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Optimal conÞdence intervals for the tail index and
high quantiles

Ana Ferreira and Casper G. de Vries∗

August 17, 2004

Abstract
The aim of the pap er is to obtain conÞdence intervals for the tail index and high quantiles

taking into account the optimal rate of convergence of the estimators. The common approach

to obtain ing conÞdence intervals as presented in the literature is to use the normal distribution

approxim ation at a non-optim al rate. Instead , we propose to use the optim al rate, but then a

b ias term w ith unknown sign has to b e estim ated. We provide an estim ator for th is sign and the

fu ll programme to obtain the optim al conÞdence intervals. Moreover, we demonstrate the gain

in coverage, and show the relevance of these conÞdence intervals by calculating the reduction in

cap ita l requirements in a Þnancial Value at R isk exercise. S imulation results are also presented .

It is well known that extrem e value parameter estim ators which balance the asymptotic

b ias squared and variance yield the lower asymptotic mean square error. H ere we demonstrate

the relevance of using the conÞdence bands for the quantiles using the optim al number of

order statistics on simulated and actual data. It app ears that if one does not correct for the

sign factor the conÞdence bands are considerably larger. In the Þnancia l application for the

determ ination of appropriate capita l buff ers usage of the optim al conÞdence band implies a

considerable reduction in capita l provision ing. The band w ithout the correction term som etim es

requires ab out 10% more capita l v is a v is the optim al band. S ince investm ent banks nowadays

have to provision against such losses by hold ing capita l, a reduction in capita l requirements in

the order of 10% gives qu ite a sign iÞ cant reduction in op erating costs.

Key Words: tail index, bias sign, optimal rate, confidence
intervals

1 Introduction

Let X1,X2, . . . ,Xn be i.i.d. random variables from some unknown distribu-
tion function F , and denote the order statistics byX1,n ≤ X2,n ≤ · · · ≤ Xn,n.

∗Ana Ferreira, ISA, Technical University of Lisbon, Portugal (email: anafh@isa.utl.pt);
and Casper G. de Vries, Erasmus University Rotterdam, Tinbergen Institute, H14-25, PO
Box 1738, 3000 DR Rotterdam, Netherlands (email: cdevries@few.eur.nl). De Vries is
corresponding author.
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Suppose F satisÞes the maximum domain of attraction condition (Fisher
and Tippett, 1928; Gnedenko, 1943), with positive extreme value index. In
terms of regularly varying functions, this is equivalent to: For some γ > 0

lim
t→∞

1− F (tx)
1− F (t) = x

−1/γ , for all x > 0. (1)

Then F is said to have a regularly varying tail with index −1/γ (i.e. 1−F ∈
RV−1/γ).

For any non-decreasing function f , let f← denote its left-continuous
inverse, that is f←(y) = inf{x : f(x) ≥ y}. Let U = (1/(1−F ))←. Consider
the following reÞnement of condition (1) (e.g. de Haan, 1994; de Haan and
Stadtmüller, 1996). Suppose there exists a function a, with constant sign
near inÞnity and limt→∞ a(t) = 0, such that

lim
t→∞

logU(tx)− logU(t)− γ log x
a(t)

=
xρ − 1
ρ

, for all x > 0, ρ < 0. (2)

The following estimator of γ was proposed by Hill (1975),

�γ(k) =
1

k

k−1X
i=0

logXn−i,n − logXn−k,n. (3)

It is well known that Hill�s estimator has, in general, large variance for small
values of k and large bias for large values of k. Hence, when estimating γ,
one usually looks for a k value which balances between these two vices.

Let kn be an intermediate sequence, i.e. kn → ∞ and kn/n → 0, as
n→∞, and

Hn,kn =
p
kn

µ
�γ(kn)

γ
− 1
¶
. (4)

Under condition (2) and if a(n/kn)
√
kn → λ, λ ∈ (−∞,∞), Hn,kn converges

in distribution to a normal random variable with mean λ/(γ(1 − ρ)) and
variance 1 (e.g. Hall, 1982; Dekkers et al., 1989). The best rate of conver-
gence is attained when a(n/kn)

√
kn → λ 6= 0, and in this case the limiting

distribution has non-zero mean.
Often when using Hill�s estimator in applied problems, for simplicity one

uses (4) with λ = 0 in order to construct a conÞdence interval for γ (e.g.
Cheng and Peng, 2001 and Caers et al. 1998; though a host of other papers
could be cited as well). The reason for this shortcut is perhaps that the
construction of the conÞdence interval at the optimal rate involves other pa-
rameters, which have to be estimated. In section 2 we construct a conÞdence
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interval for gamma, using (4) but with the sequence kn following the optimal
rate of convergence, in the sense of minimizing the asymptotic mean square
error. Moreover, we demonstrate the gain in coverage. In order to imple-
ment this conÞdence interval, several related problems have to be solved:
One needs an adaptive way to obtain the optimal sequence kn, moreover
one needs to estimate two new parameters consistently, the second order
parameter ρ and the sign of the asymptotic bias. For the adaptive choice of
the optimal sequence kn we follow Danielsson et al. (2001). For the estima-
tion of the parameter ρ we follow Danielsson et al. (2001) and Fraga Alves
et al. (2001). For the sign of the asymptotic bias, in Section 3 we introduce
a new estimator and show its consistency. In Section 4 we obtain optimal
conÞdence intervals for high quantiles. From the results it follows that the
reverse problem of tail probability estimation and conÞdence interval con-
struction can be obtained in a similar fashion, left to the reader. Section
5 gives simulation results. In section 6 a Þnancial application is studied.
In a Value-at-Risk exercise it is shown that the capital requirements of the
Þnancial intermediary can be reduced due to using the �optimal� conÞdence
band vis a vis the simple conÞdence band.

Related papers on conÞdence interval estimation are Caers et al. (1998)
and Cheng and Peng (2001). In the Þrst paper the authors also use the
bootstrap methodology to obtain the optimal kn, though rather differently
from the methodology considered here, but then they end up considering
λ = 0 to obtain the conÞdence intervals. In the Cheng and Peng paper the
authors try to Þnd kn optimising the conÞdence interval but their criterion
is quite different from ours. They look for the optimal sequence in the non-
optimal range of values satisfying a(n/kn)

√
kn → 0. Cheng and Peng (2001)

also point out the importance of the sign of the asymptotic bias but they
do not discuss explicitly its estimation.

