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Abstract

Increased uncertainty is one of the characteristics of product recovery networks. In particular the
strategic design of their logistic infrastructure has to take uncertain information into account. In this
paper we present stochastic programming based approaches by which a deterministic location model
for product recovery network design may be extended to explicitly account for the uncertainties.
Such a stochastic model seeks a solution which is appropriately balanced between some alternative
scenarios identified by field experts. We apply the stochastic models to a representative real case
study on recycling sand from demolition waste in The Netherlands. The interpretation of the results
is meant to give more insight into decision-making for reverse logistics.
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1 Introduction

The design of product recovery networks is one of the challenging and actual reverse logistics problems.
Stimulated by environmental, legislative and economical reasons several recovery networks have been
set up in the last decade. Besides paper and glass nowadays building waste, white-and-brown goods,
electric and electronic equipment is being collected for recycling in The Netherlands and other countries
in Europe. The set-up of a product recovery network is however, not similar to that of a forward logistic
network. Fleischmann et al (2000) state that product recovery not only reverses the product stream
with the consequence that there are many supply sources and few demand points, but that the design is
severely complicated by the high uncertainty in many factors. This is especially true for those recovery
networks that are driven by legislative or environmental reasons (typically for Western Europe). In this
case there is large uncertainty where the recovered product should go to and moreover, some supply may
leak away to less costly disposal ways. Furthermore often new technology is developed for recycling, with
the consequence that realized cost figures can deviate substantially from the foreseen values.

The design of logistic networks has long been the application of location models within operations
research (see Geoffrion and Powers (1995)). Several algorithmic developments coupled with increases in
computer speed now allow us to solve real-world problems to (almost) optimality with commercial software
like GAMS or CPLEX (see Brooke et al. (1988), ILOG (1999)). The expectations on the modeling
however, have gone up with these developments and the handling of uncertainty is one of the aspects
which needs to be tackled, especially in reverse logistic networks. A standard way to tackle uncertainty
is to do a single or multi-parameter sensitivity analysis (see Morgan and Henrion (1990)), which gives
insight into how the solution and the costs change if one or more input parameters are varied. This
approach can be extended by introducing scenarios for the input parameters and finding the individual
solution that performs best over the set of scenarios. The drawback of these approaches, however, is that
they stick to solutions which are optimal for at least one set of parameters. Kall and Wallace (1994) claim
that stochastic programming techniques offer more flexibility for handling uncertainty and can come up
with solutions that can not be found by scenario analysis. The application of stochastic programming
to integer location problems is however a challenging research subject. Stochastic integer models are
∗e-mail: listes@few.eur.nl
†e-mail: rdekker@few.eur.nl

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/18511151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


well-known for their computational intractability, since they combine two types of models which are
by themselves difficult to solve. Besides theoretical developments, important algorithmic approaches
have also been proposed, but the instances they can address seem still quite limited in size. Moreover,
there are only few applications of stochastic programs to location problems. A representative example
is a branch and cut procedure proposed by Laporte et al. (1994) for solving a location problem with
stochastic demands. This procedure is repetitively applied to a large number of smaller sized instances
of the problem, obtained by parametric variation of some other parameters (different than demand), one
parameter at a time.

To the best of our knowledge stochastic programming is hardly applied to practical situations of logistic
network design. In this paper we present stochastic programming based approaches by which a large-scale
location model for product recovery network design may be extended to account for uncertainties. We
apply the stochastic models to a case study concerning the recycling of sand from demolition waste, which
was done some years ago (see Barros et al (1998)). Although there was quite some uncertainty involved
in this case, it was previously tackled by scenario analysis only. As besides all data, we have some real
information on the uncertain aspects, the stochastic programming approaches are employed for explicitly
taking this information into account. Since the aim is to develop insights for problems with real-world
dimension, the construction of the stochastic models deliberately follows a rather simple technique, which
may be potentially used to extend in a reasonable manner any large location model in which uncertainty
is an issue and a relatively small set of realistic scenarios can be identified.

This paper is structured as follows. In the next section we describe the case study in more detail.
In section 3 we discuss the modeling of the problem and indicate how the deterministic location model
may be extended using stochastic programming techniques, according to the available information on the
uncertain factors. The results of the stochastic programming approach as applied to the presented case
are discussed in section 4. Finally, section 5 contains some concluding remarks.

2 Recycling of sieved sand: the case study

The case concerned the re-use of sieved sand originating from crushing and sieving of construction waste
in The Netherlands. This sand used to be landfilled, although it could be polluted with poly-aromatic
carbonates. This pollution also prevented an easy re-use of the sand. Legislation was adopted forbidding
landfilling of the sand and prescribing recycling. In order to achieve this, the syndicate of building waste
processors proposed the set-up of a network with depots storing the sand from the crushers. In the
depots the sand is tested on its pollution by an independent organization. Three categories of sand are
distinguished, clean sand which can directly be used, half-clean sand, which can be applied in secured
applications and finally polluted sand, which needs to be cleaned. Next cleaning facilities are envisaged
to clean the polluted sand. These involve high investments.

