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Linear Parametric Sensitivity Analysis of the
Constraint Coefficient Matrix in Linear Programs

Rob A. Zuidwijk∗

September 22, 2005

Abstract

Sensitivity analysis is used to quantify the impact of changes in the ini-
tial data of linear programs on the optimal value. In particular, parametric
sensitivity analysis involves a perturbation analysis in which the effects of
small changes of some or all of the initial data on an optimal solution
are investigated, and the optimal solution is studied on a so-called critical
range of the initial data, in which certain properties such as the optimal
basis in linear programming are not changed. Linear one-parameter per-
turbations of the objective function or of the so-called ”right-hand side”
of linear programs and their effect on the optimal value is very well known
and can be found in most college textbooks on Management Science or Op-
erations Research. In contrast, no explicit formulas have been established
that describe the behavior of the optimal value under linear one-parameter
perturbations of the constraint coefficient matrix. In this paper, such ex-
plicit formulas are derived in terms of local expressions of the optimal value
function and intervals on which these expressions are valid. We illustrate
this result using two simple examples.

1 Introduction

Sensitivity analysis is used to quantify the impact of changes in the initial data
of linear programs on optimal solutions, whenever they exist. In particular, para-
metric sensitivity analysis involves a perturbation analysis in which the effects
of small changes of some or all of the initial data on an optimal solution are
investigated, and the optimal solution is studied on a so-called critical range of
the initial data, in which certain properties such as the optimal basis in linear
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programming are not changed [2]. In general, one may consider parameterized
linear programs

Z(λ) = max{c(λ)T x : A(λ)x = b(λ), x ≥ 0}, (1)

in which λ runs through a subset Λ of a metric space, and where A : Λ → Rm,n,
b : Λ → Rm, and c : Λ → Rn are functions. We may assume without loss of
generality that A(λ) has full rank m for all λ ∈ Λ and that m ≤ n. Indeed, any
linear program of the form

Z(λ) = max{c1(λ)T x1 : A1(λ)x1 ≤ b1(λ), x1 ≥ 0},

can be rewritten as in (1) with rank A(λ) = m, by putting

A(λ) =
(

A1(λ) Im

)
, b(λ) = b1(λ), c(λ) =

(
c1(λ)

0

)
, x =

(
x1

s

)
.

The parameterized linear programs

Z(λ) = max{cT x : Ax = b(λ), x ≥ 0},

and
Z(λ) = max{c(λ)T x : Ax = b, x ≥ 0},

where b(λ) = b + λd and c(λ) = c + λe are linear perturbations, are well under-
stood; see for example [4]. In this study, we consider the case

Z(λ) = max{cT x : A(λ)x = b, x ≥ 0}, (2)

where A(λ) = A + λF is a parameterized set of m × n matrices with a one-
dimensional parameter λ ∈ Λ ⊆ R. The initial data c ∈ Rn and b ∈ Rm

are fixed. We study local behavior of the function Z : Λ → R. It has been
observed that Z is locally rational; for a brief survey, see [2]. In this paper,
this observation is extended to an explicit description of the rational functions
involved using realization theory; see [1]. The set-up of this paper is as follows.
In the remainder of this section, notation is fixed. In Section 2, we provide an
introduction to realization theory for scalar rational functions. In Section 3, we
apply realization theory to parametric sensitivity analysis in order to derive the
main result of this paper. We illustrate the main result using two simple examples
in Section 4.

The symbol Im denotes the m × m identity matrix. In case the size of the
identity matrix is not relevant or obvious, we use shorthand notation I. If B is a
square matrix, then ρ(B) ⊂ C indicates the resolvent set of B consisting of those
complex numbers µ for which µI − B is invertible, and the spectrum or the set
of eigenvalues σ(B) of B consists of those complex numbers µ for which the set
of equations Bx = µx has a nonzero solution x.
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2 Realization Theory

