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Abstract. Real-time railway operations are subject to stochastic dis-
turbances. However, a railway timetable is a deterministic plan. Thus a
timetable should be designed in such a way that it can cope with the
stochastic disturbances as well as possible. For that purpose, a timetable
usually contains time supplements in several process times and buffer
times between pairs of consecutive trains. This paper describes a Stochas-
tic Optimization Model that can be used to allocate the time supplements
and the buffer times in a given timetable in such a way that the timetable
becomes maximally robust against stochastic disturbances. The Stochas-
tic Optimization Model was tested on several instances of NS Reizigers,
the main operator of passenger trains in the Netherlands. Moreover, a
timetable that was computed by the model was operated in practice in
a timetable experiment on the so-called “Zaanlijn”. The results show
that the average delays of trains can often be reduced significantly by
applying relatively small modifications to a given timetable.

1 Introduction

Punctuality of a railway system is a highly important issue, since punc-
tuality is often considered as one of the key performance indicators of
a railway system. This is particularly true for passenger trains. In the
Netherlands, punctuality of passenger trains is defined as the percentage
of trains that arrive at one of the larger railway stations with a delay of
? This research was partially sponsored by the Future and Emerging Technologies
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less than 3 minutes. Several other countries use a 5 minute margin, or
they measure the punctuality only at the final destinations of the trains.

However, measuring the punctuality in these ways is quite inaccurate:
a delay of 6 minutes is as bad as a delay of 20 minutes. Moreover, it may
also be detrimental to the punctuality itself, since it suggests that there
is no problem as long as a delay is less than 3 (or 5) minutes. However,
a delay of 2 minutes at a station reduces the probability of an on time
arrival at the next station. Therefore, it may be better to measure the
punctuality in terms of the average delays of trains.

Delays of trains occur since real-time railway operations are subject
to external stochastic disturbances. The latter are also called primary
disturbances. However, the underlying railway timetable is a deterministic
plan. In order to cope with the disturbances in the real-time operations,
a timetable usually contains time supplements in the process times of
the trains and buffer times between pairs of consecutive train movements
on the same parts of the infrastructure. By the presence of the time
supplements, part of the primary stochastic disturbances can be absorbed
without giving rise to delays. Moreover, if delays do occur, then the time
supplements also enable their absorption. Buffer times between trains
reduce the knock-on effects of delays from one train to another. The
latter are also called secondary delays.

Thus, to improve the punctuality of a railway system, it is highly rel-
evant to look for an optimal allocation of the time supplements and the
buffer times in the timetable. Not only the total amount of time supple-
ments and buffer times, but also their distribution among the processes
in the timetable is relevant. The allocation of running time supplements
was described recently by UIC (2000). This subject was also studied by
Rudolph (2004), Vromans (2005), and Kroon et al. (2007).

In general, allocating more time supplement to a certain process in-
creases the probability that the process can be carried out within the
planned time. Therefore, time supplements may add to the predictability
of the realized travel times of the passengers. On the other hand, more
time supplements also lead to higher planned travel times. Moreover, time
supplements may have a negative effect on the realized travel times. In-
deed, each minute of running time supplement in the timetable brings
the possibility that it is not needed in the operations, since there are
no disturbances. Additionally, more time supplements may require more
personnel and rolling stock, hence they are negative for the efficiency of
the railway system. As a consequence, the time supplements should be
chosen by a careful trade-off between these elements.
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The analysis and the improvement of the punctuality of railway ser-
vices have been studied by several researchers: various relevant models
have been developed to that end. The main examples of these models are
(i) simulation models, (ii) Max-Plus models, and (iii) analytical models.

Simulation models of railway processes are described by e.g. Bergmark
(1996), Wahlborg (1996), Middelkoop and Bouwman (2000), Hürlimann
(2001), and König (2001). Models based on Max-Plus algebra are de-
scribed by e.g. Goverde (1998), (2005), De Kort (2000), and Soto Y
Koelemeijer et al. (2000). Finally, analytical models are described by
Schwanhäußer (1974), Weigand (1981), Petersen and Taylor (1982), Wakob
(1985), Hallowell and Harker (1998), Higgins and Kozan (1998), Carey
(1999), Huisman and Boucherie (2001), and Yuan (2006).

A drawback of these existing models is that they are mainly evalua-
tion models and that, based on these models, optimization of the robust-
ness of a timetable can only be achieved by trial-and-error. That is, the
timetable is modified and then the evaluation model is used afterwards to
evaluate the effect of the modification. These steps are repeated until an
acceptable result has been achieved. This iterative process is sometimes
referred to as organic planning. Timetable generation models did not ex-
plicitly consider stochasticity in the real-time railway operations so far,
see e.g. Hooghiemstra et al. (1999) and Peeters (2003).

In contrast with these existing models, this paper describes a Stochas-
tic Optimization Model, see e.g. Birge and Louveaux (1997) and Klein
Haneveld and Van der Vlerk (1998). This model can be used to mod-
ify a given cyclic timetable for a number of trains that are operated on
a certain common railway infrastructure. At the same time, the model
can be used to simulate the timetable under construction by operating
a number of realizations of the trains in the timetable. These trains are
operated as much as possible according to the modified timetable, but
subject to primary stochastic disturbances. The main criterion used to
modify the timetable is minimization of the average delay of the trains,
but other criteria can be handled as well. This minimization is achieved by
re-allocating the time supplements and the buffer times in the timetable.