The problem was to get insight into the logistical costs with setting up such a network and to give
advise about locations of both the storage depots and the cleaning facilities. A facility location model was
set-up and solved by a combination of valid inequalities, heuristic rounding off procedures and iterative
exact solving of sub-problems. Excel, Turbo Pascal and GAMS software was used for methods and for
input and output of the data. The resulting software ran on a PC and was handed over to the syndicate
to update the advise when new data would become available (see Barros et al. (1998)).

This case is representative for many product recovery networks as remarked by Fleischmann et al.
(2000). It has many sources, high investments costs for the recycling installation with the implication
that only few will be built, not yet tested recycling technology and unclear destinations of the recycled
products. Also the stream splitting is typical for reverse logistics. The aspect of two layers is often but
not always the case and it merely affects the solution procedures. Similar product recovery networks
concern for instance carpet recycling (see Ammons et al. (1999), Flapper et al. (1997)). We therefore
think that the results obtained in this paper are of more general nature than just the case discussed here.
The title reflects this tendency as the aim is to gain insight into the general issue of product recovery
network design through the framework offered by this case.

3 Modeling

As mentioned, the case at hand concerns the design of a two-level network in which storage and cleaning
tasks are to be located across a set of potential sites (storage in regional depots and cleaning in treatment
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facilities). This network is to extend existing supply sources and to direct recycled material to end use
demand points. The sources of sieved sand correspond to 33 existing sorting facilities. The lack of
information about future projects requiring sand was handled by selecting 10 strategic sites as potential
points of demand. These initial elements are represented in Figure 1 (some triangles represent multiple
sources). The new facilities that must be created are regional depots for classifying the sand (86 potential
sites) and treatment facilities for cleaning the polluted sand (21 potential sites). Transport of sand
throughout the network can be done by water between reachable sites, which is much cheaper than by
road, the mode employed otherwise. The resulting network structure is schematically given in Figure 2.

Figure 1: Sorters and potential projects Figure 2: Sand network structure

In the model set-up for this problem we use as objective function the net revenue computed as the
value of fees charged for sand entering the network plus the revenues from selling recycled sand to projects
minus various costs involved. These costs are fixed costs for opening the new facilities as well as variable
processing and transportation costs based on amounts of sand processed and respectively shipped between
sites. The objective function is determined on a yearly basis. Consequently annualized fixed costs for
opening new facilities are computed by amortizing the total investments over the planning horizon. Based
on available technology for cleaning only one type of installation with rather high fixed costs was possible.
Nevertheless a case with several cleaning capacities could also be addressed by considering treatment at
each capacity as a separate investment option, probably associated with specific sites. For simplicity
the fixed costs of regional depots are assumed to vary as an affine function of their storage capacity.
Also processing costs depend only on the type of facility and transportation costs are proportional to the
amount and the distance over which it is transported. The underlying model can be verbally described as

Maximize Net Revenue
= Fees + Sales Revenue
− Fixed opening costs − Transportation Costs − Processing Costs

Subject to: Balances of flows between sites
(e.g. based on material shipped from depots to facilities)
Context specific constraints
(storage is allowed; demand may be partially satisfied)
Capacity constraints (upper bounds)
(on storage at depots and on processing at facilities)
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This formulation slightly differs from the one in Barros et al. (1998) in order to allow for further
investigations rather than for setting a marketing perspective. Its mathematical description can be found
in the appendix. The stochastic extensions proposed below further concentrate on finding the appropriate
location for the new facilities. The focus on the location issue is motivated by the fact that investments
are made on long run and are based on uncertain information. Since these networks are expensive and
difficult to change, establishing a more robust location for the new facilities becomes a central issue at
stake. Therefore the models are primarily configured with variable infrastructure to assess where to
locate the new facilities, but they can be as well configured with all the infrastructure fixed to investigate
operational aspects of candidate network configurations.

3.1 Data and uncertainty

Important data used in implementations are presented in Table 1 (see Barros et al. (1998) for details).

Description Value

Total available sand at sorters (initial estimation) 992,400 tons per year

Processing capacity of a cleaning facility 150,000 tons per year

Storing capacities of potential depots from 1,200 to 240,000 tons per year

Fixed costs for opening a cleaning facility 4,057,125 Dfl per year

Fixed costs for opening a depot with 150,000 capacity 670,625 Dfl per year

Transportation costs by road 0.09 Dfl per ton per km

Transportation costs by water 0.02 Dfl per ton per km

Handling costs at regional depots 1 Dfl per ton

Processing costs at cleaning facilities 45,74 Dfl per ton

Table 1: Data used in implementations

A characteristic of the sand problem is that the infrastructure to be created must be able to handle
the whole amount of sand coming from sorters. This kind of requirement originates in newly emerged
legislation and may apply as well to similar systems with different product features. The amount of
material that may be expected becomes therefore a very powerful driver of investments. Nevertheless the
amount and quality of the returned flows may be uncertain, because the initial quality mix is unknown
and companies may choose to recycle the sand in another way (the law prescribes recycling of sand, but
not the way how). In particular the actual supply may turn out to be (much) less than expected. We
refer to the initial estimation as the high supply case and besides this we also consider a low supply case
deemed relevant for the given capacity of a cleaning facility. The initial estimation was done for each
source separately and as amounts are decreased, it is done uniformly throughout these sources. The
percentages of clean, half-clean and respectively polluted sand are different in the two cases and induce
different fees charged for sand entering the network.

