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Abstract 

In this paper, we study the problem of scheduling and dispatching vehicles in vehicle-based 

internal transport systems within warehouses and production facilities. We develop and use 

two rolling horizon policies to solve real-time vehicle scheduling problems. To solve static 

instances of scheduling problems, we propose two new heuristics: combined and column-

generation heuristics. We solve a real-time scheduling problem by applying a heuristic to 

dynamically solve a series of static instances under a rolling horizon policy. A rolling horizon 

can be seen either as a fixed-time interval in which advance information about loads’ arrivals 

is available, or as a fixed number of loads which are known to become available in the near 

future. We also propose a new look-ahead dynamic assignment algorithm, a different 

dynamic vehicle-scheduling approach. We evaluate these dynamic scheduling strategies by 

comparing their performance with that of two of the best online vehicle dispatching rules 

mentioned in the literature. Experimental results show that the new look-ahead dynamic 

assignment algorithm and dynamic scheduling approaches consistently outperform vehicle 

dispatching rules.  

 

1 Introduction 

In many facilities such as modern warehouses, distribution centers, transshipment terminals 

or manufacturing systems, vehicle-based internal transport (VBIT) systems, particularly 

automated guided vehicle (AGV) systems, are used to control vehicles. Generally, system 

controllers dispatch vehicles (or AGVs) using very simple and intuitive online dispatching 

rules such as nearest-vehicle-first (NVF) (Egbelu and Tanchoco, 1984). An important 

practical reason for selecting simple vehicle dispatching rules is that they are easy to adapt 

for warehouse management (WMS) or shop-floor control systems (SFC). Also, the dynamic 

and stochastic environments in which these vehicles have to operate makes a vehicle 

dispatching approach more obvious than a scheduling approach. Still, a vehicle scheduling 

approach with a rolling horizon might lead to a better overall system performance than a 
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dispatching approach. However, this has not been adequately investigated in literature. In this 

paper we will make such a comparison. The objective of the scheduling problem is 

minimizing the average load waiting time. Main characteristics of the scheduling problem in 

real-life VBIT systems are high traffic density, short planning horizon due to stochastic load 

arrivals and possible vehicle interference problems. These characteristics make offline 

schedules useless. 

Mathematically, the scheduling problem of a VBIT system can be formulated as a pick-up 

and delivery problem with time windows (PDPTW), in which a vehicle picks up loads at 

several locations and delivers them to their destinations satisfying certain time-window 

restrictions. Since in many VBIT systems, vehicles are homogenous and have single-load 

capacity (a vehicle can pick-up only one load at a time), pick-up and delivery points can be 

represented as one node, which allows us to formulate the VBIT scheduling problem as a 

multiple traveling salesman problem with time windows (m-TSPTW).  

The m-TSPTW belongs to the class of NP-Hard problems, so it is unlikely that we can solve 

real-life size instances with many vehicles, loads and pick-up and drop-off locations using a 

commercial optimization package. In this research, we propose three heuristics for solving 

static (offline) instances of the scheduling problem which are later applied with rolling 

horizons. The first one is a simple insertion heuristic (Van der Meer, 2000). The second one 

uses the initial solution created by the insertion heuristic and then applies several 

improvement algorithms (Re-insertion, Exchange, Relocation) sequentially to improve the 

solution. The third one bases on the column-generation approach. To apply the third heuristic, 

we reformulate the scheduling problem as a set-partitioning (-covering) model to select a set 

of vehicle routes covering all jobs with minimum average job (load) waiting time. In VBIT 

systems, we prefer using the term load instead of job. Vehicle routes are generated 

dynamically by solving a shortest-path problem with time-windows (SPPTW). We apply the 

generalized permanent labeling algorithm (Desrochers and Soumis, 1988) with a slight 

modification to solve the SPPTW problem. Because of the stochasticity of the VBIT 

scheduling problem, we should not schedule vehicles too far in advance even in case we have 

some information about future loads’ arrivals. Scheduling based on incomplete (not all loads 

known, for example), or inaccurate information may lead to frequent rescheduling (“system 

nervousness”) or suboptimal schedules (Van der Meer, 2000). We propose two dynamic 

rolling horizon approaches to cope with real-time scheduling problems. The first is a 

traditional time rolling horizon in which vehicles are scheduled for a tentative rolling horizon 

length (H) and only loads arriving within a shorter horizon (h = aH, a < 1) are considered as 
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permanent. A new schedule for vehicles is generated every h time periods. We also introduce 

a second rolling horizon approach based on the number of loads (jobs). Under this approach, 

we make a tentative vehicle schedule with a fixed number of loads (M) supposed to arrive in 

near future. Similar to the rolling by time approach, only the first m loads (m = ⎡a*M⎤, a < 1) 

in the tentative schedule are considered as permanent. This policy limits the size of the 

scheduling problem to a fixed-size that can be solved in reasonable time for real-life 

applications. In addition to the three rolling horizon heuristics, we propose a look-ahead 

dynamic assignment algorithm which is simple and fast. Actually, it is a special type of 

scheduling by time rolling horizon in which offline instances are solved by the assignment 

algorithm. 

We then evaluate the performance of the proposed real-time scheduling approaches and 

compare their performance with two of the best-performing dispatching rules (NVF and NVF 

with a look-ahead period - NVF_LA) for our experimental environments. We will show that 

the real-time dynamic scheduling strategies consistently outperform dispatching rules under 

various working conditions. The main contributions of our study rely on practical 

perspectives of solution approaches. We propose a rolling schedule, which can be very useful 

in practice. We find that a significant improvement is possible only when we have sufficient 

information about future loads (about three loads or more per vehicle). Our new column-

generation heuristic provides a superior performance. The new combined heuristic and the 

look-ahead dynamic algorithm result in a significant improvement, compared to a simple 

insertion heuristic, without increasing the running-time.  

The next section discusses literature related to vehicle scheduling problems. Section 3 

describes the problem formulation and its characteristics. In section 4, we propose solution 

approaches for static and real-time scheduling problems, and we also provide a performance 

evaluation for the proposed heuristics. In section 5, we describe experimental environments 

and parameters and evaluate performance of the proposed dynamic scheduling approaches 

and two vehicle dispatching rules. Finally in section 6, we draw conclusions and suggest 

some fruitful future research directions. 

 

2 Review of literature 

As mentioned before, the scheduling problem for VBIT systems can be seen as a PDPTW 

problem or in a particular case as an m-TSPTW problem. In the literature, the PDPTW, m-
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TSPTW and vehicle routing problems with time windows (VRPTW) have been studied since 

long (Desrochers et al., 1988; Savelsbergh and Sol, 1995). Desrochers et al. (1988) provide a 

review on vehicle routing with time windows including PDPTW and m-TSPTW and 

solutions approaches. Savelsbergh and Sol (1995) focus on PDPTW (referred to as general 

pickup and delivery problem – GPDP) and their dynamic versions. In their paper, the m-

TSPTW is referred as the full truckload PDPTW. 

