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Abstract 

It is sometimes assumed that the R 2 of a regression of a first-order differenced time series on seasonal dummy 
variables reflects the amount of seasonal fluctuations that can be explained by deterministic variation in the series. 
In this paper we show that neglecting the presence of seasonal unit roots may yield spuriously high values of this 
coefficient. 
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1. Introduction and motivation 

The model  specification of seasonally observed macroeconomic time series has gained quite 
some attention recently. A stylized fact of most macroeconomic variables is that they contain 
at least one stochastic trend and that they display seasonal fluctuations that often account for 
the major part of the variation. As the construction of multivariate models is often based on 
the univariate analysis of such series, issues involved with model specification in the 
multivariate framework; such as, common stochastic trends, cointegration, and common 
seasonal movements ,  are also interesting topics for further analysis. One may therefore expect 
that the outcomes of univariate analysis can suggest possible routes for investigation. Further, 
one can readily imagine that a sound initial analysis of the individual series is a prerequisite for 
successful empirical modeling. In the case of seasonally observed univariate time series, the 
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focus is mostly on describing the stochastic trend and the characteristics of the seasonally 
recurring patterns. 

In some applications it is assumed that yt, defined as Alx  t where x, is the level (or log level) 
of a certain macroeconomic time series, and `4k is defined by AkZ , ----(1- BJ')zt = z ~ -  z,_ k, 
which is observed s times per year, where s usually is 4 or 12, can be described by 

Yt = ~ 6iDit + ~'t , (1) 
i=1 

where Dit are seasonal dummy variables and v t is some error process. This model  assumes that 
the stochastic trend in x, is removed by applying the first-order differencing filter A 1, and that 
the seasonal fluctuations are stationary around a deterministic seasonal pattern. Since it may 
sometimes be interesting to assign part of the variation in a univariate series to seasonality, the 
model  in (1) can be useful. The coefficient of determination of the auxiliary regression (1) 
may then be interpreted as the amount  of variation that can be explained by deterministic 
seasonality, see, for example, Beaulieu et al. (1992) and Miron (1990). In fact, these studies 
report  on high R 2 values like 0.7 for several macroeconomic time-series. As discussed in 
Beaulieu and Miron (1991), a comparison of the R 2 values across several auxiliary regressions, 
and of the successive values of the estimated 6 i parameters in (1), may then be used to yield 
insights into common aspects of various macroeconomic time series. 

Alternative to the approach reflected by (1), several other methods have been proposed in 
the recent literature on the analysis of seasonal time series. Examples are the models that 
allow for the presence of so-called seasonal unit roots, see Hylleberg et al. (1990), the models 
that allow the parameters to be periodic, i.e. to vary with the seasons, originating from the 
seminal work of Gladyshev (1961), and periodic models that allow for seasonal unit roots, see, 
for example, Franses (1994). As an example of the class of models with seasonal unit roots, 
consider the fourth-order differencing filter, which is sometimes applied to quarterly time 
series. It can be decomposed as 

,4 4 = ( 1  - -  B 4 )  = (1 - B)(1 + B)(1 - iB)(1 + i B ) ,  (2) 

and the roots corresponding to the polynomials (1 + B),  ( 1 -  i B )  and (1 + i B )  are called 
seasonal unit roots. Hylleberg et al. (1990) propose a test for such roots in quarterly data, and 
Hylleberg et al. (1993) document  that many quarterly macroeconomic time series, which are 
similar to those considered in Beaulieu et al. (1992) and Miron (1990), possess one or more 
seasonal unit roots. 

Given that seasonal unit roots seem to be present in many economic time series, it may be 
of interest to investigate the implications of neglecting seasonal unit roots in the regressions as 
(1). In this paper,  we study the impact on the R 2 values to be obtained from the regressions in 
(1) when the seasonal time series under consideration contain unit roots at the seasonal 
frequencies, i.e. they contain factors like (1 + B 2) and (1 + B). 

In the next section we discuss the distribution theory for the regression model  in (1) when 
the DGP contains unit roots at some seasonal frequencies. 
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2. Distribution theory for R 2 

Consider time-series processes generated by 

ck(B )y, = e, , (3) 

where ¢h(B) contains (combinations of) polynomials corresponding to seasonal unit roots. For 
quarterly time series, the polynomial ~b(B) in (3) can contain some or all of the elements in 
(2) so that tb(B) can be equal to (1 + B),  (1 + B 2) or (1 + B)(1 + B2). As a simple example, 
suppose that ~b(B) = (1 + B). This implies that y, is generated by 

(1 + B ) y ,  = Et. (4) 

Further, we assume that {e,} is a sequence of i.i.d, random variables with mean zero and 
variance o -2. While the discussion here is based on the i.i.d, assumption, the result can be 
shown to hold for a general innovation process satisfying the conditions for the functional 
central limit theorem in Phillips (1987). 

