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1.      Introduction 

 

The use of earnings management to avoid earnings decreases and/or losses is never 

directly observed, and any evidence for this phenomenon should be deduced from 

observable earnings data. In the relevant literature, there are two dominant approaches 

to deduce earnings management. The first looks at discontinuities of the earnings 

distribution around zero. This approach adopts non-parametric techniques to analyze 

histograms of earnings data, see the important studies of Hayn (1995), Burgstahler 

and Dichev (1997), DeGeorge et al. (1999) and the recent study in Jacob and 

Jorgenson (2007). The second approach specifically focuses at the data on the final 

quarter of the fiscal year to see if this quarter shows other properties than the other 

quarters, see Collins et al. (1984) and more recently Das et al. (2007) and Hayn et al. 

(2007). In the present paper we aim to contribute to this second stream of literature as 

we have a tool that is useful to elicit differing properties of the final quarter data. .  

 In this paper we demonstrate that earnings management implies specific time 

series properties of the fiscal year’s final quarter data (in our empirical study we zoom 

in on fourth quarter of the year). We show that these properties can be captured in a 

periodic time series model. Such a model allows some parameters to vary with the 

seasons, see Franses (1996) and Franses and Paap (2004) for introductory textbooks, 

and we will show that earnings management predicts a particular pattern in these 

seasonally varying parameters. To allow for the apparent heterogeneity across firms, 

we propose a two-level model, with as first level the periodic time series model, and 

with as second level the distributions of the parameters. We analyze this two-level 

model using Bayesian routines, more specifically, using Markov chain Monte Carlo 

techniques.   

 The outline of our paper is as follows. In Section 2 we outline the main idea of 

our study, that is, the link between earnings management and a periodic time series 

model. In Section 3 we propose a simple methodology that can be used to diagnose if 

final quarter earnings data have properties that differ from other quarters’ data. In 

Section 4 we apply our methodology to a random sample of 390 firms from the 

Compustat database, all of which have quarter 4 as the last quarter of the fiscal year, 

and for which we have data for 1980Q1 to 2001Q4. Using four variants of the 

periodic model, we find overwhelming evidence of earnings management. We 
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formally compare the models using Bayes factors. Section 5 concludes this paper with 

various topics for further research.   

 

 

2.       The main idea 

 

Earnings management implies time series properties of the final quarter in a fiscal 

year that differ from those of the other three quarters. In a seminal paper, Collins et al. 

(1984) already diagnosed that fiscal year’s final quarter data are more difficult to 

forecast than other quarters’ data. This notion naturally translates to the phenomenon 

that final quarter data perhaps obey another time series model than the other three 

quarters. This feature can be captured by a so-called periodic time series model, and 

in this section we demonstrate this link.  

 

2.1      Modelling quarterly earnings data  

 

To save notation, we assume that the fiscal year’s last quarter is the fourth quarter. 

When this is not the case, one can simply rearrange the data by relabeling the 

quarters. We use a simple time series model, but we stress that for any other time 

series model the same qualitative results will be obtained.  

 Suppose that, in the absence of earnings management, the model for quarterly 

earnings data for a firm i=1,…,K is an autoregression of order 1 [AR(1)], which reads 

as  

 

titiisiti yy
t ,1,,,    .       (1) 

 

The variable tiy , denotes the quarterly earnings data, where t = 1, 2, …, n = 4N, with 

N is the number of years of available data. The indicator st gives the quarter 

corresponding to observation t. The parameter si , denotes an intercept that can vary 

with the season s, where s = 1, 2, 3 or 4. The parameter ρi gives the autoregressive 

parameter for firm i. Finally, the error term ti,  is distributed as normal with mean 0 

and variance 2
i .  
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 The autoregression in (1) is written in terms of quarterly data, but it can also 

be written in annual format. This can be achieved by denoting TsiY ,, as the observation 

in quarter s in year T. Adopting this notation it is not difficult to see that (1) can be 

written as  

 

.,4,,3,4,,4,

,3,,2,3,,3,

,2,,1,2,,2,

,1,1,4,1,,1,

TiTiiiTi

TiTiiiTi

TiTiiiTi

TiTiiiTi

YY

YY

YY

YY












 

      (2) 

 

The four equations above each correspond to a particular quarter of the year. The 

observation for the first quarter in year T is obviously related to the fourth quarter in 

year T-1 (first line in (2)). The four error terms Tsi ,,  are distributed as normal with 

mean 0 and common variance 2
i . Further note that the four equations share a 

common autoregressive parameter. 