In this section, we discuss realization theory for scalar rational functions. In
Chapter 3 in [1], a more extensive discussion can be found on realization theory
for functions which are matrix or operator valued. A fundamental observation
in realization theory is that when b, c ∈ Rm and A an m ×m matrix, then the
function

f(λ) = 1 + λcT (Im + λA)−1b

is a rational function that can be described completely in terms of eigenvalues
of two matrices. In order to prove this, we use a property of the determinant,
namely det(I + BC) = det(I + CB) whenever both BC and CB are square
matrices, not necessarily of the same size. We arrive at

f(λ) = det f(λ) = det(1 + λcT (Im + λA)−1b) = det(Im + bcT (Im + λA)−1) =

det(Im + λ(A + bcT ))

det(Im + λA)
=

det(Im + λA×)

det(Im + λA)
,

where we have written A× = A + bcT . More explicitly, when α1, . . . , αm are the
eigenvalues of A and α×1 , . . . , α×m are the eigenvalues of A×, counted according to
their multiplicities, then

f(λ) =
m∏

j=1

1 + λα×j
1 + λαj

. (3)

Observe that when A and A× have no common eigenvalues, then the number
m of factors in the enumerator and denominator on the right hand side of (3)
is minimal. Conversely, when f(λ) is given by (3), then we may construct a
realization

f(λ) = 1 + λcT (Im + λA)−1b,

where b, c ∈ Rm and A ∈ Rm,m are given by

A =


0 1 0 · · · 0

0 0
. . . . . .

...
...

. . . . . . 0
0 · · · · · · 0 1
−a0 −a1 · · · · · · −am−1

 , b =


0
0
...
0
1

 , c =


a0 − a×0
a1 − a×1

...

...
am−1 − a×m−1

 .

The parameters ak and a×k for k = 0, . . . ,m− 1 are derived from

m∏
j=1

(1 + λαj) = 1 +
m∑

k=1

am−k(−λ)k,
m∏

j=1

(1 + λα×j ) = 1 +
m∑

k=1

a×m−k(−λ)k.
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For a given rational function, the realization parameters A, b, c are not unique.
First of all, the size m of the matrix A can be minimized by cancellations whenever
A and A× have common eigenvalues. Further, given realizations

f(λ) = 1 + λcT
1 (Im + λA1)

−1b1 = 1 + λcT
2 (Im + λA2)

−1b2

of minimal size m, there exists an invertible m×m matrix S, such that cT
2 = cT

1 S,
A2 = S−1A1S, and b2 = S−1b1; see Chapter 3 in [1]. In other words, minimal
realizations, i.e. realizations of minimal size, are mutually similar.

3 Parametric Sensitivity Analysis

In order to introduce the concept of basic feasible solutions of the linear program
(2), we provide some notation. Given π : {1, . . . ,m} → {1, . . . , n} injective, we
define

Eπ =
(

eπ(1) · · · eπ(m)

)
: Rm → Rn,

Aπ(λ) = A(λ)Eπ : Rm → Rm, and cπ = ET
π c ∈ Rm. We assume that π is strictly

increasing. We define π : {1, . . . , n −m} → {1, . . . , n} as the strictly increasing
mapping such that ran(π) ∪ ran(π) = {1, . . . , n}. If Aπ(λ0) is invertible for a
fixed λ0 ∈ Λ and if Aπ(λ0)

−1b ≥ 0, then xπ(λ0) = EπAπ(λ0)
−1b is a basic feasible

solution to the linear program

Z(λ0) = max{cT x : A(λ0)x = b, x ≥ 0}, (4)

and all basic feasible solutions to this program arise in this manner; see for
example [4]. Moreover, xπ(λ0) provides an optimal solution to the program if
and only if the reduced costs satisfy

cT
π − cT

π Aπ(λ0)
−1Aπ(λ0) ≥ 0.

We now study the local behavior of the function Z in a neighborhood of λ0. Let
π be given such that xπ(λ0) is an optimal solution to (4), i.e. Z(λ0) = cT xπ(λ0),
which is equivalent to

(1) Aπ(λ0) = Aπ + λ0Fπ is invertible,

(2) xπ(λ0) = EπAπ(λ0)
−1b ≥ 0,

(3) cT
π − cT

π Aπ(λ0)
−1Aπ(λ0) ≥ 0.