We restrict ourselves to the case ρ < 0, since optimality results for the
choice of kn are well established for this case.

2 Optimal confidence intervals for the tail index

Let a(n/kn)
√
kn → λ ∈ R. Denote by Φ the standard normal distribution

function and zα = Φ←(1 − α). As a Þrst approach towards constructing
a conÞdence interval with signiÞcance level α for γ, based on (4) and its
limiting distribution, solve −zα < Hn,kn − λ/(γ(1− ρ)) < zα for γ to get

�γ(kn)
√
kn − λ

1−ρ
zα/2 +

√
kn

< γ <
�γ(kn)

√
kn − λ

1−ρ
−zα/2 +

√
kn

, (5)
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provided
√
kn − zα/2 > 0.

Let k0
n denote the �optimal� sequence, in the sense of minimizing the mean

square error of the limiting distribution (Hall and Welsh, 1985; Dekkers and
de Haan, 1993). Under our conditions this sequence is easily calculated
if one assumes, moreover, that the regularly varying function a behaves,
asymptotically, as a power function,

a(t) ∼ ctρ, c 6= 0, (6)

as t→∞. Then, our assumptions are equivalent to assuming Hall�s model

1− F (x) = Cx−1/γ
³
1 +Dxρ/γ + o(xρ/γ)

´
, C > 0,D 6= 0, x→∞

where, from (2) and (6) we haveD = cγ−1ρ−1Cρ. Therefore (Hall and Welsh
(1985))

k0
n ∼

µ
γ2(1− ρ)2
−2ρ c2

¶1/(1−2ρ)

n−2ρ/(1−2ρ). (7)

Then it is easy to see that the value λ for this sequence k0
n, is asymptotic to

sign(c)γ(1− ρ)/√−2ρ. In this case (5) simpliÞes to

�γ(k0
n)
p
k0
n

zα/2 + sign(c)/
√−2ρ+pk0

n

< γ <
�γ(k0

n)
p
k0
n

−zα/2 + sign(c)/
√−2ρ+pk0

n

.

Now, in order to obtain a conÞdence interval from this inequality, we need
to approximate adaptively k0

n, and estimate ρ and sign(c). From Hall and
Welsh (1985, Th. 4.1), an adaptive choice �k0

n can be used for which

�k0
n

k0
n

P→ 1. (8)

For ρ we need a consistent estimator and for sign(c) an estimator dsign sat-
isfying

P{dsign = sign(c)}→ 1 (n→∞). (9)

Then the following theorem holds.

Theorem 2.1. Suppose (2) and (6). Let �k0
n satisfy (8), dsign satisÞes (9)

and let �ρ be a consistent estimator for ρ. Then, as n→∞,q
�k0
n

Ã
�γ(�k0

n)

γ
− 1
!
−

dsign√−2�ρ
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converges, in distribution, to a standard normal random variable. Therefore,
as n→∞,

P

 �γ(�k0
n)

q
�k0
n

zα/2 +
dsign√−2ρ̂

+

q
�k0
n

< γ <
�γ(�k0

n)

q
�k0
n

−zα/2 + dsign√−2ρ̂
+

q
�k0
n

→ 1− α (10)

which gives an asymptotic conÞdence interval for γ, with conÞdence coeffi-
cient 1− α.

Note that for the cases where the true γ is near zero a one-sided conÞ-
dence interval can alternatively be considered. The extension of our results
to this case is obvious.

2.1 Accuracy of the confidence interval

Denote the conÞdence interval based on (5), where kn is such that λ = 0 and
ρ is replaced by a consistent estimator, by (γ

n,kn
, γn,kn). In the following we

shall see that the conÞdence interval (10) is more accurate than (γ
n,kn

, γn,kn).
Fix

lim
n→∞P (γ ∈ (γn,kn , γn,kn)) = 1− α,

for each γ > 0. Then, the probabilities of covering the wrong value γ0,

P (γ0 ∈ [γ
n,kn

, γn,kn ]) (11)

should be as small as possible, for each γ0 > 0. In fact for γ0 6= γ and
all sequences kn with a(n/kn)

√
kn → λ this probability converges to zero,

since the lower and upper limits of the conÞdence interval converge to γ in
probability. Therefore next we compare the probabilities of wrong coverage
as γ0n/γ → 1 (n→∞).

For the conÞdence interval (10) the probability of wrong coverage equals

P
³
− zα/2

γ0n
γ

≤
q
�k0
n

Ã
�γ(�k0

n)

γ
− 1
!
−

dsign√−2�ρ +
µ
1− γ

0
n

γ

¶Ãq
�k0
n −

dsign√−2�ρ

!

≤ zα/2
γ0n
γ

´
.

Hence for sequences γ0n with
p
k0
n(1− γ0n/γ)→ ν 6= 0,±∞, this probability

converges to Φ(zα/2−ν)−Φ(−zα/2−ν). Now take kn with a(n/kn)
√
kn → 0.
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Then for sequences γ∗n with
√
kn(1− γ∗n/γ)→ ν∗ 6= 0,±∞, probability (11)

equals

P

µ
−zα/2

γ∗n
γ
+
p
kn

µ
γ∗n
γ
− 1
¶

≤
q
�kn

µ
�γ(kn)

γ
− 1
¶
≤ zα/2

γ∗n
γ
+
p
kn

µ
γ∗n
γ
− 1
¶¶

which converges to Φ(zα/2 − ν∗) − Φ(−zα/2 − ν∗). Therefore in order to
compare the two probabilities take a common sequence, e.g. γ∗n. Then in
the Þrst case the probability of covering the wrong values converges to zero,
whilst in the second case it is equal to Φ(zα/2 − ν∗)−Φ(−zα/2 − ν∗) > 0.

3 Estimation of the sign of the bias of Hill’s esti-
mator

For convenience, in this section we shall use the Hill process parameterised
continuously. The following result was taken from Drees et al. (2000),
Corollary 1.

