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Abstract

Planning the transport of maritime containers from the sea port to final
destinations while using multiple transport modes is challenged by uncertain-
ties regarding the time the container is released for further transport or the
transit time from the port to its final destination. This paper assesses the
value of information in container transport in terms of multiple performance
dimensions, i.e. logistics costs, reliability, security, and emissions. The analysis
is done using a single period model where a decision maker allocates arriving
containers to two transport modes (slow, low price, no flexible departure times,
versus fast, high price, flexible departure times). We construct a frontier of
Pareto optimal decisions under each of the information scenarios and show
that these frontiers move in a favorable direction when the level of informa-
tion progresses. Each of the Pareto frontiers help strike the balance between
the aforementioned performance dimensions. The mathematical results are
illustrated using two numerical examples involving barge transport and train
transport.
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container, intermodal transport
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To relieve congestion at the deep sea container terminal and in the port area,

a number of sea ports, such as the ports of Los Angeles and Long Beach, and the

port of Rotterdam, have implemented so-called ’dry ports’, i.e. hub terminals posi-

tioned inland (Roso et al., 2009). Instead of stacking import containers at the deep

sea terminal until they can be forwarded to their final destinations, containers are

being pushed in bulk to these dry ports. Congestion is reduced at the terminal as

containers remain at the terminal for a shorter period of time. Transport of large

volumes of containers permits the use of modes of transport other than truck without

compromising frequency of service, which relieves the road infrastructure in the port

area.

Compared to truck transport, however, river barges and trains usually feature

longer transit times, and the river and train networks do not connect directly to any

final destination. The limited availability of scheduled departures of river and rail

connections creates another disadvantage: late arrivals of containers may force ad

hoc shipment by truck to avoid any further delay, which could compromise the use

of certified carriers and henceforth could deteriorate the guaranteed level of security

(Sheffi, 2001).

Since barge and train have less negative environmental and social impacts than

road transport, there is a need to address these issues. This can be done by offering

co-modal transport services (Groothedde et al., 2005), which involve both slow and

less costly transport modes such as barge and rail to carry the bulk of containers,

and the fast and flexible trucking option to execute shipments under time pressure.

The planning of co-modal transport services is challenged due to the uncertain-
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ties in, for example, the times the containers are available for transport and the

transit times. As a result, the planning of containers is nowadays characterized by

a conservative approach where slack times are built in to avoid late arrivals at the

customer.

The performance of the transport of maritime containers is relevant to a variety of

stakeholders such as organizations in the global supply chains involved and external

governmental and non-governmental organizations that represent environmental and

social interests. As a result, performance need to be accounted for across economic,

social, and environmental dimensions, i.e. the ’triple bottom line’ (Elkington, 1994).

In particular, there is a need to incorporate the external costs caused by intermodal

transport (Liao et al., 2009) in the analysis of new concepts such as the dry port.

Systemic improvements enable enhanced trade-offs between various performance di-

mensions and create so-called ”collateral benefits”, for example in balancing logistics

performance and level of security (Lee and Whang, 2005).

This paper contributes to the existing literature by providing a single period

model where the allocation of containers to truck or barge, and the barge departure

time can be tuned to strike the balance between operational costs, reliability, emis-

sions, and security. We study the value of information by comparing performance

of the transport system under a number of information scenarios. Since we need to

evaluate along multiple performance dimensions, we identify a frontier of Pareto op-

timal decisions under each of the information scenarios and show that these frontiers

move in a favorable direction when the level of information progresses. Here we are

able to formalize the notion of collateral benefits mentioned above. The balancing
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of multiple objectives for single period models has also been considered in (Parlar

and Weng, 2003), but in our decision problem, the efficiency frontiers need not be

convex.

We formulate the problem in Section 1 and model the performance criteria lo-

gistics costs, reliability, emissions, and security, in a stylized way. In Section 2, we

describe a number of progressive information scenarios. For each level of informa-

tion, a frontier of Pareto optimal decisions is defined, and we show that, as more

information becomes available, the frontier moves into a favorable direction. In Sec-

tion 3, we construct the Pareto frontiers and identify the Pareto optimal decisions

for each of the information scenarios while considering two performance dimensions.

By means of numerical examples, we discuss the results. In Section 4, we draw some

conclusions and discuss opportunities for further research. Mathematical statements

are proven in Appendix A.

1 Problem Formulation

In this section, we formulate the decision problem and introduce the model parame-

ters. We consider the following decision situation from the viewpoint of the shipper

(or forwarder) involved in the global transport of maritime containers. The shipper

has consigned a number of containers that will be released at the port of destina-

tion. The shipper needs to decide on the appropriate combination of land transport

modes in order to get the containers to their final destinations at the customers

in time against minimum costs and emissions, while taking into account security
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aspects.

The release time of the container is defined here as the earliest possible pick-

up time for further transport to the final destination, and is assumed to follow

a probability distribution f . We assume that all containers are due at a single

customer destination before a single deadline T . The transport can be done either

by barge, i.e. river vessel, or truck. We will consistently refer to barge, but train

could be considered as well by using different parameter values, which is done in the

illustrative numerical examples in Section 3.3. Transportation by barge involves a

planned departure time t0. Depending on the volume of the container flow consigned

by the shipper, this departure time can be influenced by the shipper or he can pick

a departure time from a fixed barge schedule. We assume here that the shipper can

set the departure time, so that t0 is a continuous decision variable. Transportation

by truck can be initiated as soon as the container has been released. The transit

times by truck τtruck and barge τbarge are governed by probability distributions gtruck

and gbarge, respectively. The transit times represent the throughput times between

container release and arrival at the final destination, so they usually include waiting

and handling times. The associated transit costs for barge and truck are denoted by

cbarge and ctruck, respectively.

