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A Continuous Review Inventory Model with Advance
Policy Change and Obsolescence

In this paper, we consider a continuous review inventory system of a slow moving item for which the demand

rate drops to a lower level at a pre-determined time. Inventory system is controlled according to one-for-one

replenishment policy with fixed lead time. Adaptation to the lower demand rate is achieved by changing

the control policy in advance and letting the demand take away the excess stocks. We showed that the

timing of the control policy change primarily determines the tradeoff between backordering penalties and

obsolescence costs. We propose an approximate solution for the optimal time to shift to the new control

policy minimizing the expected total cost during the transient period. We found that the advance policy

change results in significant cost savings and our model yields near optimal expected total costs.

Keywords: inventory control; obsolescence; spare parts; advance policy change; excess stock; installed base.

1. Introduction

For many companies conducting service-centric operations, reducing spare parts inventories

without jeopardizing the availability of the supported products is essential for their compet-

itiveness. However, efficient management of expensive and slow moving parts inventories is

notoriously difficult due to scarcity of historical data, fluctuations in demand rate and risk of

obsolescence. Companies realizing these facts start keeping track of the changes in their own

or customers’ base of installed products (installed base) to trace customers and operating

units more closely and to react to the changes in demand rate as early as possible. A recent

study by Jalil et al. (2009) revealed that at IBM, tracking of the installed base for spare

parts can lead to savings up to 58% in transportation and inventory holding costs.

When contextual information is combined with installed base tracking, the timing and

the size of the shift in demand rate are either known in advance or can be estimated within

a reasonable accuracy. In practice, such shifts typically occur when the size of the installed

base at certain geographical location changes. For example, when a customer announces

that its going to relocate its production equipments, after sales service provider anticipates

a change in demand for parts between the locations. Similarly, when a customer decides to

upgrade its machinery, the old generation equipments usually leave the installed base of the

service provider or manufacturer as a result of discarding or salvaging.
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When a sudden change in demand rate can be foreseen, timely adaptation of the base

stock levels is crucial for optimal stock control. In such cases, upward jumps in demand rate

can be handled relatively easily by giving advance or emergency replenishment orders to be

delivered before the jump occurs. However, adaptation to the drop in demand rate is more

difficult since running down of excess stocks depends on the demand process. For example,

when a certain proportion of the installed base is relocated, service providers usually suffer

from excess inventories remaining at the previous location. When relocation of spare parts

with the installed base is not feasible, it becomes much more difficult to get rid of the excess

stocks due to the diminished demand. Consequently, in many cases these excess stocks end

up as obsolete stocks.

Generation upgrades may result in a similar problem as well. For example, when an airline

announces the selling of their old generation aircrafts to the countries outside Europe, service

providers of this airline expect a sudden drop in demand for relevant parts at their service

locations in Europe. In such cases, if a prior action is not taken to adjust the base stock levels

then the excess stocks might become obsolete. A striking example comes from an aerospace

service provider with which the authors are familiar. At this service provider obsolete stocks

constitute 5% of the total inventory carried which add up to more than $1,000,000 in stock

value.

Even when the timing and the size of the drop is known exactly, when to change the

inventory control policy to minimize obsolete stocks without staking availability remain as

a challenging question. If the adaptation is too early before the drop occurs then the risk of

backordering increases as a result of lower base stock level. Since availability is crucial for

many companies operations, stockouts can be detrimental to their businesses. On the other

hand, if the adaptation is too late or postponed after the drop then the costs associated with

obsolescence increase. In this paper, we address this issue by focusing on a continuous review

inventory system of a slow moving item for which the demand rate drops to a lower level

at a pre-determined (announced) time. We assume that the inventory system is controlled

according to one-for-one replenishment policy with fixed lead time. Adaptation to the lower

demand rate is achieved by changing the control policy in advance and letting the demand

process take away the excess stocks. Our goal is to find the optimal time for a policy change

and to investigate its impacts on the costs incurred during the transient period.

Our work is related to the inventory management models considering obsolescence. Hadley

and Within (1963) were early contributors in this area. They analyzed a finite horizon peri-
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odic review inventory system in which the mean demand rate may vary in every period and

there is a finite number of possible obsolescence dates. Pierskalla (1969) studied a similar

problem with independent and identically distributed demands and zero lead times.

Brown et al. (1964) offered a more general model for obsolescence in which the demand in

each period is generated according to an underlying Markov chain and the state probabilities

are updated in Bayesian fashion. Song and Zipkin (1996) also employed a similar Markovian

submodel to reflect the processes leading to obsolescence by assuming that the current state of

the process is completely observable. They found that the obsolescence has substantial effects

on inventory costs and these effects cannot be remedied by simple parameter adjustments.

Besides the periodic review models Masters (1991), Jonglekar and Lee (1993), David and

Mehrez (1995) considered the EOQ model in which the time to obsolescence is exponentially

distributed. To the best of our knowledge, there are no studies in the literature considering

obsolescence for a continuous review inventory system facing stochastic demand.

Another stream of literature that is related to our study consists of the so called excess

stock disposal models. In these models the problem is to determine the economic retention

quantity or time period given the excess stock of an inventory item. Earlier works by

Simpson (1955), Mohan and Garg (1961) and Hart (1973) investigated the excess inventory

disposal problem for deterministic demand case with the possibility of obsolescence. Stulman

(1989) considered continuous review inventory system with stochastic demand but without

obsolescence. Rosenfield (1989) investigated the similar problem for slow moving items by

including perishability or obsolescence but without stockout penalties. In all of these studies

it is assumed that the excess stocks are result of over purchasing or a drop in demand rate

in the past. Therefore, the inventory level is found higher than the maximum level at time

zero and the excess inventory is reduced by first disposing, and then letting the demand

take away the retained quantity. Our model differs from this literature mainly by letting the

demand take away the stocks before the excess occurs.

In this study, our contribution is threefold: First, we analyze the obsolescence problem

for a continuous review inventory system facing stochastic demand for the first time. Our

findings are consistent with the earlier works studying periodic review systems that the

obsolescence has significant effects on operating costs and should be taken into account

explicitly. We extend these findings by showing that for a continuous review inventory

system advance policy change results in significant cost savings. Our numerical experiments

revealed that if the control policy is not changed in advance then the transient period costs
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are on average doubled. Furthermore, we found that the timing of the control policy change

primarily determines the tradeoff between backordering penalties and obsolescence costs.

Second, we provide the first practical formulas to tradeoff the risk of obsolescence and

backordering specifically for expensive, slow moving items with high downtime costs. For

this class of items, it is well known that the continuous review policies are preferred over

periodic review ones since they require lower safety stocks for the same level of availability.

Thus, our formulas can be used as a managerial guide in studying the impacts of advance

policy change on operational costs and obsolete inventories.

Third, our model can be seen as the link between the two separate streams of inventory

literature, the obsolescence models and the excess stock disposal models. The former does

not include the continuous review models while the latter disregards the possibility of advance

policy change.

The remainder of this paper is organized as follows: In section 2, we introduce the model

and the transition control policy. In section 3, we give the expressions for the operating

characteristics of the transient period and the objective function, and discuss their general

behaviors. In section 4, we discuss the results of our numerical study. Finally, in section 5,

we conclude and provide some future research paths. All proofs are provided in the online

Appendix.

2. Model

We consider a single item, single location continuous review inventory system for slow moving

items with nonstationary demand process and fixed lead times. It is assumed that the

demand follows a Poisson process with rate λ0 up to a pre-determined time point T after

which the demand rate drops to a lower state λ1 and stays there (i.e. λ0 > λ1 ≥ 0). The

inventory control policy is based on the (S − 1, S) policy which is commonly used for high

cost low demand items (Hadley and Whitin 1963). According to this policy whenever a

demand occurs a replenishment order is placed.

We denote the steady state optimal base stock levels for demand rates λ0 and λ1 with S0

and S1, respectively. They are calculated with the standard formulas given in Hadley and

Whitin (1963). We assume that the shift in demand rate is downward (i.e. S0 > S1 ≥ 0). In

order to adapt to the new base stock level, we employ the following transition control policy

based on the inventory position (the net inventory level plus the quantity on order):
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Policy: Up to time T − X a replenishment order of size one is placed whenever the

inventory position drops to the reorder level S0− 1. After time T −X a replenishment order

of size one is placed whenever the inventory position drops to the reorder level S1 − 1.