 In case of earnings management, the data in the fourth quarter (again assuming 

that this is the relevant quarter) will have properties that differ from those of the other 

three quarters. First of all, the unobserved error term Ti ,4, will not fully capture the 

unexplained variation as earnings management will add an extra (unobserved to the 

analyst) term, say, Tie ,4, . This feature explains the findings in Collins et al. (1984), as 

now indeed the forecast error variance for the fourth quarter is larger that that in other 

quarters, making it harder to predict. Second, when the fourth quarter data get an extra 

unobserved input, the correlation between a year’s first quarter and the previous 

year’s fourth quarter must change. In fact, it shall not be i  anymore but 1,i .  

In sum, in case of earnings management, the four-equation model in (2) thus 

becomes 

 

.,,4,4,,3,4,,4,

,3,,2,3,,3,

,2,,1,2,,2,

,1,1,4,1,1,,1,

TiTiTiiiTi

TiTiiiTi

TiTiiiTi

TiTiiiTi

eYY

YY

YY

YY







 






      (3) 
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This model is a restricted version of a so-called periodic autoregression of order 1, 

where all autoregressive parameters and all four variances are allowed to be season 

specific. This type of model is ich in its general expression is given by  

 

).,0(~

),0(~

),0(~

),0(~

2
4,,4,,4,,3,4,4,,4,

2
3,,3,,3,,2,3,3,,3,

2
2,,2,,2,,1,2,2,,2,

2
1,,1,,1,1,4,1,1,,1,

iTiTiTiiiTi

iTiTiTiiiTi

iTiTiTiiiTi

iTiTiTiiiTi

NYY

NYY

NYY

NYY















 

   (4) 

 

Franses (1996) and Franses and Paap (2004) are introductory textbooks on this type of 

model. Representation of, inference in, and forecasting from such periodic models are 

similar to of the corresponding techniques for vector autoregressive models.  

 

2.2      Testable hypotheses  

 

In our illustration below, we will impose the restrictions iiii   4,3,2,  and 

22
1,

2
3,

2
2, iiii   in (4). To test earnings management we simply examine the 

empirical validity of the following two hypotheses, that is, 

 

 Hypothesis 1:  ii  1,  

 

 Hypothesis 2:  22
4, ii    

If both hypotheses are true there is no evidence for earnings management. Note that 

the alternative hypotheses are ρi,1<ρi for hypothesis 1 and 22
4, ii    for hypothesis 2. 

 

 

3.      Methodology 

 

In this section we first discuss the representation of the model and we describe how 

the parameters can be estimated. Next, we discuss hypothesis testing.  
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3.1      Representation and inference 

 

We consider the periodic time series model 

 

),0(~

),0(~

),0(~

),0(~
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2
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
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 

    (5) 

 

For the vector of firm-specific parameters θi = (μi1, μi2, μi3, μi4, ρi1, ρi)’ we specify 

 

 ,~  Ni ,        (6) 

that is, the individual specific parameters have a joint multivariate normal 

distribution. 

 

Inference is done via Markov Chain Monte Carlo techniques, especially we use Gibbs 

sampling (Geman and Geman 1984). Details of the sampling procedures are presented 

in the appendix. For model comparison and hypothesis testing it is important to set 

proper priors on  and ,, 2
i4

2  i . We set the priors to be proper but relatively 

uninformative. 

