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Abstract

This paper considers supply chain design in green logistics. We formulate the choice of an

environmentally conscious chain design as a multi-objective optimization (MOO) problem

and approximate the Pareto front using the weighted sum and epsilon constraint scalarization

methods as well as with two popular genetic algorithms, NSGA-II and SPEA2. We extend

an existing case study of green supply chain design in the South Eastern Europe region by

optimizing simultaneously costs, CO2 and fine dust (also known as PM - Particulate Matters)

emissions. The results show that in the considered case the scalarization methods outperform

genetic algorithms in finding efficient solutions and that the CO2 and PM emissions can be

lowered by accepting a marginal increase of costs over their global minimum.
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1. Introduction

Design of (intercontinental) supply chains is a well established topic in operations re-

search (Melo et al., 2009). The models developed can be used to give advice on where to

locate distribution centres and which transportation links to use. Traditionally cost is used

as the sole optimization criterion. As companies are more and more concerned about en-

vironmental issues, there is an increasing need to take other objectives such as greenhouse

gas emissions into account in these models.

Environmentally conscious supply chain design is part of green logistics that has recently

received a considerable amount of attention in the literature (see e.g. Sbihi and Eglese, 2007;

Zheng and Zhang, 2010; Dekker et al., 2012). Most models for traditional supply chain design

apply a single objective optimization methods (Melo et al., 2009). Some studies have applied

Multi-Objective Optimization (MOO) models for supply chain design; a bi-objective model

for locating hazardous waste and routing has been proposed by Alumur and Kara (2007), a

four-objective one by Ioannis and Giannikos (1998), and a model integrating risks with the

costs by Nema and Gupta (1999). For green supply chain design, Quariguasi Frota Neto et al.

(2008) balanced costs against the environmental impact. They argued that an improvement

of sustainable logistics is often only possible with a negative return on investment. The

same authors presented a framework for optimizing simultaneously both the costs and two

environmental impact criteria by converting heuristically the multi-objective optimization

problem into multiple single objective ones (Quariguasi Frota Neto et al., 2009). Harris

et al. (2011) evaluated a supply chain on its overall logistics costs and CO2 emissions by

taking into account the problem structure (e.g. the number of depots) and different freight

utilization ratios; the study involved both operational and strategic decisions. Wang et al.

(2011) considered a supply chain design decision involving costs and CO2 emissions.

In all the previously mentioned green supply chain design studies the multi-objective part

was treated in a simplified way, mostly by applying a single MOO method. Moreover, most

studies considered only two objectives, which is an “easy” multi-objective case. In this paper

we study which MOO methods perform best for realistic green supply chain models with

at least three objectives. We consider a posteriori approaches to MOO problems where a

good approximation of a representative set of pareto optimal solutions is generated first, and

then a smaller set (possibly of size one) of these solutions is chosen for further consideration,

often with the help of a multi-criteria decision aiding method. We evaluate applicability

of four a posteriori MOO methods: the weighted sum and epsilon constraint scalarization

methods and two evolutionary algorithms: NSGA-II and SPEA2. We have chosen these
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methods as on the one hand the two scalarization ones are the simplest ways to do MOO

(Ehrgott, 2005), and on the other hand NSGA-II and SPEA2 are among the most applied

genetic algorithms, which itself is an increasingly popular approach for MOO.

The methods are evaluated on their applicability for green supply chain design by re-

analyzing an existing study that considers designing a white goods supply chain for the

South Eastern European region. The study considers three objectives: costs, CO2 and

PM emissions. The original model by Mallidis et al. (2012) solved the three objectives

individually. This paper extends the original study by optimizing simultaneously all three

criteria of the Multi-Objective Mixed Integer Linear Programming (MOMILP) problem and

showing the trade-offs between the objectives.

The rest of the paper is organized as follows. Section 2 introduces the methods, Section 3

describes the case study, and Section 4 contains details of its implementation with the given

methods. Section 5 presents the study results and Section 6 concludes.