We aim to identify the neigborhood Λ ⊇ Λπ 3 λ0, on which an optimal solution
to (2) is given by Z(λ) = cT xπ(λ) for all λ ∈ Λπ. Equivalently, we put

(1) Aπ(λ) = Aπ + λFπ is invertible,
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(2) xπ(λ) = EπAπ(λ)−1b ≥ 0,

(3) cT
π − cT

π Aπ(λ)−1Aπ(λ) ≥ 0,

for all λ ∈ Λπ. We remark that in principle, the neighborhood Λπ may turn out
to be a single point, i.e., Λπ = {λ0}. The method presented here does not relieve
this issue, which may result in computational inefficiencies in the degenerate case;
see [4].

We shall translate the conditions (1-3) in terms of properties of eigenvalues
of specific matrices using realization theory as discussed in Section 2.

Condition (1) We first discuss the condition

det Aπ(λ) = det(Aπ + λFπ) 6= 0.

Note that
det(Aπ + λFπ) = det(Aπ(λ0) + (λ− λ0)Fπ) =

(λ− λ0) · det(Aπ(λ0)) · det

(
Aπ(λ0)

−1Fπ −
1

λ0 − λ
Im

)
,

which implies that Aπ(λ) is invertible if and only if

1

λ0 − λ
∈ ρ

(
Aπ(λ0)

−1Fπ

)
,

which comes down to the fact that

1 + αj(λ− λ0) 6= 0, j = 1, . . . ,m, (5)

where α1, . . . , αm are the eigenvalues of Aπ(λ0)
−1Fπ.

Condition (2) In order to translate the second condition, observe that for 1 ≤
q ≤ m, the inequality eT

q Aπ(λ)−1b ≥ 0 holds true if and only if

1 + (λ− λ0)e
T
q Aπ(λ)−1b

{
≥ 1, λ− λ0 ≥ 0
≤ 1, λ− λ0 ≤ 0

.

Further,

1+(λ−λ0)e
T
q Aπ(λ)−1b = 1+(λ−λ0)e

T
q (Im +(λ−λ0)Aπ(λ0)

−1Fπ)−1Aπ(λ0)
−1b =

m∏
j=1

1 + (λ− λ0)β
×
q,j

1 + (λ− λ0)αj

,

where β×q,1, . . . , β
×
q,m are the eigenvalues of Aπ(λ0)

−1(Fπ + beT
q ). This implies

m∏
j=1

1 + (λ− λ0)β
×
q,j

1 + (λ− λ0)αj

{
≥ 1, λ− λ0 ≥ 0
≤ 1, λ− λ0 ≤ 0

. (6)
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Condition (3)
For p ∈ ran(π), we find that

cp − cT
π Aπ(λ)−1(ap + λfp) ≥ 0

can be rewritten as

1+(λ−λ0)c
T
π Aπ(λ)−1fp+

1

λ− λ0

{
1 + (λ− λ0)c

T
π Aπ(λ)−1(ap + λ0fp)

}
≤ cp+1+

1

λ− λ0

,

or

m∏
j=1

1 + (λ− λ0)γ
×
p,j

1 + (λ− λ0)αj

+
1

λ− λ0

m∏
j=1

1 + (λ− λ0)δ
×
p,j

1 + (λ− λ0)αj

≤ cp + 1 +
1

λ− λ0

, (7)

where γ×p,1, . . . , γ
×
p,m are the eigenvalues of Aπ(λ0)

−1(Fπ + fpc
T
π ), and δ×p,1, . . . , δ

×
p,m

are the eigenvalues of Aπ(λ0)
−1(Fπ + (ap + λ0fp)c

T
π ).