The probability that a container is released too late in order to be transported by

barge equals α = 1− F (t0), where F is the cumulative probability density function

associated with f . The parameter α can be interpreted as a tolerance parameter

which the shipper takes into account while setting the planned departure time t0

of the barge. In such a manner, the departure time t0 is related to the amount of
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slack time built-in to increase the probability that containers arrive in time to be

transported by barge. In the case a container was planned to be transported by

barge and is released only after the departure (cut-off) time t0, it will be transported

by recourse truck, i.e. in an ad hoc fashion. The dispatch of a recourse truck will

result in a longer transit time τrctruck, governed by the probability distribution grctruck,

and higher transit costs crctruck, as compared to a planned truck. The main cause of

longer transit time and higher costs of a recourse truck shipment is the allocation of

resources in an ad hoc way.

The transit costs are ordered as follows: cbarge < ctruck < crctruck, i.e. barge is the

cheapest transport mode, while a recourse dispatch of a truck is the most expensive

alternative. The transit times should be modeled in such a way that truck is faster

than barge and that recourse truck shipment is slower than planned truck shipment.

We do so by first order stochastic dominance, i.e. by stating that Gtruck > Grctruck >

Gbarge; see Rothschild and Stiglitz (1970). We also consider emissions associated with

barge and truck and observe that the emissions per container are ordered similar to

costs: ebarge < etruck < erctruck, as both emissions and costs are predominantly driven

by fuel consumption (McKinnon, 2007).

We study the performance of the transport system at hand along the following

performance measures: transit costs, fraction of containers in time at final destina-

tion, emissions, and security. The level of security s will be measured in terms of

fraction of containers shipped as planned, referring to the fact that ad hoc shipments

by recourse truck may result in compromised security levels. All performance mea-

sures are normalized in such a way that they attain values in the interval [0, 1] and
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symbol description
T deadline at the customer
t release time container
τmode transit time transport mode
cmode, emode costs and emissions transport mode per container
f , F probability distribution function, cumulative distribution function

of t
gmode, Gmode probability distribution function, cumulative distribution function

of τmode

σk, εk, sk, ρk normalized costs, normalized emissions, security, and expected frac-
tion of timely arrivals under Information Scenario k

Table 1: Model parameters

that 1 is the optimal value. For the costs c this requires a linear transformation given

by

σ =
crctruck − c

crctruck − cbarge

. (1)

When pmode denotes the fraction of containers transported by a certain mode, and

pbarge +ptruck +prctruck = 1, and cbarge < ctruck < crctruck, then σ = pbarge +(1−θ)ptruck,

where

θ =
ctruck − cbarge

crctruck − cbarge

∈ (0, 1). (2)

The parameter θ expresses the relative performances of the various modes. The

normalized emissions and normalized cost functions have the same structure but

different parameter values θ. It turns out that the security parameter s can also be

written in a similar way by putting θ = 0.

We now summarize the formulation of the single period model. Two decisions are

made under uncertainty. The first decision variable is t0, the planned departure time

of the barge, or alternatively α = 1 − F (t0), the probability that containers do not
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arrive in time to be transported by barge. The second decision variable γ represents

the planned fraction of containers to be shipped by barge. The uncertainty in the

arrival times of the containers and the transit times of the various transport modes

are represented by stochastic distributions. In the next section, we shall elaborate

on four information scenarios under which decisions are made. The performance

of decisions under Information Scenario k ∈ {1, 2, 3, 4} are presented as normalized

costs σk, normalized emissions εk, security sk, and reliability, i.e. expected fraction

of timely arrivals at the customer ρk. We present the model parameters in Table 1.

2 Information Scenarios

A number of progressive information scenarios and the corresponding decision situ-

ations will be described. We consider (1) the case of no information known to the

shipper, (2) the case where the probability distributions of the container release times

and transit times are known to the shipper, (3) the case when the probability distri-

butions of the container release times are further specified for a number of categories

of containers, and (4) the ideal case where the actual arrival times are known to the

shipper beforehand. The decision situation associated with information scenario 2

coincides with the problem formulation in Section 1. The decision situations associ-

ated with the other information scenarios are modifications of the decision situation

presented in Section 1, as will be explained in the subsections below. In partic-

ular, for each information scenarios, decision policies are described, together with

expressions of their performance in terms of cost, security, and reliability.
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2.1 No Information

The shipper has no information on the distributions of the arrival of containers and

the transit times, so has no basis to make any decisions before the containers arrive.

In line with common practice, we will assume that the shipper uses truck as transport

mode when the risk of late arrival at the customer is too large or unknown, i.e. the

shipper will source for trucks as soon as containers have arrived. The sourcing of a

truck is ad hoc and therefore recourse truck costs and transit times are applicable

here.

Lemma 1 Under Information Scenario 1, the normalized cost per container is given

by σ1 = 0, the security level by s1 = 0, and the expected fraction of containers that

reach their destination in time satisfies ρ1 =
∫ T

0
Grctruck(T − t)f(t) dt.

2.2 Information on container arrival and transit time distri-

butions

The shipper has the probability distributions of container arrivals and transit times

at his disposal. Therefore, he will be able to evaluate decisions on the planned

departure time of the barge and the amount of containers to be shipped by barge

before the containers actually arrive. We model this decision situation as a single

period model, as explained in Section 1. The shipper plans the departure time t0

of the barge and the fraction 0 ≤ γ ≤ 1 of containers to be transported by barge.

As a consequence, the fraction 1− γ of the containers are planned to be shipped by

truck. After these decisions have been made, the release times of the containers are
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realized. For containers planned to be transported by truck, the arrival time at the

final destination is given by t + τtruck. For containers planned to be transported by

barge and that are released before t0, the arrival time at the final destination equals

t0 + τbarge. The arrival times of late containers transported by a recourse truck read

t+ τrctruck. We remark that containers are identified by a container number and that

the planning specifies for each specific container a transport mode. We now consider

the performance under this policy.

Lemma 2 Under Information Scenario 2, the normalized costs read

σ2(α, γ) = 1− θ + γ(θ − α), (3)

where θ is defined as in (2). The fraction of containers delivered in time at the final

destination is given by

ρ2(α, γ) = γ

∫ T

t0

Grctruck(T − t)f(t) dt+

γ(1− α)Gbarge(T − t0) + (1− γ)

∫ T

0

Gtruck(T − t)f(t) dt. (4)

The level of security satisfies s2(α, γ) = 1− γα.