Sand type Proj.1 Proj.2 Proj.3 Proj.4 Proj.5 Proj.6 Proj.7 Proj.8 Proj.9 Proj.10
Clean 80,000 50,000 50,000 0 80,000 50,000 80,000 0 80,000 200,000
Half-clean 50,000 50,000 75,000 90,000 60,000 50,000 100,000 50,000 100,000 150,000

Table 2: Demand of sand in tons per year

Estimations of demand of each type of sand for the 10 potential projects considered are given in
Table 2. In order to handle the lack of information about the location of the actual projects the following
scenarios were established:

Basis scenario: projects 3, 6, 7, 8 (overall)
Scenario 1 : projects 2, 5, 8, 10 (south-west and north-east)
Scenario 2 : projects 3, 8, 9 (along east region)
Scenario 3 : projects 5, 6, 10 (center and south-west)
Scenario 4 : projects 3, 9, 10 (center and south-east)
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Scenario 5 : projects 1, 4, 6, 7, 9 (center and south)
Scenario 6 : projects 2, 5, 8, 9, 10 (south-west, center and north-east)

In this way demand varies not only in geographical distribution but also in total amounts of clean re-
spectively half-clean sand required. The underlying assumption is that such scenarios may be established
by experts in the field as representing reasonable future developments. Construction of scenarios above
follows the previous form in Scholten (1995) rather than the one in Barros et al. (1998).

3.2 The stochastic programming approach

Define Φ as the set of all possible scenarios and φ ∈ Φ as a particular scenario. The complete math-
ematical description of the underlying deterministic model for scenario φ is included in the appendix.
In order to describe the main ideas of the stochastic approach we use here a concise notation for the
deterministic model: all the integer decision variables are included into one vector y of dimension m and
all the continuous decision variables are included into one vector x of dimension n. The notation for the
coefficients is adjusted accordingly: f is the m-dimensional vector of the fixed costs for opening facilities
and c is the vector of dimension n containing the rest of the coefficients in the objective function. Then
the concise deterministic model for scenario φ can be stated as

max −f y + c(φ)x

s.t. W0(φ)x = b(φ)

W1(φ)x ≤ d(φ)

T y + W2(φ)x ≤ 0

y ∈ {0, 1}m, x ∈ Rn, x ≥ 0

where W0 is a n0 × n matrix, b is a n0 vector, W1 is a n1 × n matrix, d is a n1 vector, W2 is a n2 × n
matrix and T is a m′ ×m matrix. Solutions given by this model for each scenario φ separately form the
basis for scenario analysis (see Barros et al. (1998)).

In a stochastic programming approach probabilities are associated with scenarios and a solution is
sought which is suitably balanced against the various scenarios (see Birge and Louveaux (1997), Kall and
Wallace (1994)). The stochastic solution is not optimal in general for any of the individual scenarios.
We use this approach in the sequel to address specific questions about the impact of demand/supply
uncertainty on network design.

3.2.1 Locational uncertainty of demand

We denote by Ω the set of demand scenarios and by ω a particular demand scenario (here Φ coincides
with Ω and φ with ω). Only the right hand side parameter d is determined to change in demand scenarios.

In order to approach this locational uncertainty of demand we extend the deterministic model above
to the following two-stage stochastic model: the first stage corresponds to the investments that must be
made for opening facilities prior to knowing the actual realizations of the random parameters and the
second stage corresponds to the allocation of flows through the established network after the values of
the random parameters become known. Consequently the location variables y are assigned as first stage
variables and the allocation variables x are assigned as second stage variables. For each pair (y, ω) the
performance measure is given by the second stage program as the maximum revenue that can be achieved
in the network given by location y and under scenario ω. The decision y is evaluated this way across
all scenarios and the expected net revenue is recorded as the indicator of the decision. The first stage
program aims then at maximizing this indicator over the set of all possible first stage decisions. So the
two-stage stochastic programming model states as
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max −f y + Eω[Q(y, ω) ] where Q(y, ω) = max c x

s.t. y ∈ {0, 1}m s.t. W0 x = b

W1 x ≤ d(ω)