2. Methods

We consider MOO problems in supply chain design in which M objectives are to be

simultaneously optimized subject to J inequality and K equality constraints. The decision

variables can be both discrete and continuous ones. Obviously in non-trivial cases there

exists more than a single efficient solution, often an innumerable amount. The general

formulation of such problems is:

Minimize f1(x)

Minimize f2(x)

. . .

Minimize fM(x)

Subject to gj(x) ≥ 0 j = 1, 2, ..., J

hk(x) = 0 k = 1, 2, ..., K

(1)

In this study we consider different methods for solving (1); scalarization methods that

transform the multiple objective problem into multiple single objective ones, and heuristic

genetic algorithms that generate directly an estimation of the whole Pareto front.

2.1. Scalarization methods

Scalarization methods transform the original MOO problem (1) into a single-objective

one that can be solved with standard optimization techniques. The two most basic scalariza-
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tion techniques are the weighted sum and the epsilon constraint methods (Ehrgott, 2005). In

the weighted sum method, the multiple objectives are transformed into a single one through

a convex combination using M non-negative weights wm:

Minimize F (x) =
M∑
m=1

wmfm(x)

Subject to gj(x) ≥ 0 j = 1, 2, ..., J

hk(x) = 0 k = 1, 2, ..., K

(2)

The Pareto front is obtained by solving repeatedly (2) with different values for the weights

wm. Note that the solutions to this new problem can only be in the convex region of (1)

(Ehrgott, 2005). Unlike the weighted sum, the epsilon constraint method can find solutions

also in the non-convex regions of (1) by optimizing only one, say µ, of the M original

objectives while considering the other objectives as constraints:

Minimize fµ(x),

Subject to fm(x) ≤ εm m = 1, 2, ...,M and m 6= µ

gj(x) ≥ 0 j = 1, 2, ..., J

hk(x) = 0 k = 1, 2, ..., K

(3)

In this transformation, different εm combinations yield possibly different efficient solutions.

Drawback of the epsilon constraint method is its exponential computational complexity with

respect to the number of objectives M (Laumanns et al., 2006).

2.2. NSGA-II

The Non-dominated Sorting Genetic Algorithm-II has been proposed for estimating

meta-heuristically the Pareto fronts in MOO problems (Deb et al., 2002). It incorporates a

fast non-dominated sorting algorithm to identify Pareto optimal solutions, and a diversity

preservation mechanism for maintaining a well-spread Pareto front. The notation used in

the genetic algorithms is presented in Table 1.

The non-dominated sorting algorithm compares iteratively pairs of alternatives to iden-

tify multiple domination fronts. A domination count np and the set of dominated solutions

Sp are used to identify each front. The first front contains the solutions for which np = 0.

For the second front, the np for each member of Sp is decreased by one. The members that

now have np = 0 belong to the second front. This procedure is repeated for all fronts.
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Table 1: Notation used in describing the genetic algorithms

Input: Pt current population
P̄t archive set
N population size
N̄ archive size
Fi i-th front
T maximum number of generations

Output: B non-dominated set

The crowded-comparison operator (�n) is used for diversity preservation. The operator

uses the solutions’ crowding distances for ordering them. The total crowding-distance of

a solution is the sum of its individual objectives’ distances, that in turn are the absolute

normalized differences between the solution and its closest neighbors (±∞ at the extreme

solutions). The crowded-comparison operator (�n) ensures a uniform spread-out of the front

throughout the various stages of the algorithm. In order for a solution to be preferred to

another one it needs a better rank (i.e. it has to belong to a better non-domination front)

or to have a larger crowding distance in case the two are of equal rank.

The main loop of NSGA-II starts with the initialization of a random parent population

P0 sorted based on the non-domination. First the offspring Q0 of size N will be created using

the usual binary tournament selection, recombination and mutation operators (Deb et al.,

2002; Altiparmak et al., 2006). Algorithm 1 describes the procedure for the t-th generation.