2.3 Specific information on container arrival time distribu-

tions for categories of containers

This information scenario incorporates the situation where the shipper is able to

categorize the containers based on features such as port of origin, cargo type, and
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consigner, that will help him to assess the release time probability distributions more

specifically. In other words, the decision maker is now able to determine more specific

probability distributions fk for categories of containers k = 1, . . . , n in such a way

that

f(t) =
n∑
k=1

wkfk(t). (5)

The weights satisfy wk > 0 and
∑n

k=1wk = 1, and they represent the relative sizes

of the categories. The shipper decides on barge departure time t0 and fractions of

container categories to be shipped by barge, i.e. γk for category k. We shall write

~γ = (γ1, . . . , γn). If we set αk = 1 − Fk(t0), then we may write α = 1 − F (t0) =∑n
k=1wkαk.

Lemma 3 Under Information Scenario 3, the normalized costs read

σ3(α,~γ) = 1− θ +
n∑
k=1

wkγk(θ − αk). (6)

The expected fraction of containers that arrives before the deadline T is equal to

ρ3(α,~γ) =
n∑
k=1

wkγk

∫ T

t0

Grctruck(T − t)fk(t) dt+

n∑
k=1

wkγkGbarge(T − t0)Fk(t0) +
n∑
k=1

wk(1− γk)
∫ T

0

Gtruck(T − t)fk(t) dt. (7)

The level of security equals s3(α,~γ) = 1−
∑n

k=1wkγkαk.
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2.4 Information on actual container arrival times

The decision situation is now as follows. The shipper observes the actual arrival times

of the containers beforehand, and plans the transport modes accordingly. Once the

barge departure time t0 has been set, a fraction γ of containers that will arrive before

t0 will be shipped by barge, and the remainder 1−γ fraction of containers that arrive

before t0 will be shipped by truck. It is optimum to ship by barge the last γ fraction

of containers that arrive before the departure of the barge. We may formalize this

policy by defining

tγ = F−1((1− γ)F (t0)), 0 ≤ γ ≤ 1,

and plan all containers that arrive before tγ by barge, and plan the remainder of the

containers by truck.

Lemma 4 Under Information Scenario 4, the normalized expected costs are equal

to

σ4(α, γ) = 1− θ + θγ(1− α). (8)

The expected fraction of containers that arrive in time at the customer reads

ρ4(α, γ) = γ(1− α)Gbarge(T − t0) +∫ tγ

0

Gtruck(T − t)f(t) dt+

∫ T

t0

Gtruck(T − t)f(t) dt. (9)

The level of security satisfies s4(α, γ) = 1.
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2.5 Relative positioning of the Pareto frontiers

For each of the information scenarios, a policy has been defined that incorporates

the decision variables α and γ (or ~γ) in a certain way, which generated a set Ak =

{(ρk(α, γ), σk(α, γ), εk(α, γ), sk(α, γ)) : (α, γ) ∈ [0, 1] × [0, 1]} of performance levels

for k = 1, 2, 4, while A3 = {(ρ3(α,~γ), σ3(α,~γ), ε3(α,~γ), s3(α,~γ)) : (α,~γ) ∈ [0, 1] ×

[0, 1]n}.

In order to compare the performance of the transport system under the various

information scenarios, we describe the notion of a Pareto frontier. The Pareto frontier

E of a set A, given a partial ordering ≤, consists of those elements u ∈ A for which

there exist no element v ∈ A such that u < v. Consequently, a Pareto frontier E

consists of maximal elements only. An element u ∈ A is maximal when for each

v ∈ A with u ≤ v, it holds true that u = v. A Pareto frontier E majorizes another

Pareto frontier F , and we write E � F , if for each u ∈ E , there exists v ∈ F such that

u ≤ v. The relation � constitutes a partial ordering on the set of Pareto frontiers.

We denote the Pareto frontier of Ak by Ek for k ∈ {1, 2, 3, 4}, and we establish the

following.

Theorem 5 Let Ek denote the Pareto frontier of performance levels under Informa-

tion Scenario k = 1, 2, 3, 4. It holds true that

E1 � E2 � E3 � E4. (10)
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3 Construction of the Pareto Frontiers

In the previous section, we have identified decision policies under the various infor-

mation scenarios such that (10) holds true. In order to analyze the Pareto optimal

solutions, we need more specific information about the characteristics of the Pareto

frontiers, and we achieve this by constructing the frontiers. We restrict the explicit

construction of the Pareto frontiers to two dimensions for tractability reasons. As

normalized costs σ, normalized emissions ε, and security s differ only in the param-

eter values of θ, we focus on Pareto optimal decisions with respect to reliability and

normalized costs. Further, we interpret the decision policies that give rise to these

Pareto frontiers in the various decision situations as explained in Section 2. We omit

the proof of the following lemma.

Lemma 6 In the case when θ = 0, i.e. in the case when we consider Pareto opti-

mal solutions with respect to reliability and security, it can be seen that the Pareto

frontiers collapse into single points: E1 = {(ρ1, 0)} and E2 = E3 = E4 = {(ρ0, 1)}.

We now proceed with the analysis of the case when θ > 0. First of all, we observe

that the Pareto frontier E1 consists of the single point (ρ1, θ).