In the case of (4), the regression model in (1) can be written as 

Y, = 2 6iDi, + v~. (5) 
i = l  

When we assume that a sample of N years, each containing s observations, is available, i.e. 
that the sample size is T = Ns,  the OLS estimate of 6 = (6~, 62, . . . ,  6s)' can be obtained as 

T 

8 i = ( 1 / N ) ~ ' ~ D i t y  t = f ~  ( i = 1 , 2 , . . . , s ) ,  (6) 
i = 1  

so that the estimated coefficients for the dummy variables are simply the mean values of y, in 
each season. According to the usual results of regression theory for stationary series, the 
coefficients 6i (i = 1 , . . . ,  s) converge in probability to constants as T (and hence N) grows. 
For non-stationary series, however, it is well known that the convergence to constants does 
not hold, see for example, Phillips (1986). The contrast with the standard regression theory 
has also been pointed out by Lee and Siklos (1992) in the context of seasonal time series. That 
is, the estimated coefficients in regression (1) are inconsistent and, in fact, diverge as the 
sample size T increases. In particular, it can be shown that 

f0 
1 

T-  1/28,----> o " W/(r) dr ( i = l , 2 , . . . , s ) ,  (7) 

where W~(r) is a standard Brownian motion such that W/(r) - -W/_l(r  ), i = 1, 2 , . . .  , s, while 
the symbol '= '  signifies equality in distribution. 

This result also extends to the distribution of the coefficient of multiple determination R 2 

from the regression. This is stated in the following theorem. 
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Theorem. Suppose that Eq. (1) is estimated by least squares regression, where Yt is generated by 
(4). Then, as T ~ oo, 

[fo [fo ]2 W,.(r) dr W 1 (r) dr 
R2__+ i :1  ~ ( 8 )  

fo 1 fo 1 s Wl(r) 2 dr Wl(r) 2 dr 

Proof. The coefficient of determination is 
T T T 

~'~ (33-)7)  2 ~ )3~- T~ 2 T -2 2 )3~- T-~37 2 
r~2 t~l  t=l  t=l  

T T T 

E (Y , -  17) 2 E Y~-  T) 72 T -2 E Y~-  r - ~ f  2 
t=l t=l t=l  

As 
T 

Z ^2 ^2 
y,  = N  ~i ' 

t=l  i=1 

it follows from (7) that 

T -2 E Y~ ~S-1 (T-1/2~i)2->s-1 0"2 
t=l  i=1 i=1 

W/(r) dr] 2 . (9) 

Using the results in Chan and Wei (1988) and Lee (1992), it can be shown that 

T f0 T - 2  E 2 0.2 Wl(r) 2 dr ( 1 0 )  y t -'~ 
t=l 

Z - l y  2 ~-- (T-1/237)2 = T-1/2T -1 ~ y, --~0. (11) 
t=l  

The relation (8) then follows from the results (9), (10) and (11). [] 

The above theorem shows that, in contrast to the standard regression theory for stationary 
series, the R 2 has a non-degenerating asymptotic distribution. Thus, moderate and spuriously 
high values of R 2 are to be expected from the regression in (1). Note that the values of R 2 are, 
however, bounded by 1, since 

fo ~ [W(r) - fo I W(r)drl  2 d r =  f01 W(r) 2 d r - [ f f  W(r)dr]2 ~>0. 

Obviously, the R 2 values are also bounded from below by 0. 
The results in the theorem can be extended to a more general case when ~b(B) = A s/(1 - B). 

The coefficient of determination R 2 in this case can be shown to converge in distribution to 
functions of Brownian motions similar to the expression given in (8). Hence, neglecting 
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seasonal  unit  roots  may  yield spuriously high R 2 values in the regression (1). W h e t h e r  this 
asymptot ic  result  has any bearing in small samples is invest igated in the next  section using 
M o n t e  Carlo exper iments .  

3. Monte Carlo results 

The  design of the Mon te  Carlo exper iments  is as follows. We consider  t ime series processes 
gene ra ted  by (3), i.e. ~b(B)y, = e,, where  the e, process is assumed to be i.i.d. N(0,  1). The  
s tandard  normal  variables are genera ted  using the Gauss p rog ramming  language for the 
sample  of size T = 120. Different  sample sizes do not  give dramatical ly different  ou tcomes ,  
and hence  we only repor t  on the sample size of 120. One  could include A R M A - t y p e  error  
processes ,  but  this would  unnecessari ly complicate  the Monte  Carlo exercise, as appropr ia te  
inference on the values of R 2 would  require a p roper  mode l  specification for the error  process 
v,. 

