P = 0.05). MAFAC3D and MAFS3D were larger in patients with HCM than in control 

subjects (51.2 ± 21.8% vs. 33.8 ± 13.8 %, P = 0.001 and 31.0 ± 17.6% vs. 20.1 ± 10.2%, P = 0.006 

respectively). Age and sex were equally distributed within both HCM subgroups (IA and IB). LV end-

diastolic diameter was comparable in both groups, whereas LV end-systolic diameter was lower in 

subgroup IB (3.1  0.7 vs. 2.3  0.7 cm, P = 0.01). Thus, a higher LVFS2D was present in IB than in IA 

(48.0  6 vs. 34.3  8%, P = 0.001). The prevalence and severity of mitral regurgitation were 

comparable in both subgroups. All MA measurements by RT3DE showed no significant difference 

between the HCM subgroups.  

MA in DCM   

MAA3D and MAD3D were significantly larger in patients with DCM than in control subjects both at 

end-diastole and end-systole (all P < 0.0001) (Table 1). Compared with control subjects, patients with 

DCM had significantly lower MAFAC3D (23.2 ± 15.1 vs. 33.8 ± 13.8 %, P = 0.01) and MAFS3D (4.2 ± 

7.9 vs. 20.1 ± 10.2%, P = 0.03). 

DCM versus HCM  

MAA3D was significantly larger in DCM than in HCM both at end-diastole (15.5 ± 6.6 vs. 11.7 ± 2.8 

cm2, P = 0.01), and at end-systole (11.6 ± 5.4 vs. 5.6 ± 2.5 cm2, P < 0.0001). End-systolic MAD3D was 

significantly larger in DCM than in HCM (3.6 ± 0.8 vs. 2.7 ± 1.0 cm, P = 0.001), whereas no 
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significant differences in end-diastolic MAD3D were found. MAFAC3D and MAFS3D were 

significantly lower in DCM than in HCM (all P < 0.0001) (Table 1). 

Table 1: Clinical and echocardiographic data of all studied patient groups 

 
HCM  

(n = 30) 
DCM  

(n = 20) 
           Control 

(n = 30) 
Age (yr) 38  15  39  12  40  20  
Male gender (%) 24 (80%) 8 (40%) 18 (60%) 
LVFS2D (%) 38.4  9.6 10.0  2.2 28.3  5.4 
LVEF2D (%) 71.1  17.7 18.4  4.1 52.4  1.0 

Mitral regurgitation 

       No 
Mild 
Moderate-severe 

 
8 (27%) 

15 (50%) 
7 (23%) 

 
4 (20%) 

12 (60%) 
4 (20%) 

 
24 (80 %) 
6 (20%) 
0 (0%) 

Diastolic values    
        MAA3D  (cm2) 11.7  2.8 15.5  6.6 8.7  2.9 
        MAD3D  (cm) 4.0  1.6 4.3  1.0 3.4  0.5 
Systolic values    
        MAA3D (cm2) 5.6  2.5 11.6  5.4 5.6  1.7 
        MAD3D (cm) 2.7  1.0 3.6  0.8 2.7  0.5 
Systolic function    
        MAFAC3D (%) 51.2  21.8 23.2  15.1 33.8  13.8 
        MAFS3D (%) 31.0  17.6 14.2  7.9 20.1  10.2 

 
DCM, Dilated cardiomyopathy; EF, ejection fraction; FAC, fractional area change; FS, fractional 
shortening; HCM, hypertrophic cardiomyopathy; LV, left ventricular; MA, mitral annulus; MAA, MA 
area; MAD, MA diameter  
 

MA function & LV function 

MAFS3D did not correlate with LVFS2D and LVEF2D in all patients. MAFAC3D was strongly 

correlated with LVEF2D in control subjects (r = 0.94, P < 0.0001). However, this correlation decreased 

in DCM and HCM, (r = 0.53, P = 0.01 and r = 0.42, P = 0.02 respectively) (Figure 2). 

MRI and RT3DE 

In the subgroup of 50 patients who were investigated with both MRI and RT3DE, there was an 

excellent agreement between both imaging modalities in measurements of MAA (r = 0.92, P < 0.0001) 

and MAD (r = 0.85, P < 0.0001) (Figure 3). No significant differences were found between both 

imaging modalities for measurements of MAA and MAD (Table 2). 

Table 2: Comparison between RT3DE and MRI measurements 
 RT3DE MRI 
Diastolic MAA (cm2)   

HCM patients 11.7  2.8 11.3  2.3 
DCM patients 15.5  6.6 16.4  5.5 
Normal control 8.7  2.9 9.0  2.3 

Diastolic MAD (cm)   
HCM patients 4.0  1.6 3.8  0.7 
DCM patients 4.3  1.0 4.5  0.9 
Normal control 3.4  0.5 3.3  0.5 
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Interobsever agreement  

As shown in Figure 4, in the control group, interobserver agreement was good for MAA3D (mean 

difference = - 0.1  1.7, agreement = - 3.5, 3.3) and for MAD3D (mean difference = - 0.1  1.9, 

agreement = - 3.90, 3.70). In patients with HCM, agreement was also good for MAA3D (mean 

difference = - 0.2  1.3, agreement = - 2.8, 2.4), and for MAD3D (mean difference = -0.1  2.1, 

agreement = - 4.3, 4.1). In patients with DCM, agreement was also good for MAA3D (mean difference 

= - 0.5  2.3, agreement = - 5.1, 4.1), and for MAD3D (mean difference = - 0.3  2.2, agreement = - 4.7, 

4.1).  

 

Figure 4: Interobsever agreement of mitral annuls (MA) area (MAA) and MA diameter (MAD) 
measurements by RT3DE in control group, and in patients with HCM and DCM. 
 

DISCUSSION 

In this study the morphological and functional aspects of the MA in HCM and DCM were assessed by 

RT3DE. MA shape was not completely circular but D-shaped in control subjects and in patients with 

cardiomyopathy. MAA3D and MAD3D correlated well with MAAMRI and MADMRI in control subjects 

and in patients with cardiomyopathy. Despite MA dilatation in patients with HCM and DCM, MA 

function is augmented in patients with HCM and impaired in patients with DCM as assessed by 

MAFAC3D and MAFS3D.  
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The importance of studying MA size and function in cardiomyopathy is to expand the 

understanding of the underlying patho-physiology of the occurrence of mitral regurgitation in several 

cardiomyopathies. Subsequently, it may also affect therapeutic decision-making in patients with 

significant functional mitral regurgitation, because accurate assessment of the MA is crucial for 

selection of prosthetic mitral valve rings, percutaneous annuloplasty devices and stented valve 

implantation 16-18  

In the current study, the MA could be well visualized with RT3DE from different points of 

view in both patients and control subjects. Tracings of the MA and calculation of its surface areas in 

systole and diastole were reproducible and discriminated normal from dilated MA. Larger end-diastolic 

MAA3D in HCM and DCM were found (11.7  2.8 and 15.5  6.6 cm2, respectively), which is in 

concordance with measurements from Flachskampf et al (10.2  4.2 cm2 in HCM and15.2  4.2 cm2in 

DCM)19.  

The MA acts as a sphincter facilitating ventricular filling by expansion and aids to competent 

mitral valve closure by contraction. In accordance with the previous studies, MA function was 

augmented in HCM and impaired in DCM19,20. This may be a result of stretching of MA that occurs 

along the left ventricular axis. The functional activity of the muscular part of MA along the left 

ventricular axis may play a role. Both types of HCM (obstructive and non-obstructive) showed no 

significant differences in parameters of MA size and function. This may be explained by the fact that 

MA stretching of MA occurs mainly along the muscular part and very little on the fibrous part. In 

HCM, MA dilatation occurs to a certain limit beyond which, more stretch will be prevented by the 

hyperactive muscular part even with significant mitral regurgitation. In both HCM types, the muscular 

part is hyperactive. In this study MAFAC3D in control subjects showed good correlation with LVEF3D, 

but this correlation was less in both HCM and DCM groups. This discrepancy may be explained by the 

higher incidence of electromechanical dys-synchrony in HCM and DCM 21-23.  

When MA dilates, the geometry changes due to flattening and stretching with loss of normal 

saddle shape, which may contribute to functional mitral regurgitation 24,25. This may explains the direct 

correlation between mitral regurgitation severity and MA dilatation 26. In addition, MA dilatation may 

underlie the high incidence of mitral regurgitation in patients with HCM irrespective to LVOT gradient 

27. The MA dilatation may also explain why significant mitral regurgitation persists after successful 

surgical myomectomy in obstructive HCM and disappears when the myomectomy is combined with 
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mitral valve repair 28,29. It also partially explains why annuloplasty is preferred to mitral valve 

replacement with improvement of outcome after mitral annuloplasty in severe LV dysfunction 30,31. 

 

CONCLUSION 

RT3DE can be reliably used for accurate assessment of MA size and function in control subjects, 

patients with HCM, or patients with DCM and can be used to facilitate clinical decision making when 

surgical mitral valve repair is indicated. In addition, it may be used in the follow up studies of patients 

with cardiomyopathy. 
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Chapter 8 

ABSTRACT 

Objectives: Assessment of mitral valve (MV) morphology in mitral stenosis (MS) patients by a new real-time 

three-dimensional echocardiography (RT3DE) scoring system. 

Methods: We conducted a two-staged study. The first stage was to study the feasibility, and reliability of the 

RT3DE score in 17 patients with MS. The second stage was a validation of the RT3DE score in 74 consecutive 

patients (mean age 33.4  8.6 years, 65% females) who were candidate for percutaneous mitral valvuloplasty 

(PTMV). MV morphology was assessed by Wilkins’ score and compared to the RT3DE score. RT3DE score 

was constructed by dividing each MV leaflet into 3 scallops and composed of 31 points (with increasing 

abnormality) including 6 points for thickness, 6 for mobility, 10 for calcification and 9 for subvalvular apparatus 

involvement. The total RT3DE score was assumed and defined for low (<8), mild (8-14) and high (≥15)..  

Results: In the first stage, RT3DE score was easily applied to all patients with good interobserver and 

intraobserver agreements. In the second stage, RT3DE improved the MV morphological assessment for detection 

of extent and distribution of calcification, and commissural splitting. Both scores were correlated well for 

assessment of thickness and calcification (r= 0.63, p<0.0001 and r= 0.44, p<0.0001 respectively). Pre-PTMV 

predictors of optimal success were the low calcification and subvalvular apparatus Wilkins score and low 

mobility and subvalvular apparatus RT3DE score. Incidence and severity of mitral regurgitation were associated 

with high calcification RT3DE score. 

Conclusions: The new RT3DE score is feasible and highly reproducible for the assessment of MV morphology 

in MS patients. In comparison with Wilkins score, RT3DE score added more valuable information before PTMV 

that may help in selection of patients and could predict the outcome. 
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INTRODUCTION 

Rheumatic mitral valve (MV) disease still remains an important public health concern particularly in developing 

countries. In selection of the proper therapeutic strategy for mitral stenosis (MS), two-dimensional 

echocardiography (2DE) is of crucial importance 1. Apart from estimation of the transmitral pressure gradient, 

2DE can calculate MV area by planimetry and pressure half-time 2. 2DE is essential in the selection of patients 

for percutaneous mitral valvuloplasty (PTMV) 3. Of all available MV scoring systems, the Wilkins’ score is the 

most commonly used 4-6.  This score evaluates MV thickness, mobility, leaflet calcification, and the degree of 

subvalvular apparatus thickening 6. A favourable Wilkins’ score (<8 points) is highly predictable of good 

outcome after PTMV 7. More recently, it has been shown that other factors such as commissural fusion and 

calcification are also strong predictors of outcome after PTMV 8-10. 

The introduction of real-time three-dimensional echocardiography (RT3DE) and advances in analysis 

software has improved MV orientation and evaluation11. Several studies have reported improved accuracy and 

superiority of RT3DE over 2DE for MV area (MVA) estimation 12-14. RT3DE allows a unique “en-face” view 

and morphologic analysis of the entire MV apparatus including the MV annulus and subvalvular apparatus, also 

in relation to other nearby structures. We proposed a new RT3DE score for the quantitative and qualitative 

assessment of the MV in patients with mitral stenosis (MS) and compared it with Wilkins score in the prediction 

of PTMV outcome.  

 
METHODS 
 
The study was designed as two-stages. The first stage was for derivation of the RT3DE score and assessment of 

its applicability in 17 patients (mean age 30.6  7.8 year, 70% females) with an established diagnosis of MS and 

good 2DE image quality. All 17 patients were in sinus rhythm.  Once the score was developed, the second stage 

of the study was started for validation of this score in a prospective new sample of 74 consecutive patients (mean 

age 34.4  5.9 year, 62% females). 67 patients (74 %) were in sinus rhythm, while 24 patients (26 %) were in 

atrial fibrillation. Finally, the RT3DE score was applied for the entire 91 patients (first and second stages) to 

assess its value. All patients were examined by 2DE and RT3DE. All data were analyzed by two independent 

expert echocardiographers (A. M. A & O, I. S in the first stage, A. M. A & W. M. A in the second stage). The 

analysis was done also by each one at two different days to assess the interobserver and intraobserver 

variabilities.     
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The study was designed as two-stages. The first stage was for derivation of the RT3DE score and assessment of 

its applicability in 17 patients (mean age 30.6  7.8 year, 70% females) with an established diagnosis of MS and 

good 2DE image quality. All 17 patients were in sinus rhythm.  Once the score was developed, the second stage 

of the study was started for validation of this score in a prospective new sample of 74 consecutive patients (mean 

age 34.4  5.9 year, 62% females). 67 patients (74 %) were in sinus rhythm, while 24 patients (26 %) were in 

atrial fibrillation. Finally, the RT3DE score was applied for the entire 91 patients (first and second stages) to 

assess its value. All patients were examined by 2DE and RT3DE. All data were analyzed by two independent 

expert echocardiographers (A. M. A & O, I. S in the first stage, A. M. A & W. M. A in the second stage). The 

analysis was done also by each one at two different days to assess the interobserver and intraobserver 

variabilities.     

Transthoracic 2DE examination  

A complete 2DE study was performed 24 hours prior to PTMV using a 3.5 MHz (S3) probe and a commercially 

available ultrasound system (Philips Sonos 7500, Best, Netherlands). The morphology score according to 

Wilkins’ score system was applied for evaluation of four factors: leaflet thickness, mobility, calcification and the 

degree of subvalvular thickening (Table 1). Each factor is given a score of 0 for normal, 1 for mild MV 

involvement, 2 for moderate and 3-4 for severe, yielding a summed score of 16 points. The higher the score, the 

greater the morphological abnormality of the MV Thus a score of less than 5 points defines mild MV 

involvement, 5-8 moderate involvement, and >8 severe MV involvement severity 6. The following 

measurements were obtained: 1) MVA was defined as the narrowest orifice at the time of maximal mitral valve 

opening and measured by 2D planimetry in short axis view, 2) mean transmitral pressure gradient was calculated 

by continuous wave Doppler, 3) mitral regurgitation was graded according to vena contracta using color Doppler 

and graded as mild , moderate and  severe 15, 4) left atrial diameter was measured in M-mode from parasternal 

long axis view at the level of aortic valve, 5) commissural splitting was defined as the terminal distance between 

the two MV leaflets and measured from parasternal short axis view at the mitral valve level at an end-diastolic 

still frame for each commissure (anterior and posterior). The splitting was scored as 0 for no splitting, 0.5 for 

partial splitting, and 1 for complete splitting 16. If PTMV was planned, the previous data were obtained pre-

PTMV and within 48 hours post-PTMV. One-year clinical and 2DE examination follow up was completed for 

74 patients who underwent PTMV. The following measurements were obtained: 1) MVA, 2) mean transmitral 

pressure gradient and 3) mitral regurgitation. The end-points were: recurrent symptoms, restenosis, need re-

intervention either PTMV or MV surgery.  
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Table 1: Wilkins’ score 
 
 

Mobility Subvalvular thickening Thickening Calcification 

     

1 
Highly mobile valve with 
only leaflet tips restricted 

Minimal thickening just 
below the mitral leaflets 

Leaflets near normal in 
thickness (4-5 mm) 

A single area of 
increased echo 
brightness 

     

2 
Leaflet mid and base 
portions have normal 
mobility 

Thickening of chordal 
structures extending up to 
one-third of the chordal 
length 

Midleaflets normal, 
considerable thickening 
of margins (5-8 mm). 
 