3.1 The Pareto frontier E2

In this subsection, we construct the Pareto frontier E2, and we interpret the Pareto

optimal decisions associated with the frontier. The construction goes along the fol-

lowing lines. First, we observe that we can write (4) as ρ2(α, γ) = ρ0 − γρ(α),
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where

ρ0 =

∫ T

0

Gtruck(T − t)f(t) dt, (11)

and

ρ(α) = ρ0 −
∫ T

t0

Grctruck(T − t)f(t) dt−Gbarge(T − t0)F (t0). (12)

Observe that 0 ≤ ρ(α) ≤ ρ0 and ρ(α) is decreasing in α. Further, recall that (3)

provides σ2(α, γ) = 1 − θ + γ(θ − α). In other words, for fixed α, the functions

γ 7→ ρ2(α, γ) and γ 7→ σ2(α, γ) are linear. As a consequence, the function (ρ2, σ2)

maps the line segment Lα = {(α, γ) | 0 ≤ γ ≤ 1} onto another line segment

Mα = {(ρ0, 1− θ) + γ(−ρ(α), θ − α) | 0 ≤ γ ≤ 1}. (13)

Since [0, 1]2 =
⋃
α Lα, we obtain A2 =

⋃
αMα. We proceed to construct E2 based on

the line segments Mα. First, we observe that Mα for α > θ do not contribute to E2,

so we may restrict our analysis of Mα to 0 ≤ α ≤ θ. Next, write the negative slope

of the line Mα as

Φ(α) =
θ − α
ρ(α)

. (14)

Note that Φ(0) = θ
ρ0
> 0 with ρ(0) = ρ0 > 0. On the other hand, ρ(θ) ≥ ρ(1) =

ρ0 − ρ1 > 0, which implies Φ(θ) = 0. An expression of the Pareto frontier E2 and a

description of the Pareto optimal solutions are given by the following theorem.

Theorem 7 Define the function

Ψ(λ) = max{Φ(α) | 0 ≤ α ≤ λ}, (15)
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then Ψ(λ) is increasing, Ψ(0) = θ
ρ0
> 0, and

E2 =

{
(ρ0 −

θ − λ
Ψ(λ)

, 1− λ) | 0 ≤ λ ≤ θ

}
. (16)

For each fixed 0 ≤ λ ≤ θ, given that Ψ(λ) = Φ(α) for some 0 ≤ α ≤ λ, the

associated Pareto optimal decision reads as follows: We assign fraction γ = θ−λ
θ−α of

the containers to barge and set the barge departure time equal to t0 = F−1(1− α).

3.2 The Pareto frontiers E3 and E4

Similar as in the previous section, we construct the Pareto frontiers E3 and E4, and

interpret the set of Pareto optimal decisions in the respective decision contexts. We

construct the Pareto frontier E3 by first establishing the following proposition.

Proposition 8 The mapping (ρ3, σ3) as defined by (7) and (6) is an affine mapping.

It maps the n-dimensional cube Lα = {(α,~γ) : ~γ ∈ [0, 1]n} onto the polygon

Mα = {(ρ3(α,~γ), σ3(α,~γ)) : ~γ ∈ [0, 1]n}. (17)

A mapping (σ̃3, σ̃3) can be constructed which maps {(α, γ) : 0 ≤ γ ≤ 1} onto the

Pareto frontier of Mα for each 0 ≤ α ≤ θ.

This result is useful for the construction of the Pareto frontier E3 as only Pareto

optimal points of Mα for 0 ≤ α ≤ θ will constitute E3. We now use the following

theorem to establish the Pareto frontier E3.
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Theorem 9 Given the mapping σ̃3 : (α, γ) 7→ 1− θ+ γ(θ−α) and the mapping ρ̃3 :

(α, γ) 7→ ρ̃3(α, γ) as provided by Proposition 8, with γ 7→ ρ̃3(α, γ) strictly decreasing

for each α ∈ [0, θ], define

ρ∗3(λ) = max

{
ρ̃3

(
α,
θ − λ
θ − α

)
: 0 ≤ α ≤ λ

}
, (18)

then E3 = {(ρ∗3(λ), 1− λ) : 0 ≤ λ ≤ θ}.

We interpret the Pareto optimal decisions associated with E3 in the decision

context by considering the proofs of Proposition 8 and Theorem 9. We summarize

the findings in the following proposition.

Proposition 10 The element (ρ∗3(λ), 1− λ) of the Pareto optimal frontier E3 gives

rise to the Pareto optimal decision (α,~γ), where the value of α ∈ [0, λ] corresponds

with ρ∗3(λ) = ρ̃3(α, θ−λ
θ−α), and ~γ is given by


γki = 1, 1 ≤ i ≤ p

γkp+1 = λ−λp
λp+1−λp ,

γki = 0, p+ 1 < i ≤ n

, (19)

where λp = 1 − θ +
∑p

i=1wki(θ − αki), λp ≤ λ < λp+1, and k1, . . . , kn distinct such

that Φk1(α) ≥ Φk2(α) ≥ · · · ≥ Φkn(α), with Φk(α) = θ−αk
ρk(α)

and

ρk(α) =

∫ T

0

Gtruck(T − t)fk(t) dt− Fk(t0)Gbarge(T − t0)−
∫ T

t0

Grctruck(T − t)fk(t) dt.

(20)
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Proposition 10 clarifies that Pareto optimal decisions seek to assign container

categories to barge for which the trade-off between reliability and cost are favorable

i.e for which Φk(α) is large. Note that the function Φk(α) is similar to the function

Φ(α) as defined in (14), which provided the negative slope of the trade-off line Mα.

We find in particular that the fraction of containers of category k planned for barge

is equal to γk as given in Proposition 10, while the departure time of the barge is

given by t0 = F−1(1− α).

We construct the Pareto frontier E4 using the following theorem.

Theorem 11 Given the mapping σ4 : (α, γ) 7→ 1− θ + γθ(1− α) and the mapping

ρ4 : (α, γ) 7→ ρ4(α, γ) as defined in (9) which is strictly decreasing in γ, define

ρ∗4(λ) = max

{
ρ4

(
α,

θ − λ
θ(1− α)

)
: 0 ≤ α ≤ λ

θ

}
, (21)

then E4 = {(ρ∗4(λ), 1− λ) : 0 ≤ λ ≤ θ}.

The proof of this theorem is similar to the proof of Theorem 9 and is not provided

in the appendix. For Scenario 4, a similar interpretation can be given for the Pareto

optimal decisions associated with E4 as in Scenario 2. In this case, however, the

fraction γ of containers assigned to barge are the ones with the arrival times as late

as possible before barge departure, as discussed in Section 1.