For  quar ter ly  t ime series, the ~b(B) polynomial  can be of the form (1 + B) ,  (1 + B 2) or 
(1 + B)(1  + B2). F r o m  Table 1, which reports  the quanti les of the distr ibut ion of the R 2 values 
f rom the regression in (1), it can be observed that  the R 2 value exceeds,  for example ,  0.7 in 
m o r e  than  50% of the 10,000 replications and that  it can be as high as 0.9 in more  than  10% of 
the  cases. Note  that  such frequencies already emerge  in the case when  there  is only one  
neglec ted  seasonal  root ,  i.e. when  ~b(B) equals (1 + B).  

In the case of month ly  t ime series, the twelf th-order  differencing filter ( 1 -  B~2), can be 
d e c o m p o s e d  as 

(1 - B  12) 

= (1 - B)(1  + B)(1  + B2)(1 + BX/3 + B2)(1 - BX/3 + B2)(1 + B + B2)(1 - B + B2), 

(12) 

where  all polynomials ,  except  the (1 - B ) ,  cor respond to seasonal  unit  roots.  An  expression 
for the  4,(B) polynomia l  for the data-generat ing process (4) can now be found  by combin ing  
parts  of the polynomial  in (13). This yields 63 data-generat ing processes.  To  save space,  we 

Table 1 
Distribution of the R 2 values from the regression y, = ~4=1 ~lDi, +,1,, where the DGP is ~b(B)y, = e,, where e, is 
N(0, 1) based on 10,000 Monte Carlo replications (sample size is 120) 

~b(B) Percentiles 

1% 5% 10% 25% 50% 75% 90% 95% 99% 

(1 + B) 0.002 0.028 0.087 0.378 0.730 0.886 0.943 0.961 0.981 

(1 + B 2) 0.054 0.214 0.357 0.600 0.780 0.877 0.923 0.942 0.966 

(1 + B)(1 + B 2) 0.162 0.363 0.485 0.660 0.793 0.870 0.915 0.934 {/.957 
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Table 2 
The distribution of the R 2 values from the regression y, = Elil~iDi, + 7"It, where the data-generating processes are 
¢b(B)y, = e,, with ~(B) equal to (1 + B), (1 + B2), (1 + BV3 + B2), (1 - BX/3 + B2), (1 + B + B2), (1 - B + B2), 
or combinations of these polynomials. The cells in the table are summary statistics for the data-generating processes 
corresponding to a certain number of seasonal unit roots. Based on 10,000 Monte Carlo replications (sample size is 
120) 

No. seasonal Percentiles 
unit roots 

1% 5% 10% 25% 50% 75% 90% 95% 99% 

1 0.009 0.035 0.092 0.379 0.710 0.889 0.946 0.963 0.981 

2 0.061 0.221 0.365 0.603 0.780 0.877 0.926 0.944 0.966 

3 0.152 0.352 0.474 0.654 0.790 0.872 0.917 0.936 0.960 

4 0.245 0.438 0.541 0.685 0.796 0.867 0.909 0.928 0.952 

5 0.247 0.446 0.545 0.686 0.796 0.866 0.909 0.927 0.953 

6 0.346 0.515 0.597 0.708 0.800 0.862 0.901 0.918 0.944 

7 0.336 0.503 0.586 0.703 0.797 0.862 0.902 0.920 0.946 

8 0.427 0.568 0.634 0.725 0.801 0.855 0.891 0.908 0.933 

9 0.414 0.556 0.624 0.720 0.799 0.855 0.893 0.911 0.936 

10 0.491 0.616 0.668 0.740 0.802 0.851 0.883 0.899 0.923 

11 0.487 0.601 0.658 0.736 0.800 0.849 0.883 0.900 0.923 

s u m m a r i z e  the  resul ts  fo r  the  var ious  R 2 values  o b t a i n e d  f ro m  regress ions  in (1)  so tha t  we 
on ly  r e p o r t  the  d is t r ibut ion  of  the  R 2 values  accord ing  to  the  n u m b e r  o f  seasona l  uni t  roo t s  in 
T a b l e  2. We find high values  of  R 2 w h e n  the p r e sen ce  of  seasona l  unit  roo t s  is neg lec ted .  This  
t e n d e n c y  increases  with the n u m b e r  of  roo ts  on  the  unit  circle. No t i ce  also tha t  the  f igures at 
75 pe rcen t i l e  and h igher  a p p e a r  to dec rease  as the  n u m b e r  of  seasona l  uni t  roo t s  grows,  
ind ica t ing  tha t  the  d is t r ibut ion  of  the R 2 values  t ends  to  be  m o r e  c o n c e n t r a t e d  a r o u n d  the  
m o d e  as the  n u m b e r  of  seasonal  unit  roo ts  increases .  As discussed be low,  h o w e v e r ,  o u r  resul ts  
suggest  tha t  the m o r e  seasonal  unit  roots  in the  D G P ,  the h igher  will be  the  R 2 in the  
regress ion  (1) .  

