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Abstract 

Traditional methods for the analysis of seasonal and nonstationary time series assume that 
seasonality and a stochastic trend can be separated in some way. However, several macroeconomic 
time series display patterns which indicate that separation may not be valid. Such patterns occur if 
seasonal movements change slowly over time and the timing of changes depends on exogenous shocks 
from e.g., a business cycle. Periodic autoregressive processes with unit roots are suitable for modeling 
and forecasting such series. Using Monte-Carlo simulations the Census X-11 adjustment and the 
Box-Jenkins analysis are compared considering the case that the data are generated by periodic 
processes. It appears, for example, that the intrinsic periodicity is removed only partially, that a test 
for a unit root is robust, and that the most sensible practical strategy seems to be to start with 
a general periodic autoregressive model. If necessary, one can then switch to a usual seasonal 
adjustment procedure if the hypothesis of nonperiodicity cannot be rejected. The quartely real 
German G N P  series is used to illustrate that a periodic model can yield superior modeling and 
forecasting. 

1. Introduction 

Traditional time series methods to analyze seasonally observed variables often 
assume that seasonality can be removed from the time series, either by using 
seasonal adjustment filters like the Census X-11 filter or by transforming the series 
to, e.g., annual growth rates. The main motivations for this practice are that 
seasonality is considered to be a contamination of the series, and that seasonal 
fluctuations seem to be reasonably independent of underlying stochastic trends. An 
economic motivation is that it is oftef~ assumed that economic agents abstract from 
seasonality when forming expectations or plans. 
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Fig. 1. Vertical axis: the log of the real German GNP. Horizontal axis: the time in quarters, 
1960.1-1990.4. 

Recently, there has emerged a growing interest in modeling seasonality in its own 
right. Beaulieu et al. (1992) found that for the real GNP series in many OECD 
countries the seasonal variation and the business variation are related. Ghysels 
(1991) documents for the US composite leading indicator index that business cycle 
turning points are not equally distributed over the year. Hence, the length of 
a business cycle may be dependent on the season in which a contraction or 
expansion starts. In Franses (1992a) it is illustrated with several consumer expecta- 
tions indices for eight European countries that these show seasonal patterns, 
suggesting that economic agents do not entirely abstract from seasonal fluctu- 
ations. In summary, for some macroeconomic variables it appears that the stan- 
dard assumptions underlying the traditional analysis may be invalidated. 

A typical example of such a macroeconomic time series is the log of the quarterly 
observed real gross national product (GNP) for Germany, 1960.1-1990.4, as depic- 
ted in Fig. 1. This graph shows the characteristics of many quarterly macroeco- 
nomic time series, i.e., there is an upward trending pattern and there are marked 
seasonal fluctuations. Whether the latter fluctuations are constant over time can 
roughly be observed from the plots in Fig. 2. The quarterly time series is denoted as 
Yt, This series can be split up into four annual series, say Y~r, containing for each 
year T the observations per season s, where s -- 1, 2, 3, 4. In Fig. 2, the graphs of the 
Y~r are given. It can be seen that the seasonal pattern seems reasonably constant, 
albeit that the observations in seasons 3 and 4 change place, and, second, that the 
differences between the seasons decrease. The latter is more clearly seen from Fig. 3, 
in which the first differences of Yt per season, i.e., Y~r - Y~- 1.7" for s = 2, 3, 4, are 
displayed. Before 1974 there appear to be distinctive differences between the 
seasons, although these differences get Smaller with additional observations, and 
after 1975 the differences seem to vanish. Given that the first differenced time series 
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Fig. 2. Vertical axis: the log of real German G N P  observed in quarter s with s = 1, 2, 3, 4 Horizontal 
axis: the time in years, 1960-1990. 
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Fig. 3. Vertical axis: the first differences ofy, in quarters 2, 3 and 4. Horizontal axis: the time in years, 
1960-1990. 

still displays nonstationary patterns, one may expect that the application of the first 
differencing filter does not result in a time series without one or more stochastic 
trends. However, the first-order differenced time series seems stationary after 1975. 
Hence the application of, e.g., the fourth-order differencing filter to Yt to remove 
possible stochastic trends may introduce unit roots in the moving average poly- 
nOmial in the second part of the sample. Given that 1975 corresponds to the oil 
crisis period, it may be the case that the underlying stochastic trend affects the 
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Fig. 4. Ver t ica l  axis: recurs ive  O L S  e s t i m a t e s  o f  6i in the  r eg re s s ion  A,  Yt = F~=,  6i D~, + v ,  whe re  Ds, 

a re  s e a s o n a l  d u m m y  va r i ab les  H o r i z o n t a l  axis: the  t ime  in years .  

seasonal pattern. Of course, one cannot exclude the possibility of a deterministic 
structural change. In summary, an underlying assumption of the separation of 
trends and seasonal fluctuations, required for a traditional analysis of the German 
output series may be invalidated. An additional piec e of visual evidence for this 
conjecture is given in Fig. 4. This figure displays the recursive Ordinary Least 
Squares (OLS) parameter estimates for the four seasonal dummies from a regres- 
sion of the quarterly growth rates, i.e., Yt - Yt- 1, on these variables, see (Barsky and 
Miron 1989). It is clear from these four graphs that the estimates for the seasonal 
means are not constant over time, and that a marked change can be noticed 
somewhere in the beginning of the seventies, see (Canova and Ghysels, forthcom- 
ing) for formal tests. 

Models that can cope with phenomena as slowly changing seasonal patterns which 
may be dependent on stochastic trends are periodic models with a single unit root, i.e., 
time series models which allow the dynamic parameters and the stochastic trend to 
vary over the season. Indeed, these models assume that each season can be modeled 
differently. Examples of the empirical use of such periodic time series models are given 
in (Osborn 1988; Osborn and Smith, 1989; Boswijk and Franses, 1992; Franses, to 
appear). In (Osborn and Smith 1989; Franses, 1992b; Franses and Romijn, to appear) it 
is shown that the one-step-ahead forecasting performance can be improved using 
periodic models with unit roots. In Section 2 of the present paper, a review of some 
important aspects of periodic autoregressive models with a single unit root is given. 

Currently, the use of periodic time series models, with or without unit roots, is 
not widespread in empirical economics. This means that in cases where periodic 
models would have been more appropriate, one sticks to the traditional methods to 
analyze seasonal time series. It is therefore of interest to have an indication of the 
effects of misspecifying the underlying dynamic periodicity, i.e., of the effects of 
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using seasonal correction methods when data are generated from a periodic 
process. A discussion of the results of several Monte-Carlo exercises is given in 
Section 3. These exercises consider tests for periodicity and for a unit root, and the 
identification and testing of nonperiodic models. Thereby, a Monte-Carlo study 
gives empirical background to some of the theoretical results derived by Tiao and 
Grupe (1980), Osborn (1991) and Ghysels and Hall (1992). From the experiments it 
emerges that it seems most appropriate in practice to start an analysis of a sea- 
sonally observed time series with a test for periodically varying dynamics. Further, 
unit root testing in a periodic model does not seem to be much affected when 
a linear Census X-11 correction filter is used. Moreover, the intrinsic periodicity is 
often removed only to a small extent. Section 4 is dedicated to a profound analysis 
of the German data discussed above. The final section discusses some implications 
and extensions of the empirical results in this paper. 

2. Periodic autoregressive processes 

A general form of a periodic autoregressive process of order p, PAR(p), for 
a possibly trended quarterly time series y, is 

4- p 4. 

