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Abstract

In this paper we consider the estimation of probabilistic ranking
models in the context of conjoint experiments. By using approximate
rather than exact ranking probabilities, we do not need to compute
high-dimensional integrals. We extend the approximation technique
proposed by Henery (1981) in the Thurstone-Mosteller-Daniels model
for any Thurstone order statistics model and we show that our ap-
proach allows for a unified approach. Moreover, our approach also
allows for the analysis of any partial ranking. Partial rankings are es-
sential in practical conjoint analysis to collect data efficiently to relieve
respondents’ task burden.
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1 Introduction

Although conjoint analysis originated more than forty years ago, see Luce
and Tukey (1964); Kruskal (1965), it continues to attract active interest as a
research field, see Green et al. (2001); Bradlow (2005). According to Hauser
and Rao (2004), full-profile analysis remains the most common form of con-
joint analysis. Full-profile conjoint has the advantage that the respondent
evaluates each profile holistically and in the context of all attributes. In full-
profile conjoint experiments, each respondent evaluates and ranks a (sub)set
of stimuli, each stimulus defined as a specific combination of attributes levels.

As there is only a finite number of possible rankings, the rankings have a
discrete distribution. In principle, standard methods for analysing discrete
data apply here, see Marden (1995, p. 140). However, probability models for
rankings become very complex, as the computation of each ranking probabil-
ity usually requires high-dimensional integration when the number of stimuli
becomes large.

Earlier approaches for analysing conjoint experiments thus avoid the use
of probability models for rankings by resorting to multi-dimensional scaling
techniques to derive respondent preferences (see e.g. Green et al. (2001)).

Recently there is renewed interest in the modeling and estimation of
ranking models, see Maydeu-Olivares (1999); Maydeu-Olivares and Böck-
enholt (2005); Böckenholt (2006); Maydeu-Olivares and Hernández (2007).
In such an approach typically rankings are transformed to (possibly intransi-
tive) paired comparisons and analyzed by formulating a Thurstonian model
for paired comparisons as a structural equation model with binary indicators.
Hence, the computation of ranking probabilities is replaced by the compu-
tation of probabilities of binary outcomes. However, in full-profile conjoint
the focus of a respondent’s decision is on the acceptability of a stimulus’
attributes, rather than differences between stimuli. Moreover, it is also an
inefficient way to gather preference information as paired comparisons only
indicate which stimulus is preferred rather than the strength of preference.

In this paper we consider the estimation of probabilistic ranking models
in the context of full-profile conjoint experiments. We reduce the complexity
of probabilistic ranking models considerably by using approximate rather
than exact ranking probabilities. In the literature an abundance of ranking
models is available, see Critchlow et al. (1991, Section 3) and also Marden
(1995, Chapter 5), but we concentrate on Thurstone order statistics models.

Henery (1981) used a simpler model to approximate the Thurstone-Mosteller-
Daniels model. We show that any Thurstone order statistics model may be
approximated by such a ”Henery model”. This allows for a unified approach.

Moreover, our approach also allows for the analysis of partial rankings.
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Partial rankings are essential in practical conjoint analysis to collect data
efficiently to relieve respondents’ task burden. A specific partial ranking
which is gaining in popularity is Best-Worst ranking. In this specific case,
respondents are instructed to select only the best and the worst stimulus.
Partial rankings may also be dictated by the experimental design of the
conjoint study.

The structure of the paper is as follows. In Section 2 we discuss rank-
ing models and the approximation of ranking probabilities. In Section 3,
we adapt general ranking models to conjoint experiments by introducing a
linear model which allows for modeling the dependence of the rankings on
the stimulus characteristics. In Section 4 we illustrate our methodology and
compare our estimation with analysis results in Maydeu-Olivares and Böck-
enholt (2005). Finally, in Section 5 we conclude with suggestions for further
research. Most technical issues are discussed in the appendices.

2 Ranking models

2.1 Preliminaries

In this section, we consider a single respondent who lists all stimuli, 1, 2, . . . , C,
in order of preference, with the most preferred stimulus listed first. For each
stimulus c in {1, 2, . . . , C}, we define the rank π(c) of c as the position of c
within this ordering. For example, π(3) = 7 indicates that stimulus 3 is listed
in 7th place in order of preference. We shall refer to π =

(
π(1), π(2), . . . , π(C)

)
as a full ranking.