Scattered areas of 
brightness confined 
to leaflet margins 

     

3 
Valve continues to move 
forward in diastole mainly 
from the base 

Thickening extending to 
the distal third of the 
chords 

Thickening extending 
through the entire 
leaflet (5-8 mm). 

Brightness extending 
into the midportion of 
the leaflets 

     

4 
No or minimal forward 
movement of the leaflets 
in diastole 

Extensive thickening and 
shortening of all chordal 
structures extending down 
to the papillary muscle 

Considerable 
thickening of all leaflet 
tissue (>8-10 mm) 

Extensive brightness 
throughout much of 
leaflet tissue 

     
 

Transesophageal 2DE  

Transesophageal 2DE was performed 24 hours pre-PTMV for assessment of MV morphology evidence of left 

atrial and /or left atrial appendage thrombi and for measurement of interatrial septum thickness. 

Transthoracic RT3DE examination 

Image acquisition  

RT3DE was performed immediately after the 2DE study by the same machine using an X4 matrix transducer 

capable of providing real-time B-mode and colour-Doppler. Full volume images of three cardiac cycles were 

collected within 5-7 seconds of breath holding in patients with sinus rhythm. Due to variability of cardiac cycle 

duration in atrial fibrillation patients, the 3D images of one cardiac cycle were collected. . The 3D data were 

transferred to an offline analysis system (Tom Tec, Munich, Germany) in the first stage of the study and  (Q-lab 

version 6. Philips) in the second stage. Data were stored digitally and subsequently evaluated by two 

independent physicians. Data analysis of 3D echo imaging was based on a 2D approach relying on the echo 

images obtained from the apical 4-chamber and parasternal long axis views in patients with sinus rhythm. 

Additional two views (apical long axis and parasternal short axis) were needed in atrial fibrillation patients. By 

using the crop function for images formatting, parallel sections through scanned volume in three perpendicular 

planes were done. The narrowest slice to enable visualization of MV (leaflets and subvalvular) was selected.  
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Score Derivation 

The new RT3DE morphology score (Table 2) was derived to include both MV leaflets and subvalvular apparatus 

guided by the well known 2DE Wilkins’ score. As seen in Figure 1, each leaflet could be seen clearly by RT3DE 

divided into three scallops (antero-lateral A1 - P1, middle A2 - P2 and postero-medial A3 - P3) that were scored 

separately. For the scoring of the subvalvular apparatus, three cut sections of the anterior and posterior chordae 

were obtained from the full-volume images acquired at parasternal long axis position at three levels: proximal 

(valve level), middle and distal (papillary muscle level). Each cut section and each chorda were scored 

separately. 

1). Scoring of valve leaflets included thickness, mobility and calcification for each scallop as follow: Normal 

thickness and mobility was scored as 0 and abnormal thickness or restricted mobility was scored as 1. Absence 

of calcification was scored as 0, calcification in middle scallop (A2 or P2) was scored as 1, and calcification of 

commissural scallops of both leaflets (A1, A3 - P1, P3) was scored as 2. 

2). Scoring of the subvalvular apparatus included chordal thickness and distance of splitting in-between the 

chordae as follow: Normal thickness was scored as 0, and abnormal thickness was scored as 1, normal chordal 

splitting (distance in-between >5 mm)16 was scored as 0, partial splitting (distance in-between <5 mm) as 1, and 

absence of splitting as 2.  

3). The total points of leaflets and subvalvular apparatus RT3DE score were summed to calculate the total 

RT3DE score, ranging from 0 to 31 points. The degree of leaflet and subvalvular apparatus involvement were 

defined as follows:  

1. For leaflet thickness and mobility, it was 0 for normal, 1-2 for mild MV involvement, 3-4 for 

moderate and  5 for severe  

2. For calcification and subvalvular apparatus involvement it was 0 for normal, 1-2 for mild, 3-5 for 

moderate and  6 for severe.  

3. Total score of mild MV involvement was defined as <8 points, Moderate MV involvement 8 -14, 

and severe MV involvement  15 for high 
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Figure 1: RT3DE en face view of mitral valve as 
seen from   ventricular aspect with the three 
scallops of each leaflet (A1, A2, A3 – P1, P2, P3).  

 

Table 2: RT3DE score of mitral valve 

 Anterior leaflet Posterior leaflet 

 A1 A2 A3 P1 P2 P3 

Thickness (0-6) 
0 = normal    1 = thickened 

0 – 1 0 - 1 0 – 1 0 – 1 0 - 1 0 – 1 

Mobility (0-6) 
0 = normal    1 = limited 

0 – 1 0 - 1 0 – 1 0 – 1 0 - 1 0 – 1 

Calcification (0-10) 
0 = no         1,2 = calcified 

0 – 2 0 - 1 0 – 2 0 – 2 0 - 1 0 – 2 

 Subvalvular Apparatus 

 Proximal 1/3 Middle 1/3 Distal 1/3 

Thickness (0-3) 
0 = normal    1 = thickened 

0 – 1 0 – 1 0 – 1 

Splitting (0-6) 
0 = normal      1 = partial    
 2 = no  

0, 1, 2 0, 1, 2 0, 1, 2 

Abbreviations: A1- P1: anterolateral parts, A2 - P2: middle parts, A3 – P3: postero-medial 

 

Percutaneous Mitral Valvuloplasty (PTMV):  

Seventy four patients of ninety one (mean age 30.4  8.6 years, 70% females) were class I candidate for PTMV 

according to AHA/ACC guidelines 17. All of them had <9 MV Wilkins score.  PTMV was performed by two 

experienced operators who were unaware with the RT3DE assessment.  After patient consent, one femoral 

arterial and venous sheaths were introduced after local anaesthesia. A pigtail catheter was advanced just at the 

aortic valve level. Trans-septal puncture was performed with a Brockenbrough needle. PTMV was performed 

using the Inoue balloon technique as previously described 18. The definition of optimal success was achievement 

of 50% increase in MVA as compared to pre PTMV or an achieved MVA 1.5 cm2 which is larger with mitral 
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regurgitation moderate or less 15. Suboptimal success was defined as the achieved MVA <1.5 cm2 with 

regurgitation moderate or less and severe regurgitation irrespective of the achieved MVA. 

  

STATISTICAL ANALYSES  

All statistics were performed using SPSS version 12.0.1 (SPSS inc., Chicago, Illinois). Each component of both 

scores was assessed separately, and then total score of 2DE and RT3DE were calculated for every patient. Both 

scores were investigated for correlation using Pearson’s correlation analysis to demonstrate the basic differences. 

Comparisons were considered significant in presence of a p value < 0.05. Interobserver agreement was evaluated 

with the Kappa index, classified as poor with value 0.01-0.20, slight 0.21- 0.40, fair 0.41- 0.60, good 0.61- 0.80, 

very good 0.81- 0.92, and excellent 0.93-1.00 19. To obtain independent predictors of success and development 

of significant mitral regurgitation (> grade 2), multiple Cox regression analysis was performed. The 95% 

confidence interval was derived from the natural algorithm of the coefficient  1.96 times the standard error. 

 

RESULTS 

First Stage Study Results 

Acquisition of RT3DE data was performed successfully in all 17 patients within a reasonable time (3 minutes for 

acquisition and 10 minutes for data analysis). The MV was clearly visualized in all patients and its morphology 

could be assessed by both the 2DE and RT3DE scores. Optimal assessment of MV leaflets and commissures by 

RT3DE was obtained from the parasternal window more than the apical window, while assessment of 

subvalvular apparatus was optimally assessed from the apical window. The RT3DE score was applied easily by 

the investigators in all patients. The echocardiographic reports by the investigators were identical for the score 

points.  

Total Results 

Data acquisition and analysis were obtained in all patients in the two stages (91 patients). In patients with sinus 

rhythm (67 patients), the data analysis and score calculation were easily obtained through cropping of a full 

volume images whitin 10 minutes. In patients with atrial fibrillation (24 patients), the data analysis and score 

calculation were depend on multiple live 3D images obtained from parasternal and apical views within 13 

minutes. 
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Score Qualification (Table 3) 

The study of each part of both MV leaflets by RT3DE helped in more concise description than global evaluation 

by 2DE. RT3DE assessment of leaflet mobility was clearly and easily obtained. Leaflet calcification was fairly 

detected by 2DE while RT3DE added more information regarding distribution of calcification on leaflet’s parts 

and its extent (Figure 2 A,B). Annular calcification (site and extent) was clearly defined by RT3DE while not 

depicted well by 2DE. For subvalvular apparatus, RT3DE helped in detailed quantitative assessment of chordal 

thickening and separation at three levels while by Wilkins score, chordal separation was not obtained (Figure 2 

D). Width of anterior and posterior commissures post-PTMV could be assessed well by RT3DE while by 2DE 

was inadequate.  

 

 

 

 

Figure 2: A). Stenotic MV with 
calcification involved middle part of 
anterior leaflet (A2), B).  Stenotic MV 
with calcification involved both 
commissures (arrows) with closed mitral 
valve, C). Marked thickening of both 
leaflets of MV, D) thickening of chordae 
tendinae. 

 
 

Table 3: Qualitative value of RT3DE compared with 2DE in assessment of MV morphology 

 Wilkins score RT3DE score 

Site of calcification + ++ 

Extent of calcification + ++ 

Chordal thickening + ++ 

Chordal separation - + 

Commissures + ++ 

Mitral Annulus + ++ 

++: clearly defined, +: defined, -: ill-defined 

Score Quantification 

Thickness score: 2DE detected mild thickening in 40%, moderate in 55%, and severe in 5%, while RT3DE 

detected 24% as mild, 62% as moderate, and 14% as severe. Both scores correlated well (r = 0.63, p <0.0001).  
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Mobility score: 2DE detected freely mobile leaflets in 3%, mildly restricted leaflet mobility in 48%, moderate in 

39% and severe in 10%, while by RT3DE, 16% were defined as normal, 34% as mild, and 51% as moderate. No 

correlation between both scores was detected. 

Calcification score: 2DE score detected no calcification in 40%, mild calcification in 38%, moderate in 19% and 

severe in 3%, while RT3DE score detected no calcification in 25%, mild calcification in 38%, moderate in 31% 

and severe in 6%. Both scores were fairly correlated (r= 0.44, p<0.0001)   

Subvalvular apparatus score:  2DE detected mild degree of subvalvular affection in 39%, moderate in 45% and 

severe in 16%, while RT3DE defined 2% as normal, 25% as mild affection, 55% as moderate and 18% as severe.  

No correlation between both scores was detected. 

Total Scores Quantification 

The distribution of all included patients within both scores is shown in Table 4. High score was detected in 10% 

by 2DE and in 25% by RT3DE. Low score was detected in 35% by 2DE and in 16 % by RT3DE. Both scores 

were comparable for the definition of intermediate severity (r = 0.6, p = 0.007), while for low and high were not.  

 

 Table 4: Distribution of patients within Wilkins’ score and RT3DE score  

  Normal Mild Moderate Severe 

      

2DE 0 (0%) 36 (40%) 50 (55%) 5 (5%) 
Thickness 

RT3DE 0 (0%) 22 (24%) 56 (62%) 13 (14%) 

      

2DE 3 (3%) 44 (48%) 35 (39%) 9 (10%) 
Mobility 

RT3DE 14 (16%) 31 (34%) 46 (51%) 0 (0%) 

      

2DE 36 (40%) 35 (38%) 17 (19%) 3 (3%) 
Calcification 

RT3DE 23 (25%) 35 (38%) 28 (31%) 5 (6%) 

      

2DE 0 (0%) 35 (39%) 41 (45%) 15 (16%) Subvalvular 
apparatus RT3DE 2 (2%) 23 (25%) 50 (55%) 16 (18%) 

      

2DE 0 (0%) 32 (35%) 50 (55%) 9 (10%) 
Total score 

RT3DE 0 (0%) 14 (16%) 54 (59%) 23 (25%) 

      
 

Interobserver variability: 

Wilkins score showed fair agreement for the assessment of leaflet thickness and mobility (Kappa index: 0.55 and 

0.56 respectively), while it was poor for calcification and subvalvular apparatus (Kappa index: 0.03 and 0.01 

respectively). For RT3DE, the agreements were good for the assessment of leaflet thickness and mobility (Kappa 
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index: 0.66 and 0.63 respectively), and fair for the assessment of calcification (Kappa index: 0.42). Assessment 

of subvalvular apparatus showed slight agreement (Kappa index: 0.21) for chordal thickening, while for splitting 

it was excellent (Kappa index: 0.95).    

Immediate results of PTMV  

Depending upon the previous definition of success, optimal successful dilatation was achieved in 57 patients 

(77%) and suboptimal success in 17 patients (23%). The immediate echocardiographic and hemodynamic 

outcome is shown in Table 5. Serious complications including cardiac tamponade, or need for surgical 

interference were not present. 

Table 5: Hemodynamic and echocardiographic results of PTMV 

Variable Pre-PTMV Post-PTMV P value 

    
MVA2DE (cm2) 0.91  0.13 1.9  0.30 <0.0001 

MVART3DE (cm2) 0.92  0.14 2.1  0.30 <0.0001 

Mean pressure gradient (mmHg) 20.0  5.8 7.0  2.5 <0.0001 

LA diameter (cm) 5.1  0.95 4.7  7.7 <0.001 

LV fractional shortening (%) 31.7  6.8 35.1  5.2 0.002 

Mitral regurgitation 
No 
Grade 1 
Grade 2 
Grade 3-4 

 
37 (50%) 

32 (43.3%) 
5 (6.7%) 
0 (0%) 

 
5 (6.6%) 
37 (50%) 
15 (20%) 

17 (23.3%) 

0.001 

 

By 2DE: MVA was increased from 0.91  0.13 to 1.9  0.30 cm2, p < 0.0001. Significant reduction in the mean 

transmitral PG was reduced from 20.0  5.8 to 7.0  2.5 mmHg; p< 0.0001. 17 patients (23 %) developed mitral 

regurgitation > grade 2 and in the remaining percentage of patients (77%) mitral regurgitation was ≤ grade 2. 

Complete splitting of anterior commissure was achieved in 48 patients (65%) and partial splitting in 18 patients 

(25%). Complete splitting of posterior commissure was achieved in 37 patients (50%) and partial splitting in 22 

patients (30%). Bilateral complete commissural splitting was obtained in 37 patients (50%).  

By RT3DE: MVA was increased from 0.92  0.14 to 2.1  0.30 cm2, p < 0.0001. Splitting of both commissures 

could be assessed clearly (Figure 3). Complete splitting of anterior commissure was achieved in 46 patients 

(62%) and partial splitting in 22 patients (30%). Complete splitting of posterior commissure was achieved in 37 

patients (50%) and partial splitting in 18 patients (25%).  
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Figure 3: A) RT3DE en face view of a widely 
splitted antero-lateral and postero-medial 
commissures post-PTMV, B) side view of partially 
splitted anterior commissure. 

 

PTMV results and Wilkins score 

Using multiple stepwise Cox regression analysis for Wilkins score components, calcification and subvalvular 

apparatus involvement were the only two independent predictors of successful PTMV (p= 0.025 and 0.028 

respectively). Thus the lower the score points of calcification and subvalvular apparatus involvement, the larger 

the achieved MVA. No independent predictors could be identified for the development of >grade 2 mitral 

regurgitation.  

PTMV results and RT3DE score 

Analysis of RT3DE score components showed that leaflet mobility and subvalvular thickening were independent 

predictors of successful PTMV (p= 0.0045 and 0.04 respectively). High mean transmitral gradient was detected 

in 12 patients (16.6%) despite successful PTMV. In those patients, subvalvular apparatus score was mild 

according to Wilkins score while by RT3DE score it was moderate in 5 of them and severe in 7 of them. For the 

development of >grade 2 mitral regurgitation, calcification was the only independent predictor. In 4 out of 17 

patients who developed >grade 2 mitral regurgitation, RT3DE calcification score was severe while by Wilkins 

score it was mild. In the remaining 13 patients, calcification score was moderate by both Wilkins and RT3DE 

scores. The calcification was detected in the commissural segments of MV leaflets in 10 patients by RT3DE.  