Y , =  Z [ I ~ D ~ t + 6 s D ~ t T , ] +  Z Z OstdP'~Y, - i + e t ,  (1) 
s = l  i = l s = l  

where D~t are four seasonal dummies, /~,  32 and qSis are periodically varying para- 
meters, T~ is a deterministic trend variable, and et denotes a standard white noise 
process. Of course, not all qS~ have to be nonzero, and hence p is the maximum of the 
orders p~ per season. Further, et can be replaced by e~t to allow for seasonally varying 
error variances. The model in (1) can be estimated using ordinary least squares. 

Note that the seasonal variation in /~ and 6~ is not necessarily caused by 
a nonconstant  underlying trend and mean. This is illustrated with the simple 
PAR(l) model without a linear trend, or 

Yt - IJ = 7~(Yt-1 - #) + et, 

which can be rewritten as 

Yt = ~ Yt-1 + P~ + et, 

(2) 

(3) 

with kts = (1 - 7~)/~- Hence, although the mean of the series Yt is constant over all 
seasons, a regression model for Yt should include four seasonal dummies. Model (1) 
is of course not expected to be valid for any seasonally observed series. One may 
want to test whether indeed the ~bis are periodic. In (Boswijk and Franses, 1992) it is 
shown that a standard F-test for the null hypothesis Ho: ~bis = ~bi for s = 1, 2, 3, 4 
can be performed. The distribution of this test statistic is not affected by the 
stationarity properties of yr. Moreover, note from (2) that seasonality and dynamics 
cannot be separated in a PAR model. This already suggests that a linear filtering of 
the Yt series in (2) will not likely remove all periodicity. In Section 3 below, this 
conjecture is analyzed in detail. 
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An alternative representation of model  (1), which facilitates an analysis of its 
stationarity properties, (see Tiao and Grupe,  1980; Osborn,  1991 and Franses, 
1991), inter alia, is given by stacking the annual  series with the observations per 
season, Y~r, in a (4 x 1) vector. Note  that  the index T = 1 . . . . .  N, is used for annual  
data and that  index t = 1 . . . . .  n where n/N = 4 is used for quarterly data. The model  
(1) can be written in vector nota t ion as 

 IT, __ I'] 111 2 IY2rI /~2 + 

A ° l g  [3T ~3 ~3 

[Y2r- ]Y2r-2/  
T r + A l l y 3 r _  +A2~Y3r_21 + . - - + e ) r ,  (4) 

where the At, i = 0, 1 . . . .  , are (4 x 4) parameter  matrices containing the various ~b~s, 
Tr corresponds to the Tt variable in (1), and mr  is a vector white noise process 
containing the stacked e,'s. The stationarity condit ion for the process Yr, and hence 
for the univariate process y,, is that  the roots of the equat ion 

IAo - A12 - A2 Z2 . . . .  I = O, (5) 

are outside the unit circle. When z = 1 is the only unity solution of (5), while all 
other Izl > 1, the process is called periodically integrated of order 1, PI(1), see 
(Osborn, 1988) and (Boswijk and Franses, 1992). Periodic integration usually 
involves a nonlinear parameter  restriction on the autoregressive parameters in (1). 
An example is the simple PAR(l)  process 

Yt = q~lsYt-1 + ~t, (6) 

for which the Ao and A1 are given by p10 0 ij I°° 111 I])12 1 0 0 AI = 0 0 0 
Ao = 0 - ~13 1 ' 0 0 0 ' (7) 

0 0 - q514 0 0 0 

and the characteristic equat ion is 

IA0 - A l  zl = (1 - 49114)12 4)13 4)1, z) = O. (8) 

The process yt in (6) is periodically stationary if I~bal ~12 ~D13 ~b14.1 < 1 and the 
process is PI(1) when ~bll ~bx2 q~13 ~b14 = 1. The appropriate  differencing filter for 
a PI(1) series in case of (6) is (1 - q51sB) with tkll q~12 4h3 ~b14 = 1, where B is the 
usual backward shift operator  defined by B k xt = Xt-k. 

In (Boswijk and Franses, 1992) a test for periodic integration is proposed for 
general PAR models as in (1). This likelihood ratio test statistic BF is given by 

BF = [sign(g(~) - 1)] [n log(RSSo/RSS 1)] 1/2, (9) 
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where RSS0 and RSS1 are the estimated residual sums of squares of the restricted 
and unrestricted models, log denotes natural logarithm, and 9(~) is a function of the 
parameters. For  model (6), g(~b) equals ~bll q~12 q~13 q~l,. The asymptotic distribu- 
tion of the BF statistic is tabulated in (Fuller, 1976, Table 8.5.2). In (Boswijk and 
Franses, 1992) two alternative tests are proposed for integration in a PAR(l) model. 
From simulation experiments it emerges that the BF test in (9) has the best 
empirical performance. 

An additional advantage of the BF test is that it can be used in extended PAR 
models as well. For example, the periodic AR(2) process 

Yt = (ox~yt-1 + ~)2sYt-2 + £t, 

with its multivariate representation 

Ao Yr = A1 Y r -  1 + cot, 

with 

A 0 L: 1 ° ° il I °0 0  111 ~b12 1 0 At = 
(/123 -- ~bx3 1 0 0 0 

0 -- (/~24 -- ~b14 0 0 0 

(10) 

(11) 

is stationary if the roots of the characteristic equation 

IAo - AlZ l  --- 1 - [~b22 ~,3 (/)14 -~- (/)22 (~24 -4- q~21 (~12 (/)13 -~- (/)21 (~23 

-[" ~221 ~D22 (~23 ¢24 Z2 = O, (12) 

are outside the unit circle. Ifz is equal to 1, the expression in (12) can be expressed as 
a nonlinear parameter  restriction. Standard nonlinear least squares routines can 
then be used to calculate the BF test statistic in (9). An alternative form of (10) is 

Yt - o~y,_ ~ = [3s(yt_ 1 -- oq-i y,-2)  + et, (13) 

where ,~ and fls are functions of the ~bls and q~2~, with ~-k = ~ - k  for k = 0, 1, ... 
Rewriting (13) in stacked form, it can be derived that the characteristic equation 
[Ao - Alz ]  = 0 becomes (1 - al~2~3a, z)(1 - 313233fl#z) = 0. Hence, the differ- 
encing filter for a PI(1) process when the autoregressive order is 2, or higher, is 
( 1  - ~B)  with the restriction that ~ 2 ~ 3 a 4  = 1. Note that (1 - a~B) ~ (1 - B), 
since the (1 - B) filter assumes that all ~s are equal to unity. It is also clear that the 
(1 - ,~B) filter allows for the stochastic trend to vary with the seasons. Further- 
more, if ~ -¢ 1, Yr can converge or diverge, depending on the underlying stochastic 
trend. This property ensures that a PI(1) process can be useful to describe some 
macroeconomic time series. Finally, it should be mentioned that not all fl~ in (13) 
have to be nonzero, i.e., the lag lengths in a PAR(p) process do not have to be equal. 
A sensible model selection strategy seems to be to estimate in a first step the 
parameters of a general PAR(p) process, then in a second step to check whether 
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a restriction like 0~1~2~3~ 4 ---- 1 holds, and finally, to test whether some fls can be set 
equal to zero. One can use standard t type tests since the (1 - otsB)yt series under 
the restriction 0~10~20~3~ , = 1 is a (periodically) stationary time series. 