Observe that in a fullranking for each rank r there exists exactly one
stimulus c such that π(c) = r. We shall denote this stimulus by π−1(r) . For

example, π−1(7) = 3 denotes that stimulus 3 is listed in 7th place in order

of preference. Remark that we now may express the ordering as π−1 =(
π−1(1), π

−1
(2), . . . , π

−1
(C)

)
.

We assume that for each respondent the probability pπ of actually ob-
taining π as full ranking depends on a C-dimensional linear predictor vector
η = (η1, η2, . . . , ηC)t; that is,

pπ = p (π | η) . (1)

A so-called ranking model specifies the exact nature of the dependence of pπ
on η.

A common issue in the analysis of rankings is the handling of ties. A tie
means that the same rank is assigned to multiple stimuli. Ties may occur
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due to the respondent’s inability to differentiate between two or more stimuli.
Ties may also occur due to requirements imposed by the research design. It
has been widely recognized that respondents may find it difficult to compare
too many choice options. This can be solved by asking respondents to rank
only a subset of stimuli. For instance, in Best-Worst ranking, a respondent is
instructed to select only the best and the worst stimulus; thus, all the other
stimuli are tied.

Another common issue in the analysis of rankings is the handling of miss-
ings. A missing means that none rank is assigned to a stimulus. Missings
may occur due to requirements imposed by the research design. For exam-
ple to alleviate respondents task complexity, respondents are shown only a
subset of all stimuli. Missings differ from ties, in that a missing could have
been assigned any rank r in {1, 2, . . . , C}.

As a ranking which contains ties or missings should be considered as a
partial ordering of the stimuli rather than a full ordering, we shall refer to
it as a partial ranking. Observe that for each partial ranking $ there exists
a set S$ of all full rankings which do not contradict the partial ordering
implied by $. Thus, we may assign the probability

p$ = p ($ | η) =
∑
π∈S$

p (π | η) (2)

to the partial ranking $.

2.2 Thurstone order statistics models

In Thurstone order statistics models, see Thurstone (1927); Critchlow et al.
(1991); Luce (1994); Böckenholt (2006), it is assumed that the rank of stim-
ulus c among the stimuli 1, 2 . . . , C is in fact equal to the rank of a random
variable Yc among the random variables Y1, Y2, . . . , YC . Here, Y1, Y2, . . . , YC
are random variables having some joint continuous distribution. It follows
that

pπ = P (Yc1 < Yc2 < . . . < YcC ) (3)

for an ordering π−1 = (c1, c2, . . . , cC). Observe that

pπ =

∫ ∞
−∞

∫ ∞
yc1

∫ ∞
yc2

· · ·
∫ ∞
ycC−1

f (yc1 , yc2 , . . . , ycC ) dycC · · · dyc2dyc1 , (4)

where f (yc1 , yc2 , . . . , ycC ) denotes the joint density of Yc1 , Yc2 , . . . , YcC .
Thurstone order statistics models often assume that Y1, Y2, . . . , YC are

independent random variables with distributions from the same family with
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density g(Y, η). Under this assumption, Yc1 , Yc2 , . . . , YcC have joint density

f (yc1 , yc2 , . . . , ycC ) = g (yc1 ; ηc1) g (yc2 ; ηc2) · · · g (ycC ; ηcC ) , (5)

where the parameters ηc1 , . . . , ηcC are allowed to vary. Combining (4) and
(5) yields

pπ =

∫ ∞
−∞

∫ ∞
yc1

· · ·
∫ ∞
ycC−1

g (yc1 ; ηc1) g (yc2 ; ηc2) · · · g (ycC ; ηcC ) dycC · · · dyc2dyc1 .

(6)
In the special case that η a location parameter is, that is, g(Y, η) takes the

form g(Y − η), the model is referred to as a Thurstone model, see Critchlow
et al. (1991). Well-known Thurstone models are the Thurstone-Mosteller-
Daniels model (see Mosteller (1951); Daniels (1950)), and the Luce model
(see Luce (1959)). In the Thurstone-Mosteller-Daniels model the density
g(z) is a standard normal density, and in the Luce model g(z) is a Gumbel
density.

2.3 Approximate probabilities

The multiple integral on the right-hand side of (4) is usually evaluated by
means of numerical integration. Thus, this approach is not feasible when the
number of stimuli becomes large.