 

We consider three restricted forms of this model. First of all we consider the 

restriction ρi = ρi1 for all firms i. In another model we separately impose  2
i4

2  i  for 

all firms i. Finally we consider a model with both of these restrictions. In this case the 

model reduces to a AR(1) model for quarterly earnings with quarterly dummies. Note 

that in these three restricted models, the dimension of the parameter space changes. In 

particular, the dimension of the vector  depends on the restrictions imposed on the 

autocorrelation parameters. 
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3.2      Testing hypotheses 

 

The four model variants presented above can be used to test for earnings management. 

For each of the models we compute the log marginal density [LMD], that is the 

density of the observed data. The model with the highest LMD fits best. LMDs can be 

formally used to test hypothesis the difference of the LMD of two models equals the 

log of the Bayes factor comparing the two models. A Bayes factor can be seen as a 

summary of the evidence for a hypothesis provided by the data (Kass and Raftery, 

1995). We provide computational details in the appendix. 

 

 

4.      Results 

 

We first compare the four different models. Table 1 shows the LMD for each of the 

model variants. The differences in LMD are very large. Translating these differences 

in terms of Bayes factors shows that there is overwhelming evidence that there are 

differences in autocorrelation and variances. In other words there is very strong 

evidence for earnings management. A difference in LMD larger than 5 is already 

considered to be decisive evidence (Kass and Raftery, 1995). 

 

Insert Table 1 about here 

 

Below we will only consider the model where the autocorrelation and the variances 

are allowed to differ across quarters. Figure 1 shows the posterior distribution of the 

population mean of the two autoregressive parameters as well as the posterior 

distribution of the difference. The figure clearly shows that the autoregressive 

coefficient for the first quarter is smaller than that for the other quarters.  

  

Insert Tables 2 and 3 about here 

 

The population parameters are also given in Tables 2 and 3. We can also look at the 

posterior results on the firm level. Figure 2 gives the histogram of the posterior means 

of the autocorrelation and variance parameters across firms. This figure also shows 
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that in most cases 1i<I and 2
4

2
ii   . However the figure also shows that the 

opposite is also true for some firms. However, from the histogram of posterior means 

one cannot judge the significance of firm level parameters. 

 

Insert Table 4 about here 

 

In Table 4 we count the number of firms for which we find a significant difference in 

the parameters. For 29% of the firms we find that the correlation between the first 

quarter and the final quarter of the previous year is smaller than the correlation 

between any other combination of consecutive quarters. Next for 38% of the firms the 

conditional variance of the earnings in the fourth quarter is significantly larger than in 

the other quarters. 
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5.      Conclusion 

 

The model can also simply be extended to see if things have changed over time, like 

Givoly and Hayn (2000) intend to test. 

 

Also, one can include firm-specific characteristics in the second level, to see whether 

there is variation in earnings management across types of firms, like in Fok, Franses 

and van Dijk (Journal of Applied Econometrics). 
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Technical appendix 

For inference we write the model  

),0(~

),0(~

),0(~

),0(~

2
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2
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as 

 
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    (A1) 

where θi collects all firm specific parameters, and where i
2=( σi

2 , σ4i
2)’. The matrices Di

c, Di
l
 and Di

ε 

collect all necessary quarterly dummies, that is,  
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Note that we start with an observation in quarter 2, as we condition on the first observation. The vector 

yi,-1 gives the lagged dependent variable. Finally the operator * is defines as the element by element 

product, for example, for Di
l* yi,-1 we multiply each element in the i-th row of Di

l with the i-th element 

of the vector yi,-1. 

 

We now summarize the model by 

).,(~

))diag(,0(~ 2




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The model is completed with the following prior distributions 
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).(/~
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These distributions are of the natural conjugate form. We set the parameters of these distributions such 

that we have a proper but not very informative prior. Specifically, we set  and s2 to 1. The prior 

distribution for Σ is an inverted Whishart with V0 equal to an identity matrix and degrees υ equal 

dimension of Σ+3. For the prior distribution of  conditional on Σ we set g equal to the number of 

firms (K).   