As mentioned in Desrochers et al. (1988), there are two main types of optimization 

algorithms for VRPTW: dynamic programming and branch-and-bound. Both methods are 

very time consuming and cannot solve practical problems within an acceptable time limit. 

Dumas et al. (1991) introduce an exact algorithm to solve PDPTW using a column-generation 

scheme. The sub-problem (or pricing) is a constrained shortest-path problem. Their algorithm 

can handle multiple depots and different vehicle types. Desaulniers et al. (1998) propose a 

similar approach to solve multi-depot vehicle scheduling problems with time windows and 

waiting costs. In order to solve practical-size problems, they also propose a heuristic to speed 

up the branch-and-bound process. Savelsbergh and Sol (1998) and Xu et al. (2003) propose 

some adaptation approaches for speeding up the column-generation algorithm. They use 

several heuristics to generate columns with negative reduced costs and eliminate unattractive 

columns by sophisticated column management schemes. Besides set-partitioning and column- 

generation approaches, several other heuristics have been proposed for the VRPTW, such as 

a saving heuristic (Kindervater and Savelsbergh, 1992; Laporte et al., 2000;  Cordeau et al., 

2002).  

In the literature, studies on the dynamic VRPTW are not as abundant as studies on the static 

VRPTW. Psaraftis (1988) provides a survey on solution approaches for dynamic vehicle 

routing problems. Two main approaches include an adaptation of static solution using local 

operations and an implementation of static algorithms under a rolling horizon. Savelsbergh 

and Sol (1998) use the rolling horizon approach to solve a dynamic PDPTW. Yang et al. 

(2004) studied a dynamic truckload PDP. They propose several benchmark local policies that 

are actually similar to vehicle online dispatching rules in VBIT systems. They also propose 

two re-optimization policies (MYOPT and OPTUN) to solve the problem dynamically. The 

MYOPT policy solves a static instance at every step (when information about a new job 

arrival is received). OPTUN is different from MYOPT by including some opportunity costs 

which are based on probabilistic knowledge of future requests in the optimization model. The 

probabilistic knowledge of future requests help to improve the solution quality. They prove 

that two re-optimization policies outperform local policies. Yang et al. (2004) used CPLEX 
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to solve the static problem with a 20 seconds time limit. However with such short time limit, 

CPLEX normally cannot provide a very good (average) result. Fleischmann et al. (2004) use 

an assignment algorithm to assign jobs to vehicles with the main objectives to minimize the 

total order delays and vehicle empty travel time. They show that their approach is superior to 

dispatching rules and some insertion algorithms. In spite of having different objectives, their 

method is interesting to us, so we adapt their approach for our problems and test its 

performance. 

De Koster et al. (2004) have carried out extensive simulation experiments to compare the 

performance (average load waiting time and maximum load waiting time) of several good 

dispatching rules in literature. They show that, for three practical internal transport 

environments (a warehouse, a production plant and a transshipment terminal), distance-based 

dispatching rules such as NVF outperform other rules. They also show that little information 

about future loads has a very positive impact to reduce the average load waiting time.  

We compare the performance of the rolling horizon scheduling and assignment approach with 

that of the best vehicle dispatching rules in the study of De Koster et al. (2004).  

 

3 Problem description and formulation 

For static scheduling of a VBIT system, we define a set of available vehicles (K) and a set of 

jobs (N) which need be picked-up within time-windows [ep, lp] (p ∈ N) and dropped-off at 

their delivery locations. The scheduling problem for VBIT systems can be formulated as a 

PDPTW. However, we reformulate this problem as an m-TSPTW by projecting time-

windows at delivery locations to the corresponding pick-up locations (assuming a certain 

transport time) and logically considering a pick-up and a corresponding delivery job as a 

single job-node. If the time-window at pick-up location is [ep, lp], at delivery location is [ed, 

ld], and the travel time between the two locations is tpd, the time-window of the job-node will 

be [en, ln] with en = ep, ln = min(lp, ld - tpd). We suppose that the time-window projection for 

job-nodes is always feasible ([en, ln] ≠ ∅). In many VBIT systems, only one-sided time-

windows are present at pick-up locations (load release times, or rp) and no time-windows are 

present at delivery locations, so [en, ln] is always ≠ ∅. The travel time from job-node i to job-

node j ( ijt ) equals the travel time from the origin of job i (i+) to the destination of i (i-) ( −+ iit ) 

plus the travel time from the destination of i to the origin of j ( +− jit ). 
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The m-TSPTW can be seen as a graph G = (V, A), in which V is a set of vertices and A is a set 

of arcs. V = {0}∪N∪{n+1}, where {0}({n+1}) denotes the depot (end depot) and N = {1..n} 

is the set of (job-)nodes. A = {0}×N ∪I ∪N ×{n+1}, where I⊂N×N is the set of arcs 

connecting job-nodes. {0}×N contains the arcs from the depot to job-nodes and N ×{n+1} 

contains the arcs from job-nodes to end depot (which is the same physical location as the 

depot in our computations). For each arc (i,j)∈A, there is an associated travel time (distance) 

tij and for each job-node i there is an associated time-window [ei, li]. K is the number of 

vehicles and B is a big number. 

Decision variables are: 

- 
k
ijx ((i,j)∈A, k∈K ) equals 1 if arc (i,j) is covered by vehicle k and 0 otherwise. 

- Di (i∈N) indicates the service start time of (job-)node i. 

In practice, operating areas in VBIT environments such as warehouses are condensed, so the 

vehicle travel distance criterion becomes less important. In addition in VBIT systems, the 

number of vehicles is estimated at tactical level (Le-Anh and De Koster, 2004), so the 

scheduling problem at operational level does not take it into account. These characteristics 

leave minimizing the average (or total = ( )i i
i N

D e
∈

−∑ ) load waiting time as the most important 

objective of the VBIT scheduling problem in practice. 

The model formulation becomes then: 
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Constraints (1)-(4) form a multi-commodity flow formulation. Constraints (5)-(8) ensure 

feasibility of the schedule. (9) is the set of binary constraints. This problem (m-TSPTW) is a 

special case of VRPTW, so it also belongs to the class of NP-Hard problems (Kindervater 

and Savelsbergh, 1992) that are difficult to solve. The size of a static instance is about 6 
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vehicles, 4 loads per vehicle for a typical warehouse, and it can be much bigger, for example, 

for transshipment terminals (> 25 vehicles) (De Koster et al., 2004). 