In other words, we use (S0 − 1, S0) policy until time T − X and (S1 − 1, S1) policy

thereafter. Observe that according to this control policy adaptation to the new base stock

level is achieved by not giving N (= S0−S1) consecutive orders starting at X ≥ 0 time units

earlier from time T . Hence, we let the demand take away N excess stocks starting from

T −X. Our goal is to find the optimal time to initiate the excess stock removal process.

The rationale behind the proposed policy is that once the obsolescence date is known

with certainty, early adaptation of base stock level should tradeoff the risk of backordering

and obsolescence, and decrease the number of excess/obsolete stocks. We do not claim that

the transition control policy is optimal. However, as we will demonstrate in our numerical

experiments, it indeed leads to significant reduction on obsolescence costs compared to policy

without an early adaptation (X = 0).

Figure 1 shows a possible realization of the net inventory level process {IL(t) : t ≥ 0}
and the corresponding inventory position process {IP (t) : t ≥ 0}. Note that the trajectories

of these processes can be analyzed in three different periods. The first period starts at time

zero and ends at time T−X. Since a replenishment order is placed upon each demand arrival

the inventory position is fixed at S0 during the first period. We assume that T −X is long

enough such that IL(t) is in steady state. This is reasonable since life cycles of many products

requiring parts replacements and service support are very long. For example, average useful

life time of a commercial aircraft may last up to 30 years. Thus, the inventory system of

a spare part supporting such product has enough time to reach to steady state before the

obsolescence occurs.

The second period begins at time T −X and the excess stocks are removed by not giving

replenishment orders for N consecutive demands. Hence, the inventory position decreases

by one at every demand arrival until it hits the target base stock level S1. In Figure 1,

examples of stock removal instances are marked by circles on the inventory level process. If

the inventory position process hits S1 before time T then the replenishment orders are placed

again whenever a demand occurs. Thus, the end of the second period is the random time

point greater or equal to T at which the inventory position is equal to S1 and all outstanding

orders given before time T have arrived (see Figure 1).

Note that, the second period is the transient period in which the inventory system adapts
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Figure 1: Possible realization of IL(t) and IP (t) with stock removals

itself to the anticipated obsolescence. Since all orders given before time T are replenished

before the second period ends, the third period can be seen as a separate inventory system

with demand rate λ1 ≥ 0. If λ1 is positive then we assume that the net inventory level process

during the third period can be described by the stationary process. In many practical

situations relocation of installed base or generation upgrades might result in such partial

obsolescence situations where the demand is severely diminished but not necessarily vanished.

In that case, the third period is similar to the first one but the system is controlled according

to (S1 − 1, S1) policy. Clearly, in case of full obsolescence (λ1 = 0) there is no third period.

Our main goal is to find optimal X minimizing the total expected cost incurred in the

second (transient) period. As we will demonstrate in the numerical section, the transient

period costs are significant since they include the costs related with obsolescence. Unless a

prior action is taken, partial obsolescence (λ1 > 0) results in excess stock situations whereas

full obsolescence (λ1 = 0) results in obsolete stocks. As discussed earlier, for many slow

movers the costs due to obsolescence are very high under both scenarios. Hence, in the

sequel, we only focus on the analysis of the transient period since savings over obsolescence

costs can be achieved only within this period.

Since fixed costs are irrelevant for optimization under one-for-one replenishment policy,

we only consider holding and backordering costs incurred per unit per time, denoted by h

and π respectively. In addition to that the unit obsolescence/relocation cost co is incurred

per remaining on hand inventory after time T if full obsolescence occurs (λ1 = 0).
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In the next section, we explain the transient analysis of the net inventory level process,

give the expressions for the operating characteristics of the second period and state the

optimization problem.

3. Operating Characteristics of The Second Period

Our model differs from the standard inventory models due to removal of excess stocks and

nonhomogenous demand process. These differences necessitate the transient analysis of the

net inventory level process. Unfortunately, outstanding orders before time T −X complicate

the analysis beyond tractability. Since the complication results from outstanding orders,

conditioning on the net inventory level at time T −X or its expectation does not yield closed

form expressions for the operating characteristics. In order to overcome this analytical diffi-

culty and provide good approximations for operating characteristics that can be calculated

easily, we assume that the net inventory level is equal to S0 at time T −X. We can justify

this assumption by appealing to the characteristics of the problem. For slow movers, the

base stock levels are usually not very high due to low demand rates and high opportunity

costs. On the other hand, due to high backordering penalties the net inventory level process

mostly stays in the positive half-plane. Therefore, the average net inventory level at any

time is not very far from S0. Indeed, for all the instances used in our numerical experiments,

which are generated to reflect real life scenarios, the average S0 is found to be 3.24 with max-

imum of 10. For the same instances, the average difference between S0 and E(IL(T −X))

is found to be 1.1 with maximum of 5. Consequently, we observed that our approximate

model performs quite satisfactorily compared to simulation. The effects of our assumptions

will be discussed in more detail under section 3.4.1. Moreover, as we will demonstrate in

the numerical section, the optimal X found by using our approximate formulas yields near

optimal expected total costs. Hence, we conclude that this assumption does not change the

main implications of our study.

The analysis of the net inventory level process is independent of the time axis due to

Poisson demand arrivals. Therefore, in the sequel, we shift the beginning of the second

period from T −X to 0 for the sake of clarity. Let τi, i = 1, . . . , N denote the interarrival

times between not replenished demand instances when the arrival rate is λ0. We refer to

Ak :=
∑k

i=1 τi as the arrival time of the kth demand before the drop occurs.

Figure 2 shows a realization in which the new base stock level S1 (= S0 − N) is hit by
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Figure 2: Possible realization of IL(t) and IP (t) during 2nd period (AN > X)

the net inventory level process after the drop in demand rate occurs at time X. Observe

that, as a result of our assumption about the outstanding orders (IL(T − X) = S0), the

net inventory level process is tantamount to the inventory position process until the N +1st

demand arrives. In the figure, ϕj, j = 3, . . . , N denote the interarrival times between not

replenished demands arriving after time X. Hence, ϕjs are exponentially distributed with

mean λ1. Note that, in Figure 2, the second period ends immediately after the arrival of the

Nth demand since the inventory position is equal to S1 and there are no outstanding orders

before time X. On the other hand, if S1 is reached before time X then replenishment orders

are placed again for every demand arriving thereafter. A realization of this scenario can be

seen in Figure 3. Observe that, in Figure 3, the second period ends at the moment the last

order given between AN and X is replenished.

From Figure 2 and Figure 3, it is clear that the net inventory level process in the second

period can be analyzed in two different phases. The first one is the stock removal phase.

This is the time period in which the excess stocks are taken away by the demand. Thus,

the stock removal phase starts at the beginning of the second period and ends when the

Nth demand arrives. The second one is the regular operation phase. This is the time period

in which the replenishment orders are placed again upon every demand arrival since all of

the excess stocks are removed before the drop in demand rate occurs. Hence, the regular

operation phase starts at AN and ends when the second period ends (see Figure 3). Note

that the regular operation phase of the second period exists if and only if the Nth excess
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Figure 3: Possible realization of IL(t) and IP (t) during 2nd period (AN ≤ X)

stock is removed before time X (i.e. AN ≤ X).

We begin our analysis with the calculation of the expected total inventory carried during

the second period denoted by E[OH]. Observe that the random variable OH depends on

the arrival time of the kth demand during the stock removal phase, and therefore it can be

calculated by conditioning on Ak, k = 1, . . . , N . If the arrival time of the first demand A1

is greater than X then the second period ends at the moment Nth demand arrives. Thus,

OH is equal to the inventory carried until time X (= S0X) plus another random variable

OH
′
1 (=

∑N
i=1(S0− i+1)ϕi) representing the inventory carried from time X until the second

period ends. Note that if the stock removal phase extends after time X then the trajectory of

IL(t) should be analyzed separately for the periods before and after time X due to different

demand rates. Hence, the need for an additional random variable OH
′
1. On the other hand,

if A1 is less than or equal to X then OH is equal to the inventory carried until the first

demand arrives (= S0τ1) plus another random variable OH2. Essentially, OH2 is similar to

OH but it depends on A2 and the new inventory level S0 − 1. Put more formally,

OH =

{
S0X + OH

′
1 if A1 > X

S0τ1 + OH2 if A1 ≤ X
(1)

If we continue in this fashion for k = 2, 3, . . . , N when N ≥ 2 then we come up with

the following recursive equations to calculate the total inventory carried during the second

period:

OHk =





(S0 − k + 1) (X − Ak−1) + OH
′
k if Ak−1 ≤ X, Ak > X

(S0 − k + 1)τk + OHk+1 if Ak ≤ X
0 o.w.