Henery (1981) approximates pπ in the Thurstone-Mosteller-Daniels model
by means of a first order Taylor expansion around η1 = η2 = . . . = ηC = η0,
where η0 is any value. Below, we extend Henery’s approach to any model in
which Y1, Y2, . . . , YC have joint density of the form (5).

As there are C! possible full rankings, the average full ranking probability
is

p∗ =
1

C!
. (7)

Note that pπ = p∗ if η1 = η2 = . . . = ηC = η0.
Introduce

φ0(y) =
∂ ln g(y; η)

∂η

∣∣∣∣
η=η0

=
1

g(y; η0)

∂g(y; η)

∂η

∣∣∣∣
η=η0

. (8)

We shall refer to φ0(y) as the score function.
The score function is well-known in mathematical statistics, especially in

likelihood theory and the theory of rank tests. (In particular, our definition
(8) corresponds with Equation (I.2.4.4) in Hájek and Šidák (1967).) An
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important property of the score function is that the expected value is zero,
that is

Eφ0 (Y ) =

∫
∂g(y; η)

∂η

∣∣∣∣
η=η0

dy = 0. (9)

Denote the expected score of the rth order statistic Yr:C by

qr:C = E0φ0 (Yr:C) , (10)

where E0 denotes the expectation under the condition that η1 = η2 = . . . =
ηC = η0. When this condition holds, we show in Appendix A.1 that a first
order Taylor expansion in (η0, η0, · · · , η0) yields

pπ ≈ p∗ + p∗

C∑
r=1

qr:C (ηcr − η0) = p∗

(
1 +

C∑
r=1

qr:Cηcr

)
(11)

for π = (c1, c2, . . . , cC).
For a given full ranking π, let qπ denote the C-dimensional vector contain-

ing the πth(c) expected score qπ(c):C as cth element. For example, for π(3) = 7,

the 3th element of vector qπ is the 7th expected score q7:C .
As qπ is central in deriving an approximation to the probability pπ, we

shall refer to qπ as the expected score vector belonging to π. We may now
write (11) as

pπ ≈ p∗
(
1 + qtπη

)
. (12)

The right hand side of (12) is not necessarily positive and hence, it does
not necessarily define a valid probability model. However, when all ηc’s are
sufficient close to η0

1 + qtπη ≈ exp
{
qtπη

}
, (13)

and we may approximate pπ by

pπ ≈
exp {qtπη}∑
π′ exp {qtπ′η}

. (14)

The probabilities on the right hand side of (14) are all positive and add up
to one, and thus define a probability model with respect to the rankings.

Above, we have shown that expected scores allow the approximation of
any Thurstone model. For example, one may show that in the Thurstone-
Mosteller-Daniels model qr:C coincides with a normal score; that is,

qr:C = EYr:C , (15)
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where Yr:C denotes the rth order statistic correponding to the sample
Y1, Y2, . . . , YC drawn from a standard normal distribution. In Harter (1961)
all normal scores for C = 400 are given.

Another Thurstone model is the Luce model, also known as Plackett’s
first order model, and one may show that in this model

qr:C = 1−
C∑
r′=r

1

r′
. (16)

3 A linear model for conjoint experiments

3.1 Incorporating attribute values

In the previous section, we have seen how a ranking model translates the
predictor vector η into a probability distribution on rankings. In this sec-
tion, we focus on the question how the attributes of the stimuli influence η.
Assume that the stimuli are adequately described by means of M attributes.
Each attribute takes a limited number of values, which we call levels. Every
stimulus may be viewed as a specific combination of levels of the attributes.
Let xcm denote the value attribute m takes for stimulus c.

In order to be able to perform a statistical analysis of conjoint experi-
mental data, we have to specify the construction of the predictor vectors.
We assume that η = (η1, η2, . . . , ηC)t is given by

ηc = β1xc1 + β2xc2 + βMxcM =
M∑
m=1

βmxcm, (17)

where β1, β2, . . . , βM are unknown coefficients. We may write η = Xβ, where
β is the M dimensional coefficient vector (β1, β2, . . . , βM)t and X is the C×M
matrix which contains the value xcm in its (c,m) location. We shall refer to
X as the plan matrix of the conjoint experiment.