The Stochastic Optimization Model is an improved version of the
model described by Vromans (2005) and Kroon et al. (2007). The latter
model is based on the same idea and has the same objective, but it uses a
linear time axis per train. This feature makes the inclusion of cyclic pro-
cesses, such as rolling stock circulations, rather cumbersome. The model
described in the current paper is based on a cyclic time axis. This also
better facilitates network structures of the railway infrastructure.
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The Stochastic Optimization Model is a symbiosis of a timetabling
model and a simulation model. The application of the model to several
practical cases, together with the evaluation of the obtained results by
simulation and by experiments in practice have shown that the improve-
ment of a given timetable by stochastic optimization may lead to a sub-
stantial reduction of the average delay of the trains.

The structure of this paper is as follows. In Section 2, we give a simple
example with just two consecutive trips of a single train to illustrate the
effect of stochasticity on the optimal timetable. In Section 3, we describe
the Stochastic Optimization Model in more detail. Section 4 presents
results on the existence of an optimal solution, and on convergence of the
solutions of the Stochastic Optimization Model to the optimal solution
if the number of realizations increases. In Section 5, we describe several
further modeling issues. Section 6 presents computational results based
on instances of NS Reizigers, the main operator of passenger trains in the
Netherlands. Section 7 describes the results of a practical experiment with
an improved timetable on the so-called “Zaanlijn” in the Netherlands. The
paper is concluded in Section 8.

2 Two trips: an analytical approach

In order to illustrate the idea of optimizing a timetable under uncertainty,
we start with a straightforward probabilistic analysis of the timetabling
problem for just two consecutive trips of a single train.

Suppose that a train is operated over two identical consecutive trips,
where on each trip the train incurs an exponentially distributed distur-
bance with average 1/λ. In order to be able to cope with these distur-
bances, a total running time supplement S is to be allocated to the
two trips. The running time supplement allocated to trip t is called st

(t = 1, 2). The dwelling between the two trips does not have any time
supplement. The initial delay by the start of the first trip is 0.

Then for each d > 0 the probability P (D1 ≤ d) that, by the end of the
first trip, the train has a delay D1 not exceeding d equals the probability
that the disturbance on the first trip does not exceed d+ s1. Hence it can
be expressed as follows.

P (D1 ≤ d) = 1− exp−λ(s1+d) (1)

A somewhat more complex analysis shows that for each d > 0 the
probability P (D2 ≤ d) that, by the end of the second trip, the train has
a delay D2 not exceeding d equals
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P (D2 ≤ d) = 1− exp−λ(s2+d) −λ(s2 + d) exp−λ(S+d) (2)

These results clearly show that the delay of the train on the first trip
influences the delay on the second trip. Indeed for each d > 0 we have
P (D2 ≤ d) < P (D1 ≤ d) if s1 = s2. This is caused by the fact that the
first trip starts with zero delay, and the second trip probably not.

Now the standard mathematical analysis for minimizing the average
delay (that is, (i) differentiation with respect to d for determining the
probability density functions of D1 and D2, (ii) integration for determin-
ing the average delay, and (iii) differentiation with respect to s1 and s2

for minimizing the average delay) gives the following results for s∗1 and
s∗2, the optimal values for the running time supplements on trips 1 and 2.

s∗1 =
ln

(
(1 +

√
1 + 4 expλS)/2

)
λ

and s∗2 = S − s∗1 (3)

These results show the existence of an optimal timetable, given the
intensities of the disturbances. They also show that s∗1 > S/2 and that
s∗2 < S/2. Note that, if 1/λ > S/ ln 2, the optimal running time supple-
ments s∗1 and s∗2 obtained from (3) satisfy s∗1 > S and s∗2 < 0. In this case,
it is more appropriate to set s∗1 = S and s∗2 = 0 if negative running time
supplements are not allowed.

Table 1. Optimal vs. proportional allocation of running time supplements for S = 1

1/λ s∗ S − s∗ D∗ Dp ∆

0.60 0.63 0.37 0.72 0.73 1.68%

0.80 0.71 0.29 1.20 1.23 2.48%

1.00 0.80 0.20 1.71 1.77 3.14%

1.20 0.89 0.11 2.24 2.32 3.67%

1.40 0.98 0.02 2.77 2.89 4.11%

Table 1 presents results obtained by applying the model with S =
1 and several values for λ. The columns D∗ and Dp give the average
delay for the optimal and the proportional allocation of the running time
supplements, respectively. In the proportional allocation, each trip gets
a running time supplement of 0.5. These results show that, for a given
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amount of running time supplement, the difference between the optimal
and the proportional allocation, represented in column ∆, increases with
the intensity of the disturbances. For just two trips, the differences are
small, but for more complicated cases the differences can be larger.

Note that the optimal timetable contains a larger part of the total
amount of running time supplement on the first trip. This can be ex-
plained as follows: a delay by the end of the first trip is measured by the
end of the first trip, but it also increases the probability of a delay by
the end of the second trip. Thus, roughly speaking, a delay by the end of
the first trip counts twice, whereas a delay by the end of the second trip
counts only once. In order to reduce the delays by the end of the first trip,
a larger part of the running time supplement must be allocated to the
first trip. This non-optimality of a proportional allocation of the running
time supplements was pointed out earlier by Vromans (2005) and Kroon
et al. (2007), also for more than two trips.

3 Stochastic Optimization Model

In this section, we describe the Stochastic Optimization Model that can
be used to improve a given cyclic timetable for a number of trains on a
common part of the railway infrastructure with respect to the average
weighted delay of the trains. The latter is achieved by re-allocating the
time supplements and the buffer times in the timetable.