(2)
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where

OH
′
k =

N∑

i=k

(S0 − i + 1)ϕi, k = 1, . . . , N. (3)

represents the inventory carried from time X until the end of the stock removal phase when

N − k + 1 stocks are yet to be removed.

The recursive structure of equations (1) and (2) gives the positive area under the net

inventory level process depending on whether the kth excess stock is removed before time

X or not. For example, if all excess stock is not removed before time X (i.e. Ak > X for

some k) then equations (1) and (2) give the area under a similar scenario depicted in Figure

2. Otherwise, they give the area similar to the one shown in Figure 3.

Note that the equations (1)-(3) mainly generate the expressions for the total inventory

carried during the stock removal phase. Since no orders are given in this phase, the equations

are independent of the lead time. The total inventory carried in the regular operation phase

is represented implicitly in those equations with the random variable OHN+1. The shaded

region in Figure 3 shows a possible realization of OHN+1. We will analyze the regular

operation phase in detail in the sequel.

Let p(n; λ) = e−λλn/n!, n = 0, 1, 2, ... be the pdf of Poisson distribution with parameter

λ ≥ 0 and denote its cdf with P (n; λ). Also, let 1(·) denote the indicator function. Taking

expectations of (1) and (2), and exploiting the recurrence structure, we find E [OH] as

follows:

E[OH] = F(X) + E[OHN+11(AN ≤ X)] (4)

where

F(X) := λ−1
0 N

[
S0 − N − 1

2

]
+

λ0 − λ1

λ0λ1

N−1∑
i=0

(S0 − i)P (i; λ0X), λ1 > 0 (5)

In equation (4), F(X) represents the expected inventory carried during the stock removal

phase whereas E[OHN+11(AN ≤ X)] is the expected inventory carried during the regular

operation phase. Note that, OHN+1 exists only if the new base stock level is reached before

X (i.e. AN ≤ X).

So far we derived the closed form expressions only for the expected inventory carried

during the stock removal phase. In the sequel, we provide an exact transient analysis of the

inventory level process during the regular operation phase and derive the expressions for the

operating characteristics of this phase.
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3.1 Analysis of the Regular Operation Phase

We want to compute the expected on hand carried and the expected time weighted backorders

incurred in the regular phase which starts at time AN(≤ X) and lasts until the end of the

second period. To compute these operating characteristics we represent the inventory level

process in terms of the demand process. Since we are only interested in the time period after

AN , in the sequel, we shift the time axis from AN to 0 for clarity. Hence, the drop in demand

rate occurs at X − AN time units after the regular operation phase begins (see Figure 3).

Thus, for t ≥ 0 the inventory level IL(t) conditional on AN can be given as:

IL(t)|AN =

{
S1 −D(t) if t ≤ L
S1 − (D(t)−D(t− L)) if t > L

(6)

where {D(t) : t ≥ 0} is a nonhomogenous Poisson process with intensity function Λ(t) :

[0,∞) → [0,∞) given by

Λ(t) =

∫ t

0

λ(z)dz (7)

with arrival rate

λ(z) =

{
λ0 if z ≤ X − AN

λ1 if z > X − AN
(8)

Substituting (8) in (7) yields

Λ(t) =

{
λ0t if t ≤ X − AN

(λ0 − λ1)(X − AN) + λ1t if t > X − AN
(9)

Equation (6) is the representation of the net inventory level at any time point based on

the demand up to time t, the lead time demand and inventory position. Recall that the

inventory position remains constant at the level S1 during the regular operation phase since

an order is placed each time there is a demand. Therefore, if t ≤ L then IL(t) is equal to

the inventory position minus the total demand up to time t. Whereas, if t > L then IL(t)

is equal to the inventory position minus the lead time demand.

The end of the regular operation phase is a random time point depending on the inventory

level at time X. For example, if the net inventory level at time X is equal to S0−N then there

are no outstanding orders and the regular operation phase ends. Otherwise, it ends when all

outstanding orders given between X−L and X are replenished up to time X +L. However,

dealing with the random end time complicates the analysis beyond tractability. Hence, we

assume that the regular operation phase always ends at time X + L. This approximation
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simply results in the overestimation of the expected total cost due to extended calculation

period but does not change the optimal X drastically since the shift in the expected total

cost is mainly upwards.

We start with the computation of E[OHN+11(AN ≤ X)] by conditioning on AN such

that,

E[OHN+11(AN ≤ X)] =

∫ X

0

E[OHN+11(AN ≤ X)|AN = s]fAN
(s) ds (10)

where

fAN
(s) =

λ0e
−λ0s(λ0s)

N−1

(N − 1)!
, s ≥ 0.

is the pdf of the Erlang distribution with parameters N and λ0.

We are interested in expected on hand carried from time AN until X +L. Since the time

axis is shifted, the expected inventory carried during this period is the positive area under

the expected trajectory of the net inventory level process from 0 to X − AN + L. Thus, for

a given AN this area can be computed as follows:

E[OHN+11(AN ≤ X)|AN = s] =

∫ X−s+L

0

E
[
(IL(t))+|AN = s

]
dt (11)

From (6),

E
[
(IL(t))+|AN = s

]
=

S1−1∑
n=0

(S1 − n)P (D(t) = n)1(t ≤ L)

+

S1−1∑
n=0

(S1 − n)P (D(t)−D(t− L) = n)1(t > L) (12)

Substituting (12) in (11) yields

E[OHN+11(AN ≤ X)|AN = s] =

S1−1∑
n=0

(S1 − n)

[∫ L

0

e−Λ(t)(Λ(t))n

n!
dt

+

∫ X−s+L

L

e−[Λ(t)−Λ(t− L)] (Λ(t)− Λ(t− L))n

n!
dt

]
(13)

and using the result in (10) gives that,

E[OHN+11(AN ≤ X)] =

S1−1∑
n=0

(S1 − n)

∫ X

0

[∫ L

0

e−Λ(t)(Λ(t))n

n!
dt

+

∫ X−s+L

L

e−[Λ(t)−Λ(t− L)] (Λ(t)− Λ(t− L))n

n!
dt

]
fAN

(s) ds (14)

12



We define the following functions,

bN(r; n, ρ) :=

(
r + n− 1

n− 1

)
ρn(1− ρ)r

and

ξ(r, n) := np(r + n; λ0X)

(
r + n

n

) r∑

k=0

(
r
k

)
(−1)k

n + k

(
X − L

X

)n+k

where r ∈ {0, 1, 2, ...}, n ∈ {1, 2, ...} and ρ ∈ R. Moreover, we let P̄ (n; λ) := 1− P (n− 1; λ)

denote the complementary cdf of Poisson distribution.

The integrals in equation (14) can be calculated with respect to the relationship between

X and L. Thus, for λ1 > 0, the expected on-hand inventory carried during the regular

operation phase is found as follows:

E[OHN+11(AN ≤ X)] =

{ ∑S1−1
n=0 (S1 − n) [f(n) + g1(n)] if L ≤ X∑S1−1
n=0 (S1 − n) [f(n)− g2(n)] if L > X

(15)

where

f(n) =

[
1

λ0

+
P (n; λ1L)

λ0 − λ1

]
P̄ (N ; λ0X) +

λ0 − λ1

λ0λ1

[P (N + n; λ0X)− P (N − 1; λ0X)] (16)

g1(n) = p(n; λ0L)
[
(X − L)P̄ (N ; λ0(X − L))− λ−1

0 NP̄ (N + 1; λ0(X − L))
]

− 2λ0 − λ1

λ0(λ0 − λ1)
P (n; λ0L)P̄ (N ; λ0(X − L))− (λ0 − λ1)

λ0λ1

n∑
i=0

ξ(i, N)

− λ0

λ1(λ0 − λ1)

n∑
i=0

i∑

k=0

p (i− k; λ1L + (λ0 − λ1)X) bN

(
k; N,

λ0

λ1

)
δ(k) (17)

with δ(k) = P (N + k − 1; λ1(X − L))− P (N + k − 1; λ1X).

g2(n) =
λ0

λ1(λ0 − λ1)

n∑
i=0

i∑

k=0

p(i− k; λ1L + (λ0 − λ1)X)bN

(
k; N,

λ0

λ1

)
P̄ (N + k; λ1X) (18)