3.3 Numerical Example and Discussion of Results

In this subsection, we provide two numerical examples to illustrate the results ob-

tained in the previous subsections. We now providede the parameter choices in the
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symbol barge train truck recourse truck
emode (kg/ton CO2) 6 6 23 25
cmode (e/container) 35 70 100 110
τmode (hrs) 12 8 4 5

Table 2: Data used in the numerical examples for train and barge (distance of 100
miles)

examples in detail. One example concerns barge transport, the other concerns train

transport. The numerical examples also allow us to interpret the mathematical re-

sults of the previous sections in terms of the problem formulation more concretely.

Table 2 displays the data used in the numerical example. We denote the symmetric

triangular probability distribution with mean t and support [t− δ, t+ δ] by 4(t, δ).

The release time distribution is assumed equal to f = 4(t, δ), where we assume

δ = t. In Information Scenario 3, we assume three container categories (n = 3)

where f1 = 4(t − 1
2
δ, 1

2
δ), f2 = 4(t, 1

2
δ), f3 = 4(t + 1

2
δ, 1

2
δ). As weights we put

w1 = 1
4
, w2 = 1

2
, and w3 = 1

4
in order to get f =

∑3
k=1wkfk. The transit time

distributions are given by gmode = 4(τmode,
1
2
τmode). The distributions used in the

numerical example do not satisfy the requirement that the cumulative distribution

is an invertible function. However, this can be achieved by a small perturbation

and this does not seriously effect the numerical results. The numerical results are

obtained using the computer algebra package Maple 13.

We now discuss the method used to determine the Pareto frontier E2 in detail. In

Figure 1, we show how the unit square of decisions (α, γ) ∈ [0.1]2 is mapped onto A2

as described in Section 2. Observe that A2 is not convex and that the description of

the Pareto frontier will be intricate.
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Figure 1: Mapping of (α, γ) plane to (ρ, σ) plane

Figure 2 shows how the (rotated) graph of Ψ(λ), as obtained from the graph of

Φ(λ) which is also depicted, gives rise to certain zones on the Pareto frontier of E2.

This relates to the definition of Ψ(λ) = max{Φ(α) : 0 ≤ α ≤ λ} in Theorem 7.

Zone (A) corresponds with the case when Ψ(λ) = Φ(0) for λ ∈ [0, λ1). Here the

Pareto frontier consists of points (ρ(0, γ), σ(0, γ)) where γ = θ−λ
θ

with λ ∈ [0, λ1).

Zone (A) describes Pareto optimal solutions where the barge departure time is set at

the deadline T and the fraction of containers planned for barge is equal to θ−λ
θ

with

λ ∈ [0, λ1). As a result, the reliability ρ is low, while the normalized cost performance

σ is high. Zone (B) corresponds with the case when Ψ(λ) = Φ(λ) with λ ∈ [λ1, λ2).

In this zone, the Pareto frontier consists of points (ρ(λ, 1), ρ(λ, 1)) i.e. where all

containers are planned for barge, while the departure time t0 = F−1(1 − λ) of the

barge varies. The zone (C) has a similar structure as zone (A). Zone (C) describes
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Pareto optimal solutions where the barge departure time is set at t0 = F−1(1− λ2)

and the fraction of containers planned for barge is equal to θ−λ
θ−λ2

with λ ∈ [λ2, θ].

Here the reliability is high while the cost performance is low, due to the fraction

of containers planned for truck. The Pareto optimal decisions as described above

are also indicated in Figure 3; note that the zones (A)-(C) can be distinguished

clearly in this graph. Observe that the breakpoints 0 < λ1 < λ2 < 1 are not

A

B

CC

Figure 2: Construction of E2 along the lines of Theorem 7

explicitly indicated in Theorem 7. Indeed, this theorem holds true in general and

does not make assumptions about the shape of Ψ. However, the theorem implicitly

recognizes the aforementioned zones by the definition of Ψ. We refrain from giving

the details regarding the construction of Pareto frontiers E3 and E4. The Pareto

frontiers corresponding to the four information scenarios are depicted in Figure 4.
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B

A

C

4

Figure 3: Pareto optimal decisions associated with E2

In the numerical examples, we have used the data on barge, train, truck, and

recourse truck as depicted in Table 2, together with mean arrival time t = 18 hrs, and

spread δ = 18 hrs. For both the example involving the mode barge and the example

involving train, the deadline parameter has been set equal to T = t + τmode. It is

obvious that the results are sensitive to the deadline as it determines the importance

of balancing the use of the two modes of transport. So for the barge numerical

example, we used as deadline T = 30 hrs, and for the train numerical example, we

used T = 26 hrs.

The values of the normalized cost parameter read θ = 0.87 for the barge exam-

ple, and θ = 0.75 for the train example. Figure 5 depicts the Pareto frontiers for

the numerical example involving train transport. Observe that the Pareto frontiers

need not be convex. Therefore, the quantification of the value of information using
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1
Figure 4: Pareto frontiers information scenarios for barge

scalarization, as in (Tammer and Goepfert, 2002), may not capture the value of in-

formation as depicted in Figures 4 and 5. The notion of ”collateral benefit” may be

more helpful here. This comes down to the identification of room for improvement

in single or multiple performance directions; see Figure 5 for an illustration: perfor-

mance a under Information Scenario 2 can be improved to performances b1, b2, or b3

under Information Scenario 3, where a ≤ bj for j = 1, 2, 3.

4 Conclusions

This paper provides a method to support tactical decisions on the transport of con-

tainers from the sea port to final destinations inland by a combination of transport
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Figure 5: Pareto frontiers information scenarios for train

modes. By studying a number of information scenarios, the value of information is

quantified. More specifically, Pareto frontiers have been constructed to assess the

value of information while taking into account multiple objectives simultaneously.

As the Pareto frontiers frontiers are not concave, the use of scalarization, i.e. the

creation of a single objective by weighing multiple objectives, may be considered

less applicable than the approach of collateral benefits, where for each point on the

Pareto frontier under a given information scenario, other points on the Pareto fron-

tier under a more progressive information scenario are identified that majorize the

previous point.