In case (5), (6), and (7) hold true, we find that

1 + (λ− λ0)Z(λ) = 1 + (λ− λ0)c
T
π (Im + (λ− λ0)Aπ(λ0)

−1Fπ)−1Aπ(λ0)
−1b =

m∏
j=1

1 + (λ− λ0)α
×
j

1 + (λ− λ0)αj

,

where α1, . . . , αm are the eigenvalues of Aπ(λ0)
−1Fπ, and α×1 , . . . , α×m are the

eigenvalues of Aπ(λ0)
−1(Fπ + bcT

π ). This implies

Z(λ) =
1

λ− λ0

(
m∏

j=1

1 + (λ− λ0)α
×
j

1 + (λ− λ0)αj

− 1

)
. (8)

We introduce a short-hand notation where we define real polynomials Pζ(λ) =∏m
j=1(1 + ζjλ). In terms of these polynomials, we get

Z(λ) =
1

λ− λ0

(
Pα×(λ− λ0)

Pα(λ− λ0)
− 1

)
for λ ∈ Λπ, λ 6= λ0, for which

(1) Pα(λ− λ0) > 0,

(2) P×βq
(λ− λ0)

{
≥ Pα(λ− λ0), λ ≥ λ0

≤ Pα(λ− λ0), λ ≤ λ0
, q = 1, . . . ,m.

(3) Pγ×p
(λ−λ0)+ 1

λ−λ0
Pδp(λ−λ0) ≤

(
cp + 1 + 1

λ−λ0

)
Pα(λ−λ0) for p ∈ ran(π).
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4 Illustrative Examples

In this section, we illustrate the results from the paper using two simple examples.

Example 1 The family of linear programs which maximizes x1 + 2x2 under the
constraints x2 + s1 = 2, x1 +λx2 + s2 = 2, and x1, x2, s1, s2 ≥ 0, is parameterized
with the parameter λ ≥ 0. We rewrite the linear program as in (2) with data

A =

(
0 1 1 0
1 0 0 1

)
, F =

(
0 0 0 0
0 1 0 0

)
,

b =

(
2
2

)
, cT =

(
1 2 0 0

)
.

We start with λ0 = 0. The maximum value 6 is attained at the vertex (x1, x2, s1, s2) =
(2, 2, 0, 0) which corresponds to π(1) = 1 and π(2) = 2, since x1 and x2 are
nonzero. We get

Aπ =

(
0 1
1 0

)
, Fπ =

(
0 0
0 1

)
, cπ =

(
1
2

)
.

The eigenvalues of

Aπ(λ0)
−1Fπ =

(
0 1
0 0

)
read α1 = α2 = 0, so that Condition (1) is satisfied automatically. To verify
Condition (2), we compute the eigenvalues of

Aπ(λ0)
−1(Fπ + beT

1 ) =

(
2 1
2 0

)
,

which read β1,1 = 1−
√

3 and β1,2 = 1 +
√

3, and of

Aπ(λ0)
−1(Fπ + beT

2 ) =

(
0 3
0 2

)
,

which read β2,1 = 0 and β2,2 = 2.
Condition (2) is equivalent to λ ≤ 1. Verification of Condition (3) requires

the computation of the eigenvalues of some more matrices. These matrices with
their eigenvalues are

Aπ(λ0)
−1(Fπ + f3c

T
π ) =

(
0 1
0 0

)
, γ1,1 = 0, γ1,2 = 0,

Aπ(λ0)
−1(Fπ + f4c

T
π ) =

(
0 1
0 0

)
, γ2,1 = 0, γ2,2 = 0,

Aπ(λ0)
−1(Fπ + (a3 + λ0f3)c

T
π ) =

(
0 1
1 2

)
, δ1,1 = 1−

√
2, δ1,2 = 1 +

√
2,

7



Aπ(λ0)
−1(Fπ + (a4 + λ0f4)c

T
π ) =

(
1 3
0 0

)
, δ2,1 = 1, δ2,2 = 0.

Condition (3) comes down to λ ≤ 2. We have established that λπ = [0, 1]. To
derive the optimum value as a function of λ ∈ [0, 1], we compute the eigenvalues
of the matrix

Aπ(λ0)
−1(Fπ + bcT

π ) =

(
2 5
2 4

)
being α×1 = 3 +

√
11 and α×2 = 3−

√
11. As a result, we get

Z(λ) = (1 + (λ− λ0)α
×
1 )(1 + (λ− λ0)α

×
2 ) = 6− 2λ.

We continue with λ0 = 1, for which the maximum value is equal to 4, at-
tained at the vertex (0, 2, 0, 0) which is a degenerate basic feasible solution. We
choose π(1) = 2 and π(2) = 3, providing a nontrivial interval on which the local
behavior of the optimal value can be defined. The eigenvalues and corresponding
restrictions on λ are summarized in Table 1.