First the parents and their offspring (Rt = Pt∪Qt) are combined to obtain a population with

size 2N . Then the new population Rt is sorted according to their non-domination degrees.

Elitism is ensured because the current as well as the previous members are included in Rt.

The new population (Pt+1) will be filled with the best fronts (first F1, then F2, etc.), until

the size of the next front (Fl) is larger than the number of free slots in Pt+1. To have exactly

N members in the new population and to maintain diversity (i.e., that a good spread of

solutions is maintained in the obtained solution set), the front Fl is ordered based on the

solutions’ crowding distances and the first N − |Pt+1| (the number of open slots) solutions

will be added to Pt+1. The process is iterated until a stopping criterion is met.

2.3. SPEA2

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) (Zitzler et al., 2001) is an

improvement over the original SPEA (Zitzler and Thiele, 1999). The whole procedure is

described in Algorithm 2. SPEA2 starts with an initial population (P0) and an empty

archive set (P̄0 =). In each iteration first the fitness value of each solution in the current
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Algorithm 1 A single NSGA-II iteration for constructing the t-th generation)

Rt = Pt ∪Qt

F = fast-non-dominated-sort(Rt)
Pt+1 = ∅ and i = 1
while |Pt+1|+ |Fi| ≤ N do
crowding-distance-assignment(Fi)
Pt+1 = Pt+1 ∪ Fi
i = i+ 1

end while
Sort(Fi,�n)
Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1|)]
Qt+1 = make-new-pop(Pt+1)

t = t+ 1

population is computed, followed by the environmental selection applied to generate a new

archive set. If the stopping criteria are not met, the algorithm continues with selecting

individuals for the next generation using binary tournament selection, and then applies

genetic operators on the new generation.

Algorithm 2 Procedure of SPEA2 algorithm (Zitzler et al., 2001)

initialize P0; P̄0 = ∅.
for t = 1→ T do

Calculate fitness for Pt and P̄t.
Environmental selection: P̄t+1 = non-dominated solutions from Pt ∪ P̄t
while |P̄t+1| > N̄ do

Reduce P̄t+1 by means of truncation operator.

end while

while |P̄t+1| < N̄ do

Fill P̄t+1 with dominated solutions from P̄t.
end while

Binary tournament selection w/ replacement on P̄t+1 to fill mating pool

Apply recombination and mutation operators to obtain Pt+1

end for

To avoid situations where population members dominated by the same members of the

archive have the same fitness value, SPEA2 takes into account both the number of domi-

nating and dominated solutions in computing the raw fitness of a solution. However, the

raw fitness does not discriminate sufficiently non-dominated solutions, and the final fitness

is composed of the raw fitness and additional density information computed through an
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adapted k-nearest neighbor algorithm.

A fixed size archive is used for the environmental selection phase, which starts by in-

cluding in the new archive all the non-dominated solutions from the union of the current

population and the old archive. Then, if the size of the archive is exactly the correct one

(|P̄t+1| = N̄), the environmental selection is completed. Else, the archive set is filled with

the best dominated solutions from the previous archive or an archive truncation procedure

is invoked that iteratively removes solutions until the size is equal to the predefined one.

The solutions with minimum distances to other solutions, as defined with the k-th nearest

neighbor procedure, are eligible for removal.

The main differences between SPEA2 and NSGA-II are the diversity assignment, re-

placement and archiving (Liefooghe et al., 2009). In NSGA-II the crowding-distance is used

to maintain a well-spread Pareto front whereas SPEA2 applies the k-nearest neighbor ap-

proach. In addition, NSGA-II uses elitist replacement whereas SPEA2 applies a general

replacement strategy, and SPEA2 uses an archive set whereas NSGA-II does not. The two

algorithms are similar in that both use binary tournament as their selection method.