If a PAR(l) process is periodically integrated, or if q511 ~b21 q~31 4),1 = 1 in (6), 
then there are three cointegration relations between the Y~v series. This is easily seen 
by rewriting 

Yr- Yr-1 = ( A o I A 1  -- I ) Y r - x  + vr, (14) 

where vt = A o  1 wr ,  and with 

, o o  

( A o l A 1  - - I ) =  0 - 1 0 4'xl q512 . (15) 
0 - -  1 (/)11 q~12 (])13 

0 0 (~11 (/)12 ¢ 1 3  ~/)14 - -  1 

Evidently, if , lqs=t q~ls = 1 the matrix A o l A 1  - I  has rank 3. For out-of-sample 
forecasting this means that the forecasts for the annual series are tied together and, 
hence, that a forecasting improvement can be expected, see (Engle and Yoo, 1987). 

Note that Yr- Yr-1  corresponds to the fourth-order differencing filter for quar- 
terly series. Hence, the use of this filter would imply overdifferencing in case the y, 

series is periodically integrated. Since the A4 filter for y, is only one way of 
deseasonalizing a time series where AkX, = xt -- X,-k,  it is of interest to investigate 
the effects of seasonal adjustment of a series generated by a PAR process as in (1). 
The next section reports on a Monte-Carlo study of such effects. 

3. Some Monte-Carlo Results 

Consider the quarterly time series Yt generated by a periodic AR process of order 
1, or Yt = q~sYt- 1 + et, with s = 1, 2, 3, 4, and et as a Gaussian white noise process. 
In Table 1, the six data generating processes (DGP) are given which will be used in 

Table 1 
Six data generating processes: y, = dpsy,-1 + ~,, ~, ~ N(0, 1) E(c,t,f,t_k) 56 0 for all k ~ 0 

DGP ~1 ~2 ¢3 ~4 ~1~2~3~4 

Periodically stationary processes 
i 0.4 1.2 0.8 1.6 0.6144 
ii 0.6 0.8 1.0 1.2 0.5760 
iii 1.3 0.3 1,5 1.3 0.7605 
iv 0.7 0.95 1.2 1.0 0.7980 

Periodically integrated processes 
v 0.5 0.9 1.5 1/(/)1 q~24)3 1.0000 
vi 1.1 0.91 1.05 1/~bl 4)2 ~3 1.0000 



P.H. Franses / Computational Statistics & Data Analysis 19 (1995) 683 704 691 

all forthcoming simulations. The DGPs (i) through (iv) are periodically stationary, 
while the DGPs (v) and (vi) are periodically integrated. The first four DGPs are 
included to enable a comparison of the cases with and without a unit root. All 
Monte-Carlo simulations below are based on 100 effective observations with 1000 
replications in each case. The Gauss 386 programming language is used. The 
sample size of 100 corresponds to the number of quarterly observations which is 
often encountered in pratice. Unless indicated, the significance levels are set equal 
to 5% in all simulations. 

When a researcher is not aware of the underlying data generating process, and 
proceeds along the standard Box and Jenkins methodology, he will consider the 
(partial) autocorrelation functions of y,, A1 Y, (after regression on seasonal dummies 
to remove possible deterministic seasonality), and A4y,. He tries to find out whether 
these functions give an indication of an appropriate model order. The first three 
panels of Tables 2 and 3 display the estimated autocorrelations and partial 

Table  2 

Es t imated  au tocor re l a t ions  of  y,, Aly,, A4yt and  ~,, D G P  is a PAR( l )  process:  y, = q~Yt-1 + et, 

e. t ~ N(0, 1). The n u m b e r  of obse rva t ions  is 100. The  n u m b e r  of  repl icat ions is 1000. The  figures in the 

cells are average es t imated  au tocor re l a t ions  

Periodically s t a t ionary  D G P  Periodically in tegra ted  D G P  

Series Lag i ii iii iv v vi 

(1) Yt 

(2) Axy t 

1 0.73 0.80 0.74 0.87 0.59 0.91 

2 0.65 0.64 0.60 0.75 0.33 0.86 

3 0.50 0.53 0.56 0.68 0.51 0.79 

4 0.49 0.45 0.62 0.63 0.8 l 0.75 

5 0.34 0.35 0.44 0.54 0.44 0.68 

6 0.29 0.27 0.34 0.46 0.20 0.64 

7 0.21 0.21 0.31 0.40 0.37 0.57 

8 0.21 0.17 0.36 0.36 0.66 0.54 

9 0.13 0.12 0.24 0.30 0.32 0.48 

10 0.10 0.08 0.17 0.24 0.10 0.45 

11 0.06 0.05 0.15 0.20 0.26 0.40 

12 0.06 0.03 0.19 0.18 0.53 0.38 

1 - 0 . 3 1  - -0 .07  - -0 .19  - 0 . 0 1  - -0 .11 - -0 .07  

2 0.12 -- 0.10 - 0.15 - 0.14 -- 0.42 - 0.06 

3 -- 0.22 - 0.08 -- 0.20 -- 0.04 -- 0.13 - 0.07 

4 0.19 0.00 0.37 0.05 0.59 0.03 

5 - 0.16 -- 0.03 -- 0.12 -- 0.00 - 0.09 -- 0.06 

6 0.06 -- 0.04 - 0.09 -- 0.10 - 0.33 0.06 

7 - 0 . 1 0  - 0 . 0 4  - -0 .12  - -0 .02  - 0 . 1 1  - - 0 . 06  

8 0.07 -- 0.02 0.20 0.01 0.46 0.02 

9 - 0.07 -- 0.02 -- 0.06 0.00 -- 0.06 - 0.04 

10 0.02 -- 0.02 - 0.05 -- 0.05 -- 0.25 0.04 

1 1  - -  0.04 - 0,01 -- 0.07 - 0.02 -- 0.08 -- 0.04 

12 0.01 -- 0.03 0.08 -- 0.00 - 0.33 0.01 
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Table 2. (Continued) 

Series Lag i ii iii iv v vi 

(3) A4yt 1 0.61 0.65 0.65 0.70 0.67 0.72 
2 0.36 0.34 0.34 0.41 0.37 0.46 
3 0.08 0.06 0.08 0.15 0.15 0.20 
4 - 0 . 1 8  - 0 . 2 2  - 0 . 1 2  -0 .11  - 0 . 0 4  - 0 . 0 5  
5 - 0.14 - 0.17 - 0.10 - 0.09 - 0.03 - 0.04 
6 - 0.13 - 0.14 - 0.08 - 0.08 - 0.03 - 0.04 
7 - 0.11 - 0.12 - 0.08 - 0.08 - 0.04 - 0.04 
8 - 0 . 1 1  - 0 . 1 1  - 0 . 0 8  - 0 . 0 8  - 0 . 0 4  - 0 . 0 3  
9 - 0.09 - 0.10 - 0.06 - 0.07 - 0.04 - 0.03 
10 - 0.08 - 0.08 - 0.06 - 0.07 - 0.04 - 0.04 
11 -- 0.07 -- 0.07 -- 0.06 -- 0.06 -- 0.03 -- 0.04 
12 - 0.07 - 0.06 - 0.06 - 0.06 -- 0.03 -- 0.04 