3.1 Sample Average Approximation Method

The Stochastic Optimization Model is based on a Sample Average Ap-
proximation Method, see Shapiro (2000). That is, let x be the vector of
decision variables. This vector includes all planned departure and arrival
times for one day, thereby taking into account the fact that all hours of a
cyclic timetable are basically identical. Then the timetabling part of the
model is described by a system Ax ≤ b of linear inequalities. The set K
of feasible timetables is defined by K := { x | Ax ≤ b }.

We assume that the primary disturbances are described by a random
vector variable ∆. Let δ be a realization of ∆. That is, δ is a disturbance
vector which assigns a non-negative disturbance to each trip of a day. Let
D(x, δ) be the average weighted delay of the trains when the timetable x
is carried out subject to the primary disturbances in δ. We assume that
the expectation ED(x,∆) is finite for each x ∈ K. Then we want to find
the minimum
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D∗ = min { ED(x,∆) : x ∈ K } , (4)

where the minimum is attained at x∗. This problem amounts to mini-
mizing the expected weighted delay of the trains. Note that also other
elements could be considered in the objective function.

However, since it is difficult to compute D∗ and x∗ directly from (4),
we use an approximation. That is, we first select a fixed number of re-
alizations R to be used in the timetable optimization. Then we take a
random sample of R vectors δ1, . . . , δR of primary disturbances, and we
optimize the timetable given these primary disturbances. The primary
disturbances are assumed to be independent of the timetable. Thus we
compute

D∗
R = min

{
1
R

R∑
r=1

D(x, δr) : x ∈ K

}
, (5)

where the minimum is attained at x∗R. By taking the number of real-
izations R large enough, we may hope that x∗R and D∗

R are adequate
approximations of x∗ and D∗. Therefore, we consider x∗R and D∗

R as solu-
tions to (4). More details on the existence of an optimal solution and on
the convergence to an optimal solution are described in Section 4.

3.2 Model description

The Stochastic Optimization Model contains a timetabling part for deter-
mining the timetable and a simulation part for evaluating the robustness
of the timetable under construction. The timetabling part of the model
shows some similarity with the well-known Periodic Event Scheduling
Model (PESP), see Serafini and Ukovich (1989). Several researchers have
studied the application of PESP for cyclic railway timetabling, see e.g.
Nachtigall (1996) and Peeters (2003).

Note that in our approach it is not essential that the timetable is
cyclic. However, the latter reduces the computation time for solving the
model, since a cyclic timetable has less degrees of freedom. Moreover,
the timetable of NS Reizigers that formed the basis of our computational
experiments is cyclic. Therefore, we assume throughout this paper that
the timetable is cyclic with a cycle time of one hour.

The objective of the Stochastic Optimization Model is to find a cyclic
timetable with a minimum average weighted delay of the trains. To that
end, the model uses an initial cyclic timetable as input and, based on
that, it constructs an improved cyclic timetable. In order to evaluate and
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optimize the timetable under construction, R realizations of the timetable
are operated subject to a priori selected primary stochastic disturbances.
Here each realization covers H consecutive hours of the cyclic timetable.
In practice, each realization can be seen as a single day.

The R realizations of the timetable are connected with each other
only through the timetable and the objective function of minimizing the
average delay of the trains, as is expressed in (5). The objective function
is computed over the R realizations and over the processes in the H
consecutive hours of each realization.

Consecutive hours of each realization are operated one after another.
As a consequence, the delayed trains in hour h of realization r may in-
teract with the trains in hour h + 1 of realization r if they share the
same parts of the infrastructure or if they are connected otherwise, e.g.
by a passenger or a rolling stock connection. Crew connections are usually
non-cyclic. Therefore such connections are kept out of our model.

Whereas in other papers on automated timetable generation deter-
mining the cyclic orders of the trains on the tracks is part of the problem
to be solved, we assume in the current paper that the cyclic orders of the
trains on the tracks are given and cannot be modified. Indeed, the pur-
pose of the current model is to leave the basic structure of the timetable
the same as in the initial timetable and to optimally re-allocate the time
supplements and the buffer times in that timetable, so that the resulting
timetable is more robust than the initial one.

Moreover, we assume that also in the realizations of the timetable the
orders of the trains on the tracks is identical to the orders of the trains
on the tracks in the improved timetable (and thus to the orders in the
initial timetable). Finally, all connections between trains that are defined
in the timetable are maintained in the realizations. In other words, the
simulation part of the model does not include traffic control decisions. In
fact, given the structure of the model, the latter is basically impossible.
Both restrictions are explained in Section 5.1.

3.3 Notation

We consider a given cyclic timetable with a cycle time T . Usually, T equals
60 minutes. Therefore, we will speak about “hours” instead of “cycles”
in the remainder of this paper.

A timetable consists of a number of processes that have to be carried
out. For example, trains have to run from one station to another, they
have to dwell for a certain period of time in a station, there has to be a
certain headway time between two consecutive trains crossing the same
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part of the infrastructure, two trains have to be split or combined, or
they have a passenger or a rolling stock connection, etc. Thus there are
processes related to single trains and processes related to pairs of trains.
The beginning of a process and the completion of a process are called
events. For each event, the corresponding event time is to be planned in
the timetable. Given the event times of the events, the process times of
the processes equal the differences between the event times of the corre-
sponding events. Event times that correspond to an arrival or a departure
of a train are assumed to be integer valued.

Since the timetable is cyclic with a cycle time T of one hour, we only
have to consider one hour for the planning part of the model. In each hour,
P processes are to be carried out and there are E corresponding events.
For each process p, the events b(p) and c(p) denote the beginning and
completion events of process p, respectively. The parameter mp denotes
the technically minimum process time of process p. The given timetable
is described in terms of the planned event times Ve. These parameters
denote the offset of the event times in each hour of the timetable. In the
given timetable, process p starts at Vb(p) and ends at Vc(p). Note that, in
a cyclic timetable, we may assume without loss of generality that each
process time is shorter than the cycle time T .