We may rewrite (14) as

pπ ≈
exp {qtπXβ}∑
π′ exp {qtπ′Xβ}

. (18)

Observe that qtπX is in fact a weighted average of the columns of the plan
matrix, where the weights are completely determined by the preferences in
π. Combining (2) and (18) now yields

p$ ≈
∑

π∈S$ exp {qtπXβ}∑
π′ exp {qtπ′Xβ}

. (19)
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Note that (18) is actually a special case of (19). Although in the next section
we shall focus on partial rankings, full rankings are implicitly covered as well.

3.2 Approximate log-likelihood

In principle, the maximum likelihood estimator β̂ of the parameter vector
β = (β1, β2, . . . , βM)t may be obtained via maximization of the log-likelihood
in the Thurstone model. As mentioned earlier, computing pπj requires the
numerical evaluation of the C-dimensional integral (4) and hence, is not
feasible when the number of stimuli becomes large.

Fortunately, we may approximate pπj by (19) and thus we may estimate
β by maximizing the corresponding approximate log-likelihood

ln L̃ (β) =
J∑
j=1

ln

 ∑
π∈S$j

exp
{
qtπXβ

}− J ln

(∑
π′

exp
{
qtπ′Xβ

})
, (20)

where the rankings $1, $2, . . . , $J are independently obtained from J dif-
ferent respondents. Note that the standard likelihood theory applies as we
have shown that (19) is a probability model itself.

In particular, in case of full rankings we have that the log-likelihood (20)
simplifies to

ln L̃ (β) =
J∑
j=1

(
qtπjXβ

)
− J ln

(∑
π′

exp
{
qtπ′Xβ

})
. (21)

Standard iterative methods for finding an estimator β̂ maximizing the
log-likelihood (20) require the first order derivatives of (20) with respect to
β, and possibly the second order derivatives as well. The computation of
these are given in Appendix A.2.

4 Illustration

We will illustrate our model with two data sets. First, we will compare our
estimates to estimates obtained in Maydeu-Olivares and Böckenholt (2005).
We analyze their career preference data set. Next, we will illustrate our
methodology by incorporating attributes and examine how these attributes
influences stimulus preferences.

We should first make a general remark: the smaller its rank, the more
preferred a stimulus is. Hence, when interpreting the estimation results,
we should always take into account that our preference measure is inversely
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related to preference. Hence, a positive coefficient indicates that higher levels
lead to a higher, i.e. worse, ranking. Consequently, a negative coefficient
indicates that higher levels lead to a lower, i.e. more preferred, ranking.
The strength of preference is reflected in the absolute value of the coefficient.
In addition, a positive coefficient value does not necessarily mean that the
respective attribute is rejected, but that it is less preferable than the reference
level.

4.1 Comparison data set

In Maydeu-Olivares and Böckenholt (2005) career preferences among under-
graduate psychology students from a Spanish university were investigated.
A sample of 57 psychology students were asked to rank their preferences
for four broad psychology career areas: academia, clinical, educational and
industrial. In Table 1 the estimated coefficients are reported. We have set
career area industrial as reference level. Note that in this illustration we have
only one attribute (career area) and this attribute has four levels (academia,
clinical, educational and industrial).

Career area Coefficient Stand. Err. p-value

Academic 1.110 0.276 0.000
Clinical -1.106 0.269 0.000

Educational -0.336 0.243 0.166

Table 1: Estimated coefficients career ranking data

Our estimates differ slightly from Maydeu-Olivares and Böckenholt (2005),
but the conclusions are the same. Remark that the estimated coefficients are
inversely related to preference. The estimated coefficients for career area
clinical is negative, which means that the clinical career area is more pre-
ferred than the reference career area industrial. As the estimated coefficient
of educational is not significantly different from the reference level, we can
not conclude that educational is more preferred than industrial. The least
preferred career area is academic, as this coefficient is positive which leads
to higher ranks and hence worse ranking.

4.2 Data set incorporating attributes

In real conjoint experiments, we are often interested in how stimulus’ char-
acteristics influence preferences. We have collected data concerning winter
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sports holidays, where each winter sports holiday is described by a number
of attributes: country levels, period of holiday, duration of holiday and size
of the ski area.