One-year follow up 

Clinical and 2DE follow up were completed for all patients underwent PTMV. In patients with optimal 

successful PTMV (57 patients), 7 patients developed recurrence of dyspnea (grade II-III), while the remaining 50 

patients were asymptomatic. 2DE of those 7 patients showed insignificant reduction of MVA from 1.7  0.25 

cm2 to 1.5  0.21 cm2 but the mean transmitral gradient increased from 10.0  2.1 mmHg to 14.2  1.9 mmHg; 

p< 0.01. In those patients, the subvalvular apparatus score before PTMV was severe by RT3DE and mild by 

2DE. In patients with suboptimal PTMV (17 patients), 5 of them became severely symptomatic. 3 patients were 

referred for surgery due to increased MR grade (grade 3/4) and 2 patient underwent repeat PTMV due to 

restenosis (MVA was reduced from 1.4  0.34 to 1.0  0.11 cm2). The 3 patients whom referred to surgery had 
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severe calcification score by RT3DE before PTMV while in the 2 patients referred to repeat PTMV, the 

calcification score was moderate. The 2DE calcification score in those 5 patients was mild.  

 

DISCUSSION 

For a proper selection of therapeutic strategy in patients with MS, clinical evaluation and assessment of MV 

anatomy are essential 20-22. Transthoracic 2DE allows classification of patients into anatomic groups to predict 

immediate and long-term outcome23,24. Although, most cardiologists use the Wilkins’ score, several 

echocardiographic scoring systems have been suggested for evaluation of MV anatomy4,5,7,15. None of the 

available scores has been shown to be superior to any of the others25.  

With RT3DE, the MV can be evaluated en face. Additionally, rotation and orientation of the MV to the 

desired plane are easy and independent of the orientation of the acoustic window where image acquisition is 

done14,26. Many studies demonstrated the superior value of RT3DE for the qualitative morphological description 

of MV27-29. RT3DE may become the standard echo technique in the future for the assessment of MS patients due 

to its unique orientation of MV leaflets, commissures and MVA that could be obtained in a high population 

percentage11. RT3DE could be relied on for evaluation of success of valvuloplasty through accurate 

measurement of the achieved MVA, verification of commissural splitting and differentiation between splitting 

and stretch 14.Thus the need to construct a new RT3DE score for quantitative MV assessment paving the way for 

RT3DE to be totally dependable pre and post-PTMV.  

The current study described the feasibility of RT3DE for evaluation of patients with MS after PTMV. It 

helped in the measurement of the achieved MVA and width of commissures. For the first time, the study used a 

new easily applicable quantitative RT3DE score for assessment of MV morphology pre-PTMV and compared it 

with Wilkins score as a predictor of the PTMV immediate outcome. The RT3DE score has several potential 

benefits and include the following:  

1) RT3DE could detect the thickness of each leaflet part, so a higher percentage of moderate to severe 

degree of thickening was found (76% by RT3DE vs. 60% by 2DE).  

2) The whole leaflet length could not be evaluated by a single 2DE image especially for the posterior 

leaflet, which is short and naturally less mobile than the anterior one (Table 6) (Figure 4). By RT3DE, 

visualization and assessment of the whole length of both leaflets is possible through single image plane 

especially in sinus rhythm. Leaflet mobility could be well assessed and scored by RT3DE and its score 

was a good independent predictor for successful PTMV. 
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Table 6: Observed scallop in each 2D echocardiographic views 

View A1 A2 A3 P1 P2 P3 

PLAX - + - - + - 

AP 4-CH - + + + - - 

AP 2-CH + + - - + - 

AP LAX - + - - + - 

PSAX  +  + + + 

Abbreviations: PLAX: parasternal long axis, AP4-CH: apical 4-chamber, AP2-CH: apical 2-chamber, AP LAX: 
apical long axis, PSAX: parsternal short axis, + = Visualized, - = Not visualized,  = May be visualized 

 

Figure 4: Diagram showing the 
direction of 2D echocardiographic cut 
planes with each MV scallop could be 
visualized through each plane 

 
3) The assessment of leaflet calcification and in particular the distribution of calcification along the leaflet 

parts plays an important role in the outcome of patients after PTMV as the percentage of success 

decreases and incidence of complication increase30-32. 2DE Wilkins score depends on the bright areas 

and the extension of calcification along the leaflet length8,9. Multiple cut planes are needed for detection 

of calcification in all scallops of both MV leaflets (Figure 3), while RT3DE could predict the extent and 

distribution of calcification in each scallop from single short axis cut plain. Calcification of 

commissures is one of the strong predictors of outcome after PTMV because it affects the degree of 

commissural splitting8-10. That is why in the new RT3DE score, calcification at the commissural parts of 

leaflet was described by a higher score than the middle leaflets calcification. In our study, calcification 

by RT3DE score was the only predictor for the development of >grade 2 mitral regurgitation post 

PTMV not only due to calcification extent but also the calcification site. In 13 out of 17 patients who 

developed >grade 2 mitral regurgitation, the calcification score was moderate by both Wilkins and 

RT3DE scores, however it was detected at the commissural segments of MV leaflets in 10 patients by 

RT3DE. The presence of annular calcification is an important information in patients with atrio-
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ventricular conduction defect, cerebral stroke and for surgical decision32-36. RT3DE could clearly detect 

the site and extent of calcification, as the whole annular circumference was clearly defined. 

4) Rheumatic involvement of subvalvular apparatus includes fusion, thickening, retraction, shortening and 

calcification. As a consequence, the free interchordal space diminishes and the opened “leaflet – 

chordae tendineae tunnel” available for diastolic flow is limited37. Currently, assessment of MVA 

morphology and functional anatomy in relation to other valvular components remains a clinical 

challenge. Qualitative assessment of subvalvular apparatus by 2DE underestimates severity38. 

Assessment of the subvalvular apparatus by transesophageal 2DE is still controversial. Although, 

Stewart et al39 considered transesophageal 2DE the method of choice for evaluation of subvalvular 

apparatus, Levin et al40 reported limited ability of it to accurately identify and evaluate specific 

subvalvular features that influence valvuloplasty outcome. RT3DE score assessed the chordal thickness 

and separation at three levels by dividing their length into three parts (proximal, middle and distal). For 

each third, chordal thickness and distance in-between were scored. This detailed information especially 

for chordal separation was not obtained by Wilkins score which may explain absence of correlation 

between both scores for assessment of subvalvular apparatus. Chordal calcification was not included in 

our RT3DE score because in patients with chordal calcification, the MV leaflets are always heavily 

calcified and thus unfavorable for PTMV. Chordal thickening and fusion is a good independent 

predictor for successful PTMV. This may explain the residual higher transmitral gradient despite 

successful PTMV in 12 patients (16.6%). with subvalvular affection that was considered low by 

Wilkins score, while by RT3DE score, it was moderate to severe. Chordal separation can be used as a 

marker of successful PTMV16. 

5) Retrospective analysis of MV morphology score before PTMV by both RT3DE and 2DE showed that 

the severe subvalvular RT3DE score was associated with poor outcome after 1 year (expressed by 

recurrent symptoms and increased transmitral gradient). Also, moderate and severe calcification 

RT3DE score was associated with the need for repeat PTMV and MV surgery. In both conditions, 2DE 

underestimated the severityof calcification and subvalvular scores.   

6) The detailed morphological assessment of MV will help in proper selection of therapeutic strategy for 

significant MS. Prediction of PTMV success and complications could be detected more accurately by 

RT3DE score than by Wilkins score. 
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7) The RT3DE score is simple and more helpful particularly for less experienced operators as it provides a 

simple number for each leaflet scallop and subvalvular apparatus segment separately. This was evident 

by good interobserver variability for most of the score components. 

The new RT3DE score may not superior to the standard Wilkins’ score and it will not replace it at the current 

time but at least the study paved the way to standardize RT3DE in future and to achieve both quantitative and 

qualitative assessment of the MV. The time spent for analysis of RT3DE images is slightly longer than with 2D 

images, however the benefits of its application compensate this time   

 

Study Limitation: 

The number of RT3DE score points is high due to the detailed information given for each MV leaflet scallop and 

chordal segment however, its simplicity and clear definition of grades of severity overcame the increased score 

points. Application of RT3DE is easy in patients with sinus rhythm because its analysis depends on a full 

volume images. Due to variability of R-R interval in atrial fibrillation, full volume could not be obtained well 

and application of RT3DE score needs 3D images from multiple views. Although arrhythmias such as atrial 

fibrillation was considered in the past as a limitation for RT3DE image acquisition, the current ultrasound 

systems which allow for 7 subvolumes per beat and late experience found that this is not a limitation anymore.  

The study included patients with good 2DE image quality, however RT3DE assessment of MV could be 

obtained in 80% of general population irrespective of image quality11. With the advance in software and 

transducers, it is expected that the number of good analyzable studies will increase in the future. The new 

transesophageal RT3DE was not used because it was not available during the study accomplishment. However, 

no standard score by the transesophageal 2DE to compare with the transesophageal RT3DE. PTMV procedure 

was done using Inoue balloon and other devices (double balloon and metallic valvulotome) were not used. 

However, the comparison between these devices is beyond the study aim      

 

Conclusions 

The new proposed RT3DE score for morphological assessment of MV was applied for the assessment of MS 

patients and compared to 2DE Wilkins score. It shows more valuable information to the morphological 

assessment of the MV and should be the preferred score for proper selection and outcome prediction of PTMV. 
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ABSTRACT 

Aim: Assessment of pulmonary valve (PV) and right ventricular outflow tract (RVOT) using real-time 

3-dimensional echocardiography (RT3DE). 

Methods: Two-dimensional echocardiography (2DE) and RT3DE were performed in 50 patients with 

congenital heart disease (mean age 32  9.5 years, 60% female). Measurements were obtained at 

parasternal views: short axis (PSAX) at aortic valve level and long axis (PLAX) with superior tilting. 

RT3DE visualization was evaluated by 4-point score (1: not visualized, 2:  inadequate, 3: sufficient, 

and 4: excellent). Diameters of PV annulus (PVAD), and RVOT (RVOTD) were measured by both 

2DE and RT3DE, while areas (PVAA) and (RVOTA) by RT3DE only. 

Results: By RT3DE, PV was visualized sufficiently in 68% and RVOT excellently in 40%. PVAD and 

PVAA were measured in 88%. RVOTD and PVAD by 2DE at PLAX were significantly higher than 

PSAX (P <0.0001) and lower than that by RT3DE (P <0.001).  

Conclusion: RT3DE helps in RVOT and PV assessment adding more details supplemental to 2DE. 
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INTRODUCTION 

The right ventricular outflow tract (RVOT) extends from the antero-superior aspect of the right 

ventricle to the pulmonary artery (PA), and includes the pulmonary valve (PV). It is best imaged by 2-

dimensional echocardiography (2DE) from the parasternal long axis view angulated superiorly and the 

parasternal short axis at the base of the heart. It can also be imaged from the subcostal long and 

transverse windows and the apical window 1. Visualization of the PV leaflets by 2DE in long axis is 

limited especially in adults because 2DE images only one or two leaflets well and a short axis view 

often is not obtainable 2. The level of RVOT obstruction can be determined using pulsed Doppler and 

color flow to identify the anatomic site at which the flow velocity increases and the post-stenotic flow 

disturbance appears. The obstruction itself may be depicted on 2DE as a muscular subpulmonic ridge, 

as deformed doming PV valve leaflet or as narrowing in the PA 2. Transesophageal echocardiography 

helps in imaging RVOT from a high esophageal position at 0o rotation with a long axis view of the PA 

from the valve plane to its bifurcation. The PV also may be visualized in the 90o long axis plane. The 

PV is seen in its perpendicular relationship to the aortic valve in the far field of the image, so it remains 

virtually impossible to assess the precise morphology of valve cusps or its commissures 3. Magnetic 

resonance imaging may add to the assessment of the obstruction level, PA size and may detect other 

associated lesions such as PA stenosis and coexisting pulmonary regurgitation 4. Until now, it has not 

been possible to visualize all three leaflets of the PV simultaneously by non-invasive diagnostic tools 

except in rare cases in which the valve pushed interiorly 5. The introduction of 3-dimensional 

echocardiography (3DE) helps in displaying the intracardiac anatomy in views that are similar to the 

ones encountered during operation 6. With more advances in the techniques, probe and software, it is 

now possible to assess intracardiac structure and function accurately within a reasonable time with the 

real-time 3DE (RT3DE). We hypothesize that RT3DE will clarify the knowledge of PV anatomy and 

RVOT by direct visualization from all aspects. The study aimed to use RT3DE in assessment of the 

morphology of pulmonary valve (PV) and right ventricular outflow tract (RVOT) and comparing its 

measurements with that obtained by 2DE.  

 
SUBJECTS and METHODS 

 
Fifty patients (mean age 32  9.5 years, 60% female) (Table 1) referred for echocardiography lab for 

evaluation of adult congenital heart disease. All patients were in sinus rhythm. In all 2DE was done 
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with the patient in the left lateral decubitus position using both apical and parasternal views with a 

commercially available ultrasound system (Philips Sonos 7500 with 3.5 MHz probe, Best, The 

Netherlands). RVOT and PV were examined at parasternal short axis (PSAX) view at aortic valve level 

and parasternal long axis (PLAX) with moving transducer towards the base angulating superiorly. The 

subtotal short axis view at aortic valve level was used instead of parasternal one in 10 cases. Zooming 

was used to clarify images and minimize artefacts. The following variables were measured in each 

patient 7: (1) RVOT diameter (RVOTD) measured just proximal to the PV at both views at its maximal 

width (end-diastole), (2) PV annulus diameter (PVAD) at same frame, (3) proximal PA diameters 

(PPAD), and (4) distal PA diameters (DPAD) just before its bifurcation. Measurements were obtained 

only from good image quality without echo dropout. 

Table 1: Distribution of congenital heart defects in studied patients 
 

Type of congenital defect Number of patients (%) 
  

Atrio-ventricular septal defect (AVSD) 13 (26%) 
Valvular Pulmonary stenosis (PS) 7 (14%) 
Post defect closure 7 (14%) 
Atrial septal defect (ASD) 5 (10%) 
Atrial septal defect + Ventricular septal defect 4 (8%) 
Transposed great arteries (TGA) 4 (8%) 
Ventricular septal defect (VSD) 3 (6%) 
Ebstein’s anomaly 2 (4%) 
Coronary AV fistula 2 (4%) 
Normal 2 (4%) 
Fallot’s tetralogy 1 (2%) 
 

Transthoracic RT3DE 

RT3DE was done by the same ultrasound system attached to a X4 matrix array transducer, 

capable of providing real-time B-mode images. 3D images were collected approximately within 5-7 

seconds of breath holding in full volume mode. The 3D data set was transferred to an offline analysis 

software package (TomTec, Munich, Germany). Data were stored digitally and subsequently evaluated 

by two blinded observers (AMA, JMcG). Data analysis of 3D echo imaging had been based on a 2D 

approach relying on the echo images obtained from both views (PSAX and PLAX). By using the crop 

function for image formatting, multiple sections through the scanned volume were done. We selected 

the narrowest slice to enable visualization of RVOT and PV from both aspects (proximal ventricular 

and distal pulmonic). RT3DE gain and brightness were adjusted to improve delineation of anatomic 

structures. The relevant features of RVOT, PV, PPA and DPA were checked and classified according 

to a subjective 4-point scale for image quality (1= not visualized, 2 = inadequate, 3 = sufficient and 4 = 
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excellent). By manual tracing of the inner border of RVOT and the PVA, the surface area was 

automatically delineated and could be visualized from different points of view. The following measures 

were obtained: (1) RVOTD included maximum RVOTD (max RVOTD) defined as the widest diameter 

of the RVOT, and minimum RVOTD (min RVOTD) defined as the shortest diameter of the RVOT, (2) 

RVOT area (RVOTA): measured at its maximal width (end-diastole), (3) PVAD: included two 

diameters: included maximum PVAD (max PVAD) defined as the widest diameter of the PVA, and 

minimum PVAD (min PVAD) defined as the shortest diameter of the PVA, (4) PVA area (PVAA): 

measured at its maximal width (end-diastole), and (5) PPAD, DPAD. 

 

STATISTICAL ANALYSES  

All data obtained by 2D TTE and RT3DE were presented as mean  SD to determine whether the 

difference in values between both techniques was statistically significant or not. A paired sample t-test 

was performed for comparing between means of variables. The level of significance was set to P <0.05. 

Interobsever agreement for visualization score was estimated using kappa values for each morphologic 

feature and classified as excellent with value of 0.93-1.0, very good 0.81-0.92, good 0.41-0.60 8. For 

2DE measurements, a random sample consisted of 20 patients was selected and t-test was applied for 

interobserver variability. Interobserver variability for RT3DE measurements in all patients was 

estimated according to the Bland and Altman method 9. 