A process p that completely falls within an hour has Vb(p) < Vc(p).
However, a process p that crosses the end of an hour has Vc(p) < Vb(p).
For example, if the departure time and the running time of a train equal
55 and 17 in a cyclic timetable with cycle time T = 60, then this train’s
arrival time equals 12 = 55 + 17 − 60. To describe such situations, we
introduce for each process p a binary input parameter Kp that records
whether or not the corresponding process crosses the end of the hour. In
other words, Kp = 1 if and only if Vc(p) < Vb(p). The model is not allowed
to modify these given cyclic orders of the events in the initial timetable.

In the optimized timetable, the planned event time of event e is de-
noted by the decision variable ve. The decision variable sp denotes the
planned time supplement for the process time of process p. In order to
make sure that the end of the hour does not lead to unwanted restrictions
for the planned event times, the planned event times are not restricted
to the time interval [0, T − 1]: they may take any (integer) value. For
example, if the original timetable contains an event time at t = 0 and the
planned event times would be restricted to the interval [0, T−1], then this
event time could only move forward in time and not backward. The latter
is unwanted, and therefore the event times can basically obtain any value.
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The final event times of the timetable can be obtained by transferring the
initially obtained ones back into the time interval [0, T − 1].

The timetable is evaluated during its modification by operating R real-
izations of the timetable subject to a priori selected independent stochas-
tic disturbances. Each realization covers H consecutive hours of the cyclic
timetable. Hour h + 1 of realization r takes place after hour h of realiza-
tion r. The stochastic disturbance of process p in hour h of realization
r is denoted by the parameter δp,r,h for p = 1, . . . , P , r = 1, . . . , R, and
h = 1, . . . ,H. The realized event time of event e in hour h of realization
r is denoted by the variable ṽe,r,h. The realized event times of each re-
alization are assumed to occur on a linear time axis. Thus they are not
restricted to the time interval [0, T − 1]

Mainly the delays of the events corresponding to arrivals of trains
are evaluated, but also other delays can be taken into account. Arrival
events are, by definition, the events whose delays are measured. The set
of arrival events is denoted by Ea. The delay of arrival event e in hour
h of realization r is denoted by the decision variable De,r,h. The average
weighted delay of all trains is denoted by D. Delays are weighted since
delays at one location may be more harmful for the passengers than delays
at other locations. Certain events, such as a departure of a train, should
not start before their corresponding planned event times. Such events are
called departure events. The set of departure events is denoted by Ed.

3.4 Timetabling part of the model

Most of the constraints to be satisfied in a cyclic timetabling model can
be expressed in terms of the planned event times and the planned process
times, see e.g. Peeters (2003). For each process p that may include a
variable amount of time supplement sp we get the following relation.

mp + sp = vc(p) − vb(p) + Kp × T for p = 1, . . . , P. (6)

The left-hand side of this equation describes the planned process time
of a process p as the sum of the technically minimum process time mp

and the variable time supplement sp. The right-hand side describes it as
the time difference between the planned completion time and the planned
begin time of process p, thereby taking into account a possible crossing
of the end of the hour.

For certain processes also an upper bound up on the planned pro-
cess time may be specified. This results in the following more traditional
constraints from the PESP model.

mp ≤ vc(p) − vb(p) + Kp × T ≤ up for p = 1, . . . , P. (7)
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Obviously, this constraint could also be enforced by introducing an upper
bound of up −mp on the amount of time supplement sp for process p.

Other relevant constraints specify that, at each part of the infrastruc-
ture, the time difference between the last and the first planned event time
in each hour should not exceed the cycle time T minutes. To that end,
let e1 be the first planned event in an hour on a certain part of the in-
frastructure, and let e2 be the last planned event in an hour on the same
part of the infrastructure, then

0 ≤ ve2 − ve1 ≤ T − 1. (8)

These constraints are important since the event times are not restricted
to the time interval [0, T − 1], as was explained earlier. These constraints
guarantee that the obtained timetable can be transferred back into the
time interval [0, T − 1] after the optimization.

Next, in order to allocate a certain amount of time supplement to
the process times, Q subsets A1, . . . , AQ of processes are selected. Each
subset Aq of processes is connected with a certain given amount of time
supplement Sq to be allocated to the processes in Aq. Then the following
constraints are to be satisfied.

∑
p∈Aq

sp ≤ Sq for q = 1, . . . , Q. (9)

For example, such a constraint may indicate that a certain total amount
of running time supplement is to be allocated to the consecutive running
times along the line of a single train. However, a certain amount of time
supplement may also have to be allocated to a number of lines together.

Note that for modeling the processes that involve a pair of trains,
the assumption that the orders of the events should remain unchanged,
is essential. Indeed, if the orders of the events would not be known a
priori, then additional binary variables would be required to model these.
This feature would highly complicate the solution process of the model,
as is described in Section 5. However, given the orders of the events, all
constraints can be described as in (6)–(9).

Finally, non-negativity constraints have to be imposed on the variables
sp, and if one wants to obtain a timetable that is specified in integer min-
utes, then integrality constraints have to be imposed on the corresponding
event times as well.
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3.5 Simulation part of the model

Recall that we assume that in the realizations the orders of the events
are the same as in the timetable. Thus, the simulation part of the model
does not include traffic control decisions.