 

Given the above notation, the sampling steps for a Gibbs sampler are relatively straightforward. Below 

we specify the sampling scheme together with the corresponding distributions. 

 

1. Draw 2,,,| iii y   for all i=1,…K 

Based on (A1) we can sample  

))'(),'()'((~,,,| 11**1**11**2   iiiiiiii XXyXXXNy
i

 , 

where  

iiiiii XDXyDy
iiii

))',(diag( and,))',(diag(
44

11*11*





  . 

 

2. Draw iiii y  ,|, 2
4

2 for all i=1,…,K 

For each firm we sample the first variance as 



4|

321
222 )(/)(

itst
iiiit nnnse   , where the 

denominator denotes a draw from a χ2 distribution with the given number of degrees of freedom and eit 

denotes the t-th element of yi - Xiθi. The second variance is sampled as 



4|

4
222 )(/)(

itst
iit nse  . 

 

3. Draw K ,...,|, 1  

Using standard results for the multivariate regression model (see for example, Zellner 1971 or Rossi et 

al, 2005) we draw Σ from an Inverted Wishart distribution with location ( 0

~
'

~
VEE  ) and degrees of 

freedom (K+υ), where ))'
~

),...(
~

((
~

1   KE  and )(
1~

1
1 




K

i
i

gK
 . Conditional on Σ we 

draw   from )
1

,
~

(
1


 gK
N  . 

 

TO DO: CALCULATION OF LMD 
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 Table 1: Comparison of model fit 

Autocorrelation Variance Log Marginal Density 

Common Common -38771 

Common Different -35758 

Different Common -38361 

Different Different -35125 
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Table 2: Posterior results of population parameters 

Parameter Posterior mean Posterior variance  

1  0.339 (0.022) *** 

  0.488 (0.018) *** 

α1 0.021 (0.017)  

α2 0.051 (0.016) *** 

α3 0.069 (0.019) *** 

α4 -0.132 (0.019) *** 

***, **, *: 0 not contained in the 99, 95, 90 % highest posterior density region, respectively 
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Table 3: Posterior mean of the covariance matrix 

 

 
1    α1 α2 α3 α4 

1  0.143 0.058 0.008 0.002 -0.025 0.031 
  0.058 0.110 -0.010 0.020 -0.016 0.015 
α1 0.008 -0.010 0.088 -0.048 -0.034 -0.003 
α2 0.002 0.020 -0.048 0.070 -0.007 -0.005 
α3 -0.025 -0.016 -0.034 -0.007 0.114 -0.061 
α4 0.031 0.015 -0.003 -0.005 -0.061 0.090 
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Table 4: Significance and sign of firm level differences of autocorrelation (ρ1i- ρi) and firm level 

difference in variance ( 2
4

2
ii   ). Significant should be read as that 0 is not contained in the 95% 

highest posterior density region. 

 

 Autocorrelation  Variance 

Classification Number 

of firms 

Percentage  Number 

of firms 

Percentage 

Significant and negative 113 29  147 38 

Not significant and negative 163 42  107 27 

Not significant and positive 102 26  76 20 

Significant and positive 12 3  60 15 
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Table 5: Summary statistics across firms of posterior mean of autocorrelation and variance parameters 

 

 E[ρi1| Y] E[ρi| Y] E[ 2
i | Y] E[ 2

4i |Y] 

Minimum -1.102 -0.218 0.025 0.057 

Mean 0.339 0.489 0.574 1.207 

Maximum 1.351 1.239 1.428 4.253 

Variance 0.113 0.095 0.130 1.014 
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Figure 1: Posterior distribution of population mean autocorrelation parameters 
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Figure 2: Histogram of posterior means across firms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 19

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

25

50

75

100

125

150

ρi1<ρi

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

25

50

75

100

125

150

175

200 σ2
i<σ2

i4

 

Figure 3: Histograms of the posterior probability that ρi1 < ρi (left) and 2
4

2
ii    (right) across firms 
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