The model incorporates the barge departure time as a decision variable, and this

variable is equivalent to the slack time reserved to mitigate the risk of containers
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planned for barge arriving after its departure time. In this manner, progressive

information may be used to reduce slack times, similar to the reduction of safety

stock in supply chains under information sharing (Lee et al., 2000).

Pareto optimal decision range from decisions where barge is deployed at a very

late stage to reduce costs while accepting a low level of reliability, to decisions where

containers are planned for truck to enhance reliability while accepting higher costs.

The Pareto frontiers describe how optimal balances can be struck between reliability

and operational costs, and the other performance dimensions.

There are some limitations to the study presented in this paper. First of all,

only a single destination and a single deadline are considered. The introduction

of multiple routes and multiple deadlines would extend the decision problem to a

network design problem. In particular, such a study would address the optimum

design of services in a transport network under different information scenarios. These

network analyses may also involve more than two transport modes, i.e. truck, barge,

and train simultaneously.

Further, the opportunities to consolidate container flows in the network, as dis-

cussed in (Trip and Bontekoning, 2002; Tyan et al., 2003), could be taken into account

as well. The dry port concept as discussed in this paper does not elaborate on the

impacts on the supply chain inventories. Elements of the existing work on the man-

agement of floating stock (Teulings and Vlist, 2001; Pourakbar et al., 2009), where

routing and inventory management are considered in combination, would be helpful

to extend the results from this paper in that direction.
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A Mathematical Proofs

A.1 Proof of Lemma 1

When the shipper has no information, then the costs per container are equal to

crctruck, so σ1 = 0. Since all containers are transported ad hoc, the security level

s1 = 0, and the expected fraction of containers that reach their destination in time

is equal to

ρ1 = Prob(t+ τrctruck ≤ T ) =

∫ T

0

Grctruck(T − t)f(t) dt. (22)

This proves the lemma. 2

A.2 Proof of Lemma 2

Given γ and t0, the expected transit costs are given by

γProb(t ≤ t0)cbarge + γProb(t > t0)crctruck + (1− γ)ctruck =

γ(1− α)cbarge + γαcrctruck + (1− γ)ctruck. (23)
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By using (1), we obtain the normalized costs (3) where θ is defined as in (2). The

percentage of containers delivered in time at the final destination is given by

ρ2(α, γ) = γProb(t + τrctruck ≤ T ∧ t > t0) +

γProb(t0 + τbarge ≤ T ∧ t ≤ t0) +

(1− γ)Prob(t + τtruck ≤ T) =

γ

∫ T

t0

Grctruck(T − t)f(t) dt+ γ(1− α)Gbarge(T − t0) +

(1− γ)

∫ T

0

Gtruck(T − t)f(t) dt.

The level of security will be measured in terms of percentage of containers shipped as

planned, which is equal to s2(α, γ) = 1− γα. Observe that this expression coincides

with σ2(α, γ) when θ is set equal to zero. This proves the lemma. 2

A.3 Proof of Lemma 3

First observe that if we substitute (5) in (4), we get

ρ2(α, γ) = γ

∫ T

t0

Grctruck(T − t)f(t) dt+ γGbarge(T − t0)F (t0)+

(1− γ)

∫ T

0

Gtruck(T − t)f(t) dt =

n∑
k=1

wkγ

∫ T

t0

Grctruck(T − t)fk(t) dt+
n∑
k=1

wkγGbarge(T − t0)Fk(t0)+
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n∑
k=1

wk(1− γ)

∫ T

0

Gtruck(T − t)fk(t) dt.

The decision maker is able to plan the amount of containers to be shipped by barge

per category of containers. In other words, we may introduce decision parameters

~γ = (γ1, . . . , γn) and define

ρ3(α,~γ) =
n∑
k=1

wkγk

∫ T

t0

Grctruck(T − t)fk(t) dt+

n∑
k=1

wkγkGbarge(T − t0)Fk(t0) +

n∑
k=1

wk(1− γk)
∫ T

0

Gtruck(T − t)fk(t) dt.

By substituting (5) in (3), we may now write

σ2(α, γ) = 1− θ +
n∑
k=1

wkγ(θ − αk),

and

σ3(α,~γ) = 1− θ +
n∑
k=1

wkγk(θ − αk).

Similarly, the level of security equals s3(α,~γ) = 1 −
∑n

k=1wkγkαk, which is again

equal to σ3(α,~γ) when θ is set equal to zero. This proves the lemma. 2
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A.4 Proof of Lemma 4

The expected costs read

γ(1− α)cbarge + (1− γ(1− α))ctruck, (24)

so normalized expected cost equal

σ4(α, γ) = 1− θ + θγ(1− α).

The expected fraction of containers that arrive in time at the customer reads

ρ4(α, γ) = γ(1− α)Gbarge(T − t0)+

∫ tγ

0

Gtruck(T − t)f(t) dt+

∫ T

t0

Gtruck(T − t)f(t) dt.

The level of security satisfies s4(α, γ) = 1 as no ad hoc shipments need to be made,

and it is equal to σ4(α, γ) for θ = 0. This proves the lemma. 2

A.5 Proof of Theorem 5

We first prove two lemmas.

Lemma 12 Let g(t) ≥ 0 be decreasing and assume that M(t) =
∫ t

0
µ(x) dx ≥ 0 for

all 0 ≤ t ≤ t0 and that M(t0) = 0. Then

∫ t0

0

g(x)µ(x) dx ≥ 0.
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Proof. We may approximate g(t) by nonnegative decreasing step functions, so it

suffices to show the lemma for g(t) =
∑m

k=1 gkEk(t), where 0 = a0 < a1 < · · · <

am = t0 is a partition and Ek(t) equals 1 for ak−1 ≤ t < ak and equals 0 elsewhere.