As was mentioned earlier, the H hours of each realization are operated
one after another. A process p with Kp = 0 has Vb(p) < Vc(p). Thus it is
planned within a single hour. Therefore, we assume that a process p with
Kp = 0 always ends in the same hour as the hour it started in. However,
a process p with Kp = 1 has Vc(p) < Vb(p). Obviously, in the realizations
it is impossible that a process ends earlier than it started. Therefore we
assume that a process p with Kp = 1 always ends in a later hour than
the hour it started in. Thus, a process p with Kp = 1 starts in hour h of
realization r at ṽb(p),r,h. This process ends at ṽc(p),r,h+1.

The foregoing implies that the constraints linking the event times of
the processes to the technically minimum process times and the distur-
bances are the following.

mp + δp,r,h ≤ ṽc(p),r,h+Kp
− ṽb(p),r,h (10)

for p = 1, . . . , P ; r = 1, . . . , R; h = 1, . . . ,H.

As a consequence, a delayed train in hour h of realization r may influence
the trains in hour h + 1 in realization r if one of its related processes
crosses the end of the hour. Note that realized process times do not have
an upper bound, in contrast with the planned process times that may
have an upper bound. Indeed, the realized process times should have the
freedom to be extended basically indefinitely, depending on the sizes of
the disturbances. Note that (10) is an inequality and not an equality.
Indeed, (10) only deals with primary disturbances. However, trains may
also pick up secondary delays from interactions with other trains.

Departure events should not occur too early, and a delay corresponds
to a late arrival event. This results in the following constraints.

ve + h× T ≤ ṽe,r,h (11)

for e ∈ Ed; r = 1, . . . , R; h = 1, . . . ,H,

ṽe,r,h − (ve + h× T ) ≤ De,r,h (12)

for e ∈ Ea; r = 1, . . . , R; h = 1, . . . ,H.

Here we use the cyclic character of the timetable, since the planned event
time of event e in hour h of realization r equals ve +h×T . Import delays
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of trains that enter the studied area can be modeled similarly. All delay
variables De,r,h are non-negative. Indeed, positive delays of trains should
not be compensated by negative delays of other trains.

In the model, the objective is to minimize the average weighted delay
of the trains. Thus the objective is to

minimize D =
∑
e∈Ea

R∑
r=1

H∑
h=1

weDe,r,h/(|Ea| ×R ×H). (13)

Here the weights we indicate the weights of the different delays.
Note that maximizing the punctuality of the trains is much harder

than minimizing the average delay of the trains. Indeed, for maximizing
the punctuality, one needs for each arrival event a binary decision variable
that records whether or not the realized arrival takes place within the
punctuality margin. Therefore, if one wants to improve the punctuality,
this may be accomplished indirectly by penalizing delays exceeding the
punctuality margin more severely than other delays.

4 Existence and convergence

As was mentioned already in Section 3.1, the Stochastic Optimization
Model is based on a Sample Average Approximation Method. In the fol-
lowing, x denotes the vector of decision variables, and the timetabling
part of the model is described by a system Ax ≤ b of linear inequalities.
The set K := { x | Ax ≤ b } of feasible timetables is compact.

The primary disturbances are described by a random vector variable
∆, and δ is a realization of ∆. Recall that the function D(x, δ) denotes
the average weighted delay of the trains when the timetable x is carried
out subject to the primary disturbances δ. We assume that D(x, δ) is a
continuous function of x. It is not difficult to verify that this function is
convex in x and satisfies |D(x, δ)| ≤ C · ||δ|| for all x and δ with some
positive constant C. The latter depends on the number of trips in each
realization. We also assume that the expectation ED(x,∆) is finite for
each x ∈ K. These are realistic assumptions. Then we want to find

D∗ = min { ED(x,∆) : x ∈ K } , (14)

where the minimum is attained at x∗. One easily verifies that ED(·,∆) is
a continuous function of x on the compact set K. This implies that the
minimum D∗ that we are looking for exists indeed.
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In the Sample Average Approximation Method, we select a fixed num-
ber of realizations R to be used in the timetable optimization. Then we
take a random sample δ1, . . . , δR of the primary disturbances that are
assumed to occur in the railway operations during these realizations. Fi-
nally, we optimize the timetable over these realizations and given these
primary disturbances. Thus we compute

D∗
R = min

{
1
R

R∑
r=1

D(x, δr) : x ∈ K

}
, (15)

where the minimum is attained at x∗R. Again, the minimum exists.
The convergence properties of D∗

R and x∗R have been studied exten-
sively in recent years, see e.g. King and Rockafellar (1993), Kaniovski et
al. (1995), Shapiro (2000), Shapiro and Homen-de-Mello (2000), and Lin-
deroth and Shapiro (2002). In these papers, general results are derived
from the Law of Large Numbers.

These results imply that, under the assumptions of our model, the
function values D∗

R tend to D∗ with probability 1 for increasing values of
R. Moreover, dist (x∗R,K∗) tends to zero with probability 1 for increasing
values of R. Here K∗ := { x ∈ K : ED(x, ∆) = D∗ }. It follows
that the Sample Average Approximation Method leads to appropriate
approximations of x∗ and D∗ for increasing values of R.

5 Further modeling issues

5.1 Traffic control

The model described in this paper does not include operational traffic con-
trol decisions. That is, in each realization of the processes in the timetable,
the cyclic orders of the trains on the tracks are the same as in the initial
timetable. Moreover, connections between trains that are defined in the
timetable are always maintained in the realizations. This may seem to be
a restriction of the model. However, given the structure of the Stochastic
Optimization Model, it is basically impossible to incorporate operational
traffic control decisions into such a model.