As each attribute can take a limited number of values, every holiday may
be viewed as a specific combination of levels of the attributes. The corre-
sponding levels for country are: France, Austria, Italy and Andorra. The
attributes period and duration have both two levels: January or February
and eight days or ten days, respectively. Attribute ski area has three levels.

As our approach is not limited to full ranking data, as in the previous
illustration, we demonstrate here that we are also able to handle partial
ranking data. Each of J = 169 respondents are asked to indicate the most
preferred alternative and the least preferred alternative.

We use dummy variables to code the attribute levels in the planmatrix X
which was introduced in Subsection 3.1. As each stimulus belongs to exactly
one factor level, the rows of the extended plan matrix sum to some constant.
Combined with (17) this suggests that adding the same constant to each of
the coefficients β1, . . . , βM amounts to adding this same contant to each of
the predictors η1, . . . , ηC . However, as we have already seen in (11), it follows
from (26) that this does not affect the approximate ranking probabilities. In
short, there is an unwanted indeterminacy present in the model.

This indeterminacy may be resolved in different ways. We opt for setting
the first level as reference level, that is, adding a constant −β1 to each of
the coefficients in the model, so as to make the first coefficient equal to zero.
In effect, we use the matrix X obtained by removing the first level for each
attribute from the extended plan matrix. The consequence is that we should
now interpret each of the remaining coefficients relative to the omitted levels
of the corresponding attributes. In some applications we have to make an
arbitrary choice, as a natural candidate for the reference category is missing.

As our approach allows for a unified approach, that is, we can estimate
any Thurstone order statistic model, we will give the estimated results in the
Thurstone-Mosteller-Daniels model as well as the results estimated in the
Luce model. Note that we approximate any Thurstone order statistic model
by a simpler model. More precisely, when we are discussing the Thurstone-
Mosteller-Daniels model or the Luce model (or any other Thurstone model),
we mean an approximate model.

4.2.1 Results Thurstone-Mosteller-Daniels model

Table 2 shows the estimated coefficients. The reference levels are: France,
January, eight-days holiday, small ski area. France is the most preferred
country to spent the winter sports holidays according to the respondents,
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Attribute Variable Coefficient Stand. Err. p-value

Country Austria 1.619 0.188 0.000
Italy 0.918 0.239 0.000

Andorra 0.047 0.237 0.843
Period February -0.087 0.171 0.611
Duration ten-days 0.573 0.175 0.001
Ski area average -0.660 0.172 0.000

large -1.941 0.258 0.000

Table 2: Estimated coefficients

as all other country level coefficients are positive. This does not necessarily
mean that the respective attribute is rejected, but that it is less preferable
than the reference level. The strength of preference is reflected in the ab-
solute value of the coefficient, and thus Austria is the least preferred winter
sports holiday country compared to France. Notice, that coefficient of level
Andorra is not significant and there is no difference in preference between
France and Andorra. In addition, the estimated coefficient for period is also
not significant and hence, it makes no difference whether the holiday takes
place in January or February. Respondents prefer an eight days holiday
over a ten-days holiday. Ski area size has a positive effect on the ranking of
the alternative as the absolute value of the coefficient increases as ski size
increases.

Testing the independence model versus the Thurstone-Mosteller-Daniels
model yields a chi-squared test statistic of 1134.373 with corresponding p-
value of zero. Hence, at the 5% significance level, the independence model is
clearly rejected in favor of the Thurstone-Mosteller-Daniels model.

As leaving out each attribute from the original model, gives us a nested
model, we can examine the effect of each attribute by means of likelihood
ratio tests. The likelihood ratio tests results are given in Table 3. One can
observe in this table that attributes period and duration of holiday have no
significant effect on the preference of the respondents as leaving each of these
attribute out of the model does not lead to a significant better model. On
the other side, including the attributes country and ski size area do lead to a
significant better model and thus, these two attribute influences respondents’
preferences significantly.
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Attribute Chi-square df p-value

country 114.259 3 0.000
period holiday 0.258 1 0.611

duration holiday 11.083 1 0.001
size ski area 65.402 2 0.000

Table 3: Likelihood ratio tests

4.2.2 Results Luce model

The Thurstone-Mosteller- Daniels model places the same emphasis on the
lower ranks as on the higher ranks. In the Luce model greater emphasis
is placed on the highly preferred, that is low-ranked, stimuli. In Figure 1
the expected scores for a sample of size 8 are plotted. Note the symme-
try around zero for expected scores belonging to the Thurstone-Mosteller-
Daniels model. In contrast, expected scores for highly preferred stimuli re-
ceive more emphasis in the Luce model.
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Figure 1: Expected score of rth order statistic drawn from a sam-
ple of size 8. The open dots are Thurstone-Mosteller-Daniels
scores (15) and the solid dots are Luce scores (16).