The expected time weighted backorders incurred during the regular operation phase can

be calculated essentially the same way as described above. Hence, we skip the analysis for

brevity and directly give the result:

E[BO] =

{ ∑∞
n=S1

(n− S1) [f(n) + g1(n)] if L ≤ X∑∞
n=S1

(n− S1) [f(n)− g2(n)] if L > X
(19)
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3.2 Objective Function

We can now obtain the expected total cost incurred in the second period by using the

operating characteristics derived above. The general structure of the expected total cost

incurred in the second period can be given as follows:

TC(X) = hE [OH] + πE [BO] (20)

Using equations (4), (15) and (19) in (20) and defining,

c(x) :=

{
hx if x > 0
−πx if x ≤ 0

(21)

we obtain that,

TC(X) = hF(X) +

{ ∑∞
n=0 c(S1 − n) [f(n) + g1(n)] if L ≤ X∑∞
n=0 c(S1 − n) [f(n)− g2(n)] if L > X

(22)

Our goal is to find the optimal time for policy change that minimizes the expected total

cost incurred during the second period. Thus, the optimization problem can be stated as,

min
X≥0

TC(X) (23)

Despite the complicated appearance of equation (22) the optimal solution to problem

(23) can be found easily. This is because the equations (16)-(18) are mainly composed of

elementary probability functions and some combinatorial expressions. For the dimensions

that we are interested in all of the functions can be calculated easily with a general purpose

programming language. Besides, as we will discuss in more detail in section 3.4, TC(X) is

observed to be unimodal in X. Hence, X∗ can be searched very efficiently with standard

nonlinear optimization methods.

3.3 Full Obsolescence Case (λ1 = 0)

So far we have considered an inventory system facing obsolescence in which the demand

drops to a lower level but does not vanish (λ1 > 0). However, in some practical cases the

demand might disappear after a certain time point and the remaining stocks are either sold

in secondary markets or sent to locations where the demand is still healthy. Although the

analysis of the net inventory level process for full obsolescence case is essentially the same

as described in the previous section, the operating characteristics and the objective function

have to be slightly modified.
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When λ1 = 0 the number of excess stocks to be removed is equal to S0, and therefore the

inventory is carried only during the stock removal phase. Hence, the term E[OHN+11(AN ≤
X)] drops from the equation (4). Similarly, in equation (5) the term representing the expected

inventory carried after the drop (=λ−1
1

∑N−1
i=0 (S0 − i)P (i; λ0X)) becomes irrelevant since

under full obsolescence the stock removal can only be possible before time X. Thus, the

expected total inventory carried during the second period can be given as:

E [OH] = λ−1
0

[
S0(S0 + 1)

2
−

S0−1∑
i=0

(S0 − i)P (i; λ0X)

]
(24)

If full obsolescence occurs before all of the excess stocks are removed then the remaining

on hand inventory is usually salvaged (disposed) or relocated. In that case the obsolescence

cost co is incurred per unit of remaining inventory at the end of the second period. In case

of salvaging co can be interpreted as the overage cost of the well known newsboy problem.

Otherwise, it can be seen as the cost of transporting per unit of remaining inventory to a

location where the demand is healthier. Since S0 items should be removed before time X

the expected number of remaining stock at the end of the second period can be given by the

following expression:

E [RS] =

S0−1∑
i=0

(S0 − i)p(i; λ0X) (25)

where p(i; λ0X) is the probability that i items are demanded from the beginning of the second

period until the obsolescence occurs. Note that E [RS] is not affected by our assumption

that there are no outstanding orders at the beginning of the second period since the number

of stocks removed before time X only depends on the demand arrival process but not the

net inventory level process. Moreover, it can be easily shown that E [RS] is convex in X.

The analysis of the regular operation phase is similar to the one with positive λ1. However,

under full obsolescence there are no inventory carried during the regular operation phase since

the base stock level is zero. Thus, the expression for the expected time weighted backorders

incurred during this phase is found as:

E [BO] =

{ ∑∞
n=0 n [f(n) + g(n)] if L ≤ X∑∞
n=0 nf(n) if L > X

(26)
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where

f(n) = λ−1
0

[
2P̄ (N + n + 1; λ0X) + Np(N + n + 1; λ0X)

]

− (X − L)p(N + n; λ0X) (27)

g(n) = p(n; λ0L)
[
(X − L)P̄ (N ; λ0(X − L))− λ−1

0 NP̄ (N + 1; λ0(X − L))
]

− 2λ−1
0

[
P (n; λ0L)P̄ (N ; λ0(X − L))−

n∑
i=0

ξ(i, N)

]

+ (X − L)ξ(n, N)− λ−1
0 Nξ(n,N + 1) (28)

Therefore, the expected total cost incurred during the second period under full obsoles-

cence can be given as,

TC(X) = hE [OH] + coE [RS] + πE [BO] (29)

In our numerical experiments, we observed that equation (29) is unimodal in X. Hence, the

optimal solution of TC(X) can be found very easily for the full obsolescence case as well.

3.4 General Behavior of Objective Function and Operating Char-
acteristics

In this section, we investigate the general behavior of the objective function and the operat-

ing characteristics. For comparison purposes we conducted 5000 simulations of the demand

arrival process for given λ0 and λ1 pair. Then for a given X value, the operating charac-

teristics and the objective function are found by averaging the values calculated at each of

the simulated trajectories. In the sequel, we use subscript ‘s’ to denote the simulated values

for clarity. Figures 4 - 5 illustrate the general behavior of the objective function and the

operating characteristics. In the figures simulated values are given along with their 95%

confidence intervals.

Throughout our numerical study we observed that the expected total cost function is

unimodal in X (see Figure 4). The intuition behind this behavior can be explained as

follows: If X is too short then the inventory system does not have enough time to remove
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all of the excess stocks (N) before the drop in demand rate occurs. Therefore, the remaining

excess stocks either increase the holding costs since the natural attrition of these stocks

takes longer due to diminished demand or they result in obsolescence cost -in case of full

obsolescence- due to disposal or relocation. In both cases the system incurs extra holding

cost or obsolescence cost for not removing all of the excess stocks before the drop. Hence,

we observe a decrease in expected total cost function as X diverges from zero.

On the other hand, if X is too long then all of the excess stocks are removed too early

and the inventory system returns to its regular operation mode before the drop in demand

rate occurs. Consequently, the system operates under a lower base stock level S1 in order

to satisfy the demand until the drop occurs and incurs more backordering costs. Figure 5b

shows how the expected backorders increase in X. Therefore, there exists an optimal X

value balancing the obsolescence related costs (extra holding cost, obsolescence/relocation

cost) with the cost of backordering.

Figure 4: Behavior of Objective Functions (λ0 = 10, λ1 = 2, L = 0.15, π = 10, N = 2)
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Figure 5a presents an example of the rapid decrease in the expected on hand as X diverges

from zero when λ1 is positive. For the full obsolescence case, however, the behavior of the

expected on hand is different. The inventory is carried only in the stock removal phase and

for small X values it usually ends before all of the excess stocks are removed. Therefore,

when λ1 = 0 the expected on hand is generally increasing in X until it converges to a

constant (the expected positive area under the net inventory level process when the stock

removal ends before the drop occurs). Although the inventory system tends to carry less

stock as X decreases, the expected total cost keeps on increasing due to the increase in the

expected number of remaining stocks.
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Figure 5: Behavior of Operating Characteristics (λ0 = 10, λ1 = 2, L = 0.15, π = 10, N = 2)
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3.4.1 Comparison with Simulation

Our two assumptions about the initial inventory level and the end of the second period result

in different sample paths of the net inventory level process for our model and simulation in

periods [T −X, T −X +L] and [T, T +L]. When λ1 is positive E [OH] always overestimates

E [OHs] due to higher on hand inventory level between T − X and T − X + L, and the

extended calculation period. This can be observed in Figure 5a. On the other hand, when

λ1 = 0, E [OHs] is larger for X values near zero since the outstanding orders at time T −X

are likely to arrive after time T and therefore, in simulations the second period is likely to

be longer compared to our model.

When λ1 is positive expected backorders are underestimated by E [BO] as long as the

initial inventory level S0 is high enough to cover the demand before time T . However, as

X gets larger, the system returns to its regular operation mode earlier and E [BO] begins

to overestimate E [BOs] due to the extended calculation period. For example, in Figure

5b, we observe that E [BO] starts to overestimate E [BOs] for the X values greater than

0.25. Furthermore, we found that the performance of E [BO] is much better for the full

obsolescence case. Because when the stock removal phase ends before T , the sample path

differences between simulation and our model are only from T −X until T −X + L.