 

RESULTS 

RVOT and PV by 2DE 

Higher percentage of clear visualization and measurements of RVOT and PVA could be obtained from 

the PLAX view than from the PSAX view. RVOTD could be measured from the PLAX view in 28 

patients (56%) and in 26 patients (52%) from the PSAX view. PVAD was measured in 48 patients 

(96%) from the PLAX view and in 46 patients (92%) from the PSAX view. PPAD and DPAD were 

recorded from both views in equal percentage (78% for PPA and 42% for DPA). Measurements of 

RVOTD and PVAD from both views correlated well (Figure 2A,D). However, RVOTD and PVAD 

were significantly higher as measured from the PLAX view than from the PSAX (P <0.0001).  
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RVOT and PV by RT3DE 

Acquisition and analysis of RT3DE data were performed successfully within 5-7 minutes per patient. 

RVOT was visualized excellently in 20 patients (40%) and not visualized in 24 patients (48%). Its 

shape appeared as an oval shape and not completely circular (Figure 1A). Calculated RVOTA, max 

RVOTD and min RVOTD were obtained in 26 patients (52%). The mean RVOTA was 41.5  33.4 

mm. PVA was visualized excellently in 44 patients (88%) and was not visualized in two patients (4%). 

The mean PVAA was 33.5  30.1 mm. PV was visualized sufficiently in 34 patients (68%) and 

excellently in 12 patients (24%). The number, thickness and mobility of cusps could be studied in 35 

patients (70%). Bicuspid pulmonary valve was seen in 3 patients. The diagnosis of the three patients 

was transposed great arteries, Fallot’s tetralogy, and pulmonary stenosis. Pulmonary valve 

commissures and lines of closure were seen in 35 patients (70%) (Figure 1C,D). Pulmonary valve area 

could not be obtained well in a considerable number of patients with high interobserver variability.  
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Comparison of 2DE and RT3DE 

The RT3DE quadscreen showed that RVOTD obtained by 2DE from PSAX view was perpendicular on 

the max RVOTD and parallel to the min RVOTD, while RVOTD obtained from PLAX was parallel to 

the max RVOTD but was not extended to the annular ends. The same findings were found for PVAD 

(Figure 1A,B). Measurements of RVOTD with 2DE and RT3DE were significantly correlated with each 

other (Figure 2B,C), and also for PVAD (Figure 2E,F). The max RVOTD was significantly larger than 

RVOTD measured by 2DE from both views (P <0.0001), while the min RVOTD was comparable to 

RVOT measured from PSAX view (P = 0.8). PVAD measurement by RT3DE was significantly larger 

than that measured by 2DE from both views (P <0.0001). The value for RT3DE application in 

comparison with 2DE is shown in Table 4. 
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PPA and DPA by 2DE and RT3DE 

Measurements of PPAD and DPAD were equal in both 2DE views (PSAX and PLAX). By RT3DE, 

PPA was excellently visualized in 29 patients (58%) and sufficiently in 10 patients (20%). DPA was 

excellently visualized in 15 patients (30%) and not visualized in 27 patients (54%) (see Table 3). 

Measurements of PPAD and DPAD by 2DE and RT3DE were comparable (see Table 2). 

Table 2: Measurements of 2DE and RT3DE 

 2DE (PLAX) 2DE (PSAX) RT3DE P value * P value ** 
      
 
RVOTD (mm) 

 
19.7  7.7 

 
16.4  6.8 

22.2  10.0 (max) 
15.7  6.2 (min) 

0.0001 0.001 

PVAD (mm) 16.4  7.3 13.5  6.1 19.4  9.1 0.0001 0.0001 
PPAD (mm) 18.3  7.1 18.1  7.1 17.4  5.3 NS NS 
DPAD (mm) 19.3  9.1 19.1  8.0 18.6  6.4 NS NS 
2DE: 2 dimensional echocardiography, PLAX: parasternal long axis, PSAX: parasternal short axis, 
RT3DE: real-time 3-dimensional echocardiography, DPAD: distal pulmonary artery diameters, PPAD: 
proximal pulmonary artery diameter, PVAD: pulmonary valve annulus diameter, and right ventricular 
outflow tract (RVOT). 
* P value between 2DE measurements at both views (PLAX and PSAX) 
** P value between measurements of RT3DE and 2DE at PLAX 
 
 
Table 3: Scores for RT3DE visualization of RVOT, PVA, PV, PPA and DPA 
  
Score RVOT PVA PV PPA DPA 
      
Excellent (4) 20 (40%) 44 (88%) 12 (24%) 29 (58%) 15 (30%) 
Sufficient (3) 6 (12%) 4 (8%) 34 (68%) 10 (20%) 8 (16%) 
Inadequate (2) 0 (0%) 0 (0%) 4 (8%) 0 (0%) 0 (0%) 
Missed (1) 24 (48%) 2 (4%) 0 (0%) 11 (22%) 27 (54%) 
Median score 2.4 3.8 3.1 3.1 2.2 
Mean score 2.4  1.4 3.8  0.6 3.2  0.6 3.2 0.5 2.2  1.4 
  
Abbreviations: DPAD: Distal pulmonary artery, PPAD: proximal pulmonary artery, PV: Pulmonary 
valve, PVA: pulmonary valve annulus and RVOT: right ventricular outflow tract. 
  

Interobsever correlation and agreement  

The agreement for visualization score by RT3DE was fair for the assessment of PV (Kappa value: 

0.59), good for RVOT (Kappa value: 0.71) and very good for PVA, PPA and DPA (Kappa value: 

0.91). Excellent interobserver correlation was found for RT3DE measurements (r = 0.94, P <0.0001) 

for RVOTD, and PVAD. Excellent interobserver correlation also was found for 2DE (r = 0.98, P 

<0.0001) for RVOTD and PVAD. According to the Bland - Altman analysis of agreement, the mean 

differences were (mean difference: - 0.15  1.4, agreement: 2.65 - 2.95; p = 0.7) (mean difference: - 

0.57  1.90, agreement: 3.33 - 4.37; p = 0.09) (mean difference: 0.08  1.5, agreement:  3.08 - 2.92; P 
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= 0.7) (mean difference: - 0.40  1.90, agreement:  3.40 - 4.20; P = 0.1) for RVOT by 2DE, PVAD by 

2DE, RVOT by RT3DE, and PVAD by RT3DE, respectively (Figure 3, 4). 
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DISCUSSION 

The study applied RT3DE for the assessment of PV and RVOT morphology and compared its 

measurements to those obtained with 2DE. This assessment could be obtained excellently or at least 

sufficiently in a higher percentage of patients. The main findings of our study are (1) RVOT shape was 

not circular but oval, (2) RVOTA and PVAA could be measured by RT3DE, and (3) RT3DE 

measurements of RVOTD and PVAD were higher than 2DE measurements. Assessment of PV and 

RVOT is of clinical importance because the understanding of normal morphology and function helps in 

detection of anomalies and selection of therapeutic strategies. For example, in pulmonary stenosis, 

therapeutic strategy is totally dependent on RVOT and PV morphology and function. The incidence of 

anomalies included within the term of pulmonary stenosis varies between 10.7% and 30% of all 

congenital heart defects 10,11. Despite this incidence, the pulmonary valve is the least studied valve. Its 

assessment is totally dependent on 2DE, but images often less satisfactory in adolescents and adults 7. 

The use of pulsed and continuous wave Doppler helps in accurate estimation of subvalvular and 

transvalvular pressure gradients for detection of pulmonary stenosis and selection for balloon 

valvuloplasty 12. Several methods have attempted to accurately characterize PV morphology and 

detailed anatomy 13. Kinelitze et al used bright blood cine magnetic resonance to visualize leaflets of 

the valve in 14 patients following Ross operation and he achieved good visualization with signal to 

noise ratio 7.5  2.2 in patient group versus 9.8  3.0 in normal control group 14. Berdajs et al 

constructed a geometric model of the pulmonary root in 20 normals. By morphometric measurements 

of the distances between commissures and between intervalvular triangles, they described the 

asymmetrical structure of pulmonary root 15. The current study shows that measurement of PVAD and 

RVOTD by 2DE according to the standard echocardiographic views leads to significant 

underestimation in comparison with RT3DE measurements. This could be explained by the fact that 

2DE measures the distance from the basal attachment of one leaflet to the basal attachment of adjacent 

leaflet and these lines do not necessarily span the full diameter of RVOT but provide a tangential 

profile of the outlet 16. Lines of RVOTD and PVAD measurements from PSAX view are perpendicular 

on the max RVOTD and PVAD by RT3DE. Thus, if 2DE is the only available method for PV and 

RVOT assessment, PLAX view should be used due to better visualization, and more alignment with 

RT3DE measurements of RVOTD and PVAD than PSAX. The study showed that RT3DE achieved 

excellent visualization of PVAA and calculation of its diameters in 88% of patients. In contrast, RVOT 
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visualization and diameter measurement was not optimal and this may be due to tissue dropout and 

gain adjustment during acquisition. The PV visualization was sufficiently achieved in 92% of patients. 

The number, thickness and mobility of leaflets could be clearly visualized in 70% of patients. 

Commissures and direction of closure lines also could be visualized. Since calculation of PV area was 

not obtained well in considerable number of studied group and had wide interobserver variability, it 

was excluded from further analysis. This may be due to multiple levels at which area could be 

calculated as well as time points; no standardized method is available. Providing these data potentially 

constitute future application of RT3DE in a wider clinical routine and may enhance understanding 

valve morphology by providing accurate measurements necessary for selection of proper management 

(balloon valvuloplasty, surgical valvotomy, stented pulmonary valve or valve replacement). Another 

advantage of RT3DE application was visualization of PPA in 78% of patients and DPA in 46% of 

patients, which may help in visualization of supravalvular stenosis (by measuring luminal reduction 

and level(s) of stenosis), post-stenotic dilatation (by measuring % of luminal dilatation) or evaluation 

prior to surgery (shunts or correction). 

Limitation of study 
 
The study was conducted in a small number of patients characterized by heterogeneous congenital heart 

defects. The age of patients 32  9.5 years affected the image quality of 2DE and RT3DE leading to 

significant difficulties in visualization of the RVOT. The data of the studied patients were not 

correlated with direct surgical visualization because a considerable number of patients were studied 

after corrective surgery or surgery was not the selected therapeutic strategy.  

Perspective 
 

The clinical value of RT3DE has to be validated in future studies by including selected group of 

patients with pulmonary stenosis with reference to intraoperative findings or MRI. For example a 

comparison of PV area by RT3DE at various levels to surgical findings could be helpful to develop a 

standardized approach to PV assessment. 

CONCLUSION 

RT3DE could help in clarification of detailed anatomy of RVOT and PV beyond the scope of 

established 2DE. A detailed assessment may provide a basis for proper selection of therapeutic 

strategy.  
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ABSTRACT 

Background: Determination of left atrial (LA) size and function is important in clinical decision-

making. Calculation of LA volume (LAV) is the most accurate index of LA size.   

Aim: To compare real-time 3-dimensional echocardiography (RT3DE) and 2-dimensional 

echocardiography (2DE) for calculation of LAV and function. 

Methods: Fifty patients were studied using 2DE and RT3DE for calculating LAV including: 

Maximum (Vmax), minimum (Vmin) and pre atrial contraction (VpreA) volumes. For 2DE, the 

formula: LAV = 8 (A1) (A2)/3  (L) was used, while for RT3DE, offline analysis was performed using 

commercially available software. LA function indices including total atrial stroke volume (TASV), 

active ASV (AASV), total atrial emptying fraction (TAEF), active AEF (AAEF), passive AEF (PAEF), 

and atrial expansion index (AEI) were calculated. 

Results: Patients were classified into 2 equal groups: group I with normal Vmax (<50ml) and group II 

with Vmax (50ml). Good correlation was obtained between RT3DE and 2DE for LAV (r = 0.64, P = 

0.001) in group I and (r = 0.83, P <0.0001) in group II. In group I, LAV and functions showed no 

significant difference by both techniques, while in group II, the Vmin and VpreA were significantly 

lower by RT3DE than 2DE (P = 0.009, 0.006). TAEF, AEI, and PAEF indices were significantly 

higher by RT3DE than 2DE in group II. 

Conclusion: RT3DE provides a reproducible assessment of active and passive LA function by 

volumetric cyclic changes. It is comparable and may be superior to 2DE due to its higher sensitivity to 

volume changes. 
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INTRODUCTION 

The left atrium (LA) serves as a reservoir, a conduit and a booster pump for blood returning from the 

lungs to the heart. Changes in LA size and function are associated with cardiovascular disease and are 

risk factors for atrial fibrillation, stroke and death (1-3). Echocardiography is the most commonly used 

non-invasive imaging technique for estimation of LA size. The M-mode measurement of the LA 

antero-posterior dimension as indicator for size has several limitations due to geometric assumption 

made about LA shape and due to slightly diverging position and orientation of imaging planes (4). It has 

been suggested that LA volume (LAV) may be a superior index for LA size (5). Two-dimensional 

echocardiographic (2DE) derived LAV has been shown to provide a more accurate assessment of LA 

size than M-mode but the problem of geometric assumption still remains (6,7). Three-dimensional 

echocardiography (3DE) has demonstrated superior accuracy for measuring left ventricular volume 

comparable to conventional 2DE and the 3DE reconstruction has been validated for LAV 

quantification (8-10). Real-time 3DE (RT3DE) allows fast acquisition from a single acoustic window of 

dynamic pyramidal data structure that encompasses the entire heart (11). The purpose of the present 

study was to compare between 2DE and RT3DE for calculation of LAV and assessment of LA function 

in normal-sized and dilated LA. 

 
METHODS 

 
The study retrospectively comprised randomly selected fifty patients in sinus rhythm with good 2DE 

image quality. A standard 2DE and RT3DE examinations were performed for all patients.  

Transthoracic 2DE 

2DE was undertaken with the patient lying in the left lateral decubitus with quite respiration using 

both apical and parasternal views. 2DE studies were performed using a 3.5 MHZ probe and a 

commercially available ultrasound system (Philips Sonos 7500, Best, The Netherlands). The following 

measures were taken: LA area at apical 4-chamber view (A1) by manual tracing of LA endocardial 

border. The superior border of atrial outline was a straight line connecting both sides of the mitral 

leaflet base attachment points. Both the atrial appendage and the pulmonary veins were excluded when 

visualized, LA area at apical 2-chamber (A2) with same tracing, and LA long axis (L): defined as the 

distance of the perpendicular line measured from the middle of the plane of mitral annulus to the 

superior aspect of LA in both 4 and 2-chamber views and the shortest of both lines was used (Figure 1). 
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LAV was calculated according to the formula(12): Volume = 8(A1) (A2) / 3 (L) at 3 phases of 

ventricular cardiac cycle: 1) maximum volume (V max): at end-systole, the time at which atrial volume 

was largest just before mitral valve opening, 2) minimum volume (V min): at end-diastole, the time at 

which atrial volume at its nadir before mitral valve closure, and 3) volume before atrial contraction (V 

pre A): the last frame before mitral valve reopening or at time of P wave on ECG. From the three 

volumes, the following measurements were selected as indices of LA function and calculated according 

to previous studies (13, 14): 

 1) Total Atrial Stroke Volume (TASV):  V max – V min. 

 2) Total Atrial Emptying Fraction (TAEF): TA SV/ V max x 100 

 3) Active Atrial Stroke Volume (AASV): V pre A – V min. 

 4) Active Atrial Emptying Fraction (AAEF): AA SV/ V pre A x 100 

 5) Atrial Expansion Index (AEI): TASV / V min x 100. 

 6) Passive Atrial Emptying Fraction (PAEF): (V max – V pre A) / V max x 100 

 

Fig 1: Calculation of LAV using 2DE by manual tracing of LA endocardial border at apical 4 
chambers (A1) and apical 2 chamber views (A2), L is the long axis, then apply the formula. 
 

Transthoracic RT3DE 

RT3DE was performed also with the patient lying in the left lateral decubitus using 4 MHZ 

transducer capable of providing real-time B-mode and colour-Doppler using same ultrasound system. 