Table 4 shows the estimated coefficients. The estimates are just slightly
different and the conclusion remains the same as in the Thurstone-Mosteller-
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Attribute Variable Coefficient Stand. Err. p-value

Country Austria 1.403 0.188 0.000
Italy 0.767 0.330 0.020

Andorra -0.152 0.269 0.571
Period February -0.181 0.219 0.408
Duration ten-days 0.646 0.199 0.001
Ski area average -0.855 0.228 0.000

large -1.871 0.311 0.000

Table 4: Estimated coefficients in the Luce model

Daniels model. Note that though the estimated coefficient of Andorra has
the opposite sign but this is however not significant.

The independence model is clearly rejected in favor of the Luce model as
the chi-squared test statistic is 1152.119 with corresponding p-value of zero.
Also in the Luce model we test the importance of each attribute by means
of likelihood ratio tests, see Table 5. We draw again the same conclusion:
attributes country and ski size area lead to a significant better model.

Attribute Chi-square df p-value

country 104.645 3 0.000
period holiday 0.691 1 0.708

duration holiday 11.885 1 0.003
size ski area 45.003 2 0.000

Table 5: Likelihood ratio tests in the Luce model

5 Conclusion

Rankings are a simple tool to measure preferences. Metric measurements
such as rating and matching may be less reliable due to respondents limited
ability to accurately report degrees of preferences (Ben-Akiva et al. (1992)).

New efficient data collecting methods, such as Best-Worst ranking, be-
come more popular nowadays in practical conjoint analysis. It has been well
known that task difficulty increases substantially with the number of stim-
uli to be ranked. Partial rankings reduce task complexity for respondents.
This requires new methods to analyze these partial rankings data. We have
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shown that our model is also able to handle any partial rankings, not limited
to Best-Worst rankings.

In this paper we have introduced approximate ranking models in the con-
text of conjoint experiments. We have shown that by computing approximate
rather than exact ranking probabilities reduces the complexity considerably.
We extend the approximation technique proposed by Henery (1981) for any
Thurstone order statistics model and our approach allows a unified approach.
We have shown how we could incorporate attribute values as is usual in con-
joint experiments to estimate the effect of attribute levels on respondents’
choice.

In recent marketing literature the respondents’ heterogeneity is an im-
portant topic in analyzing respondents’ preference behavior. In further re-
search it would be interesting to incorporate respondent’s heterogeneity in
our model.

Another interesting extension of the model for further research amounts
adding nuisance parameters to embed in larger family. Recall that the Luce
model may be viewed as a Thurstone model derived from the Gumbel dis-
tribution, which is a special case of a generalized extreme value cumulative
distribution.
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A Appendix

A.1 Approximate probability (11)

Define

φ(y; η) =
∂ ln g(y; η)

∂η
=

1

g(y; η)

∂g(y; η)

∂η
, (22)

and remark that
∂g(y; η)

∂η
= φ(y; η)g(y; η).

Let g0(y) and φ0(y) denote g(y; η0) and φ(y; η0), respectively. Recall that
φ0(y) is introduced in (8) as the score function.

As

∂pπ
∂ηcr

=

∫ ∞
−∞

∫ ∞
yc1

· · ·
∫ ∞
ycC−1

g (yc1 ; ηc1) g (yc2 ; ηc2)

· · · g
(
ycr−1 ; ηcr−1

) ∂g(ycr ; ηcr)

∂ηcr
g
(
ycr+1 ; ηcr+1

)
· · · g (ycC ; ηcC ) dycC · · · dyc2dyc1

=

∫ ∞
−∞

∫ ∞
yc1

· · ·
∫ ∞
ycC−1

g (yc1 ; ηc1) g (yc2 ; ηc2)

· · · g
(
ycr−1 ; ηcr−1

)
φ (ycr ; ηcr) g (ycr ; ηcr) g

(
ycr+1 ; ηcr+1

)
· · · g (ycC ; ηcC ) dycC · · · dyc2dyc1 , (23)
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we obtain