For positive λ1 and X values small enough we observe that the percent difference between

TC(X) and TCs(X) is relatively low since the overestimation of E [OHs] is compensated

by the underestimation of E [BOs]. Moreover, TC(X) underestimates TCs(X) as long as

the real backordering cost is larger than the overestimated quantity in holding cost (i.e.

πE [BOs] > h[E [OH]− E [OHs]]). Otherwise, TC(X) is larger than TCs(X) as a result of
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overestimation in holding costs. Similar intuitive results are observed for the full obsolescence

case as well. Finally, for 256 experiment instances, we found that the average absolute percent

difference between TC(X) and TCs(X) is approximately 11% for positive λ1 while it is only

1.25% when λ1 = 0 as a result of increased accuracy in E [BO] and the exact calculation of

E [RS].

4. Numerical Study

In this section, we first investigate the changes in optimal policy parameter and expected

total cost function under different parameter sets. Then, we identify the performance of our

model and its impact on expected total costs by comparing it with simulation optimization.

Finally, we close the section with a discussion about the value of advance policy change.

In the sequel, we use ‘∗’ to indicate optimality and denote the optimal X value found by

simulation optimization with X∗
s .

Throughout the numerical study we assume that simulation is representative of under-

lying real world model. Thus, we compare TCs(X
∗) with TC∗

s (X∗
s ) to measure the impact

of operating under X∗. As a simulation optimization technique, we employ response surface

methodology as described in Myers and Montgomery (1995).

The experiment instances used in our numerical study is generated with the following

parameter set: λ0 ∈ {0.5, 0.7, 1, 5, 7, 10} per year, λ1 ∈ {0, 0.2, 2} per year, h = 1 per

unit per year, π ∈ {5, 15, 25, 50, 75, 150, 300} per unit per year, co ∈ {5, 10} per unit, L ∈
{0.15, 0.25, 0.50, 0.75, 1} years. In total, we generate 281 instances for which the average

number of excess stocks to be removed is approximately 3 units. Some of the results from

the numerical study are tabulated in Table 1-2.

4.1 General Behavior of Optimal Policy Parameters and Total
Cost Functions

As can be seen from Table 1, when λ1 is positive, we do not always observe a monotonic

behavior in optimal X values and expected total costs due to discrete jumps in S0 or S1 as

L or π increases. However, when all other parameters are constant if an increase in L or π

does not effect S0 and S1 then the optimal X decreases to reduce the risk of backordering.

For the full obsolescence case, we observe similar non-monotonic behavior in optimal

values with respect to the changes in L or π. However, optimal X and TCs(·) are monoton-
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Table 1: Performance of X∗ and Value of Advance Policy Change When λ1 > 0

h = 1
λ0 λ1 π L S0 N X∗

s X∗ ∆x% TC∗s (X∗
s ) TCs(X∗) ∆c% TCs(0) ∆o%

0.5 0.2 50 0.50 2 1 1.80 1.64 -8.94 7.66 7.73 0.88 10.17 31.61
0.75 2 1 1.29 1.11 -13.77 8.35 8.51 1.89 10.19 19.73
1.00 2 1 0.96 0.80 -16.60 9.06 9.25 2.07 10.33 11.69

300 0.50 2 0 - - - - - - - -
0.75 3 1 1.65 1.45 -11.88 11.73 11.80 0.65 15.22 28.96
1.00 3 1 1.24 1.05 -15.43 12.52 12.62 0.81 15.28 21.10

1 0.2 50 0.50 2 1 1.02 0.87 -15.02 6.88 6.88 0.01 10.07 46.34
0.75 3 2 1.71 1.58 -7.24 14.47 14.53 0.40 24.88 71.21
1.00 3 2 1.40 1.31 -6.07 16.22 16.41 1.12 24.94 52.03

300 0.50 3 1 1.16 1.06 -8.32 9.20 9.24 0.42 15.08 63.23
0.75 4 2 1.74 1.65 -4.78 19.86 20.12 1.28 34.84 73.17
1.00 5 3 2.26 2.19 -2.98 32.32 32.77 1.40 59.46 81.45

5 2 5 0.05 1 1 0.18 0.15 -13.36 0.39 0.40 1.60 0.50 24.38
0.15 2 1 0.24 0.19 -20.66 0.70 0.71 0.74 0.96 35.62
0.25 2 1 0.16 0.12 -23.52 0.84 0.86 2.11 0.98 13.95

50 0.05 2 1 0.19 0.16 -13.33 0.78 0.78 1.25 0.99 26.33
0.15 3 1 0.18 0.14 -23.67 1.15 1.19 3.42 1.48 23.79
0.25 4 2 0.29 0.25 -14.17 2.51 2.55 1.75 3.39 32.75

10 2 5 0.05 1 1 0.12 0.09 -21.22 0.34 0.34 0.19 0.51 47.96
0.15 3 2 0.29 0.25 -14.01 1.02 1.04 1.30 2.42 133.47
0.25 4 3 0.35 0.30 -13.07 1.81 1.82 0.27 4.28 135.56

50 0.05 2 1 0.11 0.09 -20.35 0.68 0.69 1.69 1.02 46.98
0.15 4 2 0.21 0.18 -12.23 1.88 1.89 0.51 3.44 82.05
0.25 6 4 0.33 0.31 -6.55 4.27 4.33 1.22 8.79 103.16

Table 2: Performance of X∗ and Value of Advance Policy Change When λ1 = 0

L = 0.25, h = 1
λ0 π co N X∗

s X∗ ∆x% TC∗s (X∗
s ) TCs(X∗) ∆c% TCs(0) ∆o%

0.5 50 5 1 0.44 0.43 -2.34 4.73 4.74 0.16 5.03 6.17
10 1 1.00 0.99 -1.25 8.22 8.22 0.02 10.03 21.99

300 5 2 0.36 0.40 9.40 9.88 9.89 0.11 10.02 1.35
10 2 0.93 0.94 1.27 18.11 18.14 0.16 20.02 10.36

1 50 5 2 0.86 0.87 1.19 8.26 8.28 0.28 10.03 21.16
10 2 1.40 1.40 -0.51 13.31 13.31 0.04 20.03 50.50

300 5 2 0.29 0.32 11.00 9.44 9.48 0.44 10.06 6.17
10 2 0.50 0.53 6.05 17.40 17.40 0.03 20.06 15.30

5 5 5 2 0.59 0.59 -0.78 3.37 3.38 0.45 10.14 199.65
10 2 0.75 0.75 -0.65 4.32 4.34 0.40 20.14 363.86

50 5 4 0.52 0.52 0.33 11.77 11.82 0.47 20.30 71.73
10 4 0.67 0.67 0.07 18.33 18.35 0.12 40.30 119.65

10 5 5 4 0.56 0.55 -1.99 4.74 4.74 0.15 20.38 329.45
10 4 0.66 0.65 -1.79 5.88 5.90 0.36 40.38 584.32

50 5 6 0.43 0.44 1.09 14.74 14.76 0.12 30.68 107.88
10 6 0.53 0.53 -0.14 22.75 22.79 0.19 60.68 166.20

ically increasing in co since N is independent of the obsolescence cost. Thus, as co increases

optimal X values also increase to reduce the number of remaining stocks and the expected

total costs increase as a result of higher obsolescence penalty (see Table 2).

An important indicant for the behavior of the optimal X is the ratio N/λ0, average time

needed to remove Nth excess stock before the drop occurs. In general, we observe that
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optimal X values and corresponding expected total costs are increasing in N/λ0. This is to

be expected since as the ratio increases more time is needed to complete the stock removal

process before the drop occurs. Hence, the system adjusts itself accordingly. On the other

hand, the increase in optimal values is not monotonic. This is because the ratio is only a

measure of the stock removal process but not the regular operation phase. In other words,

the inventory system might incur backordering cost once the stock removal is completed.

Hence, the optimal values are not monotonically increasing in N/λ0. Figure 6 illustrates the

change in optimal values as N/λ0 increases for the instances with λ0 varying from 5 to 10

and N varying from 1 to 6.