Lemma 3.1. Let kn denote an arbitrary intermediate sequence. Under con-
dition (2), there exists a probability space carrying X1,X2, . . . and a sequence
of Brownian motions Wn, such that

sup
tn≤t≤1

t1/2
¯̄̄̄
�γ([knt])−

µ
γ +

γ√
kn

Wn(t)

t
+ a(

n

kn
)
t−ρ

1− ρ
¶¯̄̄̄

= op

µ
k−1/2
n + a(

n

kn
)

¶
for all tn → 0, satisfying kntn →∞.

In this expansion for the Hill process the term

t−ρ/(1− ρ)a(n/kn)
p
kn,

is the bias of the Hill estimator. Note that if a(n/kn)
√
kn → λ 6= 0, its

asymptotic sign is determined by the sign of the function a(n/kn), which
equals sign(c) provided (6) holds. For instance if t = 1, the sign of the
expected value of the limiting variable of

√
kn(�γ − γ) equals sign(λ/(1− ρ))

= sign(c).

6



Let an, bn and cn be intermediate sequences such that

an < bn ≤ cn for all n, and an/bn → ν ∈ [0, 1). (12)

We suggest the following estimator for the sign of the bias,

dsign = signÃ�γ(cn)− 1

bn − an + 1
bnX
i=an

�γ(i)

!
. (13)

Theorem 3.1. Assume (2), (12) and moreover that bn satisÞes a( nbn )
√
bn →

∞. Then
P{dsign = sign(c)}→ 1, n→∞.

Proof. Lemma 3.1 implies thatZ 1

an/bn

¯̄
�γ([bnt])−

µ
γ +

γ√
bn

Wn(t)

t
+ a(

n

bn
)
t−ρ

1− ρ
¶ ¯̄
dt = op(b

−1/2
n + a(

n

bn
)).

Therefore,

lim
n→∞

�γ(cn)− 1
bn−an+1

Pbn
i=an

�γ(i)

a( nbn )
= lim
n→∞

�γ(cn)− bn
bn−an

R 1
an/bn

�γn([bnt])dt

a( nbn )

= lim
n→∞

(
γ

a( nbn )

Ã
Wn(1)√
cn

− bn√
bn(bn − an)

Z 1

an/bn

Wn(t)

t
dt

!

+
1

1− ρ

Ã
a( ncn )

a( nbn )
− bn
bn − an

Z 1

an/bn

t−ρdt

!
+ op(

1

a( nbn )
√
bn
)

)
.

Since an/bn → ν ∈ [0, 1), we have that (bn/(bn − an))
R 1
an/bn

Wn(t)/t dt =

Op(1). Hence taking bn ≤ cn such that a( nbn )
√
bn → ∞, the Þrst and last

factors in the last equality go to zero, in probability. For the second factor,
just note that under the given conditions a(n/cn)/a(n/bn) ≥ 1 and that
(1/(1 − ν)) R 1

ν t
−ρdt < 1, for all ν ∈ [0, 1) and ρ < 0. Hence we have that

the second factor converges in probability to some positive constant.

Remark 3.1. Although we have excluded the case ρ = 0 in condition (2),
the results of this section are still valid for ρ = 0, provided bn < cn in (12).

Remark 3.2. Other proposals to estimate the sign could be to use two con-
sistent estimators of γ, for instance �γ1 = �γ and �γ2 = (2kn)

−1/2qPkn−1
i=0 (logXn−i,n − logXn−k,n)2. Both admit expansions of the type �γi =

7



γ + cik
−1/2
n Pi + dia(n/kn) + op(k

−1/2
n ) + op(a(n/kn)), where ci, di are some

known constants and Pi are normal (0,1) random variables. Hence, for large
kn (i.e. a(n/kn)k

−1/2
n →∞) and with a(n/kn) ∼ c (n/kn)ρ we have

sign
µ
�γ1

�γ2

− 1
¶
= c

d1 − d2

γ
.

But typically one encounters two kind of problems with this sort of estima-
tors. First of all, they are very sensitive to the choice of k. Commonly a
plot of sign(�γ1�γ

−1
2 − 1) versus k frequently alters sign for small and moder-

ate values of k. Secondly, since these estimators have similar behaviour, e.g.
they have the same sign of the bias and predominance of one bias over the
other, in a plot of sign(�γ1�γ

−1
2 − 1) for k large these features turn out to be

the most predominant.

4 Optimal confidence intervals for high quantiles

Suppose one is given a small probability p and one wants to estimate the
quantile x : P (X > x) = p. We are interested in studying the situations
where p is indeed very small, for instance where this small probability corre-
sponds to an event that has never been observed. More speciÞcally, p = pn
must depend on n (size of the sample), since we use asymptotic theory, and
we shall assume npn → constant (≥ 0).

As before let kn be an intermediate sequence. To estimate a high quantile
xn = F

←(1− pn) we suggest the following estimator (Dekkers and de Haan,
1989; Ferreira et al., 2002)

�x(kn) = Xn−kn,n
µ
kn
npn

¶γ̂(kn)

. (14)

The following result is from Ferreira et al. (2002).

Lemma 4.1. Assume (2), (6) and npn →constant (≥ 0). Let kn be an
intermediate sequence such that

a(n/kn)
p
kn → λ ∈ (−∞,∞)

and
log(kn/npn)/

p
kn → 0.

Then √
kn

γ log( knnpn )

µ
�x(kn)

xn
− 1
¶

(15)
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converges in distribution to a normal random variable, with mean λ/(γ(1−
ρ)) and variance 1.

Let qk0
n denote the sequence kn minimizing the mean square error of the

limiting distribution of (15). Then from Ferreira et al. (2002) it follows that
(when γ > 0) qk0

n ∼ k0
n where k

0
n is from (7). Hence a consistent estimator

of qk0
n is �k

0
n from Section 2, that is,

�k0
n

qk0
n

P→ 1. (16)

Moreover, also from this paper it follows that Lemma 4.1 still holds if kn is
replaced by �k0

n.
Therefore, in analogy with Section 2, the following theorem holds. For

more details on the proof we refer to Ferreira et al. (2002). Motivated by
an application on VAR estimation, we consider here a one-sided conÞdence
interval. The changes to obtain a similar result for a two-sided conÞdence
interval are obvious.