(4) ~, 1 0.82 0.84 0.87 0.90 0.92 0.94 
2 0.70 0.69 0.75 0.80 0.84 0.88 
3 0.57 0.56 0.65 0.70 0.78 0.81 
4 0.45 0.43 0.57 0.61 0.72 0.74 
5 0.39 0.37 0.51 0.55 0.68 0.70 
6 0.32 0.30 0.44 0.48 0.62 0.65 
7 0.25 0.23 0.37 0.41 0.57 0.59 
8 0.17 0.15 0.30 0.34 0.51 0.54 
9 0.15 0.13 0.27 0.30 0.48 0.50 
10 0.11 0.09 0.23 0.26 0.44 0.46 
11 0.08 0.05 0.18 0.21 0.39 0.42 
12 0.03 0.02 0.13 0.17 0.35 0.38 

a u t o c o r r e l a t i o n s  for  t h e  six D G P s ,  r e spec t i v e ly ,  i t  c a n  b e  o b s e r v e d  f r o m  T a b l e  2 

t h a t  t h e  a u t o c o r r e l a t i o n s  o f  Yt d ie  o u t  o n l y  s lowly ,  a n d  t h a t  i ts  f o u r t h  a u t o c o r r e l a -  

t i o n  coe f f i c i en t  is r e l a t i v e l y  l a rge .  H e n c e ,  t h e r e  is a s ign  o f  n o n s t a t i o n a r i t y  in  t he  Yt 
ser ies .  F o r  A 1Yt o n e  c o u l d  be  i n c l i n e d  to  fit l o w - o r d e r  a u t o r e g r e s s i o n s .  T h e  t h i r d  

p a n e l  o f  T a b l e  2 i n d i c a t e s  t h a t  t he  A4y t ser ies  d i s p l a y s  a AR(1)  t y p e  o f  p a t t e r n ,  w i t h  

a p a r a m e t e r  p o s s i b l y  n o t  t o o  c lo se  to  un i ty .  H e n c e ,  a A1A 4 f i l ter  d o e s  n o t  s e e m  t o  

b e  a p p r o p r i a t e  in  m o s t  cases .  N o t e  t h a t  t he  a u t o c o r r e l a t i o n s  in  t he  f i rs t  t h r e e  p a n e l s  

o f  T a b l e  2 s h o w  m a n y  s imi l a r i t i e s ,  i.e., w h e t h e r  t h e  D G P s  h a v e  a un i t  r o o t  o r  no t .  

T h e  e s t i m a t e d  p a r t i a l  a u t o c o r r e l a t i o n s  r e p o r t e d  in  t h e  f i rs t  t h r e e  p a n e l s  o f  

T a b l e  3 i n d i c a t e  t h a t  ( n o n p e r i o d i c )  a u t o r e g r e s s i v e  m o d e l s  s e e m  usefu l  to  d e s c r i b e  

t h e  t i m e  ser ies ,  a l t h o u g h  t h e  a u t o r e g r e s s i v e  o r d e r s  v a r y  o v e r  t he  d i f f e ren t  D G P s .  

F o r  e x a m p l e ,  a n  AR(1 ,2)  p r o c e s s  e m e r g e s  for  Yt g e n e r a t e d  b y  D G P  (i), w h i l e  a n  

AR(1,3 ,4 ,5)  r e s u l t s  for  t he  Yt ser ies  g e n e r a t e d  b y  D G P  (v), w h e r e  AR(pl, p2, ...) 
d e n o t e s  a n  a u t o r e g r e s s i v e  m o d e l  w i t h  l ags  a t  Pl,P2,....  I n  T a b l e  4, t he  o r d e r s  o f  t he  

t e n t a t i v e l y  i d e n t i f i e d  n o n p e r i o d i c  m o d e l s  for  Yt, AlYt a n d  A4yt a r e  g iven .  T h e s e  

m o d e l s  wi l l  b e  u s e d  in t h e  s u b s e q u e n t  M o n t e - C a r l o  s tud ies .  S u m m a r i z i n g ,  r e a s o n -  

a b l y  l o w - o r d e r  A R  m o d e l s  c a n  be  i d e n t i f i e d  w h e n  P A R ( I )  p r o c e s s e s  a r e  t he  

u n d e r l y i n g  D G P s .  
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The t ransformation A4 is used to remove the seasonality of a time series. 
Alternatively, once can t ransform the yt into a seasonally adjusted series, to be 
denoted as 37t using a linearized Census X-I1 fitler. For  quarterly data  the filter 
takes the form 

r Yt= aiB i + ao + ~ ajB j Yt, (16) 
Li=I j = l  

where the ai are given in (Laroque, 1977). Assuming a PAR(l)  process as the DGP,  
the estimated autocorrelat ions of ~, are displayed in the bo t tom part  of Table 2. 
These autocorrelat ions die out only slowly, even when I-I~= 1 q~li is only 0.6 as in the 
case of D G P s  (i) and (ii). The partial autocorrelat ions in the fourth panel Table 3 for 
Yt suggest that  a nonperiodic  AR(1) model  would be tentatively identified. Note, 
that  the autocorrelat ions are higher for the .vt series than for the Yt series. In 

T a b l e  3 

E s t i m a t e d  p a r t i a l  a u t o c o r r e l a t i o n s  o f y t ,  A ~ y ,  A 4 y  t a n d  .Yr. D G P  i s  a P A R ( l )  p r o c e s s :  Yt = q~sY,- t + ~t, 

et ~ N ( 0 ,  1). T h e  n u m b e r  o f  o b s e r v a t i o n s  i s  100 .  T h e  n u m b e r  o f  r e p l i c a t i o n s  i s  1 0 0 0 .  T h e  f i g u r e s  i n  t h e  

c e l l s  a r e  a v e r a g e  e s t i m a t e d  p a r t i a l  a u t o c o r r e l a t i o n s  c o e f f i c i e n t s  

P e r i o d i c a l l y  s t a t i o n a r y  D G P  P e r i o d i c a l l y  i n t e g r a t e d  D G P  

S e r i e s  L a g  i i i  i i i  i v  v v i  

Yt 

A l y t  

1 0 . 7 5  0 . 8 2  0 . 7 5  0 . 8 8  0 . 7 3  0 . 9 4  

2 0 . 2 5  - -  0 . 0 2  0 . 1 1  - -  0 . 0 4  - -  0 . 0 0  0 . 1 4  

3 - 0 . 1 0  0 . 0 4  0 . 1 6  0 . 1 5  0 . 5 1  - -  0 . 1 2  

4 0 . 1 7  0 . 0 3  0 . 3 5  0 . 0 0  0 . 6 0  0 . 1 0  

5 - 0 . 1 9  - 0 . 0 9  - 0 . 3 8  - 0 . 1 4  - 0 . 6 0  - 0 . 1 3  

6 - 0 . 0 1  - 0 . 0 1  0 . 0 2  - 0 . 0 3  0 . 0 9  0 . 0 6  

7 - 0 . 0 0  0 . 0 0  0 . 0 3  0 . 0 7  0 . 0 3  - -  0 . 0 7  

8 0 . 0 1  0 . 0 0  0 . 0 2  - -  0 . 0 1  0 . 0 9  0 . 0 4  

9 - 0 . 1 3  - -  0 . 0 5  - -  0 . 0 9  - 0 . 0 8  - -  0 . 1 8  - -  0 . 0 9  

10  - -  0 . 0 5  - 0 . 0 2  - -  0 . 0 1  - -  0 . 0 3  0 . 0 4  0 . 0 3  

11 - -  0 . 0 2  - -  0 . 0 1  - -  0 . 0 0  0 . 0 2  - -  0 . 0 2  - -  0 . 0 5  

12  - -  0 . 0 1  - 0 . 0 2  - 0 . 0 1  - -  0 . 0 2  0 . 0 1  0 . 0 2  

1 - - 0 . 3 1  - - 0 . 0 7  - 0 . 1 9  - - 0 . 0 1  - - 0 . 1 1  - - 0 . 0 7  

2 0 . 0 2  - -  0 . 1 1  - 0 . 2 0  - 0 . 1 5  - -  0 . 4 5  0 . 0 5  

3 - -  0 . 2 0  - 0 . 0 9  - -  0 . 3 2  - -  0 . 0 4  - -  0 . 3 7  - -  0 . 0 5  