 

4 Solution approaches 

4.1 The static scheduling problem 

In the previous section, we have formulated the static (or offline) scheduling problem in a 

VBIT system as an m-TSPTW. Generally, we can use general-purpose optimization packages 

such as CPLEX to solve the m-TSPTW. However, such software can solve only small 

instances of the m-TSPTW, which makes them unusable for practical problems. In this 

section, we describe several heuristics which will be used later to cope with realistic m-

TSPTW. Some of them have been introduced originally for the TSP and VRP, but they are 

useful for our research as well. We also propose a new column-generation heuristic, and a 

new combined heuristic (a combination of existing heuristics). We define the cost of a 

vehicle tour is the average load waiting time of this tour.  

 

4.1.1 Insertion heuristic 

The insertion heuristic (Van der Meer, 2000; Laporte et al., 2000) is frequently used for real-

time dynamic scheduling problems (Psaraftis, 1988). The main advantage of the insertion 

algorithm is that it is simple and fast. Since, at the decision points in VBIT systems, usually 

little information about load arrivals is known, rescheduling based on a previous solution 

does not lead to good solutions. Therefore in our implementation, we rebuild all routes from 

scratch. 

The pseudo code of the insertion algorithm (Insertion) is given as follow: 

- Step 0: Initialize all vehicle routes at the depot node {0}, let the set S contain all (job-) 

nodes arranged in increasing order of the load (job) release times (S ≠ ∅), set all tours’ 

costs to zero. 

- Step 1: Remove the first node from the set S and insert it into a specific tour with least 

cost, respecting the time-window constraints (5) - (8). By doing this we expand vehicle 

tours gradually. 

- Step 2: Repeat step 1 until S = ∅, compute total cost, stop. 
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4.1.2 Combined heuristic 

This heuristic starts with an initial solution created by the insertion heuristic and applies 

several improvement algorithms sequentially to improve the solution. Three improvement 

algorithms used in this paper are Re-insertion, Exchange and Relocation (Kindervater and 

Savelsbergh, 1992; Laporte et al., 2000). We only apply these improvement algorithms and 

not other more complicated ones, since for the dynamic scheduling approach we do not take 

too many loads (jobs) into account at once. At each step, we schedule up to about four loads 

for each vehicle, so other more complicated and time-consuming improvement heuristics 

such as k-opt, with k ≥ 2, will not be very useful. Among these three algorithms, Re-insertion 

belongs to the class of route improvement heuristics and the two others belong to the class of 

assignment improvement heuristics. Figure 1 illustrates the three improvement heuristics. 
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i-1 i+1

j+1 j

i

Re-insertion

0
n+1

i-1 i+1
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Figure 1 Improvement heuristic illustrations (Kindervater and Savelsbergh, 1992) 

Re-insertion: The Re-insertion (or forward Or-exchange) algorithm works as follow: 

- Step 0: set it (index) to 1 (0 is the depot node). 

- Step 1: remove the node at position it and search for the best insert position from node it + 

1 to the end of the route. 

- Step 2: if a cost reduction is found, then insert this node into the best insert position, 

otherwise increase it by 1. 

- Step 3: if node it is the last node in the route, stop. Otherwise go to Step 1. 

(Node) Exchange (between routes):  

- Step 0: set it1 to 1 (node index for route 1), set previous total cost to total cost of route 1 

and route 2. 

- Step 1: find the best exchange position of node it1 and a node in route 2. 
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- Step 2: if a cost reduction is found (total cost of two new routes < previous total cost), 

exchange node it1 of route 1 with the best exchange node in route 2.  

- Step 3: increase it1 by 1, re-compute total route cost, set previous total cost to the new 

total route cost. 

- Step 4: if all nodes in route 1 have been investigated, stop. Otherwise go to Step 1. 

(Node) Relocation (between routes):  

- Step 0: set it1 to 1 (node index for route 1), set previous total cost to total cost of route 1 

and route 2. 

- Step 1: find the best insert position of node it1 in route 2. 

- Step 2: if a cost reduction is found (total cost of two new routes < previous total cost), 

insert node it1 of route 1 at the best insert position in route 2.  

- Step 3: increase it1 by 1, re-compute total route cost, set previous total cost to the new 

total route cost. 

- Step 4: if all nodes in route 1 have been investigated, stop. Otherwise go to Step 1. 

General framework for the combined heuristic 

We propose a combined heuristic combining insertion and the improvement algorithms into 

one combined heuristic. The general-framework for the combined heuristic is given below: 

- Step 0: create initial (vehicle) routes using the Insertion algorithm, 

- Step 1: applying Re-insertion algorithm for initial routes, 

- Step 2: applying Exchange algorithm for every pair of routes of the previous step, 

- Step 3: applying Relocation algorithm for every pair of routes of the previous step, 

- Step 4: applying Re-insertion algorithm again for all routes of the previous step. STOP. 

Complexity of the combined heuristic 

Taking the implementation framework of the combined heuristic into account, we can 

evaluate the complexity of this heuristic. Obviously, the complexity of the Insertion 

algorithm is O(n2) (n is the number of loads) (Van der Meer, 2000). Kindervater and 

Savelsbergh (1992) show that the complexity of the three improvement algorithms are O(m2) 

(m is the number of loads per vehicle, m ≤ n), which is O(n2) in the worst case. According to 

the above framework, we apply Re-insertion for all routes, so the worst case complexity is 

O(kn2) (k is the number of vehicles). Two other improvement algorithms are applied for all 

pair of routes. The number of route pairs equals k(k-1)/2, so the worst case complexity of 

each assignment improvement algorithm applying for all pairs of routes is O(k2n2). Finally, 
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the overall complexity of the combined algorithm is O(k2n2) in the worst case. However, this 

complexity is rarely the case. Normally, for our scheduling problems, the number of loads 

served by a vehicle is about the same, so m ≅ n/k. Hence, the average complexity is O(k2m2) ≅ 

O(n2). Therefore, the complexity of the combined heuristic does not increase much in 

comparison with the insertion heuristic, and it is fast for practical problems. 

 

4.1.3 Column generation heuristic 

The column-generation approach has been used by several authors for solving the PDPTW 

(Dumas et al., 1991; Savelsbergh and Sol, 1998). In this study, we apply this approach to 

solve the m-TSPTW. In order to apply the column generation heuristic we re-formulate the 

m-TSPTW as a set-partitioning problem. This heuristic includes two steps: (1) generating 

columns for the master problem and (2) obtaining an integer solution. 