3. Case study: supply chain design of white goods in South-Eastern Europe

The study considers a multinational company that aims to serve a specific geographical

area (market) in the South East Europe region, trading various products with similar char-

acteristics (e.g. white goods, furniture, etc.). For this supply chain, all cargo is transported

from one distant major loading point to one of the entry points. These entry points are

either international ports or other major transportation nodes and therefore have no ca-

pacity limitations. Through these entry points, the goods are transported to a distribution

center for container deconsolidation purposes and the regional markets are served from there

onwards. The demand is centred in these markets, so that they are the last stage of the

supply chain. An example such supply chain network is presented in Figure 1.

In designing the supply chain network, decisions have to be made concerning the selection

of entry points, the choice of transport means, the location of distribution centers and the

determination of the associated flows. Finally there is also an option to lease or outsource

the transportation.

The supply chain design model has the following optimization criteria: (1) the total

costs including transportation/handling costs per TEU (Twenty feet Equivalent Unit; the

size of a container), operational costs of distribution centers and the total amount of emis-

sions generated from the above supply chain operations separately for (2) CO2 and (3) PM
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Figure 1: An example supply chain network for the case study (Mallidis et al., 2012).

emissions.

Two realistic options are considered for the supply chain designs: in option A the trans-

portation is outsourced to a third party logistics provider while in option B the transporta-

tion is leased. The distribution centers are leased through medium time-horizon contracts

for both options. The following assumptions are made to model the supply chain: (i) rail

services utilize the public railway network. A block train is utilized when the number of

TEUs exceeds a specific number, which results in a discount cost per TEU transported;

(ii) the outsourced transportation as well as the storage together with the deconsolida-

tion/consolidation costs are charged per TEU based on spot market prices; and (iii) the

trucks of a third party logistics provider (outsourcing transportation option) will transport

cargo flows of other customers in the return haul of the trip, while in the leasing option

trucks are exclusively utilized and thus will return empty or almost empty (e.g. carrying

commercial returns, and/or packaging material). Therefore, the transportation outsourcing

results in lower emissions, albeit at somewhat higher costs.

The supply chain in the case study focuses on transporting white goods in the South

Eastern Europe market that includes Bulgaria, Romania and Macedonia. There is a planning

horizon of one year, and the replenishment orders are set on a monthly basis. To obtain

realistic data a market share of 20% is assumed of the real annual sales of white goods. The

major loading point (origin of the white goods) is the Port of Shanghai and we consider

three different entry points: Ports of Thessalonki, Varna, and Constanta. There are 16
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potential distribution centers located on entry points (Thessaloniki, Varna and Constanta)

and regional market’s capital. There are 15 regional markets considered, satisfying the

demand of the entire region.

The goods are first shipped from Shanghai to Gioia Tauro (Italy) with typical mother

vessels (6000 TEU), where the containers are transshipped onto feeder vessels that deliver

them at the entry points. The annual demand for the region of Bulgaria, Romania and

Macedonia is estimated using (i) the estimated annual demand for the same products in

Greece, and (ii) the ratio of each country’s region GDP related to that of Greece.

To transport the goods from the entry points to the distribution centers, they use either:

(i) electrical trains in the Bulgarian and Romanian rail routes, as well as the route from

Thessaloniki to Skopje; (ii) diesel trains in the route of Thessaloniki to Kulatu/Promachon

(national border); or (iii) heavy duty trucks in all routes (using truck types EURO III or IV,

V, VI as option). The higher the EURO type, the higher the cost per truck and the lower

the PM emissions. The CO2 emissions are hardly effected by the EURO type. To transport

the goods from the distribution centers to the regional markets, heavy duty trucks are used

too since delivery trucks are too small to serve the regional market retail stores. The choice

of the port of entry and the number of distribution centers determine the transport route as

well as the possibilities of consolidation and using electric trains. E.g. one may choose for

importing all demand through the Port of Thessaloniki and transporting everything from

there.

The difference in transportation times are insignificant since the major part of the total

lead of maritime transportation is almost the same for all network realizations. Therefore,

no inventory holding costs are included in this model. For more information on the cost and

emission calculations, see Mallidis et al. (2012, 2010).