4 0 . 0 7  - -  0 . 0 3  0 . 2 5  0 . 0 2  0 . 4 2  0 . 0 1  

5 - -  0 . 0 7  - 0 . 0 5  - 0 . 0 7  - 0 . 0 1  - -  0 . 1 0  - 0 . 0 4  

6 - 0 . 0 7  - -  0 . 0 7  - -  0 . 0 7  - -  0 . 0 9  - 0 . 0 5  0 . 0 3  

7 - -  0 . 0 6  - -  0 . 0 6  - 0 . 0 6  - -  0 . 0 2  - -  0 . 0 8  - 0 . 0 4  

8 - 0 . 0 5  - -  0 . 0 6  - -  0 . 0 1  - 0 . 0 3  0 . 0 7  - -  0 . 0 1  

9 - -  0 . 0 4  - -  0 . 0 4  - -  0 . 0 3  - -  0 . 0 1  - -  0 . 0 5  - -  0 . 0 3  

10  - -  0 . 0 5  - -  0 . 0 5  - 0 . 0 3  - 0 . 0 5  0 . 0 0  - -  0 . 0 1  

11 - 0 . 0 3  - -  0 . 0 3  - -  0 . 0 2  - -  0 . 0 2  ~- 0 . 0 2  - 0 . 0 3  

12 - -  0 . 0 7  - -  0 . 0 7  - 0 . 0 7  - 0 . 0 5  - 0 . 0 3  - -  0 . 0 3  
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T a b l e  3. ( C o n t i n u e d )  

Series  L a g  i ii iii iv v vi 

A ~ y t  1 0 . 6 2  0 . 6 7  0 . 6 5  0 . 7 1  0 . 6 9  0 . 7 3  

2 - -  0 . 0 4  - -  0 . 1 8  - 0 . 1 4  - 0 . 1 8  - -  0 . 1 7  - -  0 . 1 5  

3 - -  0 . 2 2  - 0 . 1 9  - -  0 . 1 6  - -  0 . 1 7  - 0 . 0 7  - 0 . 1 7  

4 - 0 . 2 6  - -  0 . 2 6  - -  0 . 1 6  - 0 . 2 3  - -  0 . 1 5  - -  0 . 2 2  

5 0 . 2 3  0 . 2 9  0 . 1 9  0 . 3 2  0 . 1 8  0 . 3 4  

6 - 0 . 0 4  - -  0 . 1 2  - -  0 . 0 9  - 0 . 1 2  - -  0 . 0 9  - -  0 . 1 0  

7 - - 0 . 1 4  - - 0 . 1 2  - - 0 . 1 0  - - 0 . 0 9  - - 0 . 0 2  - - 0 . 1 1  

8 - -  0 . 1 7  - -  0 . 1 6  - 0 . 1 0  - 0 . 1 3  - 0 . 0 6  - 0 . 1 2  

9 0 . 1 4  0 . 1 7  0 . 1 0  0 . 1 9  0 . 0 5  0 . 2 2  

1 0  - 0 . 0 4  - -  0 . 1 0  - -  0 . 0 6  - 0 . 1 1  - 0 . 0 5  - 0 . 0 7  

11 - -  0 . 1 0  - 0 . 0 9  - 0 . 0 6  - -  0 . 0 5  - -  0 . 0 1  - -  0 . 0 9  

1 2  - 0 . 1 3  - -  0 . 1 2  - -  0 . 0 7  - -  0 . 1 0  - 0 . 0 3  - 0 . 0 9  

1 0 . 8 4  0 . 8 5  0 . 8 8  0 . 9 1  0 . 9 5  0 . 9 6  

2 0 . 0 8  - 0 . 0 8  - 0 . 0 3  - 0 . 1 0  - 0 . 0 7  - 0 . 0 9  

3 - 0 . 1 0  - 0 . 0 4  0 . 0 1  - 0 . 0 3  0 . 1 0  - 0 . 0 7  

4 - 0 . 0 7  - 0 . 0 9  0 . 0 2  - 0 . 0 9  - 0 . 0 3  - 0 . 0 9  

5 0 . 1 4  0 . 1 9  0 . 0 7  0 . 1 8  0 . 0 5  0 . 2 0  

6 - 0 . 0 7  - 0 . 1 1  - 0 . 1 1  - 0 . 1 3  - 0 . 1 3  - 0 . 1 3  

7 - 0 . 0 7  - 0 . 0 6  - 0 . 0 5  - 0 . 0 4  - 0 . 0 2  - 0 . 0 7  

8 - 0 . 1 2  - 0 . 0 9  - 0 . 0 6  - 0 . 0 8  - 0 . 0 5  - 0 . 0 8  

9 0 . 2 0  0 . 2 0  0 . 1 7  0 . 1 9  0 . 1 4  0 . 2 1  

1 0  - 0 . 0 9  - 0 . 1 3  - 0 . 1 3  - 0 . 1 6  - 0 . 1 4  - 0 . 1 4  

11 - 0 . 0 7  - 0 . 0 6  - 0 . 0 5  - 0 . 0 4  - 0 . 0 3  - 0 . 0 7  

12  - 0 . 1 0  - 0 . 0 8  - 0 . 0 5  - 0 . 0 7  - 0 . 0 4  - 0 . 0 8  

summary, one concludes that a nonperiodic AR model can be used for Yt, A1 y,, 
A4y~, as well as for Yt series if a PR(1) process is the DGP.  

The parameter estimates of a nonperiodic AR(1) model based on Yt are displayed 
in the first row of Table 5. These parameter estimates must be an average of the 
parameters in the DGP,  see (Tiao and Grupe, 1980). Suppose, one would like to 
specify a periodic autoregressive process for an adjusted series Yr. The relevant 
parameter estimates are given in the second part of Table 5. At first sight, it seems 
that the values of the estimated parameters still differ per season. This is most 
clearly seen for the first three DGPs.  For example, the PAR(l)  parameters for (i) are 
0.4, 1.2, 0.8 and 1.6, while the estimated parameters for the PAR(l)  model for Yt are 
0.566, 1.013, 0.872 and 1.219, respectively. Additionally, it can be seen that the 
individual values are closer to unity. The bottom row of Table 5 gives the result of 
tests for the periodicity of the autoregressive parameter values in a PAR(I) process 
for ~,. Evidently, in some cases the rejection frequency is very high while for others 
it is zero. This indicates that one may find the (1 - B) filter to be adequate in cases 
of PAR(l)  where the ~b s ~ 1. A further result which is worthwhile noting: the 
product 1]~= 1 ~i of the estimated parameters q~i is almost equal to the product of the 
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Table 4 
Autoregressive (AR) models identified from the (partial) autocorrelations functions of Tables 2 and 3. 
The cells indicate the lags to be included in the corresponding AR modeP 

DGP 

Series i ii iii iv v vi 

y, 1,2 1 1,4,5 1 1,3,4,5 1 
Alyt 1,3 0 1,2,3,4 0 1,2,3,4 0 
A4Y , 1,3,4,5 1,2,3,4,5 1,4,5 1,4,5 1 1,4,5 
37, 1 1 1 1 1 1 

t F o r  e x a m p l e ,  a cell with 1, 3 implies an AR model like Yt = 71Y, 1 + 73Yt-3 + et. 