Figure 6: Change in Optimal Values wrt N/λ0
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4.2 Overall Performance of X∗

Next, we compare the performance of X∗ vis à vis X∗
s . For comparison purposes we use

percent error which gives the percentage deviation from the optimal values found by simula-

tion optimization. Hence, we define ∆x% = X∗−X∗
s

X∗
s

× 100 as the percent deviation from X∗
s

whereas ∆c% = TCs(X∗)−TC∗s (X∗
s )

TC∗s (X∗
s )

× 100 is defined as the percent deviation from the optimal

expected total cost TC∗
s (X∗

s ) as a result of using X∗ instead of X∗
s . Figure 7 illustrates a

comparison of optimal X values and corresponding expected total costs.

We observed that the expected total cost is quite robust to the changes in X∗
s . For

example, for the instances considered in Figure 7 we found that X∗ underestimates X∗
s on

average by 9.21%. For the same instances, however, the average deviation from the optimal

expected total cost is only 0.67%. This robust behavior of the expected total cost function

can be seen more clearly in Figure 6. Moreover, we found that X∗ might underestimate or
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Figure 7: Performance of X∗ (λ0 = 10, λ1 = 2, N = 4)
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(b) TC∗s = 3.86, ∆c% = 0.67%
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overestimate X∗
s depending on the interplay between the extra costs resulting from our two

main assumptions and the costs related with obsolescence. This can be best observed in

Table 2.

For all instances with positive λ1 (89 instances out of 281), the mean absolute deviation

from X∗
s is found to be 11.87%. For the same instances we found that using X∗ instead of X∗

s

results in a deviation from the optimal expected total cost on average 1.03% and maximum

4.42%. For the full obsolescence case, we found that the mean absolute deviation from X∗
s

is 5.42% and the average deviation from the optimal expected total costs is 0.56% with a

maximum of 3.44%. Thus, we conclude that X∗ performs satisfactorily and it gives near

optimal results for expected total costs. For more detailed results we refer the reader to

Tables 1-2.

4.3 Value of Advance Policy Change

Next, we discuss the value of changing the control policy to initiate the stock removal process

before the drop in demand rate occurs. To this extend, we compare the expected total

cost incurred by changing the policy X∗ time units earlier before the drop occurs with the

expected total cost incurred by changing it immediately after the drop occurs (X = 0). For

comparison purposes we use percent deviation in expected total cost functions defined as

∆o% = TCs(0)−TCs(X∗)
TCs(X∗) × 100. Figure 8 illustrates the changes in ∆o% for different λ0 and λ1

values.

We found that the impact of advance policy change on costs is significant. For example,

in Figure 8a when λ0 = 5 the average TCs(X
∗) is found to be 2.11. For these instances,

22



Figure 8: Value of Advance Policy Change (∆o%)
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waiting until the drop occurs increases the expected total costs on average by 30%. The

increase in total cost is due to the increase in holding costs since the natural attrition of the

remaining excess stocks takes longer once the drop occurs. Moreover, we found that when

all other parameters are constant, the cost of postponing the policy change increases very

rapidly in λ0 (see Table 1). This can be seen clearly from Figure 8a; when λ0 increases from

5 to 10 the average percent deviation due to postponement increases from 30% to 136%.

Our observations for the full obsolescence case are similar. However, when λ1 = 0 the

increase in total cost is mainly due to the obsolescence/relocation cost charged per remaining

excess stock. For the instances given in Figure 8b, we found that when λ0 = 5, the average

∆o% increases from 129.07% to 228.12% as co doubles. Moreover, we observed that ∆o% is

decreasing in π. Because as π increases the cost of obsolescence becomes relatively cheaper

compared to backordering. These behaviors can be seen in more detail in Table 2.

We close our discussion about the value of advance policy change by giving the summaries

about ∆o%. Over all the numerical experiments conducted, we found that when λ1 is

positive, changing the control policy after the drop occurs increases the expected total costs

on average by 60%. In case of full obsolescence, we found that the expected total costs are

on average more than doubled as a result of not taking an early action (∆o% = 133.04%).

These findings show us that employing an advance policy change in face of pre-determined

obsolescence results in important savings.
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5. Conclusion

In this paper, we considered a continuous review inventory system of a slow moving item in

which the demand rate drops to a lower level at a pre-determined (announced) time in the

future. Adaptation to the new demand rate is achieved by changing the control policy before

the drop occurs, and therefore letting the demand process to take away the excess stocks.

We focused on the behavior of the net inventory level process during the transient period

and proposed an approximate solution for the optimal time to shift to the new control policy

minimizing the expected total cost incurred during this period. We found that the advance

policy change results in significant cost savings and our model yields near optimal solutions

for the expected total costs.

The key contribution of this paper lies in the analysis of a continuous review inventory

system facing stochastic demands in the context of obsolescence for the first time. Earlier

works on obsolescence were focused on periodic review models. The main insights from

these works were that the obsolescence has a substantial impact on optimal policies and it

should be incorporated into inventory control models explicitly. In our study, we extend

these findings for a continuous review system and show that the advance policy change in

the face of pre-determined obsolescence results in significant cost savings. Our numerical

experiments reveal that for slow movers the timing of the control policy change primarily

determines the tradeoff between backordering penalties and obsolescence costs.

The practical importance of our model comes from its consideration of expensive, slow

moving items with high downtime costs for which continuous review policies are preferred

over periodic review ones due to lower safety stock requirements. For this class of items,

efficient management of inventories is notoriously difficult. Not surprisingly, inventory man-

agers of many companies in after sales service industry are recurrently facing the problem

of obsolete or excess inventories of such items. Knowing when to change the control policy

is the key to reduce obsolete inventories without jeopardizing the availability. If the change

is too early then the risk of backordering is too high and the stockouts can be detrimental

to companies’ operations. On the other hand, if the change is too late then the risk of

obsolescence is too high and obsolete stocks lay as dead weight on the books which in return

reduces the competitiveness of companies. Our model can be used to study the impact of the

timing of policy change on operational costs and to identify the optimum time that balances

the tradeoff between the risk of obsolescence and backordering.
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While developing our model, we employed a couple of assumptions to keep the analysis in

the boundaries of mathematical tractability. Although some of these assumptions limit the

generality, the model offers an increased understanding of the transient behavior of inventory

systems and the impacts of advance policy change on operational costs. Given the scarcity of

research on continuous review systems facing obsolescence, we consider that our model bears

a reasonable balance between realism and tractability for the insights obtained. Therefore,

it can stand as a building block for more complicated and realistic models.

There are a couple of directions for future research. It would be useful to extend the model

with demand rate decreasing by time. Such model would be more suitable for the products

at the the end of their life cycles. Another possibility is to incorporate the uncertainty into

the timing of the obsolescence or into the size of the drop in demand rate. These extensions

would yield interesting insights about the timing of a policy change. Extending the model for

a general class of continuous review control policies seems particularly worthwhile because

for many products, the prospect of obsolescence has increased drastically due to the rapid

changes in consumer taste and technological innovations.
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Appendix for “A Continuous Review Inventory Model

with Advance Policy Change and Obsolescence”

Proof of Equation (4). Taking the expectation of equation (2) yields that for k = 2, . . . , N

and N ≥ 2,

E[OHk] =
[
(S0 − k + 1)X + E[OH

′
k]

]
P (Ak−1 ≤ X, Ak > X)

+ (S0 − k + 1)[E [τk 1(Ak ≤ X)]− E [Ak−11(Ak−1 ≤ X, Ak > X)]]

+ E[OHk+11(Ak ≤ X)] (30)

Observe that the event {Ak−1 ≤ X, Ak > X} implies that there are exactly k − 1 demands

during the period of length X. Since the total demand during this period is Poisson dis-

tributed with rate λ0 we obtain that,

P (Ak−1 ≤ X, Ak > X) = p(k − 1; λ0X), k = 2, 3, . . . (31)

Denote,

ε′k := E [τk 1(Ak ≤ X)] , k = 2, 3, . . .

and observe that Ak = Ak−1 + τk. Hence, by conditioning on Ak−1 and after some algebra

we get,

ε′k =

∫ X

0

∫ X−s

0

tfτk
(t) fAk−1

(s) dt ds = λ−1
0 [1− P (k − 1; λ0X)] (32)

Denote,

ε′′k := E [Ak−11(Ak−1 ≤ X, Ak > X)] , k = 2, 3, . . .