The system scans a 60 o x 30 o 3D pyramid of data. 3D images were collected in full volume mode 
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approximately within 5-7 seconds of seconds of breath holding in expiration. The 3D data were 

transferred to an offline Q-lab system for analysis. Data were stored digitally and subsequently 

analysed. Analysis of 3D echo imaging had been based on a 2D approach relying on the echo images 

obtained from the apical views and on a semi automated tracing of endocardial border. This is 

performed by mark 5 points in the atrial surfaces of mitral annulus: at anterior, inferior, lateral and 

septal annuli and the 5th point at apex of LA. Once this is completed, the endocardial surface was 

automatically delineated and a mathematical model of the LA could be visualized from different points 

of views and the LAV calculation was obtained (Figure 2). Manual modification was made to correct 

the automatic tracings if needed. LAV was measured at the same phases as measured by 2DE and the 

same measurements calculated. All the recorded images were analysed at different times by two 

independent echocardiographers. The same images were also analyzed on a different day by one of 

these same observers. 

 

Fig 2: Calculation of LAV using RT3DE by automatic tracing using Q lab software. Upper 2 images is 
apical 4 chamber and 2 chamber views, by marking 5 points, the whole LA cast was obtained. 
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STATISTICAL ANALYSES  

All values of LAV and its functions were expressed as mean  SD. Paired sample t-test was 

performed to determine whether the difference in the values between 2 methods was significant or not. 

The level of significance was set to p<0.05. Regression analysis for detection of correlation between 

both techniques for all values, the correlation considered being significant <0.05 level. The statistical 

package used was SPSS version 12.1. Pearson’s coefficient was used for inter and intraobserver 

correlation between all LAV by both techniques. Interobserver agreement was studied according to 

Bland and Altman method (15). 

 

RESULTS 

A total of 50 patients with mean age 43.6  9.3 years and male percentage 66% were included 

in this study. The baseline criteria of all patients are listed in (Table 1). Calculation of LAV was 

obtained by 2DE in all patients within 10 minutes as mean time for every patient. According to V max, 

patients were classified into 2 equal groups: group I included patients with V max <50 ml, and group II 

included patients with V max 50 ml. There were no significant differences between both groups in 

age and sex distribution. Mild mitral regurgitation was present in 11 patients: 3 patients (12%) in 

Group I, 8 patients (32%) in Group II. Cardiac abnormalities (hypertension, coronary artery disease, or 

cardiomyopathy) were detected in 20 patients (80%) in Group II, whereas in Group I only 5 patients 

(20%) had cardiac abnormalities.  

Table 1:  Baseline criteria for all patients in both groups 

 
Total patients  

n= 50 
Group I  (V max < 

50 ml) n= 25 
Group II (V max ≥ 

50 ml) n= 25 
Age (year) 43.6  9.3 42.2  7.5 44.8  8.5 
Male Gender (%) 33 (66%) 17 (68%) 16 (66%) 
Clinical Diagnosis       
  Normal 
  Hypertension 
  Coronary disease 
  Cardiomyopathy 

 
25 (50%) 
13 (26%) 
7 (14%) 
5 (10%) 

 
20 (80%) 
3 (12%) 
2 (8%) 
0 (0%) 

 
5 (20%) 

10 (40%) 
5 (20%) 
5 (20%) 

Mitral regurgitation 
  None 
  Mild (grade 1) 

 
39 (78%) 
11 (22%) 

 
22 (88%) 
3 (12%) 

 
17 (68%) 
8 (32%) 

Medications 
 None 
 B-Blockers 
 ACE/I 
 Ca channel blocker 
 Nitrates 

 
25 (50%) 
2 (4%) 
9 (18%) 
9 (18%) 
5 (10%) 

 
20 (80%) 
0 (0%) 
2 (8%) 
3 (12%) 
0 (0%) 

 
5 (20%) 
2 (8%) 
7 (28%) 
6 (24%) 
5 (20%) 
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Both groups were compared to each other with respect to cyclic changes of LAV during the 

cardiac cycle and indices of functions were calculated (see Table 2). The three LAV were increased in 

group II, and thus TASV was nearly twice as large in group II than group I. All indices of active LA 

functions including TAEF, AAEF, and AEI were lower for group II indicating an impaired LA 

function.  

Table 2: Values of LAV and parameters of LA function in both groups using RT3DE and 2DE 

 
Group I  (V max< 50 ml) n= 

25 
Group II (V max≥ 50 ml) n= 

25 P value P value 
 RT3DE 2DE RT3DE 2DE * ** 
       

V max  37.1  11.5 38.2  10.7 79.1  26.4 84.2  33.6 NS NS 
V min  15.6  6.1 17.7  8.1 39.7  17.8 46.8  21.4 0.05 0.009 
V pre A  23.5  8.1 25.0  7.6 52.0  17.3 61.0  23.5 NS 0.006 
TSV  21.5  10.2 20.4  7.0 39.3  15.7 38.4  18.1 NS NS 
TA EF  56.3  15.6 55  14% 50.5  13.4 46.1  13.2 NS 0.04 
AA SV  8.0  6. 7.3  4 12.2  6.1 15.0  7.3 NS NS 
AA EF 30.2  28.1 31.4  17.8 25.7  14.0 26.4  12 NS NS 
AEI  17.0  12 14.2  7.4 11.5  5.4 9.4    4.0 NS 0.04 
AP EF  34.1  10.1 34.0  10.1 33.6  10.3 26.8  12.1 NS 0.01 
 

RT3DE acquisition: 

All RT3DE examination was carried out successfully and automatic tracing was possible. The 

acquisition time for RT3DE dataset was 15 seconds. Calculation of LAV was obtained within 5-7 

minutes per patient depending on image quality. LAV in group II was twice as large as group I. Indices 

of active LA function including (AAEF, AEI) were significantly less than group I. 

Comparison of 2DE and RT3DE 

There was a good correlation between both techniques for the three LAV measurements (r = 

0.64, P = 0.001) in group I and (r = 0.83, P < 0.0001) in group II. The results of linear regression 

analysis for both techniques are shown in Figure 3. By comparing the absolute figures of LAV and 

indices of function by both techniques, the values of RT3DE were not significantly different from that 

measured by 2DE either for LAV or function in group I. In group II, however the V min and V pre A 

were significantly lower by RT3DE than by 2DE and this was reflected on TAEF, AEI and PAEF 

indices which became higher by RT3DE than by 2DE (see Table 2). 

Observer agreement 

There was excellent concordance for the three LAV analysed between two independent 

observers (r = 0.97, P <0.0001) for RT3DE and (r = 0.98, P < 0.0001) for 2DE (Figure 3). According 
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to the Bland and Altman principle, 2DE showed good agreement with V min (mean difference: - 0.26  

3.17, agreement = - 6.6, 6.08) but with V max and V Pre A, the agreement was less (mean difference: 

6.03  9.43, agreement = - 12.83, 24.89) and (mean difference: 1.71  4.31, agreement = - 6.91, 10.33) 

respectively. Interobserver agreement for RT3DE was good in the three LAV. For V max, mean 

difference: 1.34  4.34, agreement = - 7.34, 10.02, for V pre A, mean difference: - 0.26  3.36, 

agreement = - 6.98, 6.56, and for V min, mean difference: 0.19  3.29, agreement = - 3.10, 3.48) 

(Figure 4,5,6). Intraobserver correlation was (r = 0.90, p<0.0001) and (r = 0.88, p < 0.0001) for RT3DE 

and 2DE respectively for the three LAV.  

Fig 3: Correlation between RT3DE and 2DE in calculation of the three LAV: V max, V min and V pre 
A in both groups  
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Fig 4: Interobserver agreement and correlation for measuring V max by 2DE and RT3DE 

 

Fig 5: Interobserver agreement and correlation for measuring V min by 2DE and RT3DE. 
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Fig 6: Interobserver agreement and correlation for measuring V pre A by 2DE and RT3DE. 

 

DISCUSSION 

This study showed feasibility and reproducibility of RT3DE in detection of cyclic changes in 

LAV and calculation of its function either in normal or dilated LA. Good correlation was found 

between RT3DE and 2DE. Studying LAV by RT3DE seems more logical because LA is a slightly 

tapered pillow shaped 3D structure without a natural long or short axis. Its shape can be distorted by its 

dilatation or dilatation of neighbouring structures. Hence, LAV measurement may be a better indicator 

of true LA size (5). The M-mode echocardiography for estimation of LA size is commonly used and 

widely accepted because of its simplicity and historical assumption that LA is spherical in shape but 

studies showed that it seriously underestimates the LA size (9,10). Use of 2D view to calculate LAV by 

single plane planimetry has limited reproducibility with a mean interobserver variability of 21% (16). 2D 

calculation of LAV by biplane method has a close correlation with LAV measured by cinecomputed 

tomography (17) and magnetic resonance imaging (MRI) (10). Reports about use of 3D reconstruction for 

calculation of LAV recommended its clinical application due to time saving and low interobserver 

variability (9) and its values are comparable to MRI (10). In the present study, the patients were classified 
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into normal and dilated LAV groups depending on large population study included 2041 normals and 

1274 abnormals where normal LAV was (47.35  17.38ml) and abnormal LAV was (50.8  19.3ml) 

(18). LAV was estimated by 2DE using biplane apical images and compared to values that obtained by 

RT3DE. In accordance with previous studies (4,10,19), it was found that there is a linear correlation 

between both techniques in calculation of LAV and function in normal or dilated LA. However, 2DE 

measurement of V min and V pre A was overestimated in the dilated LA group. Due to this 

overestimation, lower values of AA EF, AEI and AP EF were calculated. This in discordance with the 

previous study by Khankirawantana et al (9) which concluded that 2D calculation of LAV has a close 

correlation with 3D with underestimation of LAV especially if the volume was greater than 35 ml. The 

discrepancy between both studies is that they included LA appendage as a part of LA chamber, which 

was excluded by our measures. The overestimation of 2DE to cyclic changes in LAV may be due to the 

gain dependent nature of boundary echoes, which leads to inclusion of pulmonary veins or portion of 

appendage despite efforts to exclude them. With V min, both techniques showed higher interobserver 

agreement but with the larger volumes (V max and V Pre A), RT3DE showed better agreement than 

2DE. This also could be explained by difficulty in total exclusion of LA appendage and pulmonary 

veins by 2DE especially when LA dilates. This explanation was confirmed by previous studies that 

reported less clear visualization of LA appendage by 2DE than by 3D (20,21). 

 

Study Limitations  

We did not include LA appendage for calculation of LAV and function. Its variability in shape, its 

difficulty to measure and the lack for standard figures for its normal volume seems reasonable to 

exclude it. Also, the previous studies do not discuss the role of it (22,23). Another limitation with using 

RT3DE is total dependency on 2DE image quality and image artefacts could be created by motion or 

ectopics. 

 

CONCLUSION 

RT3DE provides an accurate measurement of LAV and function and could be considered as feasible 

and reproducible method for its clinical application. The visualization of LA in 3D shape independent 

of geometric assumption favours its use.                        
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ABSTRACT 

Background: The Frank-Starling law describes the relation between left ventricular volume and 

function. However, only a few studies described the relation between left atrial volume (LAV) and 

function. 

 

Objective: To describe a LA Frank-Starling law by studying changes in LAV measured by real-time 

three-dimensional echocardiography (RT3DE). 

 

Methods: LAV was calculated by RT3DE in 70 patients at end-systole (LAVmax), end-diastole 

(LAVmin) and pre-atrial contraction (LAVpre-A). According to LAVmax, patients were classified into 

three groups: LAVmax <50 ml (group I), LAVmax 50 to 70 ml (group II), and LAVmax >70 ml (group 

III). Calculated indices of LA pump function were active atrial stroke volume (SV) defined as LAVpre-A 

– LAVmin and active atrial emptying fraction (EF), defined as active atrial SV / LAVpre-A x 100%

 

Results: Active atrial SV was significantly higher in group II than in group I (mean (SD) 19.0 (9.2) vs. 

8.2 (4.9) ml, P <0.0001), in group III it was non-significantly lower compared to group II (16.7 (12.5) 

vs. 19.0 (9.2) ml). Active atrial SV correlated well with LAVpre-A (r = 0.56, P <0.0001), but decreased 

with larger LAVpre-A. Active atrial EF tended to be higher in group II than in group I (43.1 (18.2) vs. 

33.2 (17.5), P < 0.10), in group III it was significantly lower than in group II (26.2 (18.5) vs. 43.1 

(18.2), P <0.01). 

 

Conclusion: A Frank-Starling mechanism in the LA could be described by RT3DE, shown by an 

increase in LA contractility in response to an increase in LA preload up to a point, beyond which LA 

contractility decreased. 



Left atrial Frank-Starling law assessment 

INTRODUCTION 

The Frank-Starling law, describing the relationship between increased length of myocardial fibres and 

its mechanical performance, is important for cardiac function 1. The relation between myocardial 

preload and mechanical performance is described by a curve in which an upward position on the curve 

means increased performance, while a downward position means decreased myocardial performance 2. 

Assessment of left atrial (LA) function has important therapeutic and prognostic value 3. The 

instantaneous LA pressure-volume relation provides an accurate index of LA contractility 4. However, 

measurement of this index is invasive and technically difficult and therefore not suitable for routine 

clinical application 3. Non-invasive assessment of LA contractility has been studied by two-

dimensional echocardiography, Doppler parameters, cine computed tomography, radionuclide methods, 

and magnetic resonance imaging 5-9. In previous studies it was suggested that a Frank-Starling 

mechanism also existed in the human LA 10-12.  The LA serves as a reservoir, conduit and booster pump 

for blood returning from the lungs to the heart. LA volume (LAV) is a superior index of LA size 13 and 

owing to complex LA anatomy it may echocardiographically be best assessed by three-dimensional 

echocardiography 14,15. This study aimed at describing  LA Frank-Starling law by studying changes in 

LAV measured by real-time three-dimensional echocardiography (RT3DE). 

 

METHODS 

The study comprised 70 clinically stable patients (mean age 45.6  9.3 years, 66% males) in sinus 

rhythm without atrio-ventricular or intra-ventricular conduction abnormalities on a resting 12-lead 

electrocardiogram. Nineteen patients (27%) were not known with cardiovascular disease, 20 patients 

(29%) had essential hypertension, 16 patients (23%) had coronary heart disease, and 15 patients (21%) 

had non-compaction cardiomyopathy. None of these patients had mitral stenosis or significant (more 

than grade 1) mitral regurgitation. The patients were selected on good two-dimensional image quality. 

Transthoracic RT3DE 

RT3DE was performed with a Sonos 7500 ultrasound system (Philips Sonos 7500, Best, The 

Netherlands) attached to an X4 matrix array transducer capable of providing real-time B-mode images. 

Full volume three-dimensionsl images were collected within about 5-7 seconds of breath holding. 

Zoom function and gain adjustment were used to clarify the endocardial border. The probe position was 

modified to include the whole left atrium in the centre of the RT3DE image sector. The three-
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dimensional dataset was transferred to a Q-LAB system for offline analysis. Analysis of three-

dimensional images was based on a two-dimensional approach relying on the images obtained from an 

apical four-chamber view and on semi-automated tracing of the LA endocardial border for calculation 

of LAV. Tracing was performed by marking five atrial points: the anterior, inferior, lateral and septal 

mitral annuli and the LA apex. Once this was completed, the endocardial surface was automatically 

delineated and the LA model could be visualized from different points of views and LAV was obtained 

(Figure 1). Manual modifications were made to correct automatic tracings in the majority of patients, 

and in particular in patients with dilated LA to exclude the LA appendage and the pulmonary veins 

entrance from LAV. Borders that manifested as lines were traced in the middle of the line. In addition, 

careful attention was given to neighbouring well-visualized pixels as guidance for the true LA wall. 

 

Figure 1. Quad screen display of the Q-LAB analysis software showing methodology 
for left atrial volume calculation by marking the five left atrial points. 
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LAV Calculation 

LAV was measured at three phases of the cardiac cycle: (a) maximum volume (LAVmax) 

obtained from an end-systolic frame just before mitral valve opening, (b) minimum volume (LAVmin) 

obtained from an end-diastolic frame just before mitral valve closure, and (c) volume before atrial 

contraction (LAVpre-A) obtained from the last frame just before mitral valve reopening. 