W2 x ≤ −T y

x ∈ Rn, x ≥ 0

Clearly once a value of y is fixed in the first stage, second stage decisions depend on scenario and thus
variables x are likely to change under different realizations of ω. Therefore when random parameters
follow (finite) discrete distributions it is useful to index the second stage variables by ω in order to assess
costs and benefits in each situation. This creates a separate set of variables of the form xω for each
scenario. Using this explicit description of the second stage variables for all scenarios the problem can
be stated in the following extensive form (see Birge and Louveaux (1997) for this term):

max −f y + Eω [ c xω ]

s.t. W0(ω)xω = b ∀ω ∈ Ω

W1(ω)xω ≤ d(ω) ∀ω ∈ Ω

T y + W2(ω)xω ≤ 0 ∀ω ∈ Ω

y ∈ {0, 1}m

xω ∈ Rn, xω ≥ 0 ∀ω ∈ Ω

Since the expectation involved is in this case just an ordinary sum, the last formulation is a (large scale)
mixed integer linear programming model. This form was used for implementing the two-stage stochastic
model in two different variants: one with fixed low supply and uncertain demand, the other with fixed
high supply and uncertain demand.

3.2.2 Additional uncertainty of supply

We further consider a set Ξ of supply scenarios, independent of demand scenarios, and denote by ξ a
particular supply scenario (here Φ = Ξ×Ω and one individual scenario φ consists of a possible combination
(ξ, ω) of supply–demand realizations). In this case the solution given by one scenario with low supply
realization may open few facilities and thus be infeasible for other scenario with high supply realization.
On the other hand the solution given by one scenario with high supply may open many facilities and
thus be too costly for a scenario with low supply. Therefore scenario analysis is not applicable in such
a situation. Moreover a two-stage model is also not appropriate, since it would ”protect” the scenarios
with high supply, that is it would open 2 cleaning facilities and thus such a solution would be again
too costly. A possible remedy could be to consider extra costs for penalizing infeasibility. However such
penalty costs are difficult to estimate in a meaningful manner and this is therefore less realistic.

In order to cope with this situation we used a three-stage stochastic programming model, in which
location decisions are made as well in the first stage as in the second stage, whereas the corresponding
flows decisions are reserved for the third stage. Namely we assume that the common supply of low and
high scenarios has to be met in the first stage, after which the actual supply is expected to be revealed
and consecutive decisions have to be made if the supply is high. In either case the material is processed
and sold to projects in the third stage according to the seven demand scenarios, such that the overall
expected revenue is maximized. The situation is schematically rendered by the scenario tree in Figure 3.
Such a modeling is not unrealistic since the cleaning facilities are likely to be built one by one rather than
at the same time. Denoting by z, y the location decisions for the first respectively the second stage and
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Figure 3: Scenario tree in the three-stage approach

by x the allocation decisions in the third stage, the three stage stochastic programming model states as

max −f z + E ξ[Q(z, ξ) ] where Q(z, ξ) = max −f y + Eω[Q0(z, y, ξ, ω) ]

s.t. z ∈ {0, 1}m s.t. y ∈ {0, 1}m

and respectively where

Q0(z, y, ξ, ω) = max c(ξ)x

s.t. W0(ξ)x = b(ξ)

W1(ξ)x ≤ d(ω)

W2(ξ)x ≤ −T (z, y)

x ∈ Rn, x ≥ 0

Here (z, y) is the 2m-dimensional vector obtained by concatenating z and y and T is a m′ × 2m matrix.
The last block of constraints also contains requirements that at each site one type of facility may be
opened in at most one stage. As indicated above, the parameters c,W0, b,W1,W2 depend on supply
scenarios, whereas d still depends on demand scenarios as before. Indexing y over ξ and x over (ξ, ω)
yields the following extensive form, used for implementation:

max −f z + E ξ [−f yξ + Eω [ c(ξ)x ξ,ω ] ]

s.t. W0(ξ)x ξ,ω = b(ξ) ∀ ξ ∈ Ξ , ∀ω ∈ Ω

W1(ξ)x ξ,ω ≤ d(ω) ∀ ξ ∈ Ξ , ∀ω ∈ Ω

T (z, yξ) + W2(ξ)x ξ,ω ≤ 0 ∀ ξ ∈ Ξ , ∀ω ∈ Ω

z ∈ {0, 1}m

yξ ∈ {0, 1}m ∀ ξ ∈ Ξ

x ξ,ω ∈ Rn, x ξ,ω ≥ 0 ∀ ξ ∈ Ξ , ∀ω ∈ Ω
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This type of approach is not yet observed in the literature of logistic network design. Yet it arises
naturally in our context because decisions must be hedged against very different levels of return flows. As
this implies rather high risks if approached in just one step, the decisions have to be split over time based
on the assumption that extra information may be gradually acquired. We therefore believe that given the
information we have on the uncertainty, the three stage model above is the appropriate approach in this
case. Moreover we think that such a multi-stage approach may also shed light on more efficient design
of similar product recovery networks as well as in other situations where (forward) logistic networks are
to be developed stepwise over time.