 Generating columns for the restricted master problem 

The master problem (set-partitioning problem) 

minimize  
k

k k
r r

k K r S

c z
∈ ∈
∑ ∑  

subject to 1
k

k k
ir r

k K r S

zδ
∈ ∈

=∑ ∑  ∀i ∈ N  (10) 

  1
k

k
r

r S

z
∈

=∑   ∀k ∈ K (11) 

  k
rz  = 0 or 1 ∀k ∈ K, ∀r ∈ Sk. (12) 

where: k
rz  =  1 if route r ∈ Sk is selected, 0 otherwise; k

irδ  = 1 if job i is served on route r ∈ Sk, 0 

otherwise; k
rc : cost of route k; Sk : set of routes for vehicle k; K: set of vehicles. A vehicle route starts 

at the depot (or at the vehicle’s drop-off location in the dynamic case) visiting some nodes (each node 

exactly once) within their time-windows and finishes at the end depot. 

The set-partitioning model selects routes covering all nodes, each node exactly once, with 

minimal cost. The linear relaxation of this problem (binary constraint set (12) is replaced by 

0k
rz ≥ ) is called the restricted master problem. The optimal solution of the restricted master 

problem is a lower bound on the objective value of the integer master problem. 

To get an initial feasible solution for the restricted master problem, we introduce artificial 

variables yi ≥ 0 (i ∈ N) and modify the restricted master problem as follows (Savelsbergh and 

Sol, 1998): 
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minimize  
k

k k
r r i

k K r S i N

c z py
∈ ∈ ∈

+∑ ∑ ∑   ,max
k

k
k K r S rp c∈ ∈>  is a high penalty cost, 

subject to 1
k

k k
ir r i

k K r S

z yδ
∈ ∈

+ =∑ ∑  ∀i ∈ N  (13) 

  1
k

k
r

r S

z
∈

≤∑   ∀k ∈ K (14) 

  0k
rz ≥   ∀k ∈ K, ∀r ∈ Sk (15) 

0iy ≥    ∀i ∈ N  (16) 

An obvious feasible solution is yi = 1 for all i ∈ N and all other variables are zero. 

The pricing problem (shortest-path problem with time-windows) 

Suppose that the restricted master problem has a feasible solution z. Let ui (i ∈ N) be dual 

variables corresponding to the constraint set (10), and vk (k ∈ K) be dual variables 

corresponding to the constraint set (11). According to the linear programming duality (Ahuja 

et al., 1993), z is optimal for the restricted master problem if and only if for all k ∈ K and r ∈ 

Sk the reduced cost k
rd  is nonnegative, i.e. 0k k k

r r ir i k
i N

d c u vδ
∈

= − − ≥∑  for all k ∈ K and r ∈ Sk.  

The pricing problem is min | ,k k
r ir i k k

i N
c u v k K r Sδ

∈

⎧ ⎫
− − ∈ ∈⎨ ⎬

⎩ ⎭
∑ , in which the cost of route r ∈ Sk 

is ( )k k
r ir i ir

i N
c D e δ

∈

= −∑  (Dir: the service time of node i in the route r ∈ Sk). The vehicle travel 

distance is not present in the route cost function, however it is reflected in the service time at 

nodes (Dir). Therefore this problem is a type of shortest-path problem with time-windows 

(SPPTW). If the solution of the pricing problem (z) results in min 0k
rd ≥ , z is an optimal 

solution to the restricted master problem. We then use an interactive scheme (column-

generation) to generate a set of good columns for the integer master problem. We also get a 

good lower bound for the integer master problem. 

In this research, we have solved the SPPTW using the generalized permanent labeling (GPL) 

algorithm (Desrochers and Soumis, 1988) with bucket implementation (Dernado and Fox, 

1979). In implementation, we keep track of visited nodes by a list. A route which visits a 

node twice (or more) will be eliminated to avoid creation of a path with cycle(s).  

In many VBIT systems, there are only one-sided time-windows at pickup locations and no 

time-windows are required at delivery locations. In that case, we add artificial time-windows 

for nodes, since the GPL algorithm needs two-sided time-windows to perform. Adding too 
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long time-windows dramatically slows down the GPL algorithm. In contrast to this, too short 

time-windows may cut off the optimal solution. Generally, the GPL algorithm works best for 

cases where time-windows at nodes are tight. In cases where very wide time-windows exist at 

pickup locations, the running-time of the GPL algorithm and therefore the column-generation 

algorithm may increase dramatically along with the problem size.  

Column-generation scheme 

- Step 0: solve the modified restricted master problem by the simplex algorithm (CPLEX), 

- Step 1: get dual variables (ui and vk), 

- Step 2: solve the pricing problem using the GPL algorithm. If the pricing problem’s 

objective value ≥ 0, STOP. Otherwise, add newly generated column into the (modified) 

restricted master problem and go to Step 0. 

 Obtaining an integer solution 

We observe that when a limited number of loads (about four loads per vehicle) is taken into 

account for scheduling, we obtain a very good solution by solving the integer master problem 

with the set of columns obtained in the column-generation step. We may then improve the 

solution using improvement algorithms (section 4.1.2). In implementation, we replaced the 

set of set-partitioning constraints (13) by a set of set-covering constraints 

( 1
k

k k
ir r i

k K r S
z yδ

∈ ∈

+ ≥∑ ∑ ), since we found in the experiments that using a set-covering 

formulation leads to better overall solutions.  

Framework for column-generation heuristic 

- Step 0: solve the restricted master problem by column-generation approach. The optimal 

value of this problem is a lower bound for the integer master problem. 

- Step 1: solve the integer master problem with the columns obtained in the previous step 

using CPLEX, 

- Step 2: if the objective value equals the lower bound (obtained in step 0), STOP, 

otherwise improve the resulting solution using improvement algorithms described in 

section 4.1.2. STOP. 

 

4.2 Computational results for the static case 

Experimental environments (different layouts used) and parameters are described in section 

5.1. The three heuristics have been coded in C++. For solving the set-covering problem we 
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use CPLEX 7.1 from ILOG. To run all experiments we use a Toshiba Satellite Pro 2100 

notebook (CPU: Mobile Intel Pentium 2GHz, 256MB ram). Input data has been generated 

using ten different seeds (for random numbers) corresponding to ten runs. 