As a result, ∫ t0

0

g(x)µ(x) dx =

m∑
k=1

gk{M(ak)−M(ak−1)} = gmM(am) +
m−1∑
k=1

(gk − gk+1)M(ak)− g1M(0) ≥ 0,

since gk ≥ gk+1 ≥ 0, M(ak) ≥ 0, and M(0) = 0. This proves the lemma. 2

Lemma 13 If we put

γ =
1

1− α

n∑
k=1

wkγk(1− αk), (25)

then ρ3(α,~γ) ≤ ρ4(α, γ), σ3(α,~γ) ≤ σ4(α, γ), and s3(α,~γ) ≤ s4(α, γ).

Proof. If we assume that γ is defined as in (25), then

σ4(α, γ)− σ3(α,~γ) = γθ(1− α)−
n∑
k=1

wkγk(θ − αk) ≥ θ
n∑
k=1

wk(γ − γk)(1− αk) = 0.

We now consider, using the expression for γ as in (25),

ρ4(α, γ)−ρ3(α,~γ) =

∫ tγ

0

Gtruck(T−t)f(t) dt+γ(1−α)Gbarge(T−t0)+

∫ T

t0

Gtruck(T−t)f(t) dt

−
n∑
k=1

wkγk

∫ T

t0

Grctruck(T − t)fk(t) dt−
n∑
k=1

wkγk(1− αk)Gbarge(T − t0)
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−
n∑
k=1

wk(1− γk)
∫ T

0

Gtruck(T − t)fk(t) dt =

n∑
k=1

wk

{∫ tγ

0

Gtruck(T − t)fk(t) dt− (1− γk)
∫ t0

0

Gtruck(T − t)fk(t) dt
}

+
n∑
k=1

wkγk

∫ T

t0

{Gtruck(T − t)−Grctruck(T − t)} fk(t) dt ≥

n∑
k=1

wk

{∫ tγ

0

Gtruck(T − t)fk(t) dt− (1− γk)
∫ t0

0

Gtruck(T − t)fk(t) dt
}
.

If we put

h(t) =
n∑
k=1

wk(1− γk)fk(t), (26)

then 0 ≤ h(t) ≤ f(t) and we get

ρ4(α, γ)− ρ3(α,~γ) ≥
∫ tγ

0

Gtruck(T − t)f(t) dt−
∫ t0

0

Gtruck(T − t)h(t) dt.

Let Eγ(t) be the function which equals 1 for 0 ≤ t < tγ and equals 0 elsewhere, and

define µ(t) = f(t)Eγ(t)− h(t). Then we obtain

M(t) =

∫ t

0

µ(x) dx ≥ 0, 0 ≤ t ≤ t0, (27)

and that M(t0) = 0. Indeed,

M(t0) =

∫ tγ

0

f(t) dt−
∫ t0

0

h(t) dt = F (tγ)−
n∑
k=1

wk(1− γk)Fk(t0) =
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(1− γ)(1− α)−
n∑
k=1

wk(1− γk)(1− αk) = 0.

Consequently we get for tγ ≤ t ≤ t0

M(t) =

∫ tγ

0

µ(x) dx−
∫ t

tγ

h(x) dx ≥
∫ tγ

0

µ(x) dx−
∫ t0

tγ

h(x) dx = M(t0) = 0.

If 0 ≤ t ≤ tγ, we arrive at

M(t) =

∫ t

0

µ(x) dx =

∫ t

0

{f(x)− h(x)} dx ≥ 0.

The lemma is proved applying Lemma 12 to

ρ4(α,~γ)− ρ3(α, γ) ≥
∫ t0

0

Gtruck(T − t)µ(t) dt. 2

We now proceed with the proof of Theorem 5.

We may verify directly that E1 � E2 by showing that ρ1 ≤ ρ2(α, 0), σ1 ≤ σ(α, 0),

and s1 ≤ s2(α, 0). Observe that ρ1 ≤ ρ2(α, γ) need not hold true for γ > 0. Further,

E2 � E3 follows trivially from A2 ⊆ A3. The set A2 emerges as a subset of A3 by

considering the special case ~γ = (γ, γ, . . . , γ). The assertion E3 � E4 follows from

Lemma 13. This proves the theorem. 2

A.6 Proof of Theorem 7

Fix 0 ≤ λ ≤ θ and write z(λ) = (ρ0− θ−λ
Ψ(λ)

, 1−λ). To prove the theorem, we need to

show that z(λ) for 0 ≤ λ ≤ θ constitute all maximal elements in A2. There are two
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cases to be discerned.

Case 1: Ψ(λ) = Φ(λ). In this case,

z(λ) = (ρ2(λ, 1), σ2(λ, 1)) ∈ A2

Next, write x = (ρ0−γρ(α), 1−θ+γ(θ−α)) and assume that x ≥ z(λ). This implies

1− θ + γ(θ − α) ≥ 1− λ, so λ ≥ γα + (1− γ)θ. Further, ρ0 − γρ(α) ≥ ρ0 − θ−λ
Ψ(λ)

or

γρ(α) ≤ θ−λ
Ψ(λ)

or γΨ(λ) ≤ θ−λ
ρ(α)
≤ γ(θ−α)

ρ(α)
. In other words, Ψ(λ) ≤ Φ(α) which can only

be true when λ = α and γ = 1, so x = z(λ). This implies that z(λ) is a maximal

element in A2.

Case 2: Ψ(λ) > Φ(λ). We may write Ψ(λ) = Φ(α) for some 0 ≤ α < λ. Write

λ = γα+ (1− γ)θ for some 0 < γ < 1. Then, with 1− λ = 1− θ + γ(θ − α), we get

z(λ) = (ρ0 −
θ − λ
Ψ(λ)

, 1− λ) = (ρ0 −
θ − λ
Φ(α)

, 1− θ + γ(θ − α)) ∈Mα ⊆ A2.

Write x = (ρ0−γρ(β), 1− θ+γ(θ−β)) and x ≥ z(λ). This implies ρ(α) ≥ ρ(β) and

hence α ≤ β since ρ is decreasing. On the other hand, 1−θ+γ(θ−β) ≥ 1−θ+γ(θ−α)

so α ≥ β. This implies α = β and that z(λ) is a maximal element in A2.