3.2.3 Implementation

We used GAMS as modeling language and the mixed integer solver from CPLEX6.5 commercial software
for all the variants of the problem (see Brooke et al. (1988) and ILOG (1999)). The original models were
extended with several valid inequalities, e.g. expressing logical relations between the continuous flow
between two sites and the integral indicators associated to those sites (see Barros et al. (1998)). Priority
orders on branching were assigned to the integer variables. In the two stage models a higher priority was
assigned to the variables corresponding to the cleaning facilities. In the three stage model four levels
were distinguished with priorities decreasing in the following order: cleaning facilities first stage, cleaning
facilities second stage, depots first stage, depots second stage.

Number of variables Number of constraints Running
Models integer continuous initial valid inequalities time

original deterministic 107 6,574 439 5,064 5 min

two-stage

{
low supply
high supply

107 46,018 3,073 35,448
3 h 30 min

11 h

three-stage 214 92,036 6,146 70,896 28 h

Table 3: Dimensions of the models and running times

The underlying deterministic model for each scenario and the two-stage stochastic models in extensive
form were solved on a Windows NT-based 450MHz Pentium III PC with 128MB of memory. The average
running time for separate scenarios was about 5 minutes. The solution time for the two-stage model
was about 3 and a half hours in the low supply case and about 11 hours in the high supply case. The
three-stage model was solved on a Sun Enterprise250 UltraSPARCII-400MHz UNIX system with 1GB
of memory (shared resources). The CPU running time was about 28 hours. The second computational
system features a lower speed, but it was employed in the three-stage case for its capacity to handle
larger sets of data during the computation. Besides the models sizes, the tendency to extensive search is
to large extent explainable by the capacitated feature of the problem and by a relative symmetry of the
potential sites in terms of the costs they incur. Details on the implemented models are given in Table 3.

4 Results

The results presented in the sequel are based on a sales price of 27 Dfl per ton of clean sand and 16 Dfl per
ton of half-clean sand, which are our estimations. Since investments are mainly driven by legislation, and
to a less extent by marketing perspective, variations in sales prices have less influence on network layout.
Accordingly less variations in the net revenues are expected (from this point of view our investigations
differ from those reported by Newton et al. (1999)). The charged fees depend on quality of supplied sand
and significantly increase as quality gets worse. Equal probabilities were associated with demand scenarios
as no available information justified another distribution. Variations of these (subjective) probabilities
and the corresponding outcomes may be addressed in a separate discussion.

4.1 High supply case

The amount of supplied sand equals in this case the initial estimation of 992,400 tons per year from
which 40% is clean (396,960 tons), 40% is half-clean (396,960 tons) and 20% is polluted (198,480 tons).
The charged fee corresponding to this quality amounts to 21,50 Dfl per ton (our estimation). Given the
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cleaning capacity of 150,000 tons per year it turns out that 2 cleaning facilities have to be opened. Yet the
number of regional depots and the location of all the facilities are determined taking the seven demand
scenarios into account. The stochastic configuration differs from any of the optimal configurations of
individual scenarios on both regional depots and cleaning facilities. It is illustrated in Figure 4. The
stochastic solution yields a network with 19 regional depots, from which 9 are accessible by water. Given
their rather small fixed costs, the regional depots handle locally the flows of sand. However, besides the
sources of sand, their location is now influenced by all the projects with the weights induced together
by the seven scenarios. Therefore mostly the sites which by their size and position are able to serve
efficiently several projects are retained in the stochastic solution. This effect is also illustrated by the
fact that more than 99% of the storage capacity of the opened depots is used. The optimal location of
the cleaning facilities for the individual scenarios and the stochastic solution are presented in Table 4.

Scenarios Stochastic
Cleaning facilities bs s1 s2 s3 s4 s5 s6 solution

Alblasserdam • • •
Dongen •
Oosterhout •
Utrecht • • •
Westervoort •
Almelo • • • • • • •

Table 4: Individual scenarios solutions and stochastic solution in high supply case

When evaluating the stochastic configuration over each of the scenarios the following pattern is observed.
The cleaning facility located in Oosterhout (center west) handles scenario 6, where the two facilities handle
comparable yearly amounts, about 100,000 tons either. While the facility in Almelo is also frequent in
scenarios, the one in Oosterhout is not reproduced by any scenario. Instead it makes a necessary trade-off
between the sites from center or center-west regions separately chosen in the scenarios.

Optimal Stochastic Optimal−Stochastic Stochastic =
Scenarios net revenue net revenue net revenue % of Optimum

bs 2,720,640 2,338,988 381,652 86.0

s1 7,727,527 7,627,766 99,761 98.7

s2 492,454 235,472 256,982 47.8

s3 6,718,106 6,436,475 281,631 95.8

s4 7,710,768 7,573,833 136,935 98.2

s5 6,463,536 6,095,327 368,209 94.3

s6 14,091,545 13,822,662 268,883 98.1

Expected 6,560,653 6,304,360 256,293 96.1

Table 5: Optimal values for scenarios and stochastic solution in high supply case