Table 1 Computational results (total waiting times) for the static case (U-layout) 

U layout Run performance 
IA dist Alg 1 2 3 4 5 6 7 8 9 10 avg gap% RT(s) 

2 vehicles, 12 loads 
ins 34 73 137 103 95 176 59 98 41 173 98.9 13.7 <1 

uni com 34 73 128 103 95 164 51 63 41 173 92.5 7.7 <1 
col 34 69 117 83 95 156 51 59 30 163 85.7 0.4 1.5 

8   LB 34 69 117 83 91.5 156 51 59 30 163 85.4    
ins 61 68 169 162 119 202 110 149 101 183 132.4 20.6 <1 

exp com 61 68 153 102 113 182 78 72 101 183 111.3 5.5 <1 
col 61 68 153 102 98 175 78 64 89 173 106.1 0.9 1.2 

    LB 59 68 146 102 98 175 78 64 89 173 105.2    
6 vehicles, 36 loads 

ins 311 79 157 295 155 145 107 275 245 161 193.0 37.3 <1 
uni com 220 51 120 268 97 130 86 219 205 128 152.4 20.6 <1 

col 213 40 96 265 92 130 54 142 162 112 130.6 7.3 45.2 
3   LB 204 40 93 215 68 128 54 141 160 108 121.1     

ins 420 29 103 199 189 138 315 163 523 327 240.6 33.9 <1 
exp com 350 18 84 154 92 117 236 127 405 301 188.4 15.6 <1 

col 350 18 84 110 68 115 191 102 381 248 166.7 4.6 35 
    LB 326 18 84 106 62 114 187 101 353 239 159.0     

IA, dist: load inter-arrival time mean value (time units) and distribution; uni, exp: uniform, exponential 
distributions; Alg: algorithm; ins, com, col: insertion, combined and column generation heuristics; LB: lower 
bound; avg: average of total waiting time (time units); gap%: gap with lower bound; RT: running time (CPU 
time - seconds). 

Table 2 Computational results (total waiting times) for the static case (I-layout) 

I layout   performance 
IA dist Alg 1 2 3 4 5 6 7 8 9 10 avg gap% RT(s) 

2 vehicles, 12 loads 
ins 46 116 169 93 59 208 47 206 58 189 119.1 23.8 <1 

uni com 46 115 135 93 56 194 47 142 24 125 97.7 7.2 <1 
col 46 90 128 71 56 194 47 142 10 125 90.9 0.2 1.3 

8   LB 46 90 126 71 56 194 47 142 10 125 90.7     
ins 67 131 203 90 86 242 110 183 50 183 134.5 17.2 <1 

exp com 67 112 180 86 72 223 110 181 33 157 122.1 8.8 <1 
col 67 112 138 84 72 213 110 153 21 157 112.7 1.2 1.6 

    LB 67 112 134 84 72 213 110 145 21 156 111.4     
6 vehicles, 36 loads 

ins 342 69 183 335 190 167 175 315 301 205 228.2 44.2 <1 
uni com 255 43 145 227 134 120 133 298 186 131 167.2 23.8 <1 

col 261 33 73 219 98 82 77 273 176 110 140.2 9.1 55.9 
3   LB 243 31 71 208 86 75 77 215 167 101 127.4     

ins 489 24 122 190 181 99 311 228 381 374 239.9 32.4 <1   
exp com 421 16 80 159 96 66 233 167 320 278 183.6 11.6 <1 
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col 418 16 66 135 57 62 206 166 312 278 171.6 5.5 48.7  
  LB 407 15 57.5 108 56 62 201 140 306 270 162.2     

 

Table 1 and Table 2 show that the combined heuristic gains significant improvements in 

comparison with the insertion heuristic without increasing running-times. The column-

generation heuristic obtains better results overall (obtaining optimal solutions in many cases 

when 2 vehicles are used). However, when the number of vehicles increases to 15 or more, 

this heuristic will take a considerable amount of time (can be half an hour or more depending 

on the problem) to run and may not satisfy real-time scheduling requirements. 

 

4.3 The real-time scheduling problem 

4.3.1 Dynamic scheduling using rolling horizons 

In VBIT systems, we may know information about load arrivals during a time period T in 

advance. This information may be not hundred percent certain. Based on this information we 

propose two rolling-horizon strategies including rolling by time and rolling by the number of 

loads. 

H

h

H

tl tl+1

time

M

m

M

lm (l+1)m

loads

 

Figure 2 Rolling horizon illustration (by time - left and by the number of loads - right) 

Rolling by time horizon (see Figure 2) 

Using this rolling horizon policy (Psaraftis, 1988), we schedule all (known) loads  during a 

time period H (0 ≤ H ≤ T) using the proposed heuristics (section 4.1). Depending on load 

arrival rates and load inter-arrival distributions during the operating period, the number of 

scheduled loads can differ significantly for the time horizon H. However, vehicles only 

follow the resulting schedule during a time period h = aH (a < 1, normally 0.4 – 0.6). After 

the time period h the system invokes the scheduling algorithm again to schedule all known 

loads in the period [h, h + H]. The process stops when all loads are transported. 

Rolling by the number of loads (see Figure 2) 

As described in the time horizon policy, the number of scheduled loads at each step can differ 

significantly. When too many loads are taken into account, the running time of the scheduling 
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algorithms may increase significantly and may not catch up with real-time events. A solution 

is to reduce the length of the time horizon. However, this may lead to insufficient loads 

available for scheduling, which limits the quality of the algorithm. Therefore, we propose a 

second rolling horizon policy - rolling by the number of loads. Suppose that during time 

period T, we know at least L loads in advance. This policy works as follows: 

- Schedule M loads which are known in advance (0 ≤ M ≤ L) using the proposed heuristics, 

- Re-schedule vehicles after the mth load (m = ⎡a*M⎤, a < 1) has been picked up by solving 

the scheduling problem again for the next following M loads, 

- Repeat this process until all loads have been transported. STOP. 

With this policy, we can always monitor the running time of the scheduling algorithm and 

keep it at an acceptable level. 

Combined rolling horizon 

Practically, we may combine two rolling horizon policies into a combined one. When the 

number of loads known in advance is sufficient (L ≥ M), we apply the rolling by the number 

of loads method, otherwise the time rolling horizon is used. 

 

4.3.2 Dynamic scheduling using assignment algorithm 

Dynamic scheduling using assignment algorithm – a simple implementation (DAS) 

An intuitive scheduling approach is assigning next load to each vehicle, using an assignment 

algorithm. Fleischmann et al. (2004) use this approach to dynamically solve the full-truckload 

dispatching problem of a courier service. The main objectives in Fleischmann et al. (2004) 

include minimizing the order delay and the vehicle empty travel time. These are not relevant 

in our case, as we focus on minimizing the average load waiting time, so we adopt new cost 

functions in our implementation. We use the assignment algorithm of Jonker and Volgenant 

(1987) to solve the assignment problem. Dummy loads and dummy vehicles (as in 

Fleischmann et al., 2004) are introduced to balance the number of loads and vehicles for the 

assignment algorithm. We adapt four types of involved costs as follows: 

- The cost of assigning a real vehicle to a real load (fmain) equals Cempt×Travtime plus 

Cwait×(Lwaittime)α. Travtime is the vehicle travel time from its available location (current 

location for an idle vehicle and the vehicle’s current load drop-off location for a busy 

vehicle) to a load release location and Lwaittime is the estimated waiting time of 

corresponding load. 
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- The cost of assigning a real vehicle to a dummy load is the unattractiveness cost of a 

location (vehicle waits at it current location): Cloc×1, 

- The cost of assigning a dummy vehicle to a real load (load waits and remains unassigned 

at its release location) (furgency) equals Curg/(load release time + time window size – 

current time)β if  (load release time + time window size) > (current time) and equals ∞ 

otherwise, 

- The cost of assigning a dummy vehicle to a dummy load (irrelevant cost) is 0.  