Table 5 
Parameter estimates and rejection frequencies of different AR(1) and PAR(I) models for the adjusted 
37, series when a PAR(l) model is the DGP (1000 replications, 100 effective observations) 

Periodically stationary DGP Periodically integrated DGP 

i ii iii iv v vi 

Nonperiodic AR(1) models 
0.856 0.873 0.907 0.937 0.983 0.989 

Periodic AR(1) models 
~1 0.566 0.707 1.088 0.837 0.902 0.999 
q32 1.013 0.843 0.593 0.941 0.982 0.979 
~3 0.872 0.961 1.053 1.026 1.031 0.993 
~4 1.219 1.061 1.089 0.965 1.040 0.985 
q~l~2q~3~4 0.609 0.608 0.740 0.780 0.950 0.957 

Rejection frequencies of F-test for periodicity in parameters 
~, 99.2 62.7 99.6 29.2 41.9 0.0 

Note: The true values of ~l~2q~3~D4 are given in the final column of Table 1. 

pa ramete r s  of  the D G P s ,  see the final co lum n  of  Table  1. This  fact implies tha t  
the o u t c o m e  of  the BF  test for per iodic  in tegra t ion  in (9) m ay  be robus t  with 
respect  to the selected seasonal  ad jus tment  method .  We could  conc lude  that  
a r a n d o m  walk process  for an adjusted series can  be identified when a PIAR(1) is 
the D G P .  

The  tenta t ively  identified autoregress ive  orders  for univar ia te  nonper iod ic  mod-  
els for the Yt, A l y t ,  and  Yt are summar ized  in Table  4. Pract ical ly,  after the 
ident if icat ion of  an AR process,  one  applies diagnost ic  tests to check the adequacy  
of  the identified mode l  and  its p a r a m e t e r  estimates.  S t anda rd  tests, at least based on  
quar te r ly  observed  variables,  are the F versions of  Lagrange  Mult ip l ier  (LM) test 
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Table 6 
Estimated rejection probabilities for nonperiodic AR models corresponding to y,, Alyt, A4y, and )7t. 
The tests consider first and fourth-order residual autocorrelation, LM 1 and LM4, and first order 
periodic autocorrelation, LMP1. The cells contain the rejection frequencies at a 5% level for 1000 
replications and 100 effective observations. The DGPs are the PAR(1)'s from Table 1 

Periodically stationary DGP Periodically integrated DGP 

Test Series i ii iii iv v vi 

LM1 

LM4 

LMP1 

Yt 13.2 2.4 1.1 4.9 19.1 13.3 
Alyt 3.2 19.5 3.5 32.1 12.0 9.4 
A4yt 19.5 22.0 2.5 13.3 31.4 10.2 
Yt 9.5 10.8 0.7 15.8 2.0 12.0 

Yt 31.6 6.6 6.4 17.2 22.1 15.2 
AlYt 16.3 14.4 10.6 18.6 20.5 10.1 
A4y, 47.8 52.6 19.4 51.9 51.4 57.6 
Yt 27.9 35.9 9.0 36.9 12.0 48.4 

Yt 99.8 67.6 100.0 36.3 99.8 14.1 
Alyt 99.0 64.9 100.0 31.2 99.5 13.2 
A4y, 99.2 65.0 100.0 34.5 99.7 12.7 
y, 99.3 55.4 99.3 25.5 99.0 12.0 

Note: The models for y, and A1 y, include a constant and seasonal dummies, while those for A,y, and )t 
only contain a constant. 

for residual au tocorre la t ion  of order  1 and  4. The test statistics will be 
denoted  as LM1 and  LM4. F o r  an AR(k) model ,  LM1 ,~ F ( 1 , n -  k -  1) and  
LM4 ,-, F(4,n - k - 4), respectively. On can also apply an L M  test for a first-order 
periodic autocorre la t ion  in the est imated residuals, which is proposed in (Franses, 
1993). This LMP1  test is similar to the LM1 test, when the lagged residuals are 
multiplied with a seasonal d u m m y  variable. An F(4, n - k - 4)-test can be derived 
for periodic autocorre la t ion  of order  1 in a s t ra ightforward way. Alternatively, one 
may  also want  to use the recent tests developed by Anderson  and  Vecchia (1993) 
and  Vecchia and  Ballerni (1991). 

The results of applying several diagnostic tests to the residuals of the AR models  
from Table 4 are displayed in Table 6. The rejection frequencies for the L M  1 test 
only  twice exceed a value of 25% and those for the LM4 test are all below 60%. Fo r  
some of the D G P s ,  the rejection frequencies are close to the nomina l  size. Especially 
for the Yt and  AlYt series, it will be difficult to reject a nonper iodic  AR model  in case 
a PAR( I )  process is the D G P .  Fo r  the A4yt series, one m a y  sometimes detect 
misspecification using the LM4 test. Fur ther ,  notice tha t  the LM4 test rejects no 
residual au tocorre la t ion  for the Yt series in several cases. This means  tha t  one has to 
include Y~-4 in a model  for Yt, which is quite unusual  for a seasonally adjusted 
series. However,  the LMP1 test seems quite powerful  in rejecting the null hypothesis  
of no  periodici ty in the est imated residuals. Hence,  any  under ly ing periodici ty can 
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Table 7 
Estimated acceptance and rejection probabilities based on the BF-test for testing periodic integration. 
The null hypothesis is that ~l~b2~3q~4 = I in the model x, = q~sxt- 1 + E,, where xt is the original series 
Yt or the X-11 adjusted series 37,. The cells contain the rejection frequencies for 1000 replications with 
100 effective observations. The columns (i)-(iv) refer to the power, while the columns (v) and (vi) refer 
to the empirical size. The DGPs  are the PAR(l) processes from Table 1 

Periodically stationary D G P  Periodically integrated D G P  

Series Nominal  i ii iii iv v vi 
size 

Yt 5% 86.5 91.7 48.1 38.4 4.7 4.3 
10% 97.7 97.9 70.9 63.3 9.5 9.3 

3~t 5% 86.0 84.6 56.2 30.6 4.8 3.3 
10% 97.1 96.6 78.4 53.6 10.0 7.9 

be detected for the ~, series by applying a test for periodic parameters or for 
periodic error processes, see Table 5. 

Considering Table 5, one notes that the 1-I~=1~i in a PAR(l) model 
obtains a value close to the parameters in the DGPs. This suggests that linear 
filtering may not effect the outcome of the BF test for periodic integration 
in (9). This conjecture is emphasized by the results in Table 7. The DGPs (v) and (vi) 
are periodically integrated implying that the estimated rejection probabilities 
correspond to the nominal significance level 1 -  ~ = 0.95. From the last two 
columns, one can observe that this is the case for Yt as well as for 37t. The other 
columns in Table 7 display the power of the test statistic. It is clear that the power 
may not be high at a 5% level, but that the power for the y, and 37t series is almost 
equal. 