α1 = 1, α2 = 0 β1,1 = 3, β1,2 = 0, γ1,1 = 1, γ1,2 = 0, δ1,1 = 3, δ1,2 = 0,

β2,1 = 1/2(1 + i
√

7) γ2,1 = 1, γ2,2 = 0, δ2,1 = 3, δ2,2 = 0

β2,2 = 1/2(1− i
√

7)
λ ≥ 1 λ ≤ 2

Table 1: eigenvalues and corresponding restrictions on λ with λ0 = 1

By computing α×1 = 5 and α×2 = 0, we establish that Z(λ) = 4/λ for 1 ≤ λ ≤ 2.
As we continue with λ0 = 2 with maximum value equal to 2 and vertex

(2, 0, 2, 0), hence π(1) = 1 and π(2) = 3, we arrive at eigenvalues and correspond-
ing restrictions on λ as summarized in Table 2.

α1 = 0, α2 = 0 β1,1 = 2, β1,2 = 0, γ1,1 = 1, γ1,2 = 0, δ1,1 = 32, δ1,2 = 0,
β2,1 = 2, β2,2 = 0 γ2,1 = 0, γ2,2 = 0, δ2,1 = 1, δ2,2 = 0

λ ≥ 2

Table 2: eigenvalues and corresponding restrictions on λ with λ0 = 2

By computing α×1 = 2 and α×2 = 0, we establish that Z(λ) = 2 for λ ≥ 2. We
observe that Z(λ) is a piecewise rational function; see Figure 2.

Example 2 The family of linear programs which maximizes x1 + x2 under the
constraints −x1 + x2 + s1 = 1, x1 − λx2 + s2 = 1, and x1, x2, s1, s2 ≥ 0, is

8



Figure 1: optimal value function Z(λ)

parameterized with the parameter λ ∈ R. We rewrite the linear program as in
(2) with data

A =

(
−1 1 1 0
1 0 0 1

)
, F =

(
0 0 0 0
0 −1 0 0

)
,

b =

(
1
1

)
, cT =

(
1 1 0 0

)
.

We start with λ0 = 0 for which the maximum value is equal to 3, attained at the
vertex (1, 2, 0, 0), hence π(1) = 1 and π(2) = 2, providing a nontrivial interval
on which the local behavior of the optimal value can be defined. The eigenvalues
and corresponding restrictions on λ are summarized in Table 3.

α1 = 0, α2 = −1 β1,1 = i, β1,2 = −i, γ1,1 = 0, γ1,2 = −1, δ1,1 = i, δ1,2 = −i,
β2,1 = 0, β2,2 = 1 γ2,1 = 0, γ2,2 = −1, δ2,1 = 1, δ2,2 = 0

λ 6= 1 −1 ≤ λ < 1 −1 ≤ λ < 1

Table 3: eigenvalues and corresponding restrictions on λ with λ0 = 0

By computing α×1 = 1 and α×2 = 1, we establish that Z(λ) = 3+λ
1−λ

for −1 ≤ λ < 1.

We continue with λ0 = −1 for which the maximum value is equal to 1, attained
at the vertex (1, 0, 2, 0), hence π(1) = 1 and π(2) = 3, providing a nontrivial
interval on which the local behavior of the optimal value can be defined. The
eigenvalues and corresponding restrictions on λ are summarized in Table 4.
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α1 = 0, α2 = 0 β1,1 = 1, β1,2 = 0, γ1,1 = −1, γ1,2 = 0, δ1,1 = 1, δ1,2 = 0,
β2,1 = 0, β2,2 = 2 γ2,1 = 0, γ2,2 = 0, δ2,1 = 1, δ2,2 = 0

λ ≤ −1

Table 4: eigenvalues and corresponding restrictions on λ with λ0 = −1

By computing α×1 = 1 and α×2 = 0, we establish that Z(λ) = 1 for λ ≤ −1. For
λ0 > 1, no feasible optimal solution will be found

Figure 2: optimal value function Z(λ)
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