 In accordance to previous studies 12,16, the following indices of LA function were assessed: (a) 

total atrial stroke volume (SV), defined as LAVmax - LAVmin, (b) total atrial emptying fraction (EF), 

defined as total atrial  SV / LAVmax x 100%, (c) active atrial SV, defined as LAVpre-A – LAVmin, (d) 

active atrial EF, defined as active atrial SV / LAVpre-A x 100%, (e) passive atrial SV, defined as 

LAVmax - LAVpre-A, (f) passive atrial EF as an index for LA conduit function, defined as passive atri

SV / LAV

al 

d as 

unction. 

max x 100%, and (g) atrial expansion index as an index for LA reservoir function, define

(LAVmax - LAVmin) / LAVmin x 100%. To characterize the three phases of LA activity, passive atrial 

SV and EF were defined as indices for LA conduit function, active atrial SV and EF for LA pump 

function, and atrial expansion index for LA reservoir f

Depending on LAVmax values, the patients were arbitrary classified into three groups: group I 

included 29 patients with LAVmax <50 ml, group II included 15 patients with LAVmax 50 to 70 ml, and 

group III included 26 patients with LAVmax >70 ml. 

  

STATISTICAL ANALYSES 

The statistical package used was SPSS version 12.1. All LAV values and its functions were expressed 

as mean (SD). An independent sample t-test was performed to determine whether the difference in the 

values was significant with a level of significance set to P <0.05. Interobserver agreements for LAVs, 

were expressed according to Bland and Altman method17.  

 

RESULTS 

Table 1 lists the baseline criteria of the different LAV groups. There were no significant differences in 

age and sex distribution between the groups. Mild mitral regurgitation was present in 19 patients: 4 

patients (14%) in group I, 5 patients (33%) in group II, and 10 patients (38%) in group III. All patients 
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in group II and III had cardiac abnormalities (hypertension, coronary artery disease, or 

cardiomyopathy), whereas in group I only 10 patients (34%) had cardiac abnormalities.  

Table 1: Baseline criteria of the studied left atrial volume groups. 
 

 
 

G I: Vmax <50 ml 
(n = 29) 

 
G II: Vmax 50 -70 ml 

(n = 15) 

 
G III: Vmax >70 ml 

(n = 26) 
    

Age 40.2  7.5 44.8  8.5 46.2  9.5 

Male gender (%) 17 (59%) 10 (67%) 19 (73%) 

Clinical Diagnosis 

  Normal 

  Hypertension 
  Coronary disease 
  Non-compaction CM 

 
19 (66%) 
7 (24%) 
3 (10%) 
0 (0%) 

 
0 (0%) 

10 (67%) 
5 (33%) 
0 (0%) 

 
0 (0%) 
3 (12%) 
8 (31%) 

15 (57%) 

Mitral regurgitation 
  None 
  Mild (grade 1) 

 
25 (86%) 
4 (14%) 

 
10 (67%) 
5 (33%) 

 
16 (62%) 
10 (38%) 

 

Calculation of LAV was obtained within 5-7 minutes for each patient. Absolute interobserver 

agreement for RT3DE was (mean difference 1.3 (4.3) ml, agreement - 7.3, 10.0 ml) for LAVmax, (mean 

difference - 0.3 (3.4) ml, agreement - 7.0, 6.6 ml) for LAVpre-A, and (mean difference 0.2 (3.3) ml, 

agreement - 3.1, 3.5 ml) for LAVmin (Figure 2). 

 

Figure 2.  Interobserver agreement for RT3DE measurement of the different left atrial volumes (LAV): 
maximum, minimum, and pre-atrial contraction according to the Bland and Altman principle. 
 

LA volumes in the different patient groups 

Figure 3 shows significant differences (higher values for patients with larger LAV) were noted for 

LAVmax in group I compared with II (36.3 (10.7) vs. 55.2 (5.7) ml, P <0.0001) and in group II 

compared with III (55.2 (5.7) vs. 92.0 (19.9) ml, P <0.0001), for LAVmin in group I compared with II 

(15.4 (5.5) vs. 23.1 (7.0) ml, P <0.0001) and in group II compared with III (23.1 (7.0) vs. 45.7 (15.9) 
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ml, P <0.0001), and for LAVpre-A in group I compared with II (23.6 (7.7) vs. 42.1 (9.6) ml, P <0.0001) 

and in group II compared with III (42.1 (9.6) vs. 62.4 (16.5) ml, P <0.0001). 

LA pump function  

Active atrial SV was significantly higher in group II than in group I (19.0 (9.2) vs. 8.2 (4.9) ml, P 

<0.0001), in group III it was non-significantly lower than in group II (16.7 (12.5) vs.19.0 (9.2) ml). 

Figure 4A shows that active atrial SV correlated well with LAVpre-A (r = 0.56, P <0.0001), but 

decreased with larger LAVpre-A. Active atrial EF tended to be higher in group II than in group I (43.1 

(18.2) vs. 33.2 (17.5), P < 0.10), in group III it was significantly lower than in group II (26.2 (18.5) vs. 

43.1 (18.2), P <0.01). 

LA conduit function  

Passive atrial SV was comparable in group I and group II (12.8 (7.4) vs. 13.2 (8.5) ml), but more than 

two-fold greater in group III than in group II (29.6 (24.4) vs.13.2 (8.5) ml, P <0.005). Passive atrial EF 

tended to be lower in group II than in group I (23.8 (16.1) vs. 34.0 (14.7) %, P < 0.10), but tended to be 

higher in group III than in group II (30.0 (19.3) vs. 23.8 (16.1) %, P <0.10). 

LA reservoir function  

The atrial expansion index was nearly identical in group I and II (156.1 (97.7) % and 158.8 (78.7)%, 

respectively), and non-significantly lower in group III (128.2 (107.3)%). 

Total LA function  

Total atrial SV was significantly larger in group II than in group I patients (32.2 (5.5) vs. 20.9 (8.9) ml, 

P <0.0001), and the largest total atrial SV was in group III (46.5 (25.5) ml, P <0.001). Figure 3B shows 

that total atrial SV correlated well with LAVmax (r = 0.82, P <0.0001). Total atrial EF was comparable 

in group I, II and III (56.4 (13.3) %, 58.5 (10.5) %, and 49.9 (15.6) %, respectively). 

 

Figure 3. Left atrial volume (LAV) at three phases: (A) Maximum, (B) pre-atrial contraction, and (C) 
minimum in the different study groups. 
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Figure 4. (A) Relation between pre-atrial contraction left atrial volumes (LAV) and active atrial stroke 
volume; (B) maximum left atrial volumes and total atrial stroke volume (left). 
 
 
 DISCUSSION 
LA function significantly contributes to the maintenance of cardiac output and impairment of its 

function contributes to circulatory failure, mitral regurgitation, atrial fibrillation and stroke 18,19. 

Previous studies assessed LA function by invasive pressure-volume loop determination 4, or by LAV 

changes assessed by nuclear scintigraphy, computed tomography, or magnetic resonance imaging 7,9. 

RT3DE is an interestingly alternative for LAV assessment because of availability, rapid acquisition and 

analysis, low cost, no need for contrast or radiation, and relatively high temporal resolution. In this 

study LAV was assessed in the three atrial phases by RT3DE. 

To the best of our knowledge, this is the first RT3DE study to describe the existence of a 

Frank-Starling mechanism in the LA. The Frank-Starling mechanism was shown by an increase in LA 

contractility in response to an increase in LA preload up to a point, beyond which LA contractility 

decreased (Figure 4A). 

 Despite the correlation between an increase in LAVpre-A and active atrial SV in patients with 

normal to moderately enlarged LAV, active atrial SV reached a plateau and even decreased in patients 

with the largest LAV. These findings are in accordance with previous non-invasive and invasive 

studies 3,5,20. Active atrial SV increase in response to an increase in LAVpre-A may be related not only 

to a pressure increase but also to an enhanced inherent inotropic state of LA myocardium. This may 

explain the improvement of atrial pump function after digoxin administration in patients with heart 

failure 6.  The clinical implication of the described Frank-Starling law in the LA is its role in heart 

failure. In early stages of heart failure, the LA compensates well by mechanical adaptation to the 

increased hemodynamic load which may prevent or delay appearance of symptoms of heart failure 11. 

Thus, evaluation of LA function in heart failure patients will have therapeutic and prognostic value. 
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Another clinical implication is that LA functional assessment may help as a predictor for development 

of atrial fibrillation and maintenance of sinus rhythm after cardioversion 21. 

LA conduit function is mainly determined by the rate of left ventricular relaxation 22. This 

may explain the tendency for a reduction in passive atrial EF in group II patients, in whom LV diastolic 

function is impaired due to a high incidence of hypertension and ischemic heart disease. The increased 

LA conduit function in group III patients appears as a compensatory mechanism to counterbalance 

decreased LA pump function 19,23. These changes in LA conduit function due to impaired left 

ventricular relaxation are reflected in changes in mitral inflow E/A ratio. This may explain the 

improvement in LA function in patients with restrictive physiology after angiotensin converting 

enzyme inhibitor therapy 24. 

LA reservoir function is determined by LA myocardial contraction and relaxation, and mitral 

annulus displacement during left ventricular contraction 25,26. In this study there was only a non-

significant decrease in LA reservoir function in patients with the largest LAV. This may be due to the 

multi-factorial mechanisms responsible for LA reservoir dysfunction. 

Study limitations 

LA tracing can be problematic owing to (a) decreased resolution of three-dimensional imaging 

compared with two-dimensional imaging, (b) the LA is in the far-field, and (c) some LA walls 

suffering from lateral resolution by which pixels will become lines in the image display. Because the 

objective of our study was to prove a physiological concept rather than to demonstrate the feasibility of 

three-dimensional assessment for LA volumes we only included patients with good image quality in 

our study (representing about one third of routinely referred patients). Because of this selection, we 

cannot make recommendations on the routine clinical value for routine LAV measurements and 

assessment of LAV changes. For such recommendations intra- and interobserver variabilities and the 

accuracy of such measurements (compared to a “gold standard”) should be assessed in the whole 

spectrum of image qualities. 

CONCLUSION 

In this RT3DE study, the presence of a Frank-Starling mechanism was shown by an increase in LA 

contractility in response to an increase in LA preload up to a point, beyond which LA contractility 

decreased. RT3DE assessment of LAV may help in understanding LA physiology and clinical 

assessment.    
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ABSTRACT 

The study included 30 patients with hypertrophic cardiomyopathy (HCM) (obstructive and non-

obstructive) and 15 control subjects. End-diastolic mitral annulus area (MAA3D) and mitral valve area 

(MVA3D) were measured by real-time 3-dimensional (3D) echocardiography . MVA2D and peak mitral 

inflow A wave velocity (V) were measured by 2-dimensional (2D) echocardiography. Left atrial 

ejection force (LA-EF) was calculated by 2D echocardiography and real-time 3D echocardiography 

using formula: 0.5 x 1.06 x (MAA or MVA) x V2, where (1.06) is blood viscosity. LA-EF2D-MVA, LA-

EF3D-MVA, LA-EF3D-MAA, and V were significantly higher in patients with HCM than control subjects 

(p<0.001). LA-EF2D-MVA and LA-EF3D-MVA were lower than LA-EF3D-MAA in HCM only (p<0.001). In 

obstructive HCM, LA-EF2D-MVA, LA-EF3D-MVA, LA-EF3D-MAA and V were significantly higher than in 

non-obstructive HCM (p<0.05). LV outflow tract gradient contributed independently to high LA-EF in 

obstructive HCM. We concluded that HCM is associated with higher LA-EF than normal, and higher in 

obstructive HCM than non-obstructive indicating a higher atrial workload that is reflected by LA-EF3D-

MAA.  
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INTRODUCTION 

Hypertrophic cardiomyopathy (HCM) is a relatively common form of genetic heart disease affecting 

approximately 1 in 500 people in the general population 1,2. The disease is characterized by asymmetric 

hypertrophy involving primarily the ventricular septum 3-5. The pathophysiologic appearance of HCM 

is complex and includes dynamic left ventricular (LV) outflow tract (LVOT) obstruction, mitral 

regurgitation, diastolic dysfunction, myocardial ischemia and cardiac arrhythmia 6. Diastolic 

dysfunction is more common than systolic dysfunction in HCM. Marked LV hypertrophy, interstitial 

fibrosis and myocardial ischemia all contribute to reduced ventricular compliance and impaired 

relaxation. These factors contribute to elevated left atrial (LA) and pulmonary vascular pressures 5. 

Decreased compliance also affects LA reservoir function and may affect cardiac output 7. The thin-

walled LA is sensitive to volume and pressure changes 8. Assessment of diastolic function through 

measurement of the components of ventricular filling usually does not include LA contractile function 

9. LA ejection force (LA-EF) defined as the force exerted by the LA to accelerate blood into the LV 

during atrial systole provides a physiological assessment of LA systolic function 10. Based on the 

second law of Newton that stated force = mass X acceleration, LA-EF was calculated by the equation: 

0.5 x 1.06 x (MAA or MVA) x V2, and 0.5 is a coefficient factor. We believe that LA function should 

be included in the clinical assessment of HCM. This study aimed to assess LA-EF non-invasively in 

patients with HCM using real-time (RT) 3-dimensional (3D) echocardiography (3DE).   

METHODS 

The study included thirty patients (80% males, mean age 38  15 years) with an established diagnosis 

of HCM11 and good 2-diensional (2D) echocardiography (2DE) image quality. According to the type of 

HCM, patients were classified into two groups. The non-obstructive group included 20 patients with 

LVOT gradient < 50 mmHg, and the obstructive group included 10 patients with LVOT gradient 50 

mmHg or greater. A group of 15 healthy age-matched adults (mean age 35  16 years) without 

evidence of cardiovascular disease served as control subjects. All patients and control subjects were 

examined by 2DE and RT3DE. Because of 2DE and RT3DE are performed routinely in our lab, only 

informed consent was obtained from our patients  
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Transthoracic 2DE 

2DE was undertaken with the patient lying in the left lateral decubitus using both apical and parasternal 

views. The 2DE studies were performed using a 3.5 MHZ transducer and a commercially available 

ultrasound system (Sonos 7500, Philips, Best, The Netherlands). The following measures were 

obtained: (1) site and maximal thickness of asymmetric LV hypertrophy from the 2DE images (septal, 

antero-lateral, apical, or concentric), (2) mitral valve area (2DMVA) measured by planimetry from a 

parasternal short axis view and defined as the narrowest area at maximum valve opening, (3) LV end-

diastolic (LV-EDD) and LV end-systolic dimensions (LV-ESD) by M-mode, (4) LV fractional 

shortening (LV-FS) calculated as (LV-EDD – LV-ESD) / LV-EDD x 100%, (5) V and peak velocity of 

transmitral E wave with pulsed Doppler, (6) E/A ratio calculation, (7) LVOT gradient with continuous 

wave Doppler using Bernoulli equation, (8) LA-EF2D-MVA calculated as 0.5 x 1.06 x MVA x V2, where 

(V) is the peak velocity of A wave, (1.06) is blood viscosity and (0.5) is a coefficient factor12, and 9) 

mitral regurgitation graded as mild (jet area <4 cm2), moderate (jet area 4-8 cm2), and severe (jet area 

>8 cm2) according to maximum jet area by color Doppler 13. 

Transthoracic RT3DE 

RT3DE was performed using the same ultrasound system, and performed with a X-4 matrix transducer 

capable of providing RT B-mode and color Doppler. The 3D images were collected within 5 to 7 

seconds of breath holding in full volume mode. The 3D data were transferred to an offline analysis 

system (Tom Tec, Munich, Germany). Data were stored digitally and subsequently evaluated by two 

echocardiographers. Data analysis of 3D echo imaging was based on a 2D approach relying on the 

echocardiographic images obtained from the apical views and on manual tracing of inner border of the 

mitral annulus (MA). Once this was completed the surface area was automatically delineated and could 

be visualized from different points of views. Manual modification was done to correct any image if 

necessary. The following measures were obtained: (1) 3DMVA measured by planimetry as described in 

the 2DE section, (2) MA area (3DMAA) measured at end-diastole (just before mitral valve closure), (3) 

LA-EF3D-MVA calculated by the same formula used in 2DE, and (4) LA-EF3D-MAA calculated by 

formula10 as 0.5 x 1.06 x MAA x V 2. 
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Statistical Analysis 

All data obtained by 2DE or RT3DE were presented as mean  SD. Data analysis was performed using 

statistical software (SPSS, version 12.1, SPSS Inc, Chicago). Independent sample t-test was performed 

to compare between means of variables of groups to determine the statistical significance of difference. 

The level of significance was set to P less than 0.05. Interobserver agreement for MAA measurements 

by RT3DE was expressed according to Bland and Altman method14.    