The values of the cost coefficients in our implementation are Cempt = 10, Cwait = 2, Cloc = 

5×103, Curg = 2×107, α = 2, β = 1 or 2 (for I- and U-layout respectively – section 5). Several 

of the cost coefficients are taken from Fleischmann et al. (2004) (Cloc, Curg, α). Other good 

cost coefficients are obtained from experiments. In our problem, we have only one-sided 

time-window for loads and the cost function fmain is in favor of loads with smaller waiting 

times. This may lead to a very high value of the maximum load waiting time, so we introduce 

an artificial time-window for loads to guarantee an acceptable value of the maximum load 

waiting time. The general operating framework for the scheduling approach using the 

dynamic algorithm is illustrated in Figure 3 (adapted from Fleischmann et al., 2004).  

Is there an
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load to

serve next?

New load
arrives

Vehicle drops-
off a load
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to free

Invoke assignment
algorithm involving
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Assign free loads to
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solution
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assigned free loads
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yes
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no
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any free
loads?
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Free load: a load already arrived but not assigned to any vehicle or the assigned vehicle is still busy serving 
another load. A busy vehicle will be available at its current load drop-off location at drop-off time. 

Figure 3 The general framework for the dynamic assignment algorithm 
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Look-ahead dynamic assignment algorithm (LAS) 

Obviously, the assignment algorithm works best for the case where we can assign about one 

load to each vehicle, but normally, with the implementation of Figure 3, we do not have 

enough loads to assign to all vehicles. In addition, we may know some information about 

future load arrivals, which we could use to improve DAS. Therefore in this section, we 

introduce a new real-time scheduling policy, a look-ahead dynamic assignment algorithm 

(LAS). LAS schedules vehicles using the same approach as DAS, however besides free loads 

the assignment algorithm take into account also loads which are known to arrive during a 

look-ahead period TL. A good length for TL is the period during which about K (the number of 

vehicles) loads are known to arrive (TL = K×τ, τ is the load inter-arrival time). We can 

consider LAS a special case of the rolling by time policy in which H equals K×τ and h equals 

min{time that a new load arrives, time until the first vehicle drops-off its load} from current 

time. 

 

4.3.3 Vehicle dispatching rules 

We briefly describe the two best dispatching rules in De Koster et al., 2004 here. These rules 

are the nearest-vehicle-first and the nearest-vehicle-first with look-ahead rules. 

Nearest-Vehicle-First (NVF) 
According to the NVF rule, when a load enters the system, it places a move request; the 

shortest distance along the traveling paths to every available vehicles, is then calculated. The 

idle vehicle, whose travel distance is the shortest, is dispatched to the point of request. When 

a vehicle becomes idle, it searches for the closest load.  

Nearest-Vehicle-First with look-ahead (NVF_LA) 

NVF_LA operates similarly to NVF. The difference is that the load gives a signal ∆ time units 

prior to its actual release time. The time between the actual release, and the virtual release ∆ 

time units before, can be interpreted as a look-ahead time. This gives the vehicle the 

opportunity to travel to the load before the load is physically ready for transport. The vehicle 

can therefore arrive just before or after the load is ready for transport, thereby reducing load-

waiting times. 
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5 Experiments 

5.1 Experimental setup 

In this section, we describe the layout characteristics, load arrival and further data used in our 

experiments. 

Layouts of experimental environments 
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Figure 4 Layouts of experimental environments (U left and I right) 

We select two warehouse environments for experiments. Depending on locations and 

functions of warehouses several warehouse layout types exist (Tompkins et al., 2003). We 

select U- and I-layout warehouses, which are very common in practice (Tompkins et al., 

2003; Van der Meer, 2000). In U-layout warehouses storage is a main function. I-layouts are 

used, when transshipment is an important function and it is possible for trucks to arrive at 

different sides of the warehouse. The travel distance matrices for both layouts are given 

below: 

Table 3 Distance matrices for two layouts 

U layout  I layout 

Location 0 1 2 3 4 5    0 1 2 3 4 5 

Depot 0 0 10 20 10 10 20   0 0 10 6 4 5 10 

Receiving 1 10 0 20 10 10 10   1 10 0 16 14 15 20 

Storage 1 2 20 20 0 10 10 10   2 6 16 0 10 11 16 
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Storage 2 3 10 10 10 0 10 20   3 4 14 10 0 9 14 

Labeling 4 10 10 10 10 0 10   4 5 15 11 9 0 5 

Shipping 5 20 10 10 20 10 0   5 10 20 16 14 5 0 
 

Performance criteria 

In VBIT systems, the crucial performance criterion is minimizing the average load waiting 

time (avg) or maximizing the throughput given a certain number of vehicles. Other criteria 

such as minimizing the number of loads in critical queues might be important as well. In this 

study, we consider minimizing the average load waiting time as the main performance 

criterion, and use three other secondary criteria including the maximum load waiting time 

(max_wait), the maximum number of loads in queues (max_inQ) and vehicle utilization 

(util%). 

Experimental parameters 

We suppose that vehicles can park at their pick-up/ drop-off locations and vehicle loading 

and unloading times are negligible. Since varying the load inter-arrival time and the number 

of vehicles has similar effects, we vary only the load inter-arrival time. Values of parameters 

are selected to closely reflect practical situations.  

All important experimental factors and their values are described below: 

- Experimental layouts (Lay): 2 (U and I-layouts), 

- Number of vehicles (K): 6 (typical number in warehouses), 

- Load inter-arrival distributions (Dist):  2 (uniform, exponential), 

- Load inter-arrival times (τ): 2 levels (3, 3.6),  

- Scheduling algorithms and dispatching rules:  

 Two dispatching rules (Disp. Rules): NVF and NVF_LA. The best length of the look-

ahead period (TL) is taken. This value is estimated using simulation experiments 

(section 5.2.3). 

 Two assignment algorithms (Assign. Algs): DAS and LAS (TL = K×τ), 

 Three heuristics including insertion (Insertion), combined (Com-Heur) and column-

generation (Column-Heur) heuristics under two rolling horizon policies: by time (T) 

and by the number of loads (M), 

- Rolling horizon parameters: 

 Rolling by the number of loads: M = K×4, m = K×2. 
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 Rolling by time: H = K×4×τ, h = K×2×τ. 

- For each combination of experimental factors, we use ten replications (NR = 10). 

For all dynamic scheduling strategies, we set a time-window of 50 time units for all job-

nodes. For DAS and LAS, we introduce a time (TW) to limit the maximum load waiting time to 

a reasonable level. We have found that a time-window about the value of the maximum load 

waiting time for the corresponding condition when NVF is used (TW = max_wait NVF) is a 

good one. 