4. Implementation of the MOO model

The complete multi-objective optimization model consists of 3 objectives (costs in 1000e/y,

CO2 and PM emissions in tn/y), 2553 continuous variables, 1280 integers, 1625 constraints

and 11124 non-zeros. The complete MOMILP model is included in Appendix A. For each

method, the pareto front was estimated separately for options A (outsourcing transporta-

tion) and B (leasing transportation). As the study considers 4 discrete options with integer

variables for the distribution center choices, the pareto front is non-continuous and expected

to be non-convex as well. Trade-offs between costs, CO2 and PM emissions are established by

using different transport means (train vs truck), (de) consolidating cargo and by reallocating
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markets to other ports.

4.1. Scalarization methods

The Weighted Sum (WSM) and Epsilon Constraint Methods (ECM) were implemented

using Lindo Lingo software. In order to obtain a front for the WSM, we used all weight

combinations from 0.02 to 1 with step size 0.02, resulting in 1326 MILP problems to solve.

For the ECM, we solved 93 = 729 problems optimizing one of the objective while constrain-

ing the other two each with 9 different εm values equally spaced within an interval formed

from the minimum and maximum values of the corresponding criterion of the three single-

criterion optimization problems. These intervals of extreme values are, for Option A, costs:

[843.7, 1032.7], CO2: [535.1, 570.6], PM: [2.7, 14.8]; and for Option B, costs: [825.5, 956.8],

CO2: [537.9, 621.4], and PM: [4.4, 27.6]. Note that for both scalarization methods the dif-

ferent parameterizations can lead to equal efficient solutions, and consequently cardinality

of the final solution set can be smaller than the amount of problems solved.

4.2. Genetic algorithms

We used an existing implementation of NSGA-II and SPEA2 in the ParadisEO framework

(Cahon et al., 2004; Liefooghe et al., 2007) which requires the user to specify the method

parameters, chromosome encoding and to implement the initialization and evaluation pro-

cedures as well as the desired genetic operators. Source code of these implementation parts

specific to our case study is freely available at https://github.com/CornePlas/MOOSCN.

4.2.1. Chromosome encoding

We used priority-based encoding (Gen and Cheng, 1997) for the network structure and

flows similarly to Altiparmak et al. (2006). With priority-based encoding the length of a

chromosome is equal to the number of sources (J) plus the number of depots (K). If the supply

chain consists of multiple stages, each part of the chromosome represents a single stage. To

decode the chromosome to the real transportation flows, the highest priority is selected first

for each part. The position of this priority integer determines which source/depot is selected,

and then the corresponding transporation link with with the lowest costs is utilized. This

is repeated for all |J | + |K| priorities. Note that the resulting flow is either the demand of

the depot or the maximum capacity of the source.

In our case study we have to implement a representation for two stages. Apart from the

transportation flows, we have to represent the transportation modes as well. To this end, we

add integers from zero to four to the chromosomes to represent each possible mode. Then
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we connect the index of the transportation mode with the same index in the priority-based

part of the chromosome, i.e., the integer (transportation mode) on the i-th place belongs

to the priority on the i-th place starting from the first priority. This means we have the

following representation:

1. Integers (0 – 4) of size |EP | + |DC| representing transportation modes for the first

stage;

2. Permutation of size |EP | + |DC| with priorities to set-up the transportation tree for

the first stage;

3. Integers (0 – 3) of size |DC| + |RM | representing the transportation modes for the

second stage;

4. Permutation of size |DC|+ |RM | with priorities to set-up the transportation tree for

the second stage.

The overall chromosome length is (|EP |+ |DC|)+(|EP |+ |DC|)+(|DC|+ |RM |)+(|DC|+
|RM |) = (3 + 16) + (3 + 16) + (16 + 15) + (16 + 15) = 100. This means that we can represent

each possible solution with 100 integers and no additional encoding is necessary for the

binary decision variables.