Optimal Worst Optimal−Worst Worst =
Scenarios net revenue net revenue net revenue % of Optimum

bs 2,720,640 2,125,853 594,787 78.1

s1 7,727,527 7,161,612 565,915 92.6

s2 492,454 33,892 458,562 7.0

s3 6,718,106 6,253,260 464,846 93.0

s4 7,710,768 7,117,634 593,134 92.3

s5 6,463,536 5,802,199 661,337 89.7

s6 14,091,545 13,279,936 811,609 94.2

Expected 6,560,653 5,967,769 592,884 90.9

Table 6: Worst case analysis for high supply case

Table 5 shows the differences between the revenue given by the optimal solution of each scenario and the
revenue given by the stochastic solution for the same scenario. The expected revenue generated by the
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stochastic solution is 96.1% from the weighted average of individual optima (the hypothetical average
with perfect information). The worst case location for one scenario is the configuration taken from the
seven scenarios which generates the lowest revenue for that scenario. The corresponding values are given
in Table 6. The expected worst case revenue is 90.9% from the weighted average of individual optima.
The solution from the scenarios that achieves the maximum expected revenues (the least expected regret)
corresponds to scenario 3. The stochastic solution generates better revenues for all the other scenarios
(except scenario 3) and an improvement of 0.83% in expectation (yearly) over the solution of scenario 3.
The improvement in terms of expected revenues looks rather small in this case. Nevertheless the more
uniform distribution of revenues over scenarios as given by the stochastic solution has to be remarked.
Sticking to the individual solution of one scenario may yield high revenues for some scenarios, but also
poor results for others as indicated in the worst cases table for scenario 2.

Figure 4: Stochastic solution in high supply case Figure 5: Stochastic solution in low supply case

4.2 Low supply case

In this case the supplied sand amounts to 496,200 tons per year, that is half of the initial estimation.
From this 20% is clean (99,240 tons), 50% is half-clean (248,100 tons) and 30% is polluted (148,860
tons). A fee of 23,25 Dfl per ton corresponding to this quality is charged (our estimation). Clearly in this
situation only one cleaning facility is necessary, which is to work at (almost) full capacity. Also in this
case the stochastic configuration does not coincide with any of the optimal configurations for individual
demand scenarios. It is depicted in Figure 5.

Scenarios Stochastic
Cleaning facilities bs s1 s2 s3 s4 s5 s6 solution

Westervoort • •
Oosterhout •
Utrecht •
Alblasserdam • • • •

Table 7: Individual scenarios solutions and stochastic solution in low supply case
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The stochastic solution yields now a network with 16 regional depots, from which 13 are reachable by
water. The more reduced number of depots required in this case forces each regional depot to serve
a larger subregion. Consequently the transportation increases and more depots are opened at sites
accessible by water, often with a higher capacity. The stochastic solution typically retains this kind of
sites and moreover those of them properly balanced between scenarios, such that again more than 99%
of the storage capacity of the opened depots is used. The optimal location of the cleaning facilities for
each of the scenarios and the stochastic solution are presented in Table 7. A stronger balancing effect is
remarked here as the location of the only cleaning facility in Utrecht (center of the country) makes a clear
trade-off between the sites in center-west or east regions preferred in the separate scenarios. Similarly
to the previous case, values generated by the stochastic solution and the worst cases are presented in
Table 8 and respectively Table 9. In this case the expected revenue generated by the stochastic solution is
95.6% from the weighted average of individual optima, whereas the expected worst case revenue is 86.5%
from the same amount. The solution taken from the scenarios that achieves the maximum expected
revenues (the least expected regret) corresponds in this case to scenario 4. The stochastic solution
generates better revenues for all the scenarios except scenarios 3 and 4 and an improvement of 2.31%
in expectation (yearly) over the solution of scenario 4. The improvement in terms of expected revenues
is higher in this case, but still limited through the nature of the investigated factors. The main gains
remain a more robust configuration and a more uniform distribution of revenues over scenarios as given
by the stochastic solution.

Optimal Stochastic Optimal−Stochastic Stochastic =
Scenarios net revenue net revenue net revenue % of Optimum

bs 3,389,774 3,316,781 72,993 97.8

s1 5,797,840 5,555,551 242,289 95.8

s2 1,322,112 1,095,451 226,661 83.0

s3 5,457,753 5,148,180 309,573 94.3

s4 5,723,589 5,485,855 237,734 95.8

s5 4,829,696 4,681,254 148,442 96.9

s6 5,874,306 5,680,799 193,507 96.7

Expected 4,627,867 4,423,410 204,457 95.6

Table 8: Optimal values for scenarios and stochastic solution in low supply case

Optimal Worst Optimal−Worst Worst =
Scenarios net revenue net revenue net revenue % of Optimum