Similarly, conditioning on Ak−1 yields,

ε′′k =

∫ X

0

sP (τk > X − s) fAk−1
(s)ds = λ−1

0 (k − 1)p(k; λ0X) (33)

Thus, the difference between ε′k and ε′′k is found as follows:

ε′k − ε′′k = λ−1
0 [1− P (k − 1; λ0X)]−Xp(k − 1; λ0X), k = 2, 3, . . . (34)
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Also, note that

E[OH
′
k] = λ−1

1

N∑

i=k

(S0 − i + 1), k = 1, . . . , N. (35)

Therefore, substituting (31), (34) and (35) in (30), and making necessary simplifications

yields that for k = 2, . . . , N and N ≥ 2,

E[OHk] = λ−1
1 p(k − 1; λ0X)

N∑

i=k

(S0 − i + 1)

+ λ−1
0 (S0 − k + 1) [1− P (k − 1; λ0X)]

+ E[OHk+11(Ak ≤ X)] (36)

Observe that E[OHk] = E[OHk1(Ak−1 ≤ X)] since E[OHk1(Ak−1 > X)] = 0. Thus, by

exploiting the recursive structure of (36) and after some algebra we obtain that for N ≥ 1,

E[OH21(A1 ≤ X)] = λ−1
1

N−1∑
i=1

(S0 − i)
i∑

j=1

p(j; λ0X) + λ−1
0 (N − 1)

[
S0 − N

2

]

− λ−1
0

N−1∑
i=1

(S0 − i)P (i; λ0X) + E[OHN+11(AN ≤ X)] (37)

with the convention that
∑N

i=k() = 0 for N < k. Now, taking the expectation of equation

(1) gives,

E [OH] =
[
S0X + E[OH

′
1]

]
P (A1 > X) + S0E [A11(A1 ≤ X)] + E[OH21(A1 ≤ X)] (38)

Thus, using (35) and (37) in (38), and rearranging the terms yield the expected on-hand as

given by equation (4).

Before starting the analysis of E[OHN+11(AN ≤ X)] we need the following lemma which

is important for our derivations.

Lemma 1. Let fE(t) be the pdf of Erlang distribution with parameters α ∈ {1, 2, ...}, β > 0

and define

I =

∫ b

a

p(r; λt + γ)fE(t)dt. (39)
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(i) If λ 6= −β then

I =
r∑

k=0

p(r − k; γ)bN

(
k; α,

β

λ + β

)
δ(k) (40)

where

δ(k) = P (α + k − 1; (λ + β)a)− P (α + k − 1; (λ + β)b)

(ii) If λ = −β then

I =
βα

(α− 1)!

r∑

k=0

p(r − k; γ)
(−β)k

(
bα+k − aα+k

)

k!(α + k)
(41)

Proof of Lemma 1.

(i) From (39) we have,

I =
e−γβα

r!(α− 1)!

∫ b

a

(λt + γ)rtα−1e−(λ+β)tdt

Using binomial theorem and after some algebra,

I =
e−γβα

r!(α− 1)!

∫ b

a

r∑

k=0

(
r
k

)
γr−k(λt)ktα−1e−(λ+β)tdt

=
r∑

k=0

e−γγr−k

(r − k)!

(
k + α− 1

α− 1

)
βα

(λ + β)α−1

(
λ

λ + β

)k ∫ b

a

p(α + k − 1; (λ + β)t)dt (42)

It can be easily shown that for any λ 6= 0 the following holds,

∫ b

a

p(n; λt + γ)dt =
1

λ
[P (n; λa + γ)− P (n; λb + γ)] (43)

Hence, applying (43) to the integral on the right-hand side of (42) yields,

I =
r∑

k=0

p(r − k; γ)

(
k + α− 1

α− 1

)(
β

λ + β

)α (
λ

λ + β

)k

[P (α + k − 1; (λ + β)a)

− P (α + k − 1; (λ + β)b)]

=
r∑

k=0

p(r − k; γ)bN

(
k; α,

β

λ + β

)
[P (α + k − 1; (λ + β)a)− P (α + k − 1; (λ + β)b)] .
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(ii) When λ = −β (39) can be simplified as,

I =
e−γβα

r!(α− 1)!

∫ b

a

(−βt + γ)rtα−1dt

and the result follows from the binomial theorem:

I =
e−γβα

r!(α− 1)!

r∑

k=0

(
r
k

)
γr−k(−β)k

∫ b

a

tα+k−1dt

=
βα

(α− 1)!

r∑

k=0

p(r − k; γ)
(−β)k

(
bα+k − aα+k

)

k!(α + k)

Proof of Equation (15).

Denote,

E[OHN+11(AN ≤ X)] =

S1−1∑
n=0

(S1 − n) [K1 + K2]

with

K1 :=

∫ X

0

∫ L

0

e−Λ(t)(Λ(t))n

n!
fAN

(s) dt ds (44)

K2 :=

∫ X

0

∫ X−s+L

L

e−[Λ(t)−Λ(t− L)] (Λ(t)− Λ(t− L))n

n!
fAN

(s) dt ds (45)

(i) If L ≤ X then using the definition of Λ(t) we can partition the integrals in (44) and (45)

as follows:

K1 =

∫ X−L

0

∫ L

0

p(n; λ0t) dtfAN
(s) ds

+

∫ X

X−L

[∫ X−s

0

p(n; λ0t) dt +

∫ L

X−s

p(n; η1(t, s)) dt

]
fAN

(s) ds (46)

K2 =

∫ X−L

0

[∫ X−s

L

p(n; λ0L) dt +

∫ X−s+L

X−s

p(n; η2(t, s)) dt

]
fAN

(s) ds

+

∫ X

X−L

∫ X−s+L

L

p(n; η2(t, s)) dtfAN
(s) ds (47)

where η1(t, s) := λ1t + (λ0 − λ1)(X − s) and η2(t, s) := η1(t, s) − λ0(t − L). From identity

4



(43) we obtain that,

K1 =

∫ X−L

0

1

λ0

[1− P (n; λ0L)]fAN
(s) ds +

∫ X

X−L

[
1

λ0

[1− P (n; λ0(X − s))]

+
1

λ1

[P (n; λ0(X − s))− P (n; υ(s)]

]
fAN

(s) ds (48)

K2 =

∫ X−L

0

[
p(n; λ0L)(X − s− L)− 1

λ0 − λ1

[P (n; λ0L)− P (n; λ1L)]

]
fAN

(s) ds

+

∫ X

X−L

1

λ0 − λ1

[P (n; λ1L)− P (n; υ(s))]fAN
(s) ds (49)

with υ(s) := λ1L+(λ0−λ1)(X− s). Summing K1 and K2 and rearranging the terms yields,

K1 + K2 =

[
1

λ0

− 2λ0 − λ1

λ0(λ0 − λ1)
P (n; λ0L) + p(n; λ0L)(X − L)

+
P (n; λ1L)

λ0 − λ1

] ∫ X−L

0

fAN
(s) ds− p(n; λ0L)

∫ X−L

0

sfAN
(s) ds

+

[
1

λ0

+
P (n; λ1L)

λ0 − λ1

] ∫ X

X−L

fAN
(s) ds

+
λ0 − λ1

λ0λ1

∫ X

X−L

P (n; λ0(X − s))fAN
(s) ds

− λ0

λ1(λ0 − λ1)

∫ X

X−L

P (n; υ(s))fAN
(s) ds (50)

Note that,

∫ X

X−L

P (n; λ0(X − s))fAN
(s) ds =

n∑
i=0

∫ X

X−L

p(i; λ0(X − s))fAN
(s) ds (51)

∫ X

X−L

P (n; υ(s))fAN
(s) ds =

n∑
i=0

∫ X

X−L

p(i; υ(s))fAN
(s) ds (52)

and denote,

I1 :=

∫ X

X−L

p(i; λ0(X − s))fAN
(s) ds (53)

I2 :=

∫ X

X−L

p(i; υ(s))fAN
(s) ds (54)

5



Using part (ii) of Lemma 1 and after some algebraic manipulations we obtain that,

I1 =
λ0

N

(N − 1)!

i∑

k=0

p(i− k; λ0X)
(−λ0)

k
(
XN+k − (X − L)N+k

)

k!(N + k)

= p(N + i; λ0X)

[
1−N

(
N + i

N

) i∑

k=0

(
i
k

)
(−1)k

N + k

(
X − L

X

)N+k
]

= p(N + i; λ0X)− ξ(i, N) (55)

Thus, substituting (55) in (51) yields,

∫ X

X−L

P (n; λ0(X − s))fAN
(s) ds = P (N + n; λ0X)−P (N − 1; λ0X)−

n∑
i=0

ξ(i, N) (56)

Similarly, from part (i) of Lemma 1 we found that

I2 =
i∑

k=0

p(i− k; λ1L + (λ0 − λ1)X)bN

(
k; N,

λ0

λ1

)
δ(k) (57)

with

δ(k) = P (N + k − 1; λ1(X − L))− P (N + k − 1; λ1X)

Substituting (57) in (52) gives,

∫ X

X−L

P (n; υ(s))fAN
(s) ds =

n∑
i=0

i∑

k=0

p(i− k; λ1L + (λ0 − λ1)X)bN

(
k; N,

λ0

λ1

)
δ(k) (58)

Therefore, employing equations (56) and (58) in (50), and using the following identities

∫ x

0

fAN
(s) ds = P̄ (N ; λ0x) (59)

∫ x

0

sfAN
(s) ds = λ−1

0 NP̄ (N + 1; λ0x) (60)

yield that,

E[OHN+11(AN ≤ X)] =

S1−1∑
n=0

(S1 − n) [f(n) + g1(n)] .