 

RESULTS 

All patients were in sinus rhythm (mean heart rate 73  14 beats per minute) and had normal LV 

systolic function and type I diastolic dysfunction (E/A ratio <0.75)15. The clinical and 

echocardiographic data of all HCM patients are displayed in Table 1. Mitral regurgitation was present 

in 22 patients (73%), 15 patients (50%) had mild regurgitation, and 7 patients (23%) had moderate to 

severe regurgitation. There were no significant differences in clinical variables (age, sex) between the 

two patient groups. Obstructive cases had significantly lower LV-ESD (2.3  0.7 vs. 3.1  0.7 cm, P 

<0.01) and significantly higher LV fractional shortening (48.0  6.0 vs. 34.3  8.0 %, P <0.001) than 

non-obstructive cases, whereas LV-EDD was comparable in both patient groups. Mean thickness of LV 

hypertrophy, its distribution, and the prevalence and severity of mitral regurgitation were comparable 

in both patients groups. Obstructive cases had a higher mean transmitral V (74.2  19.7 vs. 50.1  13.8 

cm/sec, P <0.01) and LA-EF2D-MVA (12.2  6.4 vs. 6.7  4.7 kdynes, P <0.001) compared to non-

obstructive patients.  

Table 1: Clinical and echocardiographic data 

 
HCM patients 

(n = 30) 
Non-obstructive 

(n = 20) 
Obstructive 

(n = 10) 
Age (yr) 38  15 37  15 39  14 
Male gender 24 (80%) 16 (80%) 8 (80%) 

LV-EDD (cm) 4.7  0.8 4.8  0.6 4.4  1.0 
LV-ESD (cm) 2.9  0.8 3.1  0.7 2.3  0.7* 
LV-FS (%) 38.9  9.8 34.3  8.0 48.0  6.0$ 
LVOT gradient (mmHg) 24.9  25.5 8.1  8.5 58.9  8.6$ 
LV hypertrophy (cm) 2.2  0.7 2.2  0.7 2.2  0.4 

Site of LV hypertrophy 

Septal 
Septal + Anterolateral 
Apical 
Symmetrical 

 
22 (73%) 
4 (13%) 
2 (7%) 
2 (7%) 

 
13 (65%) 
3 (15%) 
2 (10%) 
2 (10%) 

 
9 (90%) 
1 (10%) 
0 (0%) 
0 (0%) 

 135



Chapter 12 
 

2DMVA (cm2) 4.3  1.4 4.4  1.5 4.0  1.3 
3DMVA (cm2) 4.2  1.3 4.3  1.3 4.0  1.4 
3DMAA (cm2) 10.1  4.7 10.2  4.7 9.8  5.1 
Peak A velocity (cm/s) 61.5  20.3 50.1  13.8 74.2  19.7* 
LA-EF2D-MVA (kdynes) 9.2  6.1 6.7  4.7 12.2  6.4$ 
LA-EF3D-MVA (kdynes) 9.1  5.6 6.8  5.1 11.4  7.1$  
LA-EF3D-MAA (kdynes) 21.5  16.3 14.7  12.0 29.5  17.6* 

Mitral regurgitation 

No 
Mild 
Moderate-severe 
 

 
8 (27%) 

15 (50%) 
7 (23%) 

 

 
5 (25%) 

10 (50%) 
5 (25%) 

 

 
3 (30%) 
5 (50%) 
2 (20%) 

 

HCM: Hypertrophic cardiomyopathy; LA-EF: left atrial ejection force; LV: left ventricular; LV-EDD: 
LV end-diastolic dimension, LV-ESD: LV end-systolic dimension, LV-FS: LV fractional shortening, 
LVOT: LV outflow tract, MAA: mitral annulus area; MVA: mitral valve area, 2D: 2-diensional; 3D:3-
diensional, P value  <0.05*and  <0.001$ 

 

Acquisition and post-processing of RT3DE data were performed successfully with clear 

delineation of the MA in all patients (Figure 1). 3DMAA showed good agreement between two 

independent observers (mean difference = 0.01  0.17 cm2, agreement = - 0.33, 0.35 cm2). No 

significant differences between the obstructive and non-obstructive patient groups were found for 

3DMAA and 3DMVA. In the overall HCM group, LA-EF2D-MVA was well correlated to LA-EF3D-MVA (r = 

0.96, P <0.0001) and LA-EF3D-MAA (r = 0.67, P <0.001). No significant difference was found between 

LA-EF2D-MVA and LA-EF3D-MVA. Both LA-EF3D-MVA (11.4  7.1 vs. 6.8  5.1 kdynes, P <0.05) and 

LA-EF3D-MAA (29.5  17.6 vs. 14.7  12.0 kdynes, P <0.05) were significantly higher in obstructive 

group than in non-obstructive group. In all patients with HCM, LA-EF3D-MAA was significantly higher 

than LA-EF2D-MVA (21.5  16.3 vs. 9.2  6.1 kdynes, P <0.001) and LA-EF3D-MVA (21.5  16.3 vs. 9.1 

± 5.6 kdynes, P <0.001). V was well correlated to LA-EF3D-MVA (r = 0.75, P <0.0001), LA-EF3D-MAA (r 

= 0.85, P <0.0001), and LA-EF2D-MVA (r = 0.85, P <0.0001).  To detect the contributing factors 

associated with higher LA-EF in the obstructive group, multivariate regression analysis was done. 

Among the echocardiographic factors that differed in both studied groups (LV-ESD, LV fractional 

shortening, LVOT gradient), the LVOT gradient was the only contributing factor associated with 

higher LA-EF by 2DE and RT3DE in the obstructive group.  

 

Compared with control subjects, 3DMAA was significantly larger in both HCM groups than in 

control group (P <0.01). V was higher in both HCM groups than control group (P <0.05). Contrary to 

patients with HCM, no significant difference was detected between LA-EF3D-MAA, LA-EF2D-MVA, and 

LA-EF3D-MVA in control subjects. LA-EF3D-MAA, LA-EF2D-MVA, and LA-EF3D-MVA were significantly
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lower than both obstructive and non-obstructive HCM groups (P <0.001). In obstructive HCM group, 

significantly higher values for and LA-EF by 2DE and RT3DE were found (Table 2). 

Table 2: Comparison between patients with hypertrophic cardiomyopathy and normal subjects  

 
Normal subjects 

(n = 15) 
Non-obstructive HCM 

(n = 20) 
Obstructive HCM 

(n = 10) 
MVA2D (cm2) 4.8  0.9 4.4  1.5 4.0  1.3 
MVA3D (cm2) 4.9  0.7 4.3  1.3 4.0  1.4 
MAA3D  (cm2) 6.1  1.7$ 10.2  4.7 9.8  5.1 
Peak A velocity (cm/s) 39.7  9.9$ 50.1  13.8 74.2  19.7* 
LA-EF2D-MVA (kdynes) 4.2  2.9$ 6.7  4.7 12.2  6.4* 
LA-EF3D-MVA (kdynes) 4.3  2.3$ 6.8  5.1 11.4  7.1* 
LA-EF3D-MAA (kdynes) 5.0  2.1$ 14.7  12.0 29.5  17.6* 

HCM: Hypertrophic cardiomyopathy; LA-EF: left atrial ejection force; MAA: mitral annulus area; 
MVA: mitral valve area, 2D: 2-dimensional; 3D:3-dimensional, * P value< 0.05 between obstructive 
group and non-obstructive, $ P value <0.05 between control group and both HCM groups. 
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DISCUSSION 
 

In this study, LA-EF was used as a marker for LA contractile function in HCM. LA-EF by 2DE and 

RT3DE was higher in patients with HCM compared with control subjects, with the highest value found 

in obstructive HCM. LA-EF3D-MAA calculated by the MAA3D-derived formula in HCM patients was 

higher than by the MVA-derived formula either by 2DE or RT3DE. This difference was not present in 

control subjects. As seen in Figure 3, high LA-EF in HCM was correlated with the V, and thus the 

severity of LV diastolic dysfunction. In our opinion, the clinical implication of this study is the concept 

that LA-EF is a sensitive indicator for LA work that reflects the severity of LV diastolic dysfunction.  

 

In this study, RT3DE helped in good visualization of MA in all patients. Tracing of 3DMAA 

was successfully performed with good interobserver agreement. Previous studies describing LA-EF by 

2DE used MVA for calculation12,16,17, whereas in the current study, LA-EF was assessed by RT3DE 

using 3DMVA and 3DMAA. The values of LA-EF by both techniques regardless of the formula used were 

well correlated. However, a higher LA-EF3D-MAA compared to LA-EF3D-MVA and LA-EF2D-MVA was 

found in HCM patients but not in control subjects. This could be explained by overstretching and 

dilatation of MAA in patients with HCM, 18 which increased the difference between MAA and MVA 

compared to control subjects. The high LA-EF3D-MAA value in patients with HCM is concordant with 

the concept that LA work increases significantly with higher LA preload 12,17,19. Our findings are in 

accordance with Nagueh et al 20 who reported high LA-EF2D-MAA in patients with obstructive HCM. 

The higher value of LA-EF in patients with obstructive HCM compared with non-obstructive HCM 

may be explained by augmentation of LA contractility because of higher LV resistance. Therefore, 

successful therapeutic attempts to decrease LVOT gradients such as septal ablation reduced LA-EF 

indicating reduction of LA workload 20.  
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CONCLUSION 

HCM is associated with high LA-EF indicating a high LA workload especially in obstructive type. For 

RT3DE, LA-EF should be determined in patients with HCM by MAA-derived formula instead of 

MVA-derived formula because of MA dilatation. Thus, LA-EF3D-MAA is recommended as a better 

indicator for LA work in HCM and this may help in the clinical assessment and follow up. 
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Summary 

Over the last few years, the introduction of matrix array transducer and advances in computer software 

analysis technology led to enhancement of real-time three-dimensional echocardiography (RT3DE) to be applied 

for clinical utility. By this transducer, the entire heart image could be obtained by a pyramidal full-volume 

acquisition of four cardiac cycles. The development in software made the data off-line analysis faster and easier.  

Application of RT3DE for diagnosis of many cardiovascular abnormalities has been proven and well validated. 

RT3DE assessment of LV volumes, function, mass, and testing dyssynchrony is more accurate and reproducible 

than 2DE and comparable to MRI. RT3DE assessment of valves (especially mitral valve), and congenital septal 

defects has a good advantage for direct visualization in a surgical view. Time now, RT3DE achieved rapid 

transition from academic research field limited to selected patient series to the daily routine clinical practice. 

RT3DE In the course of time RT3DE will be more integrated with 2DE for full and accurate echocardiographic 

examination. The aim of this thesis was to investigate the feasibility and clinical applicability of RT3DE 

anatomical and functional assessment of other important cardiac structures little or not studied before.    

 

RT3DE assessment of tricuspid annulus: (Chapter 2, 3)  

In both chapters, an actual description of the tricuspid valve annulus morphology was obtained by RT3DE. Its 

shape was evident as an oval and not completely circular. RT3DE measurement of tricuspid annulus area and 

diameter is superior to 2DE measurements and comparable to MRI. The ability to study the cyclic changes of the 

annulus area and diameter during systole and diastole helps in calculation of the annular function. RT3DE 

functional assessment of the annulus has an important surgical implication and can be used as a marker of right 

ventricular function.  

 

RT3DE assessment of tricuspid valve: (Chapter 4, 5) 

RT3DE was applied for quantitative and qualitative assessment of the normal tricuspid valve. The qualitative 

assessment included morphologic description of the three leaflets shape, position and their relation to each other 

and to the surrounding structures. By RT3DE description, the identification of the each leaflet seen by variable 

2DE views could be clearly defined. The quantative assessment included measurements of tricuspid valve area, 

commissural width, tricuspid annular area and diameter. Chapter 4 described the value of RT3DE assessment in 

rheumatic tricuspid valve stenosis. Through RT3DE enface view, a detailed morphological assessment of 

mobility, thickness and calcification of all tricuspid valve leaflets was achieved. RT3DE was helpful for 

assessment of stenosis severity through measurement of valve orifice area, and the three commissural widths. All 

these information had an impact on the selection of therapeutic strategy. 

 

RT3DE assessment of mitral annulus: (Chapter 6, 7) 

Chapter 6 explained the feasibility and reliability of RT3DE for assessment of the true mitral annulus area and 

diameter. Its shape was seen as D-shaped and not completely circular. MRI measurements of mitral annulus were 

used as a gold standard to compare between 2DE and RT3DE measurements. It showed underestimation of 2DE 

while RT3DE was superior to it and comparable to MRI. The accuracy of RT3DE measurements was obtained 

with good interobserver and intraobserver agreements. Chapter 7 assessed the morphological and functional 

changes of mitral annulus in both dilated and hypertrophic cardiomyopathy. The annulus increased in size and 
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became flat due to over stretching in both types. Assessment of mitral annulus function by RT3DE calculation of 

fractional area changes and fractional shortening showed augmented function in hypertrophic cardiomyopathy 

and impaired in dilated cardiomyopathy. RT3DE measurements in both types were comparable with MRI 

measurements with good interobserver agreement.  

 

RT3DE assessment of mitral stenosis: (Chapter 8) 

Chapter 8 applied a new proposed RT3DE score for evaluation of mitral valve stenosis before percutaneous 

mitral valvuloplasty. Through RT3DE enface view, the score assessed each part of the two leaflets separately 

including mobility, thickness, and calcification. In addition, chordal thickness, mobility and separation are 

included in the score. The definition of mild, moderate and severe valve affection was settled. Compared to the 

standard 2DE Wilkins' score, the score has many advantages including simple, less subjective and less 

interobserver variability. Its application added more valuable information needed before valvuloplasty and could 

predict the results and complications.   

 

RT3DE assessment of right ventricular outflow tract and pulmonary valve: (Chapter 9) 

Chapter 9 applied RT3DE for morphologic description of right ventricular outflow tract and pulmonary valve. 

Qualitative assessment of outflow tract, pulmonary valve annulus, pulmonary valve, and proximal pulmonary 

artery was achieved in a considerable number of patients. RT3DE measurements of the outflow tract and 

pulmonary valve annulus diameter were higher than that obtained by 2DE. 

 

RT3DE assessment of left atrial volume and function: (Chapter 10, 11, 12) 

Chapter 10 described the feasibility and reliability of RT3DE for assessment of left atrial volume at three phases 

of cardiac cycle (maximum volume, minimum volume, and pre-atrial contraction volume). The advantage of 

RT3DE over 2DE in calculation of left atrial volume is the absence of geometric assumption and thus accuracy 

in both normal and dilated left atrium. Both active and passive left atrial function could be assessed through the 

volumetric changes during the cardiac cycle. The logic understanding of left atrial physiology accepts the 

existence of left atrial Frank-Starling mechanism that evidenced by an increase in left atrial contractility in 

response to an increase in preload up to a certain point, beyond which the left atrial contractility decreased 

(Chapter 11). Chapter 12 described the calculation of left atrial ejection force in normals and in patients with 

hypertrophic cardiomyopathy which provides a physiologic assessment of left atrial systolic function. The 

RT3DE calculation of ejection force by the annulus area-derived formula showed that hypertrophic 

cardiomyopathy is associated with higher ejection force than normal, and higher in obstructive type than non-

obstructive indicating a higher atrial workload which is logic. The study concluded that ejection force should be 

determined by the annulus area-derived formula especially in hypertrophic cardiomyopathy instead of valve 

area-derived formula due to annular dilatation.  

 

 

 

 

 143



Chapter 13 
 

Conclusion 

1. RT3DE is reliable and feasible technique achieved an accurate assessment (shape, size and function) of 

both mitral and tricuspid annulus irrespective to the annulus size (normal or dilated) comparable to 

MRI. 

2. RT3DE is helpful in morphologic and functional assessment of the tricuspid valve both normal and 

stenotic through the measurement of valve area and commissural width. 

3. The newly proposed RT3DE score for assessment of mitral valve before percutaneous valvuloplasty is 

simple, reliable and clinician can depend on it for better prediction of the procedure outcome. 

4. RT3DE provided detailed qualitative and quantitative information on the right ventricular outflow tract 

and pulmonary valve. 

5. RT3DE became a standard for volume quantification of both ventricles. With the same principle, left 

atrial volume quantification was easily obtained by RT3DE. 

6. RT3DE study of the left atrial volume through cardiac cycle helped in assessment of active and passive 

atrial function and described the existence of Frank-Starling mechanism. 