 

5.2 Performance evaluation 

5.2.1 Performance evaluation for the U-layout 

Table 4 Experimental results for the U-layout 
Disp. Rules Scheduling algorithms 

perfor. Assign. Algs Insertion Com_Heur Column_Heur 
Dist τ measure NVF NVF_LA DAS LAS T M T M T M 

avg 15.70 12.25 15.36 8.09 11.96 10.66 6.33 6.16 4.74 4.91
3 max_wait 49.30 52.70 38.50 30.60 45.90 45.80 39.70 39.40 41.00 41.80

max_inQ 6.90 8.40 6.20 7.60 6.20 5.70 4.60 4.70 4.30 4.30
uni   util% 95.99 92.19 92.65 98.68 94.74 94.86 93.08 93.09 91.23 92.04

avg 10.74 4.42 9.42 2.14 2.96 2.79 1.99 1.89 1.49 1.48
3.6 max_wait 32.60 31.50 25.70 17.30 21.20 20.90 27.80 20.00 24.50 23.30

max_inQ 4.70 5.40 4.70 6.50 3.50 3.40 3.20 3.20 2.90 2.90
    util% 86.65 86.21 79.22 96.83 84.25 84.25 82.63 82.83 81.91 81.93

avg 19.51 16.48 22.52 14.58 14.98 14.55 10.70 10.37 8.17 9.14
3 max_wait 68.20 68.70 53.00 43.70 47.40 48.70 46.90 46.30 47.40 46.90

max_inQ 8.70 9.70 8.10 9.40 7.30 7.60 6.50 6.20 5.90 6.10
exp   util% 93.81 91.24 91.69 97.33 93.27 93.28 91.57 91.52 86.83 90.84

avg 12.72 7.34 12.39 5.20 6.18 5.97 4.17 4.12 3.46 3.57
3.6 max_wait 43.50 46.80 35.90 27.40 37.50 36.40 37.60 34.80 35.90 37.80

max_inQ 6.10 6.70 5.80 7.70 5.00 4.70 4.30 4.40 4.40 4.30
    util% 83.18 82.55 78.75 94.44 82.84 83.03 81.26 80.92 78.70 80.32
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Uni3 (Exp3): the load inter-arrival distribution is uniform (exponential) distribution and the load inter-arrival 
time is 3 (time units); Ins, Com, Col_T,_M: insertion, combined and column-generation heuristics under two 

rolling horizon policies. 
Figure 5 Average waiting times – U-layout 

Table 4 and Figure 5 indicate clearly that the average load waiting time reduces dramatically 

when we schedule vehicles using dynamic scheduling strategies. Best results have been 

obtained when we apply the column-generation heuristic to solve static instances of real-time 

scheduling problems. The average improvement of Com_Heur over NVF is 86.24% (uniform 

distribution, τ = 3.6). The average reduction when we compare the performance of NVF and 

NVF_LA is 59.62%. In order to rank the different scheduling policies, we used a Tukey test 

with 95% confidence intervals. For all inter-arrival distributions tested, results can be found 

in Table 5. Since the two rolling horizon policies (by T and M) perform quite similarly (Table 

4 and also by Tukey test), we use only one entry to represent both of them in Table 5. For 

example, the entry “column generation” represents both rolling horizon policies (by T and M) 

using column-generation heuristic.  The NVF_LA and LAS perform significantly better than 

NVF and DAS (Table 5). Dynamic scheduling strategies are also favorable to dispatching 

rules considering the maximum number of load in queues and the maximum load waiting 

time.  

Table 5 Ranking of different scheduling policies for the U-layout (Tukey test with 95 % 
confidence interval) 

Dist Uniform Exponential 
τ 3 3.6 3 3.6 

Column generation 1     1           1     1     
Combined heuristic 1      2      1      2   
LAS   3     2        3     2   
Insertion   3      4       3     2   
NVF_ LA   3       5      3     2   
DAS    6      6      6    6 
NVF     6           7     6     6 
Scheduling approaches are ranked from high to low according to the average load waiting time. The average 
load waiting times of scheduling approaches in the same number block are not significantly different. 
 

DAS performs a bit better than NVF in general but it is not significant (Table 4, Table 5). LAS 

performs very well and is about equally good as Com_Heur (Table 5), particularly in the high 

load inter-arrival time cases (τ = 3.6). The scheduling strategies using combined and column-

generation heuristics perform much better than the ones using the insertion heuristic (largest 

improvement = 42.21%). We also notice that the column-generation heuristic performs better 

than the combined heuristic. However for large real problems, the running-time of the 



 22

column-generation heuristic grows rapidly, so it is only suitable for small and medium cases 

(less than 15 vehicles).  

 

5.2.2 Performance evaluation for the I-layout 

Table 6 Experimental results for the I-layout 
Disp. Rules Scheduling algorithms 

perfor. Assign. Algs Insertion Com_Heur Column_Heur 
Dist τ measure NVF NVF_LA DAS LAS T M T M T M 

avg 40.10 36.11 27.71 17.73 19.20 18.47 12.80 12.45 10.57 10.40
3 max_wait 204.20 189.40 59.30 49.10 49.30 49.30 49.20 49.50 49.20 49.50

max_inQ 19.20 17.90 8.70 9.80 8.10 7.80 6.90 6.70 6.40 6.70
uni   util% 96.74 96.43 94.89 97.94 95.98 96.05 95.69 95.65 93.73 95.02

avg 14.73 10.64 13.27 3.29 4.87 4.91 3.04 3.04 2.46 2.46
3.6 max_wait 66.50 70.10 34.00 22.00 32.50 28.80 35.00 33.00 34.40 33.40

max_inQ 6.90 7.80 5.50 6.80 4.30 4.40 3.90 3.70 3.50 3.80
    util% 89.05 87.98 82.61 95.24 86.40 86.23 84.95 85.25 84.45 84.56

avg 44.19 42.25 34.76 25.42 19.45 18.73 14.14 14.40 13.81 12.66
3 max_wait 214.00 213.50 74.40 66.10 50.00 49.80 49.50 49.70 51.70 48.60

max_inQ 20.80 20.30 10.20 11.20 8.00 8.00 7.10 7.70 7.20 7.10
exp   util% 95.89 95.68 93.48 96.89 94.31 93.93 94.04 94.06 93.57 93.51

avg 18.73 16.05 17.02 7.33 8.74 8.57 6.07 6.08 5.50 5.55
3.6 max_wait 93.90 91.10 48.70 38.40 43.50 43.50 44.50 44.50 43.30 43.40

max_inQ 9.80 9.60 6.70 8.00 6.10 6.00 5.10 5.40 4.90 5.10
    util% 87.03 86.73 81.74 93.40 85.32 84.73 83.50 83.81 83.10 83.29
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Figure 6 Average waiting times – I-layout 

We observe similar effects of using different dynamic scheduling and dispatching strategies 

for I-layout. However, in this layout improvements are smaller than in the U-layout. The 

average improvement of Com_Heur over NVF is 83.3% (uniform distribution, τ = 3.6). In 

this layout, the look-ahead dispatching rule (NVF_LA) performs less impressive than in U-

layout. The average improvement compared with NVF is 27.74%. We also observe that for 

both layouts bigger improvements are obtained for smaller load arrival rates (or higher load 
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inter-arrival time), corresponding to smaller vehicle utilization rates. This is similar to the 

findings of Yang et al. (2004) and fairly obvious since in highly utilized systems there is little 

chance for prematurely sending vehicles to pick-up locations. Table 6 and Table 7 show that 

DAS performs better than NVF but it is not significant. LAS instead performs more impressive 

(in the top group in half of the cases). 