bs 3,389,774 2,845,208 544,566 83.9

s1 5,797,840 5,133,495 664,345 88.5

s2 1,322,112 482,576 839,536 36.5

s3 5,457,753 4,750,406 707,347 87.0

s4 5,723,589 5,203,795 519,794 90.9

s5 4,829,696 4,303,279 526,417 89.1

s6 5,874,306 5,319,311 554,995 90.5

Expected 4,627,867 4,005,438 622,429 86.5

Table 9: Worst case analysis for low supply case

4.3 Three-stage approach

As explained in the modeling section, this case is based on the assumption that after opening some
facilities in a first stage, extra information about the actual supply can be acquired, based on which
further location decisions are to be made in a second stage. Namely we assume that at least a yearly
amount of 496,200 tons (20% clean, 50% half-clean, 30% polluted) will be supplied and the remaining
amount up to 992,400 tons (40% clean, 40% half-clean, 20% polluted) will be supplied or not with equal
chances. Therefore the overall problem states now differently: where to locate the first cleaning facility
in the first stage such that the second treatment facility will be opened or not with 50%–50% probability
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in the second stage. Simultaneously with each cleaning facility a number of depots are opened, such that
facilities opened in the first stage are able to handle the low amount and facilities opened in both stages
can handle the high amount.

Three-stage approach Stochastic Stochastic
Cleaning facilities first stage second stage low supply high supply

Almelo • •
Utrecht •
Alblasserdam •
Oosterhout •

Table 10: Three-stage approach solution and two-stage solutions

The stochastic solution given by the three-stage model is presented in Table 10, where also the stochastic
solutions from low and high supply cases are included for comparison (cleaning facilities only). Geo-
graphical distribution of the three-stage solution is depicted in Figure 6. The cleaning facility opened
in the first stage (Alblasserdam) makes a clear trade-off between the cleaning facility in low supply case
(Utrecht) and the cleaning facility in the high supply case which works mostly at full capacity (Oster-
hout). The treatment facility opened in the second stage is the same as the one working mostly at one
third of its capacity in high supply case (Almelo). The regional depots opened in the first stage may be
regarded as divided in two groups: one group with higher capacities concentrate in the central part of
the west region and other group with smaller capacities is spread along the eastern border. The regional
depots opened in the second stage are mainly spread in the center and the central-east region. This
configurations reflect ones again a generally unbalanced distribution of facilities in the sand problem.

Figure 6: Stochastic solution in three-stage approach

If afterwards the supply turned out to be low, the investments made in the first stage would on one
hand yield an expected (with respect to demand) revenue of 4.372.300 Dfl, that is only 51.110 Dfl less
than expected revenue based on low supply assumption, but on the other hand would avoid an expected
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loss of 1.672.600 Dfl that occurred if excessively investing directly based on the high supply assumption
(all figures are on a yearly basis). In case afterwards the supply turned out to be high, the investments
made in both stages would on one hand generate an expected revenue of 6.273.100 Dfl, that is only 31.260
Dfl less than expected revenue based on direct high supply assumption, but on the other hand would
avoid a situation with highly insufficient capacities based on low supply assumption (the avoided loss
could be assessed in such a case by means of penalties).

5 Conclusions

Generally the solutions obtained by stochastic programming approach for the sand case perform well based
on interpreting the results through the initial premises of the problem: the recycling system is mainly
driven by legislation, the cleaning options are restricted through available technology to a single capacity
process and transportation can also be done by water at low costs. The first means in particular that
the whole amount of available material must be processed rather than collecting economically attractive
amounts. Therefore the number of newly opened facilities is mostly decided by the amount and the
quality of the incoming flows. On the other hand the location of the new facilities is twofold influenced
by sources and by demand points in a rather non-intuitive way. Moreover, since these factors include
uncertainties, finding a configuration which is likely to be more robust on a long run becomes the central
investigated issue. At high material volumes the network layout is more flexible with respect to demand
location and the improvement in terms of expected revenues based on the stochastic solution seems rather
small. However an essential aspect which must be emphasized is the capacitated feature of the problem.
In particular we deal with a treatment capacity which appears rather restrictive, especially relative to
the high supply figures, leading in this case to investments in considerable unused cleaning capacity. To
this end it is worth mentioning that future development of new technology enabling treatment at several
capacities (and possibly adjustment of the working levels resulted here) is highly desirable. At low
material volumes the network configuration seems more dependent on demand location and a balanced
solution as generated here is particularly suitable. When more accurate information on material volumes
is assumed to be stepwise revealed, splitting decisions over time is proposed as an effective long run
strategy. Especially in this case the solution approach needs to be improved to allow for solving larger
models in reasonable running times. We have to remark that even in the cases where the explicit
improvement in the objective function is not spectacular, the stochastic approaches have the ability to
generate qualitative different solutions, which are particularly insightful.

Given the representative character of this case, the trends discussed are likely to apply more generally
to product recovery networks designed under similar conditions. Moreover the effectiveness of the type of
approaches presented may be more striking under some circumstances, such as a larger area over which
the potential sites are spread out, several processing capacities or higher transportation costs.

The results presented in this paper point out that given the existing computational power and using
an adequate modeling it is nowadays possible to apply stochastic programming techniques to practical
situations of logistic networks design. Important issues that this study uncovers are designing and im-
plementing more efficient algorithms for the arisen stochastic models, which may lead to a significant
improvement of the running times. These issues may form the subject of future research.
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Appendix

Mixed integer linear programming model for sand network design

We include here the underlying deterministic MILP model for the design of the sand network. The formulation
below slightly differs from the initial form in Barros et al. (1998). However the differences come from technical
reasons only and do not change the problem context. Therefore we refer to Barros et al. (1998) for further details
on modeling issues.