4.2.2. Genetic operators

Not all genetic operators can be applied on the different parts of the chromosome. The

parts that represent the transportation modes are just integers in the range from zero to

four, and default crossover and mutation operators can be used. The parts that represent

the network flows are priority-encoded and require application of operators compatible with

the permutation encoding: partially mapping, order or position based crossovers.

For the transportation parts, i.e. the transportation modes, we use the uniform crossover

operator in which each integer of a parent has a certain chance to be exchanged for the cor-

responding offspring one (in our case 50%). For the priority parts of the chromosome, we use

order crossover operator that changes the order of the priorities in a particular chromosome,

but maintains unique priorities. Thus, for example, the first child takes consecutive integers

from the first parent, but these will be re-ordered in the order they appear in the second

parent. The integers outside the selected part remain the same.

We used the same mutation operators for the different parts. These are the swap, shift

and TwoOpt mutation ones. The swap mutation swaps two components of a chromosome,

shift mutation shifts two components of a chromosome, and TwoOpt mutation samples two

random points and then takes the reverse order of the integers between the two points.
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Table 2: Running times of tests instances with comparable pareto front sizes. Weighted
Sum (WSM) was performed with 1326 optimization runs and Epsilon Constraint Method
(ECM) with 729. Both NSGA-II and SPEA2 had 104 generations, 180 size population, and
SPEA2 had an achieve bound to a maximum size of 100.

Method Option Pareto front size Time
WSM A 91 1h55m46s
WSM B 103 1h11m07s
ECM A 105 1h03m35s
ECM B 83 28m38s
NSGA-II A 96 10m53s
NSGA-II B 103 10m00s
SPEA2 A 100 8m01s
SPEA2 B 100 7m42s

5. Results

Both genetic algorithms were run with a stopping criterion of reaching 104 generations.

We also assessed that the results did not change significantly when running for 106 genera-

tions. The running times on both options for WSM, ECM, and the two genetic algorithms

are presented in Table 2. From the computational point of view the genetic algorithms are

significantly faster, but for normal supply chain design scenarios where the multi-objective

optimization model is solved only once the time difference is practically insignificant.

5.1. Computational results

The Pareto fronts of the MOMILP model for the two options A and B were estimated

through the two scalarization methods and the two genetic algorithms. Figures 2 and 3

present 2d plots of subsets of the efficient solutions for the cost/CO2 and cost/PM criteria.

The plotted solutions are the efficient ones for the particular option regarding the two ob-

jectives, and may therefore contain solutions that are dominated by solutions from the other

option. The figures show that the scalarization methods outperform the genetic algorithms

in finding efficient solutions for both options A and B. Also, the spread of the solutions

from the scalarization methods is comparable to that of NSGA-II. The spread of solutions

of SPEA2 is worse than that of the scalarization methods as is shown in Figure 2. NSGA-II

converged towards the pareto fronts for cost and CO2 (Figure 2), but not for the third ob-

jective, PM (Figure 3). Note that there are considerably less efficient solutions in Figure 2

than in Figure 3 as more solutions are dominated when the PM dimension is left out than

when the CO2 one is.
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Figure 2: 2d plot of costs vs CO2 for a subset of efficient solutions as estimated with the
Weighted Sum (WSM) and Epsilon Constraint Methods (ECM), NSGA-II and SPEA2, both
for options A and B.
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Figure 3: 2d plot of costs vs PM for a subset of efficient solutions as estimated with the
Weighted Sum (WSM) and Epsilon Constraint Methods (ECM), NSGA-II and SPEA2, both
for options A and B.
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Taking into account that the pareto front is assumed to be non-convex, good perfor-

mances of the scalarization methods and bad performances of the genetic algorithms is

somewhat surprising. This might have to do with the chosen encoding although literature

offers little proof to support the hypothesis. Although the running times of the genetic

algorithms are considerably lower than those of the scalarization methods and the genetic

algorithms’ estimated fronts contain exactly the desired amount of solutions, their diver-

gences from the optima are too large to be considered useful for our study. Therefore, for

practical insights we will consider solely results from the weighted sum method.