Table 7 Ranking of different scheduling policies for the I-layout (Tukey test with 95 % 
confidence interval) 

Dist Uniform Exponential 
τ 3 3.6 3 3.6 

Column generation 1       1     1     1   
Combined heuristic 1     1      2   1   
LAS   3    1      2   1   
Insertion   3    1      2   1   
NVF_ LA    5     5      5   5 
DAS     6    6    5   5 
NVF       6     6     5   5 

 Table 7 clearly indicates that the three dynamic scheduling heuristics and LAS perform 

significantly better than dispatching rules and the simple dynamic assignment algorithm 

(DAS). Pre-arrival information has important positive influence on performance of NVF.  

For both layouts, scheduling and dispatching strategies perform better when the load inter-

arrival distribution is uniform instead of exponential. An explanation is that for uniform and 

exponential distributions with the same inter-arrival time, the exponential distribution has a 

three times higher variance. Another observation is that the average load waiting time in the 

U-layout is smaller than the corresponding value in the I-layout. It is caused by the average 

travel distance between any two points that have transportation requirements, which is higher 

for the I-layout than for the U-layout (13 versus 12). It is also the reason why DAS performs 

better for the I-layout. This algorithm helps to save more unnecessary movements of vehicles. 

Considering other performance criteria (max load waiting time, max number of loads in 

queues, vehicle utilization), we also find that scheduling algorithms perform better than 

vehicle dispatching rules. Comparing LAS with other scheduling approaches using rolling 

horizons, LAS performs worse in terms of the maximum number of loads in queues. LAS also 

results in a very high value of vehicle utilization. A possible reason for high utilization of 

LAS is that LAS is still a more local policy and according to this policy vehicles may travel 

longer distances.  
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In the next two sections, we carry out some experiments with look-ahead periods and rolling 

horizon policies to see how they affect the performance of dispatching rules and scheduling 

algorithms performance.  

 

5.2.3 Influences of look-ahead periods and of rolling horizon lengths 

Influences of look-ahead periods 
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Uni3 (Exp3): the load inter-arrival distribution is uniform (exponential) and the load inter-arrival time is 3 (time 

units). 

Figure 7 Effects of the look-head period on the average load waiting time (U-layout: left, I-
layout: right) for the NVF_LA rule. 

In this research, we have experimented with 6 vehicles, 2 distributions (uniform and 

exponential), 2 load inter-arrival levels and have observed the influences of the look-ahead 

period length on two layouts and two load inter-arrival levels. We prefer to express the length 

of the look-ahead period in terms of the load inter-arrival time. In Figure 7 (left – U-layout), 

the best value for the look-ahead period for NVF_LA is similar for both distributions and load 

inter-arrival levels; it is about three times the average load inter-arrival time. 

Figure 7 (right – I-layout) shows different effects. For the larger load inter-arrival time (3.6), 

the best value for the look-ahead period is about two times the load inter-arrival time (7.2). 

For smaller load inter-arrival time (3), the best look-ahead time equals half the load inter-

arrival time (1.5). 

Different behaviors of the look-ahead period in two layouts under different operating 

conditions do not permit us to recommend a specific value for the best length of the look-

ahead period. Good values can only be obtained by experiments. However, the experiments 

indicate that it can be fairly small. 

 

Influences of rolling horizon lengths 



 25

The performance of two rolling horizon policies is very similar for both layouts under various 

conditions, so we have experimented with only the rolling by the number of loads policy. 

There are six sets of rolling horizon parameters (M, m): set 1 (12, 6); set 2 (12, 8); set 3 (24, 

10); set 4 (24, 12); set 5 (36, 12); set 6 (36, 18). Since all three dynamic scheduling heuristics 

behave similarly, we selected only the combined heuristic for experiments. 
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Figure 8 Effects of rolling horizon policies using the combined heuristic on the average load 

waiting time (U-layout: left, I-layout: right) 

Using set 1 (12, 6), we schedule about 2 loads in advance for each vehicle and let each 

vehicle execute about one load before re-scheduling. Figure 8 shows that significant 

improvements start when we schedule vehicles using set 3 (24, 10). With this set, we 

schedule about four loads per vehicle and let each vehicle execute about 1.7 loads. Taking 

more information into account (set 5, set 6), we cannot obtain a further significant 

improvement. However, we are not interested in scheduling vehicles too far in advance. In 

general, we gain significant improvements when we schedule more than about three loads per 

vehicle and each vehicle should transport about two loads before re-scheduling. 

 

6 Conclusions and further research 

In this research, we have studied the real-time scheduling problem for vehicle-based internal 

transport systems. We have formulated this problem as m-TSPTW and have proposed two 

rolling horizon approaches for solving it. We have proposed two new heuristics (combined 

and column-generation) to solve static instances of the real-time dynamic scheduling 

problem. We have also proposed another good dynamic scheduling strategy - LAS. The 

proposed dynamic scheduling strategies performance has been compared with the 

performance of two of the best vehicle dispatching rules which are known from literature. 
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We have found that dynamic scheduling strategies consistently outperform vehicle 

dispatching rules in two experimental environments and under different operating conditions. 

Improvements are remarkable when applying combined and column-generation to solve static 

instances. However, significant improvements are only possible when we know sufficient 

information about future loads. We have also shown that the new look-ahead dynamic 

algorithm (LAS) performs significantly better than dispatching rules and a simple dynamic 

assignment algorithm. The main disadvantage of LAS is that LAS’ performance depends on 

the cost functions and the cost parameters. Depending on applications we have to select the 

right cost functions and tune cost parameters carefully. 

We did not explicitly investigate the combined rolling horizon policy. This may provide a 

better result than applying a single rolling horizon policy in systems with high variation of 

load arrivals. The performance of the column-generation heuristic can also be improved. 

These may be topics for future research. 
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