Theorem 4.1. Suppose (2), (6), and that npn → constant (≥ 0) and
log(pn) = o(n−ρ/(1−2ρ)), as n → ∞. Let �k0

n satisfy (16), dsign satisfy (9)
and let �ρ be a consistent estimator for ρ. Then, as n→∞,q

�k0
n

�γ(�k0
n) log(

k̂0
n

npn
)

Ã
�x(�k0

n)

xn
− 1
!
−

dsign√−2�ρ

converges, in distribution, to a standard normal random variable. Therefore,
as n→∞,

P

xn < �x(�k0
n)

1 + �γ(�k0
n) log(

k̂0
n

npn
)q

�k0
n

Ã
−zα +

dsign√−2�ρ

!−1
→ 1− α (17)

which gives a one-sided asymptotic conÞdence interval for xn, with conÞ-
dence coefficient 1− α.

The analysis of the accuracy of the conÞdence intervals for the quantiles
is analogous to the discussion in Section 2 regarding the conÞdence interval
of the tail index, and hence is skipped.
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5 Simulations

We evaluate the performance of the conÞdence intervals for the tail index and
high quantiles. For the estimation of the optimal sequence kn we follow the
bootstrap algorithm proposed by Danielsson et al. (2001). This bootstrap
procedure also provides an estimator of the second order parameter, say �ρ1.
In Appendix A we describe the main ideas behind this bootstrap procedure.

To estimate ρ we also investigate the following estimator proposed by
Fraga Alves et al. (2001). Let M (α)

n (kn) = (1/kn)
Pkn−1
i=0 (logXn−i,n −

logXn−k,n)α and

T (1,2,3,0)
n (kn) =

logM
(1)
n (kn)− log

µ
M

(2)
n (kn)

2

¶
/2

log

µ
M

(2)
n (kn)

2

¶
/2− log

µ
M

(3)
n (kn)

6

¶
/3

.

The estimator is given by

�ρ2 = 3
T

(1,2,3,0)
n (kn)− 1
T

(1,2,3,0)
n (kn)− 3

,

provided 1 ≤ T (1,2,3,0)
n < 3 (otherwise we shall say it is not deÞned). Fraga

Alves et al. (2001) proved consistency under condition (2) and for kn satis-
fying a( nkn )

√
kn →∞.

To estimate the sign of the asymptotic bias we use (13) with an = logn
and bn = cn = n/ log logn (see section 5.3 for more details).

We considered i.i.d. pseudo random numbers from the following distri-
butions:

1. Student-t distribution with ν = 1 and 4 degrees of freedom, for which
γ = 1/ν, ρ = −2/ν, a(t) ∼ (2/3)Π2t−2 if ν = 1 and a(t) ∼ (20/24√3) t−1/2

if ν = 4 (for the general formulas to obtain the scale constant of the
function a we refer to Martins, 2000). Hence the sign of the bias is
positive.

2. Fréchet distribution, Fµ,σ(x) = exp{−((x− µ)/σ)−1/γ}, for which we
have, if µ 6= 0 and 0 < γ < 1 then ρ = −γ and a(t) ∼ −(µγ/σ)t−γ ; if
γ = 1 then ρ = −1 and a(t) ∼ (1/2 − µ/σ)t−1/σ; if µ = 0 or γ > 1
then ρ = −1 and a(t) ∼ (γ/2)t−1. We shall consider (µ, σ, γ) equal to
(0,1,1) and (1,1,1). Then note that when γ = 1 the sign of the bias
equals the sign(1/2− µ/σ).
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5.1 Simulations for the tail index

Tables 1 and 2 present the simulation results based on 500 samples of size
n = 2000. Table 1 gives the boostrap results, reporting the mean and
standard deviation of �k0

n, the mean and root mean square error of bγ and bρ,
and the percentage of simulations in which the estimator of the sign of the
bias yielded the correct sign.

Table 2 gives the results for the conÞdence intervals of size 98%, 96%
and 90%. These where obtained by using the following alternative inputs in
the computation of the conÞdence intervals:

a) �k0
n + �ρ1 - (10) where the estimates of ρ are from the bootstrap proce-
dure,

b) �k0
n + �ρ2 - (10) where the estimates of ρ are from Fraga Alves et al.
(2001),

c) �k0
n + ρ - (10) with true ρ and correct sign(c),

d) �k0
n + (λ = 0) - from (5) with λ = 0,

e) (�k0
n)
.8 + (λ = 0) - from (5) with kn = (�k0

n)
.8 and λ = 0. Note that

(�k0
n)
.8 is a rather arbitrary choice, the only requirement that it should

be smaller (of smaller order) than �k0
n.

For each conÞdence interval [γ
n,kn

, γn,kn ], its coverage probability
P (γ ∈ [γ

n,kn
, γn,kn ]) ∼ 1 − α was checked. Furthermore it is checked if

coverage is equally weighted in each tail, where for the left-hand side it
is desirable that P (γ < γ

n,kn
) ∼ α/2 and for the right-hand side that

P (γ < γn,kn) ∼ 1 − α/2. In Table 2 these are shown in the order: total
coverage, left-hand side coverage and right-hand side coverage.

From Table 1 we see that for both distributions the tail index estimator
performs reasonably well. There is more variation and bias in the second
order parameter ρ, moreover one cannot rank the two alternative estimators
as each performs better for one of the two distributions. For these two
distributions, the sign estimator performs very well. The Þrst distribution
is the Cauchy model and sometimes produces extremely large realizations,
which affect the quantile estimates, see fn.1 to the table.
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k̂0
n γ̂(k̂0

n) ρ̂1 ρ̂2
dsign x̂(k̂0

n)
mean st.dev. mean rmse mean rmse mean rmse % true mean rmse
t1 : γ = 1, ρ = −2, sign = +, xn = 636.6
200. 117. 1.00 .16 -1.31 .81 -1.01 1.00 100.0 706.11 353.51

t4 : γ = .25, ρ = −.5, sign = +, xn = 8.6
33. 37. .29 .08 - .55 .21 -.69 .19 100.0 9.1 2.9

F0,1 : γ = 1, ρ = −1, sign = +, xn = 1999.5
414. 231. 1.03 .11 -2.13 1.44 -1.26 .31 99.6 2470.6 1161.5

F1,1 : γ = 1, ρ = −1, sign = +, xn = 2000.5
708. 247. .94 .08 -3.58 2.79 -2 -2 91.0 1634.8 714.6

1 without extreme quantile estimate of 378782281
2 not deÞned in most of the samples

Table 1: Bootstrap estimates and percentage dsign equals the true sign, 500
samples of size 2 000 (see text for details).