Indeed, all disturbances are generated prior to solving the model.
Thus, if operational traffic control decisions would be incorporated into
the model, then at each point of time these decisions would be taken under
complete knowledge of all disturbances in the future. In other words, the
traffic control decisions generated by the model could anticipate on certain
disturbances in the future. This is not realistic in practice, where, at each
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point of time, one has to decide in the operations based on information
that is available at that particular time instant only.

Note that the stochastic optimization model is meant to increase the
robustness of the timetable against relatively small disturbances. In fact,
a timetable cannot be made robust against large disruptions. Small dis-
turbances usually do not require traffic control decisions. Therefore, the
fact that traffic control decisions cannot be incorporated into the model
is not really a problem.

5.2 Variable planned train orders

The model described in this paper assumes that the planned cyclic orders
of the trains on the tracks are given by the input parameters Kp. If the
model would also be allowed to modify the planned cyclic orders of some
of the trains on the tracks, then some more flexibility could be built into
the model. Note that, also in this case, we have to retain the assumption
that in the operations the cyclic orders of the trains on the tracks are the
same as in the plan, as was explained in Section 5.1.

First, for each process p corresponding to events that may be switched
in order, the former input parameter Kp is to be treated as a binary
decision variable. The latter also implies that, since train orders are not
fixed now, constraints such as headway constrains have to be included for
all pairs of trains on a certain location instead of for pairs of consecutive
trains only. Also constraints (8) have to be taken into account for all pairs
of trains, since in this case it is not known a priori which events are the
first and the last planned events on a certain location in each hour. The
remaining timetabling part of the model may remain the same.

The simulation part of the model has to be modified as well. For
each process p where Kp is a decision variable, constraints (10) obviously
have to be modified, since such constraints are highly non-linear. These
constraints are to be replaced by the following ones.

lp −Kp × T ≤ vc(p),r,h − vb(p),r,h ≤ up + Kp × T (16)

for p = 1, . . . , P ; r = 1, . . . , R; h = 1, . . . ,H

lp − (1−Kp)× T ≤ vc(p),r,h+1 − vb(p),r,h ≤ up + (1−Kp)× T (17)

for p = 1, . . . , P ; r = 1, . . . , R; h = 1, . . . ,H

Thus constraints (16) can be active only if Kp = 0. In that case, con-
straints (17) are void. If Kp = 1, the situation is similar but reversed.
Note that these constraints are quite bad for the computation times of
the model, due to their Big M-character.
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5.3 Peak and off-peak hours

Railway services usually have to deal with non-symmetric peak demand.
In the morning peak, many passengers travel towards their work in the
large cities. In the afternoon peak, they travel in the reverse direction.
In order to accommodate this non-symmetric peak demand in a cyclic
timetable, a number of additional trains may be operated in the peak
direction during the peak hours. During the off-peak hours, the time slots
of these additional trains are empty. Note that in this case the timetable
is not completely cyclic anymore.

We included this difference between the timetable in peak and off-peak
hours in our model. However, since this extension of the model leads to
a rather cumbersome description, we skip the details. The details can be
found in Retel Helmrich (2006).

In the timetabling part of the extended model, which still covers only a
single hour, we included all trains. That is, we included the regular trains
and the trains that are operated only during one of the peak periods. A
timetable is feasible in the extended model if (i) the regular trains do not
have conflicts with each other, (ii) the morning peak trains fit between
the regular trains, and (iii) the afternoon peak trains fit between the
regular trains as well. A virtual “conflict” between a morning peak train
and an afternoon peak train is neglected by the model.

In the simulation part of the model, we assume that the peak trains
are operated only during the appropriate peak hours. Note that this im-
plies that, during different hours of the day, different constraints for the
relations between trains are to be taken into account. For example, the
headway constraints depend on the actual hour of the day.

6 Computational results

In this section we present computational results that were obtained by
applying the Stochastic Optimization Model to a case based on the 2007
timetable for the northern part of North-Holland in the Netherlands (the
so-called “Kop van Noord-Holland”, see Figure 1).

The computational results were obtained by implementing the model
in the modeling system OPL Studio 3.7 running on Windows XP. The
model was solved by CPLEX 9.0. The hardware was an Intel Pentium 4
processor with a clock speed of 3.0 GHz and 1 GB internal memory.

In the simulation part of the model, we could handle at most 420 hours
at the same time. These 420 hours were split into R = 20 realizations
(days) of H = 21 hours. This lead to a model with 500.000+ decision
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variables and 400.000+ constraints. The number of integer variables for
representing the planned event times in the timetable is 1.000+.

It should be noted that Stochastic Optimization Models cannot only
be solved by (Mixed Integer) Linear Programming, but also by more
dedicated optimization methods. Such methods may utilize the fact that
a Stochastic Optimization Model usually consists of a relatively small
planning part and a relatively large simulation part. The size of the sim-
ulation part strongly depends on the number of realizations. A dedicated
method can handle this part more efficiently than (Mixed Integer) Lin-
ear Programming. For a dedicated method for solving robust timetabling
problems based on Convex Optimization, see Maróti (2006).

6.1 Case description

The major part of the infrastructure in the “Kop van Noord-Holland” is
double-track. However, north of Schagen (Sgn) the infrastructure is just
single-track with double-track sections at the stations Anna Paulowna
(Ana) and Den Helder Zuid (Hdrz). Also the connections between Heer-
hugowaard (Hwd) and Hoorn (Hn) and between Enkhuizen (Ekz) and
Hoorn Kersenboogerd (Hnk) are single-track sections with double-track
sections at most underway stations.

The 2007 timetable for the “Kop van Noord-Holland” is cyclic with a
cycle time of 60 minutes. Almost all train lines are operated there twice
per hour with a cycle time of 30 minutes, but there are some exceptions.