For the mathematical description of the model the following notation is used. First, the indices used to
distinguish the elements of the model are defined in Table 11. Table 12 describes the notation used for the
parameters of the model. Similarly, the notation for the decision variables is given in Table 13.

Index Description Range

i sources of sieved sand 1, ... , m

j potential regional depots sites 1, ... , n

k potential cleaning facilities sites 1, ... , p

l projects 1, ... , q

s type of sand: clean, half-clean, polluted 1, 2, 3

Table 11: Indices used in the model

Parameter Description

oi supply of sand at the source i (in tons)

d ls demand of sand type s = 1,2 of project l (in tons)

ts percentage from supply of sand type s

fee fee charged for sand entering the network (in Dfl per ton)

prs price of sand type s sold to projects (in Dfl per ton)

f j fixed cost of opening regional depot j (in Dfl)

gk fixed cost of opening cleaning facility k (in Dfl)

aij sum of transportation costs between source i and regional depot j and processing costs at
this depot (in Dfl per ton)

bjk sum of transportation costs between regional depot j and cleaning facility k and processing
costs at this treatment facility (in Dfl per ton)

ckl transportation costs between cleaning facility k and project l (in Dfl per ton)

ejls transportation costs of sand type s =1,2 between regional depot j and project l (in Dfl
per ton)

H j maximal storage capacity of regional depot j (in tons)

Rk maximal processing capacity of cleaning facility k (in tons)

Table 12: Parameters of the model
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Variable Description Type

yj =

{
1 if regional depot j is opened
0 otherwise

integer {0, 1}

zk =

{
1 if cleaning facility k is opened
0 otherwise

integer {0, 1}

uij amount of sieved sand shipped from sorting facility i
to regional depot j (in tons)

continuous ≥ 0

v jk amount of polluted sand shipped from regional depot
j to treatment facility k (in tons)

continuous ≥ 0

wkl amount of clean sand shipped from cleaning facility k
to project l (in tons)

continuous ≥ 0

x jls amount of sand of type s = 1,2 shipped from regional
depot j to project l (in tons)

continuous ≥ 0

Table 13: Decision variables

Define Φ as the set of all possible scenarios and φ ∈Φ as a particular scenario. Some parameters may have
different values for different scenarios. Therefore using the above notation the deterministic mixed integer linear
programming model for a particular scenario φ states as

max

m∑
i=1

n∑
j=1

fee(φ)uij +

n∑
j=1

q∑
l=1

2∑
s=1

prsxjls

−
n∑
j=1

fjyj −
p∑
k=1

gkzk −
m∑
i=1

n∑
j=1

aijuij −
n∑
j=1

p∑
k=1

bjkvjk −
p∑
k=1

q∑
l=1

cklwkl −
n∑
j=1

q∑
l=1

2∑
s=1

ejlsxjls (SP )

s.t.

n∑
j=1

uij = oi(φ) , i = 1, . . . ,m (1)

n∑
j=1

xjl1 +

p∑
k=1

wkl ≤ dl1(φ) , l = 1, . . . , q (2)

n∑
j=1

xjl2 ≤ dl2(φ) , l = 1, . . . , q (3)

p∑
k=1

vjk = t3(φ)

m∑
i=1

uij , j = 1, . . . , n (4)

q∑
l=1

xjls ≤ ts(φ)

m∑
i=1

uij , j = 1, . . . , n , s = 1, 2 (5)

q∑
l=1

wkl ≤
n∑
j=1

vjk , k = 1, . . . , p (6)

(1− t3(φ))

m∑
i=1

uij ≤ Hjyj , j = 1, . . . , n (7)

n∑
j=1

vjk ≤ Rkzk , k = 1, . . . , p (8)

yj , zk ∈ {0, 1} , j = 1, . . . , n , k = 1, . . . , p (9)

uij , vjk, wkl, xjls ≥ 0, i = 1, . . . ,m , j = 1, . . . , n ,

k = 1, . . . , p , l = 1, . . . , q , s = 1, 2 (10)

So this formulation also indicates which parameters are determined to change in the scenarios. In order to
strengthen the formulation the following valid inequalities are included:
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uij ≤ min

{
oi(φ) ,

Hj
1− t3(φ)

}
yj , i = 1, ...,m , j = 1, ..., n (11)

vjk ≤ min

{
t3(φ)

m∑
i=1

oi(φ) , Rk

}
zk , j = 1, ..., n , k = 1, ..., p (12)

wkl ≤ min {dl1(φ) , Rk} zk , k = 1, ..., p , l = 1, ..., q (13)

xjls ≤ min

{
dls(φ) ,

ts(φ)

1− t3(φ)
Hj

}
yj , j = 1, ..., n , l = 1, ..., q , s = 1, 2 (14)
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