Comparing the conÞdence intervals (�k0
n+�ρ1) and (�k

0
n+ρ), with (�k

0
n+(λ =

0)), in general we consider the Þrst two better (particularly for α small),
since for these the mean lengths are smaller (except for Fréchet (1,1)) and
the coverage probabilities are usually much closer to those expected. The
fact that the mean lengths are larger in the cases (�k0

n+�ρ1) and (�k
0
n+ ρ) for

Fréchet (1,1), is due to the negative sign of the bias.
Sometimes the conÞdence intervals with λ = 0 seem to give close coverage

probabilities in the right tail, but note that a coverage probability of 100% is
totally non-informative, a situation so often obtained for these cases. Indeed
what we get are biased conÞdence intervals. For all distributions associated
with positive bias the upper limit of the conÞdence intervals are so large
that they are too often larger than the true value. On the other hand,
the lower limits are so large that again, they are too often larger than the
true value. Systematically we see that the contribution to the coverage
probability, considering both sides, for being less than 100% always comes
from the wrong coverage of the lower limit. Similar considerations can be
made for the distribution associated with negative bias.

From these simulations we learn that when the bias of Hill�s estimator is
positive, in general the right-hand side conÞdence intervals are quite precise;
the same observation applies when the bias is negative for left-hand side
conÞdence intervals.

Our simulations indicate that the inclusion of second order information
in the construction of the conÞdence intervals gives signiÞcant improvement.
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Table 2: Means of the center points, the conÞdence interval lengths and
coverage probabilities, 500 samples of size 2 000 (see text for details).

α = 2%
CDF Method mean mean Cov. Prob .

center length 98% 1% 99%
t1 k̂0

n+ρ̂1 .98 .36 91. 3. 95.

k̂0
n+ρ̂2 .99 .37 92. 3. 95.

k̂0
n+ρ 1.01 .40 94. 4. 98.

k̂0
n+(λ = 0) 1.07 .48 92. 8. 100.

(k̂
0

n).8+(λ = 0) 1.13 .77 99. 1. 100.

t4 k̂0
n+ρ̂1 .29 .23 80. 14. 94.

k̂0
n+ρ̂2 .30 .26 85. 14. 99.

k̂0
n+ρ .29 .24 85. 13. 98.

k̂0
n+(λ = 0) .43 .48 79. 21. 100.

(k̂
0

n).8+(λ = 0) .48 .62 90. 10. 100.

F0,1 k̂0
n+ρ̂1 1.02 .27 80. 17. 97.

k̂0
n+ρ̂2 1.01 .27 82. 15. 97.

k̂0
n+ρ 1.01 .27 83. 14. 97.

k̂0
n+(λ = 0) 1.06 .32 79. 21. 100.

(k̂
0

n).8+(λ = 0) 1.10 .56 98. 2. 100.

F1,1 k̂0
n+ρ̂1 .97 .19 69. 0. 70.

k̂0
n+ρ .98 .20 80. 1. 81.

k̂0
n+(λ = 0) .95 .18 61. 0. 61.

(k̂
0

n).8+(λ = 0) 1.02 .37 98. 0. 98.

α = 4% α = 10%
CDF Method mean mean Cov. Prob. m ean mean Cov. Prob .

center length 96% 2% 98% center length 90% 5% 95%
t1 k̂0

n+ρ̂1 .97 .31 85. 6 . 91. .96 .25 72. 10. 82.

k̂0
n+ρ̂2 .97 .32 87. 4 . 91. .96 .25 75. 9 . 83.

k̂0
n+ρ 1.00 .34 89. 6 . 95. .98 .27 79. 10. 89.

k̂0
n+(λ = 0) 1.05 .40 88. 11. 99. 1 .03 .30 81. 15. 96.

(k̂
0

n).8+(λ = 0) 1.08 .64 97. 2 . 99. 1 .04 .48 91. 5 . 97.

t4 k̂0
n+ρ̂1 .27 .19 74. 15. 89. .26 .14 63. 20. 83.

k̂0
n+ρ̂2 .29 .21 82. 15. 97. .27 .16 70. 20. 90.

k̂0
n+ρ .28 .20 81. 14. 95. .26 .15 68. 18. 86.

k̂0
n+(λ = 0) .38 .36 75. 25. 100. .34 .25 67. 33. 100.

(k̂
0

n).8+(λ = 0) .41 .46 87. 13. 100. .35 .31 82. 17. 100.

F0,1 k̂0
n+ρ̂1 1.01 .23 75. 20. 95. 1 .00 .18 67. 23. 90.

k̂0
n+ρ̂2 1.01 .24 78. 18. 95. 1 .00 .19 68. 22. 90.

k̂0
n+ρ 1.00 .23 78. 17. 95. 1 .00 .19 69. 21. 90.

k̂0
n+(λ = 0) 1.05 .27 76. 24. 100. 1 .04 .21 67. 31. 97.

(k̂
0

n).8+(λ = 0) 1.07 .47 96. 3 . 99. 1 .05 .36 90. 9 . 99.

F1,1 k̂0
n+ρ̂1 .96 .17 59. 1 . 60. .96 .13 46. 3 . 49.

k̂0
n+ρ .98 .17 73. 2 . 75. .97 .14 57. 4 . 61.

k̂0
n+(λ = 0) .95 .16 52. 0 . 52. .95 .13 43. 1 . 44.