5.2. Supply chain insights

The pareto front of both options estimated with the weighted sum method is presented

as a heatmap in Figure 4. The heatmap gives especially good insights into the trade-offs

between the three objectives. The cost and CO2 objectives align pretty well: almost minimal

CO2 solutions can be obtained at little extra costs. This is in contrast with the observation

of Quariguasi Frota Neto et al. (2008), who stated that one has to do investments to reduce

CO2 emissions. In most practical cases a supply chain redesign starts off with an existing

non-optimal solution which is often 5 % or 10 % more expensive than the minimal cost

solution, and therefore savings can be obtained both in terms of costs and CO2 emissions.

However, minimizing PM emissions does involve much higher costs and may also lead

to increased CO2 emissions. Recall that the main option to reduce PM emission is to

introduce EURO VI trucks even at the detriment of trains.These new trucks do not reduce

CO2 emissions much compared to other trucks and increase them compared to rail. Rail

emissions do depend on the energy mix used for generating electicity. The solutions using

option A (outsourcing transportation) perform better than the leased transportation (option

B) in CO2 emissions.

The case shows that the trade-offs are complex; it is not just about replacing one type of

equipment by another one, as there are many related options. Hence one needs more than

just the single-objective solutions.

The advantage of the heatmap also becomes clear when one realizes that models pro-

vide decision support rather than final decisions. Quite often many aspects other than the

optimized objectives play a role in the actual decision making process (see e.g. ?, for an

overview of all aspects). This may well mean that the decision maker may be considering

a non optimal solution. By representing theat solution in the heat map, one may identify

which other improvements are possible from the given solution and how much these other

soluitons will reduce costs or emissions.
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6. Conclusions

In this paper we re-analyzed a case study of green supply chain design in the South

Eastern Europe region by optimizing simultaneously costs, CO2 and fine dust (also known

as PM - Particulate Matters) emissions. We evaluated four multi-objective optimization

methods in the context of the study: the weighted sum and epsilon constraint scalarization

methods and two genetic algorithms, NSGA-II and SPEA2. The analyses showed signifi-

cantly better estimation of the pareto front by the simpler scalarization methods. From the

practical point of view, we found visualization of the 3-objective pareto front with a heat

map to be possibly useful for communicating the involved trade-offs. Our analyses showed

that by considering the complete pareto front instead of just the extreme solutions, the de-

signed supply chain could achieve considerable reductions in CO2 emissions with marginal

cost increases over the global minimum.

The results of this study extend those of Mallidis et al. (2012) but are also different

from what has previously been presented in the literature. We showed that the cost and

CO2 objectives align unlike what was reported by Quariguasi Frota Neto et al. (2008), who

stated that one has to do additional investments to reduce CO2 emissions. By analyzing

a realistic case, we showed that when three objectives are taken into account the shape of

the pareto front is irregular (and therefore not adhering to the assumptions made in purely

numerical studies such as that of Wang et al., 2011), but can be efficiently estimated with

scalarizing methods and visualized with a heat map. Also, the standard MOO techniques

seem to be sufficient for green supply chain design and we do not expect the development of

novel methodologies specifically for green logistics, such as in Quariguasi Frota Neto et al.

(2009), to yield results relevant for practical decision support. Finally, it seems that genetic

algorithms for MOO are inapplicable to problems similar to the case studied in this paper,

and the lack of negative results in the genetic algorithm literature hints at the presence of

a serious publication bias.