Our Monte-Carlo experiments on the analysis of the effects of a misspecification 
can be summarized as follows. When a PAR model is the DGP, one should identify 
reasonably low-order nonperiodic autoregressive models for the raw series and 
AR(1) models for the seasonally adjusted series Yr. Using standard diagnostic tests 
for detecting residual autocorrelation, one cannot reject the nonperiodic models. As 
expected, a test for periodicity in the residuals yields the best results. According to 
Boswijk and Franses (1992), a sensible strategy therefore seems to be to begin with 
a univariate analysis by identifying a PAR process, estimating its parameters, and 
to test if the autoregressive parameters are periodically varying or not. If not, one 
can apply a linear correction technique. Remembering the role of the adjustment 
filter in (16), it can be concluded that the performance of the BF test for 
periodic integration is only weakly affected. Hence, the same test may also be 
applied to seasonally adjusted data. In the next section, the real G N P  series for 
Germany will be analyzed keeping the results of the above Monte-Carlo study in 
mind. 
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4. An empirical example 

Consider again the log of the real GNP series for Germany, 1960.1-1990.4, 
to be denoted by Yr. The (partial) autocorrelations of Yt and its transformed 
versions A~yt, A4yt and A~A4yt are displayed in Table 8. MicroTSP version 
7.0 is used for the computations. The estimated autocorrelations of yt and 
A4y, mimic the behaviour of the autocorrelation function corresponding to 
the DGPs (v) and (vi) in Table 2. Based on these (partial) autocorrelations, 
nonperiodic AR models can be easily identified. The model orders for the four 
series, i.e., Yt, A~yt, A4y~ and A~A4yt, are reported in the first row of Table 9. 
For the sake of completeness, the parameters of the four identified AR models 
are estimated, and some diagnostic results are displayed in Table 9. It can 
be observed that the LM tests for nonperiodic residual autocorrelation and 
for autoregressive conditional heteroskedastic (ARCH) patterns usually do 
not indicate a severe misspecification. Furthermore, the normality of the estimated 
residuals cannot be rejected using a Z2(2)-test. However, the LMP1 test for 
periodicity in the residuals suggests that the corresponding null hypothesis 
is rejected at a 5%0 level. It should be mentioned that an application of the 
HEGY test [see (Hylleberg et al., 1990)] yields that the A4 filter is a "good" 
choice for this time series, see (Wolters, 1992). An appropriate model for A4yt turns 
out to be 

A 4 y  t = 0.0078 + 0.743A4yt-x + et, 

(0.0024) (0.060), (17) 

(with estimated standard errors in parentheses). The Dickey-Fuller test applied to 
(17) yields a value of -4.269,  and hence the use of the AIA4 filter implies 
overdifferencing. Anyway, given the results of the LMP1 test for the nonperiodic 
AR models listed in Table 9, we conclude that a periodic model gives a useful 
description of the German GNP series. 

As already noted in Section 3, a favourable procedure of modelling is to start 
with the specification of a general PAR process, and to test whether the autoregres- 
sive parameters are indeed periodically varying. The order of the initial PAR model 
can be estimated and can be tested using F-test for the joint hypothesis Ho: 
(~)ps)s=l,2,3,4 ~ O. For the German data, the F-test for the significance of the (/)2s 
in a PAR(2) model obtains a value of 8.516, while F-tests for the significance 
of ~b3s and q54s in PAR(3) and PAR(4) models, respectively, yield values which 
are not significant even at a 20% level. An F(6,110)-test for the periodicity of 
the AR parameters in this PAR(2) process results in F" = 43.485. Hence, we 
conclude that a PAR(2) process like (10) is appropriate for modelling the y, 
series, i.e., 

AoYT = A1 YT-1 + ]'2 + (DT, (18) 
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T a b l e  8 

E s t i m a t e d  (par t ia l )  a u t o c o r r e l a t i o n s  o f  the  log o f  s e a s o n a l l y  u n a d j u s t e d  real G e r m a n  G N P  series for  

different  k inds  o f  d i f fe renc ing  

D e g r e e  of  d i f fe renc ing  

L a g  Yt A~yt A , y t  A1A4y, 

A C F  P A C F  A C F  P A C F  A C F  P A C F  A C F  P A C F  

1 0.948 0.948 --  0.150 --  0.150 0.740 0.740 - 0.056 - 0.056 

2 0.904 0.056 --  0.468 - 0.502 0.523 --  0.055 - 0.088 --  0.091 

3 0.895 0.329 - 0.079 - 0.355 0.367 - 0.002 0.084 0.074 

4 0.889 0.089 0.710 0.552 0.167 --  0.200 - 0.198 - 0.201 

5 0.841 --  0.321 --  0.152 - 0.010 0.065 0.059 - 0.142 --  0.156 

6 0.799 0.005 --  0.424 - 0.053 0.018 0.014 0.053 - 0.006 

7 0.790 0.126 --  0.052 --  0.109 - 0.060 --  0.096 0.054 0.062 

8 0.783 0.073 0.540 - 0.017 --  0.158 - 0.166 --  0.247 - 0.279 

9 0.736 - 0.208 - 0.084 0.079 --  0.098 0.245 - 0.005 - 0.106 

10 0.697 0.011 --  0.402 --  0.076 - 0.057 --  0.008 0.058 --  0.011 

11 0.689 0.087 --  0.062 - 0.111 --  0.055 - 0.053 --  0. 159 - 0.132 

12 0.685 0.064 0.490 0.074 0.017 0.046 0.023 - 0.119 

SE 0.090 0.090 0.09 l 0.092 

Note :  T h e  y, series is the  log o f  the  s e a s o n a l l y  u n a d j u s t e d  real G e r m a n  G N P  series for 1960.1-1990.4.  

T h e  c o l u m n  for A~yt c o n c e r n s  the  res idua l s  o f  the  r eg re s s ion  o f  A l y ,  o n  four  s e a s o n a l  d u m m i e s .  

T a b l e  9 

D i a g n o s t i c s  for n o n p e r i o d i c  A R  m o d e l s  for the  u n a d j u s t e d  real G e r m a n  G N P  series 

D e g r e e  o f  d i f ferencing  

Yt A 1 Yt A4 Yt A 1 A4 Yt 
M o d e l  o r d e r  1, 4, 5 1, 2, 3, 4 1 0 

D i a g n o s t i c s "  

L M  1 0.837 0.954 0.818 0.365 
L M 4  2.202 1.424 1.909 1.737 

L M A 1  2.531 1.460 0.064 2.952 

L M A 4  1.594 2.283 3.559 b 2.982 

Z 2 (2) 5.778 1.070 3.711 3.061 
L M P 1  4.883 b 4.344 b 4.525 b 5.748 b 

a T h e  m o d e l s  for Yt a n d  A1Yt inc lude  four  s e a s o n a l  d u m m i e s ,  the  o t h e r  two  m o d e l s  inc lude  a c o n s t a n t .  