(k̂
0

n).8+(λ = 0) 1.01 .32 96. 1 . 96. 1 .00 .26 90. 2 . 92.
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α = 2% α = 4% α = 10%
Distribution mean Cov. Prob. mean Cov. Prob. mean Cov. Prob.

upp lim 98% upp lim 96% upp lim 90%
t1
k̂0
n + ρ̂1 1631.7 93. 1268.5 85. 951.6 70.
k̂0
n + ρ̂2 1584.8 93. 1215.9 86. 916.4 69.
k̂0
n + ρ 2225.6 96. 1434.0 92. 1022.6 77.
k̂0
n + (λ = 0) 6693.6 98. 2731.7 98. 1477.6 93.
t4
k̂0
n + ρ̂1 11.4 80. 10.6 73. 9.6 62.
k̂0
n + ρ̂2 11.7 85. 10.9 80. 9.9 67.
k̂0
n + ρ 11.3 82. 10.6 77. 9.6 64.
k̂0
n + (λ = 0) 14.8 95. 13.5 93. 11.9 86.
F0,1

k̂0
n + ρ̂1 5012.8 94. 4141.0 91. 3299.2 84.
k̂0
n + ρ̂2 4769.2 95. 3919.2 91. 3143.9 82.
k̂0
n + ρ 4478.5 95. 3739.8 91. 3028.7 81.
k̂0
n + (λ = 0) 9482.0 99. 6566.3 99. 4283.6 95.
F1,1

k̂0
n + ρ̂1 7045.5 87. 5099.8 81. 3274.5 66.
k̂0
n + ρ 11181.1 97. 5779.6 93. 3753.8 80.
k̂0
n + (λ = 0) 4209.4 83. 3801.4 75. 2697.5 53.

Table 3: Means of upper limits of the quantile conÞdence intervals and esti-
mated coverage probabilities, 500 samples of size 2 000 (see text for details).

5.2 Simulations for high quantiles

Table 3 gives the simulation results for the one-sided conÞdence intervals of
sizes 98%, 96% and 90%. These are based on the same samples used in tail
index estimation. Note the insensitivity of the conÞdence intervals under
the zero bias assumption for t1 and F0,1, where the coverages remain the
same whether α = 2% or 4%. Note the very large upper conÞdence limits
when compared with the others considering the bias information.

5.3 Additional considerations on the sign estimation

The sign estimator also depends on the chosen values of the tuning parame-
ters an, bn and cn. We found that for many common distributions the choice
of an = logn and bn = cn = n/ log logn is quite reasonable. Mainly we have
just chosen simple sequences verifying the conditions of Theorem 3.1.

While these choices may appear reasonable and the Table 1 results re-
garding the sign estimator appear comforting, the following example shows
that there are cases in which the estimator requires a large data set and a
juidicous choice of the number of observations that have to be taken into
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account. Suppose the logarithmic daily stock returns net of trend growth
follow a symmetric Student distribution. Empirically the Student-t with
about three or four degrees of freedom yields a decent Þt. Although the
i.i.d. assumption neglects the observed clustering of volatilities, the Student
law describes the unconditional stock returns distribution pretty well. The
density of the Student distribution with 3 degrees of freedom reads

f(x) = 2π−13−1/2
£
1 + x2/3

¤−2
.

By direct integration, one Þnds

F (x) =
1

2

2x
√
3 + 6 arctan 1

3x
√
3 + 2

¡
arctan 1

3x
√
3
¢
x2 + 3π + πx2

π (3 + x2)
.

To understand the behavior of the sign estimator, we obtain the expansion
of the distribution at large quantiles. Recall Hall�s (1982) second order
expansion,

1− F (x) = Cx−α[1 +Dx−β + Sx−φ + o(x−φ)], x→∞ (18)

where C > 0,D 6= 0, S 6= 0 and φ > β. Here α = 1/γ and β = −ρ/γ. By
the monotone density theorem (18) implies

f(x) = αCx−α−1[1 +
α+ β

α
Dx−β +

α+ φ

α
Sx−φ + o(x−φ)]. (19)

By the transformation y = x−2 and a Taylor expansion around y = 0 of the
Student-3 density, one obtains

f(x) = 3
2
√
3

π
x−4[1− 6x−2 + 27x−4 + o(x−4)].

Thus α = 3, β = 2, φ = 4, C = 2
√
3/π, D = −18/5, S = 81/7.

Since logarithmic returns are additive, one can Þnd the distribution of
the two-day return from the convolution of the Student distribution. The
density of the 2-convoluted Student-3 is obtained by integration:

g(x) =

Z ∞

−∞
f(x− s)f(s)ds

= 12
√
3π−1

¡
x2 + 60

¢
(12 + x2)−3.

An approximation similar to the one for the Student-3 gives

g(x) = 3
4
√
3

π
x−4[1 + 24x−2 − 1296x−4 + o(x−4)]
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Hence for the convoluted Student law, we Þnd α = 3, β = 2, φ = 4,
C = 4

√
3/π, D = 72/5, S = −3888/7.

The interesting point to note is that the signs of the second and third
order scaling constants D and S differ between the student law and its
convolution. Thus the sign estimator should register a switch in sign. But
whether one will be successful in registering such a sign switch depends on
the bias properties of the Hill estimator. The sheer size of the scale of the
coefficient S for the convoluted law hampers registering this sign switch in
practice. To see this note that, cf. De Haan (1990),

E[d1/α|s] =
1

1− F (s)
Z ∞

s
log(

x

s
)f(x)dx (20)

=
1

α
−D β

α(α+ β)
s−β + {D2 β

α(α+ β)
− S φ

α(α+ φ)
}s−2β

+o(s−2β), s→∞.

By using the coefficients derived above, we obtain for the Student law

E[bγ|s] ≈ 0.333 + 0.480s−2 − 0. 476s−4,

while for the convoluted model

E[bγ|s] ≈ 0.333− 1.920s−2 + 133. 443s−4. (21)

The Student law has the Þrst order term in E[bγ|s] positive and the second
negative, while for the convoluted law the Þrst term is negative and the
second term is positive. The size of the second order term in the expansion
of the convoluted law is also relatively large.

If we plot the expressions for E[d1/α|s] at different values for the threshold
values this implies quite a distinct pattern for the two models. The plot in
Figure 1 gives the values for E[d1/α|s] for the laws and the approximate
expression E[bγ|s] from (21) for the convoluted distribution. Along the Y-
axis we plot γ. To make the X-axis readable, we have transformed the
quantiles s as follows

(1− F (s)) ∗ 105.

Thus the number along the X-axis can be interpreted as the number of
highest order statistics which are needed in a sample of ten thousand ob-
servations to yield an estimate of the tail index if there were no variance.
The plot is therefore comparable to a so called Hill plot that would obtain
if one used actual data. Note that large values of s correspond to a low
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Figure 1: Theoretical Hill plot; sample size 100000.

number of �order statistics�. In Figure 1 the two plots E[d1/α|s] are based on
(20) using the integrals directly, while E[bγ|s] is based on the second order
approximation from (21) for the convoluted model. The Student model has
a one way bias, but the bias implied by the convoluted distribution is clearly
U-shaped.1 The second order approximation picks up the U-shaped form
but quickly deteriorates if one goes too much inside the sample by using too
many of the highest order statistics.