7. Calculation of left atrial ejection force by RT3DE annulus area-derived formula is superior than valve 

area-derived formula especially in condition of increased atrial load e.g. hypertrophic cardiomyopathy. 

 

Future Perspectives 

Development and advances in probe technology and software analysis are ongoing. This will improve image 

quality and analysis that will be impacted on the diagnostic performance and clinical application. One of the 

major advance is the introduction of broadband monocrystal transducer that will allow high-resolution harmonic 

imaging with improved cavity delineation due to its better penetration and increased signal to noise ratio. 

Transesophageal monocrystal matrix transducer will carry good imaging performance. Real-time tissue tagging 

and tracking for mechanical quantification of the myocardium will help in assessment of myocardial strain in all 

directions (radial, longitudinal, and circumferential). Development of one transducer capable to do 2DE, RT3DE, 

color and tissue Doppler examination will help in full assessment within short time. Advances in software 

analysis can incorporate the 3D data set into digital system.    
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Samenvatting 

Gedurende de laatste paar jaar heeft de introductie van de matrix transducer en vooruitgang in computer 

programmatuur geleid tot verbetering van de real-time drie dimensionale echo (RT3DE) voor klinisch gebruik. 

Met behulp van deze transducer kan het hele hart in beeld worden gebracht door acquisitie van piramidaal 

volumes van vier hart cycli. De nieuwe ontwikkelingen in programmatuur hebben de analyse sneller en 

gemakkelijker gemaakt. Toepassingen van RT3DE voor diagnose van vele cardiovasculaire afwijkingen is 

aangetoond en gevalideerd. RT3DE bepaling van linker kamer volume functie massa en beoordeling van 

dyssynchrony is meer precies en reproduceerbaar geworden dan 2DE en vergelijkbaar met MRI. RT3DE 

bepaling van klepafwijkingen (speciaal de mitraalklep) en congenitale afwijkingen kunnen worden getoond in 

chirurgische doorsneden. Het is dus nu tijd voor RT3DE om een transitie te maken van academische research 

naar dagelijkse routine praktijk. RT3DE moeten worden geïntegreerd met 2DE voor een volledige 

echocardiografische onderzoek.  

Het doel van dit proefschrift is om de mogelijkheden en klinische toepassingen van RT3DE in zijn anatomische 

en functionele bepaling van andere belangrijke cardiale structuren zichtbaar te maken. 

 

RT3DE bepaling van de annulus tricuspidalis (Hoofdstuk 2, 3) 

In beide hoofdstukken wordt een beschrijving gegeven van de morfologie van tricuspidalis klep annulus welke 

bepaald werd met RT3DE. De vorm was ovaal en niet geheel circulair. RT3DE bepaling van tricuspidalis 

annulus oppervlakte en diameter is beter dan de 2DE bepalingen en vergelijkbaar met MRI. De mogelijkheid om 

de cyclische verandering van de oppervlakke van de annulus en de diameter tijdens de systole en diastole te 

bepalen helpt in de bepaling van de annulaire functie. RT3DE functionele bepaling van de annulus heeft 

belangrijke chirurgische implicaties en kan gebruikt worden als onderdeel van rechter kamer functie. 

 

RT3DE bepaling van tricuspidalis klep (Hoofdstuk 4,5) 

RT3DE werd gebruikt voor de kwantitatieve en kwalitatieve bepalingen van de normale tricuspidalis klep. De 

kwalitatieve bepaling hield in een morfologische beschrijving van de drie onderdelen van de klep voor wat 

betreft zijn vorm, positie en de relatie tot elkaar. Met behulp van RT3DE kan elk klepblad goed gedefinieerd 

worden. De kwantitatieve bepaling hielp o.a. in bepaling van de tricuspidalis klep oppervlakte, de wijdte van de 

commissure, de tricuspidalis annulus oppervlakte en diameter. Hoofdstuk 4 beschrijft de waarde van RT3DE in 

de reumatische tricuspidalis klep stenose door een enface bepaling van de klep.  
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RT3DE kan een gedetailleerde morfologische bepaling van de beweeglijkheid, dikte en calcificatie van alle 

klepdeeltjes geven. RT3DE was behulpzaam voor de bepaling van de ernst van de tricuspidalis stenose d.m.v de 

bepaling van het klep oppervlakte en de drie wijdtes van de commissure. Al deze informatie zou een impact 

kunnen hebben voor de selectie van een strategie voor een eventuele therapie.  

 

RT3DE bepaling van de mitraalklep annulus (Hoofdstuk 6,7) 

In hoofdstuk 6 wordt de mogelijkheid en de betrouwbaarheid van RT3DE bepaling van de echte annulus 

oppervlakte van de mitralis en zijn diameter getoond. De vorm van de annulus wordt gezien als een zogenaamde 

D-vorm en is niet compleet circulair. De metingen van de mitraal annulus werden getest met een gouden 

standaard zoals MRI en er werd vergeleken tussen de 2DE en de 3DE bepalingen. 2DE toont een onderschatting 

van de meting terwijl 3DE superieur was aan 2DE en vergelijkbaar met MRI. De nauwkeurigheid van RT3DE 

bepalingen werd bepaald met goede interobserver en intraobserver overeenkomsten. Hoofdstuk 7 bepaalde de 

morfologische en functionele veranderingen van de mitraal annulus in zowel hypertrofische als gedilateerde 

cardiomyopathie. De annulus was toegenomen in grootte en werd overrekt in beide types cardiomyopathie. De 

bepaling van de mitraal klep annulus functie door 3DE voor wat betreft de meting van de veranderingen in 

oppervlakte en verkorting toonde een toegenomen functie in hypertrofische cardiomyopathie en een afgenomen 

functie in gedilateerde cardiomyopathie. De bepaling met RT3DE in beide types waren vergelijkbaar met MRI 

met goede interobserver vergelijking. 

 

RT3DE bepaling mitraal stenose (Hoofdstuk 8) 

In hoofdstuk 8 wordt een nieuwe RT3DE score voor de evaluatie van de mitraal klep stenose voor een percutane 

mitraal klep valvuloplastiek voorgesteld door en enface RT3DE view. De score wordt bepaald door elk van de 

twee klepdelen te meten en te bepalen voor wat betreft mobiliteit, dikte en calcificatie. Verder werd de dikte van 

het chorda beweeglijkheid en stand tussen twee chorda in de score geïncludeerd. De definitie van milde, matige 

en ernstige klepafwijking werd vastgesteld en vergeleken met de standaard 2DE Wilkin’s score. De beschreven 

score had vele voordelen omdat het eenvoudig is, minder subjectief en minder interobserver variabiliteit heeft. 

De toepassing geeft inzicht in een keuze voor een valvuloplastiek en kan eventueel de resultaten en complicaties 

voorspellen. 
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RT3DE bepaling van de rechter ventrikel uitstroombaan en pulmonaal klep (Hoofdstuk 9) 

In hoofdstuk 9 wordt de morfologische beschrijving van de rechter ventrikel uitstroombaan en pulmonaal klep 

met RT3DE beschreven. Er is een een kwalitatieve bepaling van de uitstroombaan, pulmonaal klep annulus, 

pulmonaal klep zelf en de proximale pulmonale arterie te verkrijgen in een aantal patiënten. De bepalingen van 

RT3DE van de uitstroombaan en pulmonale klep annulus diameter waren hoger dan in het verleden bepaald met 

2DE. 

 

RT3DE bepaling van linker atrium volume en functie (hoofdstuk 10, 11, 12) 

In hoofdstuk 10 beschrijven wij de mogelijkheid en betrouwbaarheid van RT3DE voor een bepaling van linker 

atrium volume in drie fasen van de cardiale cyclus (op het maximale volume, op het kleinste volume en vlak 

voor de atrium contractie). Het voordeel van RT3DE boven 2DE in bepaling van linker atrium volume is dat wij 

voor RT3DE echo geen geometrische aannames moeten hebben en dus een grotere betrouwbaarheid van de 

meting als gedilateerd linker atrium. Zowel de actieve en passieve linker atrium functie kon worden vastgesteld 

door volumetrische verandering te bepalen gedurende de hartcyclus. Met behulp van deze metingen kan linker 

atrium fysiologie bepaald worden door gebruik te maken van het Frank-Straling mechanisme voor linker atrium 

waarbij een vergroot linker atrium contractiliteit wordt gezien in response naar een toename in preload 

(hoofdstuk 11). In hoofdstuk 12 wordt de bepaling van het linker atrium ejectie 

kracht bepaald in normale patiënten en patiënten met hypertrofische cardiomyopathie zodat een fysiologische 

bepaling van linker atrium systolische functie kan worden verkregen. De RT3DE bepaling van ejectie kracht 

door de formule afgeleid van de annulus oppervlakte liet zien dat hypertrofische cardiomyopathie is geassocieerd 

met hogere ejectie kracht dan normaal en hoger in obstructieve dan non-obstructieve patiënten die dus een 

hogere atriale workload laten zien. Uit de studie wordt geconcludeerd dat ejectie kracht moet worden bepaald 

door een formule afgeleid van de annulus oppervlakte in hypertrofische cardiomyopathie en niet door een 

formule afgeleid van klepoppervlakte 

 

Conclusie 

1. RT3DE is betrouwbaar en het is goed mogelijk om een accurate bepaling te krijgen van vorm, grootte 

en functie van zowel mitralis en tricuspidalis annulus onafhankelijk van de vraag of de annulus vergroot 

of normaal is. Deze gegevens zijn vergelijkbaar met MRI. 
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2. RT3DE is behulpzaam in de morfologische en functionele bepaling van tricuspidalis klep stenose en 

normale tricuspidalis klep door de bepaling van klepoppervlakte en de wijdte van de commisuren. 

3. De hierbij voorgestelde RT3DE score voor de bepaling van mitraalklep voor een percutane 

valvuloplastiek is relatief eenvoudig, betrouwbaar en de clinicus kan hierop vertrouwen voor een 

waarschijnlijk betere voorspelling van de uitkomst van de procedure. 

4. RT3DE geeft een gedetailleerde kwalitatieve en kwantitatieve informatie van de rechter ventrikel 

uitstroombaan en pulmonale klep. 

5. RT3DE is standaard geworden voor bepaling van volumes van beide kamers. Met hetzelfde principe 

kan linker atrium volume gekwantificeerd worden. 

6. RT3DE van linker atrium volume door de cardiale cyclus is behulpzaam in de bepaling van actieve en 

passieve linker atrium functie d.m.v. een Frank-Starling mechanisme. 

7. Meting van linker atrium kracht door RT3DE afgeleid van een formule waarbij de annulus oppervlakte 

wordt gebruikt, is beter dan een formule waarbij de klepoppervlakte wordt gebruikt, met name in 

hypertrofische cardiomyopathie. 

 

Toekomstperspectieven 

 De ontwikkeling en voordelen van transducer technologie en programmatuur is nog steeds aan de gang. Daarom 

wordt verwacht dat beeldkwaliteit en analyse nog sterker wordt verbeterd welke een invloed kan hebben op de 

diagnostische betrouwbaarheid en klinische applicatie. Op dit ogenblijk wordt gewerkt aan de introductie van 

een breedband monokristal transducer die hoog resolutie harmonic beeldvorming mogelijk maakt d.m.v. betere 

penetratie en toename van een signaal ruis verhouding. 

Transoesophagale monokristal matrix transducer zullen een goede beeldvorming laten zien.  Myocardiale strain 

in alle richtingen (radiaal, longitudinaal en circumferentieel) kan waarschijnlijk in de toekomst bepaald worden 

met RT3DE tissue tracking. De RT3DE transducer kan gebruikt worden voor zowel 2DE, RT3DE, kleur en 

tissue doppler en geeft dus een compleet beeld van hartfunctie in een korte tijd. Deze ontwikkelingen worden 

nog gesteund door betere software die in alle digitale systemen kan worden verwerkt.  
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	Background: Determination of left atrial (LA) size and function is important in clinical decision-making. Calculation of LA volume (LAV) is the most accurate index of LA size.  
	Aim: To compare real-time 3-dimensional echocardiography (RT3DE) and 2-dimensional echocardiography (2DE) for calculation of LAV and function.
	Methods: Fifty patients were studied using 2DE and RT3DE for calculating LAV including: Maximum (Vmax), minimum (Vmin) and pre atrial contraction (VpreA) volumes. For 2DE, the formula: LAV = 8 (A1) (A2)/3 ( (L) was used, while for RT3DE, offline analysis was performed using commercially available software. LA function indices including total atrial stroke volume (TASV), active ASV (AASV), total atrial emptying fraction (TAEF), active AEF (AAEF), passive AEF (PAEF), and atrial expansion index (AEI) were calculated.
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	Background: The Frank-Starling law describes the relation between left ventricular volume and function. However, only a few studies described the relation between left atrial volume (LAV) and function.
	The Frank-Starling law, describing the relationship between increased length of myocardial fibres and its mechanical performance, is important for cardiac function 1. The relation between myocardial preload and mechanical performance is described by a curve in which an upward position on the curve means increased performance, while a downward position means decreased myocardial performance 2. Assessment of left atrial (LA) function has important therapeutic and prognostic value 3. The instantaneous LA pressure-volume relation provides an accurate index of LA contractility 4. However, measurement of this index is invasive and technically difficult and therefore not suitable for routine clinical application 3. Non-invasive assessment of LA contractility has been studied by two-dimensional echocardiography, Doppler parameters, cine computed tomography, radionuclide methods, and magnetic resonance imaging 5-9. In previous studies it was suggested that a Frank-Starling mechanism also existed in the human LA 10-12.  The LA serves as a reservoir, conduit and booster pump for blood returning from the lungs to the heart. LA volume (LAV) is a superior index of LA size 13 and owing to complex LA anatomy it may echocardiographically be best assessed by three-dimensional echocardiography 14,15. This study aimed at describing  LA Frank-Starling law by studying changes in LAV measured by real-time three-dimensional echocardiography (RT3DE).
	METHODS
	The statistical package used was SPSS version 12.1. All LAV values and its functions were expressed as mean (SD). An independent sample t-test was performed to determine whether the difference in the values was significant with a level of significance set to P <0.05. Interobserver agreements for LAVs, were expressed according to Bland and Altman method17. 
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	Hypertrophic cardiomyopathy (HCM) is a relatively common form of genetic heart disease affecting approximately 1 in 500 people in the general population 1,2. The disease is characterized by asymmetric hypertrophy involving primarily the ventricular septum 3-5. The pathophysiologic appearance of HCM is complex and includes dynamic left ventricular (LV) outflow tract (LVOT) obstruction, mitral regurgitation, diastolic dysfunction, myocardial ischemia and cardiac arrhythmia 6. Diastolic dysfunction is more common than systolic dysfunction in HCM. Marked LV hypertrophy, interstitial fibrosis and myocardial ischemia all contribute to reduced ventricular compliance and impaired relaxation. These factors contribute to elevated left atrial (LA) and pulmonary vascular pressures 5. Decreased compliance also affects LA reservoir function and may affect cardiac output 7. The thin-walled LA is sensitive to volume and pressure changes 8. Assessment of diastolic function through measurement of the components of ventricular filling usually does not include LA contractile function 9. LA ejection force (LA-EF) defined as the force exerted by the LA to accelerate blood into the LV during atrial systole provides a physiological assessment of LA systolic function 10. Based on the second law of Newton that stated force = mass X acceleration, LA-EF was calculated by the equation: 0.5 x 1.06 x (MAA or MVA) x V2, and 0.5 is a coefficient factor. We believe that LA function should be included in the clinical assessment of HCM. This study aimed to assess LA-EF non-invasively in patients with HCM using real-time (RT) 3-dimensional (3D) echocardiography (3DE).  
	METHODS
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	HCM: Hypertrophic cardiomyopathy; LA-EF: left atrial ejection force; MAA: mitral annulus area; MVA: mitral valve area, 2D: 2-dimensional; 3D:3-dimensional, * P value< 0.05 between obstructive group and non-obstructive, $ P value <0.05 between control group and both HCM groups.


	DISCUSSION
	HCM is associated with high LA-EF indicating a high LA workload especially in obstructive type. For RT3DE, LA-EF should be determined in patients with HCM by MAA-derived formula instead of MVA-derived formula because of MA dilatation. Thus, LA-EF3D-MAA is recommended as a better indicator for LA work in HCM and this may help in the clinical assessment and follow up.
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