6



with

f(n) =

[
1

λ0

+
P (n; λ1L)

λ0 − λ1

]
P̄ (N ; λ0X) +

λ0 − λ1

λ0λ1

[P (N + n; λ0X)− P (N − 1; λ0X)]

g1(n) = p(n; λ0L)
[
(X − L)P̄ (N ; λ0(X − L))− λ−1

0 NP̄ (N + 1; λ0(X − L))
]

− 2λ0 − λ1

λ0(λ0 − λ1)
P (n; λ0L)P̄ (N ; λ0(X − L))− (λ0 − λ1)

λ0λ1

n∑
i=0

ξ(i, N)

− λ0

λ1(λ0 − λ1)

n∑
i=0

i∑

k=0

p (i− k; λ1L + (λ0 − λ1)X) bN

(
k; N,

λ0

λ1

)
δ(k)

(ii) If L > X then by the definition of Λ(t) the integrals in (44) and (45) can be partitioned

as follows:

K1 =

∫ X

0

[∫ X−s

0

p(n; λ0t) dt +

∫ L

X−s

p(n; η1(t, s)) dt

]
fAN

(s) ds (61)

K2 =

∫ X

0

∫ X−s+L

L

p(n; η2(t, s)) dtfAN
(s) ds (62)

Using the identity (43) in K1 and K2, and summing the results yield that,

K1 + K2 =

[
1

λ0

+
P (n; λ1L)

λ0 − λ1

]
P̄ (N ; λ0X) +

λ0 − λ1

λ0λ1

n∑
i=0

∫ X

0

p(i; λ0(X − s))fAN
(s) ds

− λ0

λ1(λ0 − λ1)

n∑
i=0

∫ X

0

p(i; υ(s))fAN
(s) ds (63)

Denote,

I3 :=

∫ X

0

p(i; λ0(X − s))fAN
(s) ds

I4 :=

∫ X

0

p(i; υ(s))fAN
(s) ds

By employing part (ii) of Lemma 1 in I3 we obtain that,

I3 =
λ0

N

(N − 1)!

i∑

k=0

p(i− k; λ0X)
(−λ0)

kXN+k

k!(N + k)
= p(N + i; λ0X) (64)

7



Similarly, from part (i) of Lemma 1 we have,

I4 =
i∑

k=0

p(i− k; λ1L + (λ0 − λ1)X)bN

(
k; N,

λ0

λ1

)
P̄ (N + k; λ1X) (65)

Therefore, employing (64) and (65) in (63) yields that,

E[OHN+11(AN ≤ X)] =

S1−1∑
n=0

(S1 − n) [f(n)− g2(n)]

with

g2(n) =
λ0

λ1(λ0 − λ1)

n∑
i=0

i∑

k=0

p(i− k; λ1L + (λ0 − λ1)X)bN

(
k; N,

λ0

λ1

)
P̄ (N + k; λ1X)

Proof of Equation (26).

Note that the integral expression for the expected time weighted backorders can be found

similar to the expected on hand carried during the regular operation phase as described in

section 3.1. Thus, for λ1 = 0 we found that,

E[BO] =
∞∑

n=0

n

∫ X

0

[∫ L

0

e−Λ(t)(Λ(t))n

n!
dt

+

∫ X−s+L

L

e−[Λ(t)−Λ(t− L)] (Λ(t)− Λ(t− L))n

n!
dt

]
fAN

(s) ds

=
∞∑

n=0

n [K1 + K2]

(i) If L ≤ X then from the definition of Λ(t) the integral expressions K1 and K2 can be

partitioned as in equations (46) and (47) with λ1 = 0. Using the identity (43) in K1 and K2

and summing the results yield that,

K1 + K2 =
[
2λ−1

0 [1− P (n; λ0L)] + p(n; λ0L)(X − L)
] ∫ X−L

0

fAN
(s) ds

− p(n; λ0L)

∫ X−L

0

sfAN
(s) ds + 2λ−1

0

∫ X

X−L

[1− P (n; λ0(X − s))]fAN
(s) ds

− (X − L)

∫ X

X−L

p(n; λ0(X − s))fAN
(s) ds +

∫ X

X−L

p(n; λ0(X − s))sfAN
(s) ds (66)

8



Using the identities (59) and (60) in (66), and simplifying gives that,

K1 + K2 = 2λ−1
0

[
P̄ (N ; λ0X)− P (n; λ0L)P̄ (N ; λ0(X − L))

]

− p(n; λ0L)
[
(X − L)P̄ (N ; λ0(X − L))− λ−1

0 NP̄ (N + 1; λ0(X − L))
]

− 2λ−1
0

∫ X

X−L

P (n; λ0(X − s))fAN
(s) ds− (X − L)

∫ X

X−L

p(n; λ0(X − s))fAN
(s) ds

+

∫ X

X−L

p(n; λ0(X − s))sfAN
(s) ds (67)

Observe that,

∫ X

X−L

p(n; λ0(X − s))sfAN
(s) ds = λ−1

0 N

∫ X

X−L

p(n; λ0(X − s))fAN+1
(s) ds (68)

where fAN+1
is the pdf of Erlang distribution with parameters λ0 and N + 1. Thus, by

applying part (ii) of Lemma 1 to the right-hand side of (68) we obtain that,

∫ X

X−L

p(n; λ0(X − s))sfAN
(s) ds = λ−1

0 N [p(N + 1 + n; λ0X)− ξ(n,N + 1)] (69)

Therefore, employing the results (55), (56) and (69) in (67), and making necessary simplifi-

cations yield the expected backorder as follows:

E[BO] =
∞∑

n=0

n [f(n) + g(n)]

with

f(n) = λ−1
0

[
2P̄ (N + n + 1; λ0X) + Np(N + n + 1; λ0X)

]− (X − L)p(N + n; λ0X) (70)

g(n) = p(n; λ0L)
[
(X − L)P̄ (N ; λ0(X − L))− λ−1

0 NP̄ (N + 1; λ0(X − L))
]

− 2λ−1
0

[
P (n; λ0L)P̄ (N ; λ0(X − L))−

n∑
i=0

ξ(i, N)

]

+ (X − L)ξ(n,N)− λ−1
0 Nξ(n,N + 1)

9



(ii) If L > X then from the definition of Λ(t) the integral expressions K1 and K2 can be

partitioned as in equations (48) and (49) with λ1 = 0. Using the identity (43) in K1 and K2,

and summing the results yield that,

K1 + K2 = 2λ−1
0

[
P̄ (N ; λ0X)−

n∑
i=0

∫ X

0

p(i; λ0(X − s))fAN
(s) ds

]

− (X − L)

∫ X

0

p(n; λ0(X − s))fAN
(s) ds +

∫ X

0

p(n; λ0(X − s))sfAN
(s) ds (71)

Observe that

∫ X

0

p(n; λ0(X − s))sfAN
(s) ds = λ−1

0 N

∫ X

0

p(n; λ0(X − s))fAN+1
(s) ds (72)

Thus, using part (ii) of Lemma 1 in (72) yields that,

∫ X

0

p(n; λ0(X − s))sfAN
(s) ds = λ−1

0 Np(N + 1 + n; λ0X) (73)

Finally, using (64) and (73) in (71), and after some simplifications we obtain the expected

backorder as follows:

E[BO] =
∞∑

n=0

nf(n)

with f(n) as given in (70).
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