In practice it may thus be difficult to assess the correct sign if the Hill
plot is U-shaped. Note that this example is not far fetched, since e.g. all
symmetric stable distributions with characteristic coefficients between one
and two also imply alternating signs in the expansion E[bγ|s]. The Student
example is nice since it has such different behavior for the convoluted and un-
convoluted model, and because of the additivity of logarithmic returns. In
simulations for the Student model and the convoluted data, we also observed

1To get some intuition for the fact that the Student model has a one way bias, note
the similarity of the absolute values of the coefficients in the approximation E[bγ|s] for the
student law.
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the U-shape pattern for the convoluted law, but we noted that in some runs
the U-shape is buried under the uncertainty in the data.

6 Data analysis

We started the paper by noting that it is well known that estimators which
balance the asymptotic bias squared and variance yield the lower asymptotic
mean square error. Nevertheless, in practice conÞdence bands are commonly
based on the estimators evaluated at the asymptotically suboptimal number
of order statistics (taking λ = 0), such that the signed bias factor is omitted.
Here we demonstrate the relevance of using the conÞdence bands for the
quantiles using the optimal number of order statistics on actual data. It is
shown that these can yield a considerable reduction in capital loss estimates.

We used daily price quotes over the period 1-1-1980 to 14-5-2002 on four
quite different Þnancial series, each of them comprising 5835 observations;
all available from datastream. The Þrst contract is the US dollar per UK
pound spot foreign exchange rate contract, abbreviated as the forex contract.
The forex contract is also of interest since forex risk is an important risk
driver in international portfolios of pension funds. The second series is the
S&P500 total return index, and the third contract is the Dutch Nedlloyd
share price. The latter contract is known to be very volatile due to the
cyclical business of sea transport, while the US index is naturally better
diversiÞed and hence less volatile, compare e.g. the S&P and Nedlloyd
quantile estimates at p = 1/n given in Table 4. The fourth contract is the
French based Alcatel stock. The daily price quotes pt are used to compute
daily continuously compounded returns rt by taking the logarithmic Þrst
differences of the price series, i.e. rt = ln(pt/pt−1). Since forex data for
currencies from countries with similar monetary policies are known to be
symmetrically distributed, we used the absolute returns for the forex series
(except for the few zero quotes). Stock returns generally exhibit a positive
mean due to positive growth of the economy. Therefore for the stock return
data we focussed on the loss returns only. Still, the loss returns comprised
approximately 50% of the data.

In Table 4 the tail parameter estimates are displayed. The gamma point
estimates indicate that the number of bounded moments are between 3 and
5. We record the bootstrap based rho estimate from Danielsson et al. (2001)
as �ρ1, and the one based on Fraga Alves et al. (2001) recorded as �ρ2. It
can be seen that these differ quite considerably, but as we will see later,
this difference is not so important for the construction of the conÞdence
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Series k̂0
n γ̂(k̂0

n) ρ̂1 ρ̂2
dsign x̂

n−k̂0
n

x̂(k̂0
n) at p = 1/n

forex 8 0.201 -0.310 -0.639 + 0.028 0.043
S&P 225 0.308 -1.263 -0.711 + -0.016 -0.090
Nedlloyd 12 0.255 -0.430 -0.725 + -0.106 -0.201
Alcatel 34 0.281 -0.641 -0.739 + -0.077 -0.207

Table 4: Parameter estimates

bands as is the inclusion of the sign correction factor. Nonetheless it is
worth mentioning the proximity of all the estimates obtained from �ρ2. The
subsample bootstrap estimates of the optimal number of order statistics �k0

n

is on the low side for the Þrst and third series. The procedure sometimes
runs into boundary problems due to insufficient data. In case of the forex
contract, the plot of the bootstrap constructed mean square error reveals the
surface is very ßat over the range between k = 8 and 20 approximately, so
that the global minimum is difficult to locate. The mean square error plot for
the S&P and Alcatel series reveals unique and clearly identiÞable minima,
while the forex and Nedlloyd mean square error plots display multiple local
minima for small values of k.

In Figures 2 and 3 we have plotted the Hill estimator against the number
of order statistics k for the two individual stock series. The patterns of the
Hill plots should be compared with the theoretical plots given in Figure (1).
The Nedlloyd stock seems to have a one way upward bias, like the case of
the Student law from the previous section. But the behavior of the Alcatel
stock is quite different and displays the U-type behavior we noticed for the
convoluted Student law. For this reason the positive sign we estimate for
the Alcatel stock is perhaps not entirely convincing. In analogy with the
plot for the convoluted Student law, the possible negative sign may be hard
to notice due to a large positive third order coefficient.

The conÞdence bands for the tail index gamma are displayed in Table 5.
We give three different bands at three different conÞdence levels (at the 2%,
4% and 10% level respectively). The Þrst band is the sign factor corrected
(optimal asymptotic mean square error) band, the second is the zero λ based
band used in most studies.2 The third band is also sign factor corrected,
but where �ρ2 is used instead of �ρ1. There are some differences between the

2Some studies may on purpose prefer the estimates evaluated such that λ = 0, since
the criterion function gives more (negative) weight to the asymptotic bias term. For these
cases it is difficult to pick a speciÞc number of order statistics, since such studies usually
do not provide an automatic procedure for selecting the number of order statistics. Hence,
even if the sign factor is ignored in the construction of the conÞdence band, we still use
the same number of order statistics as for the case when the sign factor is included.
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Figure 2: Tail estimates for Nedloyd data. The dotted line represents the
alternative estimator in the bootstrap.
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Figure 3: Tail estimates for Alcatel data. The dotted line represents the
alternative estimator in the bootstrap.
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series α = 2% α = 4% α = 10%
LL UL LL UL LL UL

forex
signcorr. .09 .32 .09 .28 .10 .23
nocorr. .11 1.14 .12 .74 .13 .48
signcorr.(FA) .09 .41 .10 .34 .11 .28
S&P
signcorr. .26 .35 .26 .34 .26 .33
nocorr. .27 .36 .27 .36 .28 .35
signcorr.(FA) .25 .34 .26 .34 .27 .33
Nedlloyd
signcorr. .13 .40 .13 .36 .14 .31
nocorr. .15 .78 .16 .63 .17 .49
signcorr.(FA) .13 .45 .14 .40 .15 .33
Alcatel
signcorr. .18 .37 .19 .35 .20 .32
nocorr. .20 .47 .21 .43 .22 .39
signcorr.(FA) .18 .38 .19 .36 .20 .33