Finally, we need to show that all maximal elements have been described. This

follows from the fact that for (x1, x2) ∈ A2, we have the following assertions. First of

all, if x2 ≤ 1− θ, then x1 ≤ ρ0, so (x1, x2) ≤ (ρ0, 1− θ). Secondly, if 1− θ ≤ x2 ≤ 1,

then according to the analysis given above, (x1, x2) ≤ z(λ) with λ = 1 − x2. This

proves the theorem. 2
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A.7 Proof of Proposition 8

It can readily be verified that the mapping (σ3, ρ3) is affine with ρ3 as given by (7)

and σ3 as given by (6). For k = 1, . . . , n, we put

ρk(α) =

∫ T

0

Gtruck(T − t)fk(t) dt− Fk(t0)Gbarge(T − t0)−
∫ T

t0

Grctruck(T − t)fk(t) dt,

which is decreasing in α and ρk(θ) > 0. Write ~e = (1, 1, · · · , 1) and consider the

unit n-cube {~x ∈ Rn : ~0 ≤ ~x ≤ ~e}. As the polygon Mα = {(ρ3(α,~γ), σ3(α,~γ)) :

~0 ≤ ~γ ≤ ~e} is the image of an affine transformation of the n-cube, the extreme

points of the polygon are the images under the mapping of the extreme points of the

n-cube. Moreover, the edges of the polygon are the images of edges of the n-cube.

Consequently, we may construct the Pareto frontier of Mα by considering the slopes

of the polygon edges

Φk(α) =
θ − αk
ρk(α)

,

and establish distinct k1, k2, . . . , kn such that

Φk1(α) ≥ Φk2(α) ≥ · · · ≥ Φkn(α).
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The extreme points that define the piecewise linear Pareto frontier of Mα are given

by

~a0 = (ρ0, 1− θ),

~ap = (ρ0 −
p∑
i=1

wkiρki(α), 1− θ +

p∑
i=1

wki(θ − αki)), p = 1, . . . , n,

~an = (ρ0 − ρ(α), 1− α). (28)

We therefore define the function

σ̃3(α, γ) = 1− θ + γ(θ − α), (29)

and with rp = ρ0 −
∑p

i=1 wkiρki(α) for p = 1, . . . , n, we define

ρ̃3(α, γ) = rp +
γ − gp
gp+1 − gp

(rp+1 − rp), gp ≤ γ ≤ gp+1, (30)

where 0 = g0 < g1 < · · · < gn = 1 are given by

gp =

∑p
i=1wki(θ − αki)∑n
i=1wki(θ − αki)

=

∑p
i=1wki(θ − αki)

θ − α
. (31)

In this manner, the Pareto frontier ofMα is given by {(ρ̃3(α, γ), σ̃3(α, γ)) : 0 ≤ γ ≤ 1}

for each 0 ≤ α ≤ θ. The proposition is proved. 2

A.8 Proof of Theorem 9

Fix 0 ≤ λ ≤ θ and put z(λ) = (ρ∗3(λ), 1− λ).
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Case 1: ρ∗3(λ) = ρ̃3(λ, 1)

Then z(λ) = (ρ̃3(λ, 1), σ̃3(λ, 1)) ∈ Mλ ⊆ A3. If x = (ρ̃3(α, γ), σ̃3(α, γ)) satisfies x ≥

z(λ), then 1−θ+γ(θ−α) ≥ 1−λ, so λ ≥ γα+(1−γ)θ. Further, ρ̃3(α, γ) ≥ ρ̃3(λ, 1) =

ρ∗3(λ). On the other hand, since γ ≥ θ−λ
θ−α , we get ρ̃3(α, γ) ≤ ρ̃3(α, θ−λ

θ−α) ≤ ρ∗3(λ) since

α ≤ λ. This implies ρ̃3(α, γ) = ρ̃3(λ, 1) = ρ∗3(λ) and γ = θ−λ
θ−α , so σ̃3(α, γ) = 1 − λ

and hence x = z(λ). We have obtained that z(λ) ∈ A3 is a maximal element.

Case 2: ρ∗3(λ) = ρ̃3(α, θ−λ
θ−α) for some 0 ≤ α ≤ λ

Then z(λ) = (ρ̃3(α, γ), σ̃3(α, γ)) ∈Mλ ⊆ A3 with γ = θ−λ
θ−α . If x = (ρ̃3(β, δ), σ̃3(β, δ))

satisfies x ≥ z(λ), then 1− θ+ δ(θ−β) ≥ 1−λ, so λ ≥ δβ+ (1− δ)θ, and ρ̃3(β, δ) ≥

ρ̃3(α, γ) = ρ∗3(λ). On the other hand, since δ ≥ θ−λ
θ−β , we get ρ̃3(β, δ) ≤ ρ̃3(β, θ−λ

θ−β ) ≤

ρ∗3(λ) = ρ̃∗3(α, θ−λ
θ−α) since β ≤ λ. This implies ρ̃3(β, δ) = ρ∗3(λ) = ρ̃3(α, γ), and

σ̃3(β, δ) = 1 − λ = σ̃3(α, γ) and hence x = z(λ). We have obtained that z(λ) ∈ A3

is a maximal element. We may argue as in Theorem 7 that we have captured all

maximal elements in A3 in this manner. 2

A.9 Proof of Proposition 10

In case (ρ∗3(λ), 1− λ) ∈ E3, is given, we construct the corresponding Pareto optimal

solution (α,~γ) as follows. First of all, we determine α by (ρ∗3(λ), 1 − λ) = ρ̃3(α, γ)

with γ = θ−λ
θ−α . We then construct ~γ = (γ1, . . . , γn) by either identifying 0 ≤ p < n

such that gp ≤ γ < gp+1 or by identifying that λ = α, i.e. γ = 1. Based on

the proof of Proposition 8, we may conclude that ~γ can be established as identified

in the statement of the proposition, with the special case of γ = 1 giving rise to

~γ = (1, . . . , 1). 2
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