All m o d e l s  are  e s t i m a t e d  u s i n g  119 o b s e r v a t i o n s .  

bS ign i f i can t  a t  a 5 %  level 
Note :  T h e  def in i t ion  o f  the  d i a g n o s t i c s  is: L M i  is the  F(i, n - k - / ) - t e s t  s ta t i s t ic  for  the  nul l  h y p o t h e s i s  

o f  n o  res idua l  a u t o c o r r e l a t i o n  o f  o rde r  i (where  k is the  n u m b e r  o f  regressors) ,  LMA~ is a s imi la r  tes t  

s ta t i s t ic  for  i th o r d e r  A R C H  effects, Z 2(2) d e n o t e s  the  tes t  s ta t i s t ic  o f  a n o r m a l i t y  tes t  ba sed  on  the  

e s t i m a t e d  res idua ls ,  L M P 1  is an  F(4, n - k - 4)-test  s ta t i s t ic  to de tec t  pe r iod ic i ty  in the  first o r d e r  

l agged  res iduals .  
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with 

Ao - A l Z  = 

m 

1 0 

-0 .279 1 

(0.150) 

0.320 - 1.237 

(0.146) (0.154) 

0 -0.421 

(0.168) 

+ 0.375z 

(0.214) 

0 

1 

-0 .638 

(0.186) 

m 

- 1.360z 

(0.192) 

- 0.684z 

(0.153) 

0 
, p =  

0.017 

(0.135) 

0.201 

(0.064) 

0.514 

(0.072) 

-0 .310  

(0.127) 

The LM1 and LM4 test statistics for (18) are LM~ = 0.929 and LM4 = 1.687, 
while the LM tests for the ARCH effects of order 1 and 4, i.e., LMA~ and LMA4, are 
LMA1 = 0.106 and LMA4 = 1.419, the Z2(2) normality test statistic obtains a value 
of 3.823 and the LMP1 = 0.467. A regression of the squared estimated residuals on 
a constant and three seasonal dummies yields an F" = 2.779, which is significant at 
a 5% level, indicating that there may be some seasonal heteroskedasticity. How- 
ever, we observed that a few observations before 1963 caused this F-test to be 
significant. Hence, it is decided not to extend the model in (18) with an e,,t error 
process. In summary, the model (18) seems adequately specified. 

As can be expected for a time series with a stochastic trend, the correlations 
between the parameter  estimates in (18) are very high. This effect is caused by the Yt 
to be likely nonstationary. This series needs to be differenced for any further 
analysis. However, the estimation results in (18) are useful to support the hypothesis 
of the presence of unit roots in Yr. Indeed, the characteristic equation of (18) is 

IAo - Aaz[ = 1 - 1.0003z + 0.0345z z = 0, 

with the solutions zl = 0.965 and z 2 -----0.036. The BF test in (9) for periodic 
integration gives BF = -2 .213 .  Hence, the null hypothesis that one of these 
solutions is equal to 1 cannot be rejected. In turn this implies that there are three 
cointegration relations between the elements of Yr .  Model (18) may now be 
rewritten in the differencing form (13). The corresponding parameters are as 
follows. 

~1 = 1.025, ~2 = 0.962, &3 = 0.912, &4 = 1.113, 
(0.011) (0.011) (0.009) (0.012) 

/~1 = 0.338, /~2 - -- 0.675, /~3 = 0.351, /~4 = -- 0.424, 
(0.195) (0.152) (0.154) (0.186) 

and the differencing filter is ( 1 -  &sB). An F(3,111)-test for the hypothesis that 
as = a = 1 has a value of 20.841, and the F-test for the hypothesis that fls = fl in 
a PAR(l) model for (1 -&~B)yt  yields ~" = 10.662. Of course, one may want to 
further simplify the PAR(2) model, but this is not pursued here. 
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5. Ver t ica l  axis: the  recurs ive  n o n - l i n e a r  least  s q u a r e s  e s t i m a t e s  o f  ~,, s = 1 ,2 ,3 ,4 ,  in the  

d i f fe renc ing  filter 1 - as B. H o r i z o n t a l  axis: the  t ime  in years .  

To test whether a periodic autoregressive model with a single unit root is a model 
with constant parameters or not, consider the recursively estimated values of the ~ 
parameters under the restriction that 71~2~3~4 = 1 as they are given in Fig. 5. The 
estimates for ~s (s = 1,2,3,4) seem fairly constant over time indeed. The F(3, m)-test 
for the hypothesis Ho: ~s = 1 yields a sequence of values, of which F ~> 5.873, when 
the sample runs from 60.3 through 68.4, and of F" ~< 22.870 when the sample ends in 
1989.4. These outcomes emphasize the robustness of the PAR(2) model with 
a single unit root and of the inappropriateness of the (1 - B) filter throughout  the 
sample. Fig. 6 displays the Yt - -  ¢~Yt- ~ series in the quarters 2, 3 and 4. Comparing 
these with the graphs in Fig. 4 implies that only the periodic differencing filter seems 
to yield a residual process which does not contain a stochastic trend anymore. 

To apply the seasonal adjustment filter in (16), it is a standard practice to forecast 
the Yt series using a model like (17), and to use these forecasts to obtain current 
values of a seasonally corrected series. However, since the model in (17) appears to 
be misspecified, only the in-sample observations are used to construct the )~, series. 
This 37t series now covers the period 1967.1 to 1983.4, i.e., it has 68 realizations. The 
(unreported) (partial) autocorrelations of the 373 and the A~jTt series are similar to 
those in Table 2. The 373 series seems to be integrated of order one, a conjecture 
which is confirmed by the Dickey-Fuller  test value of - 1.641, which is obtained 
from a regression model with a constant and no lags. An adequate model for A1)7, 
therefore seems to be 

m l ) ~  t = 0.0072 + vt. (19) 
(0.0014) 

We have LM1 = 0.257. LM4 = 1,468, LMA 1 = 0.177, LMA4 = 0.410, 
zz(2) = 0.024, and LMP1 = 1.433. The F(3,59)-test for periodic autoregressive 
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Fig. 6. Vertical axis: the periodically differenced time series ( 1 -  cqB)yt in quarter 2, 3 and 4. 
Horizontal axis: the time in years. 

parameters when a PAR(l) is fitted to Yt gives F = 0.858, and hence the periodicity 
seems to be removed by applying a linear seasonal adjustment filter. To verify 
whether this is due to a subsample, a PAR(2) model as in (18) is estimated and the 
corresponding F(6,56)-test for periodic parameters yields F = 20.157. Hence, this 
GNP series is one of the cases in which the underlying periodicity cannot be 
detected after a linear Census X- 11 filtering. The model for Yt is a random walk, and 
consequently one may question its relevance to forecasting and considering turning 
points. The PAR(2) model with a single unit root, however, relates trends to 
seasonality, and hence it pays off to model seasonality together with the underlying 
trend and any cyclical behavior. This is a very important aspect of the model in (18) 
with an imposed unit root, i.e., seasonality, cycles and trend are modeled simultan- 
eously. The pattern of the multi-step forecasts from (18) with an imposed unit root 
further allows that seasonality can change as in Fig. 2, while forecasts from (17) will 
show the well-known constant pattern, which is dependent on the most recent 
observations. 

5. Discussion 

In this paper the effects of specific seasonal adjustment procedures on a periodic 
autoregressive time series are studied. Making a unit root approach, such processes 
are well-suited for modeling seasonal time series. Such series display slowly chang- 
ing seasonal fluctuations dominated by a stochastic trend. A piece of evidence is the 
German real GNP series, which, consequently, is used as a running example 
throughout this paper. 
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Traditional methods to analyze quarterly time series assume that the transforma- 
tion of the series to annual growth rates is appropriate, or that a linear Census X-11 
filter can be used. A Monte-Carlo study shows that seasonal adjustment does not 
entirely remove the intrinsic periodicity, that a test for periodic integration is not 
affected, and that the most sensible practical strategy seems to be to start with 
a general periodic autoregressive model. If the nonperiodicity of the autoregressive 
parameters will not be removed then seasonal adjustment procedures can be 
applied. 

Keeping these results in mind, further research should investigate more sea- 
sonally adjusted series, and test if the series are periodically integrated. In (Franses, 
1992b) further evidence is already given. A natural extension of the concept of 
periodic integration seems to be the concept of periodic cointegration, see (Birchen- 
hall et al., 1989) and (Franses and Kloek, 1991). Applications of these concepts are 
usually considered for nonadjusted time series. Whether linear seasonal adjustment 
effects detecting a periodic cointegration relationship is yet to be studied. 
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