Table 5: Tail index conÞdence bands

Þrst and the last band, but the most glaring differences are in comparison
with the second band. It appears that if one does not correct for the sign
factor the conÞdence bands are considerably larger. This is basically due
to a larger upper limit UL, the lower limits more or less all coincide. But
the exception is the S&P series, where all three are quite close. The latter
is due to the larger ρ values, see (17) for the inßuence of the second order
parameter ρ. On the other hand, the larger is �k0

n the lower is the inßuence
of the second order components.

A conÞdence band for the quantile estimates hinges on the choice of the
quantile. We decided to report the quantiles located at the border of the
sample, i.e. we took p = 1/n. Results are in Table 6. As in the previous
table we report three different type of bands. Since these are about the
possible loss, we report the left one-sided conÞdence interval. To indicate
that we worked with the absolute returns in case of the forex series, the loss
quantiles are reported positively in this case. Again the band based on the
zero λ presumption yields much higher loss limits at the desired conÞdence
level. What does this imply economically speaking? Consider e.g. the case
of Nedlloyd, and suppose that an investment bank has taken a stake of 10
million in the company. From the Þrst column labeled �bq(�k0

n) at p = 1/n�
in Table 6 one sees that once per 22 years there is a day on which this
investment bank loses two or more million of its ten million investment.
But taking into account the uncertainty pertaining to this estimate, one
has to add another half million at the 2% level if one uses the bias corrected
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series x̂(k̂0
n) at p = 1/n x̂α=2% x̂α=4% x̂α=10%

forex .043
signcorr. .048 .046 .043
nocorr. .062 .053 .053
signcorr.(FA) .052 .049 .045
S&P -.090
signcorr. -.107 -.103 -.097
nocorr. -.116 -.112 -.105
signcorr.(FA) -.104 -.100 -.094
Nedlloyd -.201
signcorr. -.245 -.229 -.209
nocorr. -.323 -.297 -.263
signcorr.(FA) -.259 -.242 -.219
Alcatel -0.207
signcorr. -0.259 -0.243 -0.223
nocorr. -0.319 -0.296 -0.265
signcorr.(FA) -0.263 -0.246 -0.225

Table 6: Quantile conÞdence bands

band. The band without the correction term requires quite a bit more, i.e. at
least 1.2 million extra! Since investment banks nowadays have to provision
against such losses by holding capital, a reduction in capital requirements by
0.7 million on a investment of 10 million gives quite a signiÞcant reduction
in costs. Compare this case with the case of an investment in the S&P
composite. For the case of an index investor with 10 million invested in the
S&P composite, the extra loss stemming from the use of the conÞdence band
without correction factor is more moderate (an extra hundred thousand).

7 Conclusion

The paper obtains conÞdence intervals for the tail index and high quantiles
taking into account the optimal rate of convergence of the estimators. The
common approach to obtaining conÞdence intervals in the applied literature
is to ignore the bias term with unkown sign and use the zero bias approxima-
tion at a sub-optimal rate. We provide an estimator for the sign in the bias
part and present the full programme for obtaining the optimal conÞdence
intervals. Simulations demonstrate quite a considerable gain regarding the
width of the conÞdence interval and regarding the coverage. In practice
the tighter conÞdence intervals imply a considerable reduction in capital
requirements for Þnancial Þrms who must provision against high losses. Fu-
ture research should perhaps be focussed on investigating the sensitivity of
the sign estimator to higher order terms.
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Appendix A. Tail index and quantile bootstrap es-
timation

The adaptive bootstrap method proposed by Danielsson et al. (2001) is a
two-step sub-sample bootstrap method. From a sample of size n, in a Þrst
step take r independent bootstrap sub-samples of size n1, where n1 must be
of the order n1−ε, 0 < ε < 1/2. For the simulations we took ε equal to .05
in all cases. For r we used 500. Let 1�γ(kn) and 2�γ(kn) be two consistent
estimators of γ. Then, let

k∗1 = argmink
1

r

rX
i=1

¡
1�γ∗i (k)−2 �γ∗i (k)

¢2
(A.1)

where 1�γ∗i and 2�γ∗i are the estimates based on the i-th bootstrap sub-sample
of size n1. In a second step, repeat step 1 but with n1 replaced by n2 = n

2
1/n,

to get k∗2 say. Then, it can be shown that

�k0
n =

(k∗1)2

k∗2
C(�γ, �ρ)

is a consistent estimator of k0
n, where C(γ, ρ) is some known constant de-

pending on γ and ρ, and �γ and �ρ are consistent estimators of γ and ρ
respectively. To estimate ρ one shows that

�ρ =
log k∗1

−2 logn1 + 2 log k∗1

is a consistent estimator.
When estimating quantiles a similar algorithm can be used, where in

(A.1) 1�γ(kn) and 2�γ(kn) are replaced by quantile estimators. Still, since
k0
n/
qk0
n ∼ 1 both procedures with gamma or quantile estimators provide a

consistent estimator of qk0
n.

Table A.1 gives the bootstrap results from minimizing the bootstrap mse
based on two quantile estimators. Compare these results with the ones in
Table 1. The quantile estimates in Table A.1 are more accurate, but the ρ
(and γ) estimates are less accurate. It turns out that in terms of conÞdence
intervals, the bootstrap mse based on the quantile estimators yields results
comparable to the conÞdence intervals based on the bootstrap mse of the
tail index estimators.
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qk̂0
n γ̂(q k̂0

n) ρ̂1 x̂(q k̂0
n)

mean st.dev. mean rmse mean rmse mean rmse
156. 130. .94 .19 -1.08 1.08 621.0 332.4

Table A.1: Bootstrap estimates, t1 : γ = 1, ρ = −2, sign = +, xn = 636.6.
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