The number of passenger trains in this area is about 50 per hour. In
addition to the passenger trains, each hour includes about 6 time slots
for cargo trains. In the operations, only a subset of these time slots is
actually used. A further complicating factor is the fact that the “Kop van
Noord-Holland” contains several bridges that must be opened sometimes
for ships. Therefore, they are temporarily not available for railway traffic.

The trains that enter the “Kop van Noord-Holland” from outside the
area, such as the intercity trains of the 3000 line and the regional trains
of the 4000 line, are responsible for a lot of import delays in Amsterdam
(Asd). Also in Haarlem (Hlm) and near Amsterdam Sloterdijk (Assh),
import delays have to be taken into account.

6.2 Disturbance distributions

An important part of the data is a description of the disturbances that
are to be taken into account in the simulation part of the model. In the
model, we distinguish between import delays, dwell time disturbances
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Fig. 1. The train lines in the “Kop van Noord-Holland” in the 2007 timetable.
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and running time disturbances. For determining the intensities of these
disturbances, we used an analysis tool developed by NS Reizigers for
analyzing log files of realized train movements. These data describe in
detail the realized train movements in a certain period of time. We used
realization data from weekdays in all four weeks of February 2006. An
explanation for using these data is given below.

Note that the realization data describe delays of trains instead of the
underlying primary disturbances, e.g. varying dwell times due to varying
numbers of passengers or varying running times due to train driver behav-
ior. Delays of trains are the result of a mixture of primary disturbances
and secondary disturbances (knock-on delays). However, by filtering the
unhindered dwell times and train movements, the analysis tool is able
to estimate the distributions of the primary disturbances. Moreover, we
assumed that the primary disturbances are independent of the operated
timetable. The latter is a realistic assumption, which allows us to use
realization data from 2006 for improving the timetable for 2007.

Based on this analysis of the realization data, we determined the
intensities (averages) of the primary disturbances. For the underlying
distribution of these disturbances, we assumed the exponential distribu-
tion. This choice is motivated by a number of studies in this respect, see
Schwanhäußer (1974), Ferreira and Higgins (1996), Goverde et al. (2001),
and Yuan (2006). For a more detailed description of the data preparation
process, we refer to Retel Helmrich (2006).

6.3 Results

In the first set of experiments we compared three timetables: (i) the orig-
inal timetable, (ii) a timetable which was obtained from the Stochastic
Optimization Model with the restriction that the running times could
change only one minute (referred to as the “restricted SOM timetable”),
and (iii) a timetable which was obtained from an optimization without
that constraint (referred to as the “unrestricted SOM timetable”). These
variants took 33 hours and 16 hours of computation time to arrive at an
optimality gap of less than 1.5 %. The results are shown in Table 2.

In this table, the row “Avg. delay > 3 min.” refers to the average
of the delays exceeding the 3 minute margin that is taken into account
in the punctuality measures. The row “Avg. delay at borders” refers to
the delays of trains that leave the studied area and that have a passen-
ger or rolling stock connection with another train at the border. The
rows ”Punct. (all stations)” and ”Punct. (official)” refer to the average
punctuality of the trains measured over all stations, and measured in
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the directions where the punctuality is measured officially. The latter are
Alkmaar (Amr, from the South and from the North), Amsterdam (from
the North), and Haarlem (from the East), see also Figure 1. The high
punctuality in Haarlem is due to the fact that not all trains that arrive
in Haarlem are taken into account. The objective function is a combina-
tion of the penalties that are taken into account in the optimization. The
main elements are the average delays of the trains. Delays exceeding the
3 minute margin have a higher weight, and the same holds for delays in
Alkmaar, Amsterdam, and Haarlem.

Table 2. Comparison of the original timetable with the SOM timetables

original restricted unrestricted
timetable SOM timetable SOM timetable

Avg. delay (min.) 1.22 0.94 0.92

Avg. delay > 3 min. (min.) 0.29 0.18 0.16

Avg. delay at borders (min.) 2.44 2.12 2.14

Punct. (all stations) 85.5% 90.2% 90.9%

Punct. (official) 86.7% 92.4% 93.4%

Punct. Alkmaar South 80.9% 90.4% 93.8%

Punct. Alkmaar North 72.3% 88.2% 92.3%

Punct. Amsterdam North 87.5% 91.2% 90.8%

Punct. Haarlem East 100.0% 100.0% 100.0%

Objective function 37,572 27,276 26,115

Based on the results in Table 2, the following conclusions can be
drawn. The Stochastic Optimization Model yields timetables that are
more robust than the original one. Indeed, the official punctuality fig-
ures show a marked improvement: an increase from 86.7% to 92.4% and
93.4% respectively. The objective function improves by 27% and 30% re-
spectively for the SOM timetables. The differences between the restricted
and unrestricted timetable are small, but still interesting. Note that the
SOM timetables improve the original timetable in all aspects.

6.4 Sensitivity analysis

A second set of experiments concerns a sensitivity analysis of the results.
The question is to which extent the results depend on the intensities of
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the disturbances. We again compare the two SOM timetables with the
original one. However, in this case we evaluate the timetables, without
re-optimization of the timetables, according to different disturbance dis-
tributions. We scale the averages of the original disturbance distributions
with a factor varying from -30% to +30% with steps of 5%. One could
interpret this as e.g. days with different types of weather. For the com-
parison of the three timetables, we use identical random numbers, but for
different averages we did a re-sampling.