Our study is inherently limited in concentrating on a single case, and different problem

structures will probably yield different results as the scalarization methods are not tractably

able to find all efficient solutions (the epsilon constraint method) or to produce efficient

solutions outside the convex region (the weighted sum method). However, although our

problem contained a large amount of integer variables, the scalarization methods performed

well. A possible explanation for this is the low dimensionality of the problem, and our view

is that in such low dimensionality problems the scalarization methods provide a sufficient

estimation of the pareto front for practical applications of MOO in environmentally conscious
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supply chain design.
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Appendix A. Optimization model

Table A.1: Decision variables

Variable Description
xmij number of TEU transported from node i to node j using trans-

portation mode m =1,..,M.
zij binary variable which indicates whether a block train is uti-

lized or not in the route from node i to node j.
ywj binary variable which indicates whether a distribution center

of size w is leased at node j or not.

Table A.2: Model parameters

Parameter Description
Dr total demand at regional market r.
cmij cost of transporting a TEU from node i to node j using trans-

portation mode m (node 0 is the major loading port).
cbtij block train transportation cost from node i to node j per TEU.

cdcj deconsolidation/consolidation cost per TEU at a distribution
center at node j (only in the option of outsourcing).

gemij emissions of type g generated from transporting a TEU from
node i to node j using transportation mode.

gebtij emissions of type g generated during a block train trip from
node i to node j.

Lw capacity of a distribution center of size w (Lw is considered
infinite).

tmij transportation time from node i to node j using transportation
mode m.

h holding cost per TEU.
N represents the minimum TEU volume for charging a block

train.
M0 represents a very large constant.
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Minimize total cost (TC):

TC =
∑
i∈EP

M∑
m=1

cm0ix
m
0i +

∑
i∈EP

cbt0ix
bt
0i

+
∑
i∈EP

∑
j∈DC

M∑
m=1

(
cmij + cdcj

)
xmij +

∑
i∈EP

∑
j∈DC

(
cbtij + cdcj

)
xbtij

+
∑
w

∑
j∈DC

fwj y
w
j +

∑
j∈DC

∑
r∈RM

M∑
m=1

cmjrx
m
jr

(A.1)

or Minimize total emissions (TEg) of type g:

TEg =
∑
i∈EP

M∑
m=1

gem0ix
m
0i +

∑
i∈EP

gebt0ix
bt
0i +

∑
i∈EP

∑
j∈DC

M∑
m=1

gemijx
m
ij +

∑
i∈EP

∑
j∈DC

gebtijx
bt
ij

+
∑
j∈DC

∑
r∈RM

M∑
m=1

gemjrx
m
jr +

∑
j∈DC

∑
r∈DC

gebtjrx
bt
jr ∀g ∈ EG.

(A.2)

s.t.

Flow Constraints

m∑
m=1

xm0i + xbt0i =
∑
j∈DC

M∑
m=1

xmij +
∑
j∈DC

xbtij, ∀i ∈ EP (A.3)

∑
i∈EP

M∑
m=1

xmij +
∑
i∈EP

xbtij =
∑
r∈RM

M∑
m=1

xmjr +
∑
r∈RM

xbtjr, ∀j ∈ DC (A.4)

∑
j∈DC

M∑
m=1

xmjr +
∑
j∈DC

xbtjr = Dr, ∀r ∈ RM (A.5)

Capacity Constraints

∑
i∈EP

M∑
m=1

xmij +
∑
i∈EP

xbtij ≤
∑
w

LWywj , ∀j ∈ DC (A.6)

∑
w

ywj ≤ 1, ∀j ∈ DC (A.7)

Block Train Constraints

xbt0iM0z0i ≤ 0, ∀i ∈ EP (A.8)
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xbt0iNz0i ≥ 0, ∀i ∈ EP (A.9)

xbtijM0zij ≤ 0, ∀i ∈ EP, ∀j ∈ DC (A.10)

xbtijNzij ≥ 0, ∀i ∈ EP, ∀j ∈ DC (A.11)

xbtjrM0zjr ≤ 0, ∀j ∈ DC, ∀r ∈ RM (A.12)

xbtjrNzjr ≥ 0, ∀j ∈ DC, ∀r ∈ RM (A.13)

Non-Negativity Constraints
xmij ≥ 0 (A.14)
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