G e n e r a l l y ,  the  p o w e r  of  unit  roo t  tests  can be  low, and  it is l ikely tha t  tests fo r  seasona l  uni t  
roo t s  suf fer  f r om the  same drawback .  It may ,  t h e r e f o r e ,  be wor thwhi le  to inves t iga te  the  
d i s t r ibu t ion  of  the  R 2 f rom (1) w h e n  the D G P  is, for  example ,  y, = -PY, -1  + e, with  p equa l  
to ,  say, 0.9. Asympto t i ca l l y ,  the  R 2 should  be zero ,  bu t  given the  resul ts  in Tab l e  3, ev en  in 
the  n e a r  uni t  r oo t  case spur iously  high R 2 m ay  e m e r g e  in l imi ted samples .  In T a b l e  3, we 
r e p o r t  on  the  empir ica l  R 2 dis t r ibut ion  in the  case w h e re  this p takes  values  like 0.5 t h r o u g h  
0.99. It is c lear  f r o m  the  results  in this table  tha t  o u r  c o n j e c t u r e  seems to be  ver i f ied.  In  the  
case  w h e r e  p = 0.95, one  m a y  find R 2 values  as high as ab o u t  0.4 in 2 0 % of  the  cases.  
F u r t h e r m o r e ,  F tests for  the  jo int  significance of  seasonal  d u m m y  var iab les  in (1)  can  
spur ious ly  e xc e e d  5% critical values.  
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Table 3 
Distribution of the R 2 values from the regression Yt : ~4=1 61D~, + ~7,, where the DGP is (1 + pB)y, = e,, where e, is 
N(0, 1) based on 10,000 Monte Carlo replications (sample size is 120) 

O Percentiles 

1% 5% 10% 25% 50% 75% 90% 95% 99% 

0.5 0.001 0.003 0.005 0.011 0.024 0.045 0.078 0.104 0.174 

0.8 0.001 0.003 0.005 0.013 0.039 0.100 0.187 0.249 0.362 

0.9 0.001 0.002 0.005 0.020 0.077 0.198 0.346 0.443 (I.590 

0.95 0.001 0.003 0.008 0.039 0.153 0.365 0.549 0.651 0.784 

0.99 0.001 0.011 0.037 0.186 0.524 0.773 0.885 0.921 0.960 

4. Concluding remarks 

The distribution theory and the Monte  Carlo experiments  in the present  paper  show that 
neglecting seasonal unit roots can yield spuriously high R:  values in the regression of 
first-differenced time series on some seasonal dummy variables, and hence suggest several 
implications for analyzing seasonally observed time series. The first and most obvious is that 
an interpretat ion of an R 2 value obtained from an auxiliary regression like (1) should be 
pe r fo rmed  with great care. Its value can be spuriously high in the case when seasonal unit 
roots have been neglected,  and hence it may then not be useful as a measure  of seasonal 
variation. 

Similar caution should be exercised when interpreting the paramete r  estimates for the 
seasonal dummies  from regressions as (1). Time-series processes with seasonal unit roots can 
yield any kind of estimates for such dummy parameters .  A comparison of the est imated 6 i 
values across several time series may then be hazardous. Given the result in Section 2, one can 
think of the case, for example,  when two time series x, and y,, which are genera ted  by 
Xt  = - - X t -  1 - -  X t - 2  - -  X t - 3  "~- ~ t  and Yt = - - Y t - 2  q- Et, where e, and r/, are independent ly  drawn, can 
yield spuriously similar 6 i estimates in regressions like (1). Hence ,  although the two processes 
are complete ly  independent ,  they may seem to be related with respect to their seasonally 
fluctuating patterns. 

Since seasonal fluctuations in many macroeconomic  time series seem to change over t ime, 
the presence of seasonal (near-) unit roots seems likely notwithstanding the possibly low 
power  of currently applied test procedures.  Several economic variables have been affected by 
exogenous  shocks caused by oil crises and world-wide recessions, and one can observe that 
seasonal pat terns for most of these series have changed throughout  the years. This implies that 
it is unlikely that constant pa ramete r  models such as (1) yield the most accurate descriptions 
of economic  time series. A useful description, which allows for changing seasonal patterns,  is 
then a model  that assumes the presence of seasonal unit roots in the autoregressive 
polynomial .  An  extension to include more  than one series, and which facilitates the analysis of 
c o m m o n  aspects, is discussed in Lee (1992) and Engle et al. (1993). 
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