Also in these experiments, the SOM timetables performed better than
the original timetable. The differences in the objective function increase
with the intensities of the disturbances, but the relative differences de-
crease. For disturbances which are on average 10% lower than the ini-
tially assumed ones, the objective function values are 28,562, 20,263,
and 19,739 for the original, restricted, and unrestricted timetable. For
disturbances which are on average 10% higher than the initially assumed
ones, these figures are 56,781, 43,313, and 40,539, respectively.

In a final set of experiments, we also re-optimized the two SOM
timetables under slightly modified disturbance distributions. In these
cases, it turned out that the obtained timetables changed only slightly
in comparison with the timetables that were obtained under the initially
assumed disturbance distributions. It can be concluded that the results
obtained by the Stochastic Optimization Model provide an improvement
over the original timetable, and that these results are rather stable under
varying intensities of the disturbance distributions.

7 Timetable experiment in practice

During the weeks 22 to 29 of 2006 (May 28 until July 23), a timetable
generated by the Stochastic Optimization Model was tested in practice on
the so-called “Zaanlijn”. The “Zaanlijn” is part of the “Kop van Noord-
Holland”: it is the north-south connection between Den Helder (Hdr) and
Amsterdam (Asd), see Figure 1. Note that a modified timetable was also
operated on the “Zaanlijn” during weeks 30 and 31 of 2006, but this
period was not representative due to other changes in the timetable.

The “Zaanlijn” has been notorious for its relatively low punctuality
for several years. That is, the punctuality of the “Zaanlijn” was always
significantly lower than the overall punctuality over all of the Netherlands.
For this reason, it was decided by the top management of NS to carry
out a number of experiments by temporarily operating slightly different
timetables there. To that end, the Stochastic Optimization Model was
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applied to the 2006 timetable of the “Zaanlijn”, more or less in the same
way as described in Section 6. In the optimization, the total amount
of running time supplement in the timetable remained the same, and the
dwell times were unchanged. As a consequence, the individual travel times
of the passengers changed only marginally.

Results of the experiment

Table 3 shows the average punctuality of the trains on the “Zaanlijn”
as well as the average overall punctuality in the Netherlands during the
weeks 22 to 29 of 2006 of the timetable experiment. This table shows that,
during the timetable experiment, the punctuality figures of the “Zaanlijn”
are quite comparable with those of the overall punctuality. Note that
weeks 24, 27 and 29 were weeks with a relatively large number of major
disruptions, which had a negative effect on the punctuality.

Table 3. Punctuality of the “Zaanlijn” and the overall punctuality

Week 22 23 24 25 26 27 28 29 Average

“Zaanlijn” 89.7% 87.5% 80.5% 89.5% 85.3% 74.8% 90.2% 85.8% 85.4%

Overall 88.6% 87.9% 82.6% 88.8% 86.5% 75.4% 87.3% 81.2% 84.8%

As a comparison, the average punctuality of the “Zaanlijn” over the
first 13 weeks of 2006 was 79.4%, and the average overall punctuality in
the Netherlands over this period was 86.5%. Thus the figures in Table 3
suggest that the application of the Stochastic Optimization Model had
a positive effect on the punctuality of the “Zaanlijn”. Note that, due to
the relatively short period of the timetable experiment, it is hard to draw
definitive conclusions based on the above figures. For example, the fact
that a timetable experiment was carried out may have had a positive
effect already on the punctuality figures of the “Zaanlijn”.

Anyway, it turned out that the effects of the improved timetable were
quite similar to what was expected. That is, at moments that there are
only small primary disturbances, the improved timetable is better able to
absorb these small disturbances. At moments that there are large disrup-
tions, the improved timetable does not give a clear advantage over the
original timetable. Therefore, on average, the improved timetable seems
to perform better than the original one.
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8 Conclusions and further research

In this paper we described a Stochastic Optimization Model for improv-
ing the robustness of a given cyclic railway timetable. The model is an
improved version of the model described by Vromans (2005) and Kroon et
al. (2007). An improvement of the current version of the model is that it
is based on a cyclic time axis, which better facilitates a network structure
of the railway infrastructure as well as the inclusion of cyclic relations in
the model, e.g. related to rolling stock circulations.

This paper also addresses existence and convergence questions: it is
indicated that the “optimal” solution to the real problem to be solved ex-
ists, and that the optimal solutions of the Stochastic Optimization Model
converge to this solution if the number of realizations increases.

The model has been tested on instances derived from the timetable
of NS Reizigers for 2007. These computational experiments show that
the robustness of a timetable can be improved by slight modifications
of the timetable: the results obtained by the model always provide an
improvement over the original timetable, and these results are rather
stable under varying intensities of the disturbance distributions.

Moreover, the results of the model were tested in real-life on the
timetable of NS Reizigers for 2006 on the “Zaanlijn”. There it turned out
that the results of the model were quite similar to what was expected:
with small disturbances the resulting delays decreased, and with larger
disruptions a positive effect could hardly be noticed. The overall effect of
the timetable modification was considered as positive.

Note that an increase in the punctuality is quite important for NS
Reizigers, since agreements with the government on the license to operate
trains on the Dutch railway infrastructure are partly based on punctuality.
Moreover, the improvements in the punctuality that can be obtained by
applying the Stochastic Optimization Model are nearly for free, whereas
other measures to improve the punctuality are likely to be expensive.

The current Stochastic Optimization Model is solved in a straightfor-
ward way by applying CPLEX. This restricts both the number of trains
in the timetable that can be handled at the same time as well as the num-
ber of realizations. However, in our future research we will focus on the
development of dedicated optimization techniques for solving the model.

We will also focus on the development of a practical implementation
of our model as part of the timetabling system DONS, see Hooghiemstra
et al. (1999) and Peeters (2003). This implementation will include e.g. a
model for automatically detecting crossing routes of trains in stations.
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