∂pπ
∂ηcr

∣∣∣∣
η1=η2=...=ηC=η0

=

∫ ∞
−∞

∫ ∞
y1:C

· · ·
∫ ∞
yC−1:C

φ0 (yr:C)

g0 (y1:C) g0 (y2:C) · · · g0 (yC:C) dyC:C · · · dy2:Cdy1:C . (24)

Let Y1:C < Y2:C < · · · < YC:C be the order statistics of a random sample of
size C from a density g0. Recall that the joint density of Y1:C , Y2:C , · · · , YC:C

equals
C!g0 (y1:C) g0 (y2:C) · · · g0 (yC:C)

for y1:C < y2:C < · · · < yC:C . It follows that

∂pπ
∂ηcr

∣∣∣∣
η1=η2=...=ηC=η0

=
qr:C
C!

= p∗qr:C , with qr:C = Eφ0 (Yr:C) , (25)

and p∗ given by (7). Since
∑C

r=1 φ0 (Yr:C) coincides with
∑C

r=1 φ0 (Yr), (9)
implies

C∑
r=1

qr:C =
C∑
r=1

Eφ0 (Yr:C) = E
C∑
r=1

φ0 (Yr:C) = E
C∑
r=1

φ0 (Yr) =
C∑
r=1

Eφ0 (Yr) = 0.

(26)

When all ηc’s are close to η0, a first order Taylor expansion in (η0, η0, · · · , η0)
yields

pπ ≈ p∗ + p∗

C∑
r=1

qr:C (ηcr − η0) = p∗

(
1 +

C∑
r=1

qr:Cηcr

)
(27)

for π = (c1, c2, . . . , cC). The equality follows from 26.

A.2 First and second order derivatives of (20)

Standard iterative methods for finding an estimator β̂ maximizing the log-
likelihood (20) require the first order derivatives of (20) with respect to β, and
possibly the second order derivatives as well. Write p$ as

∑
π∈S$ sπ/

∑
π′ sπ′

with sπ = exp {qtπXβ}. As (∂/∂β)sπ = sπX
tqπ, it follows that

∂p$
∂β

=
∂

∂β

∑
π∈S$ sπ∑
π′ sπ′

=

∑
π∈S$ sπX

tqπ∑
π′ sπ′

−
∑

π∈S$ sπ∑
π′ sπ′

·
∑

π sπX
tqπ∑

π′ sπ′

= Xt

(∑
π∈S$

pπqπ − p$
∑
π′

pπ′qπ′

)
, (28)
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and in particular,

∂pπ
∂β

= Xtpπ

(
qπ −

∑
π′

pπ′qπ′

)
. (29)

For any set S of rankings, (29) yields

∂

∂β

∑
π∈S pπq

t
π∑

π∈S pπ
=

∑
π∈S

∂pπ
∂β

qtπ∑
π∈S pπ

−
∑

π∈S
∂pπ
∂β∑

π∈S pπ
·
∑

π∈S pπq
t
π∑

π∈S pπ

=

∑
π∈S X

tpπ (qπ −
∑

π′ pπ′qπ′)q
t
π∑

π∈S pπ

−
∑

π∈S X
tpπ (qπ −

∑
π′ pπ′qπ′)∑

π∈S pπ
·
∑

π∈S pπq
t
π∑

π∈S pπ

= Xt

(∑
π∈S pπqπq

t
π∑

π∈S pπ
−
∑

π∈S pπqπ∑
π∈S pπ

·
∑

π∈S pπq
t
π∑

π∈S pπ

)
, (30)

and in particular,

∂

∂β

∑
π

pπq
t
π = Xt

{∑
π

pπqπq
t
π −

(∑
π

pπqπ

)(∑
π

pπq
t
π

)}
, (31)

It now follows from (28) that

∂ ln L̃ (β)

∂β
=

J∑
j=1

∂

∂β
ln p$j =

J∑
j=1

∂
∂β
p$j

p$j

=
J∑
j=1

Xt

(∑
π∈S$j

pπqπ∑
π∈S$j

pπ
−
∑
π

pπqπ

)

= Xt

(
J∑
j=1

∑
π∈S$j

pπqπ∑
π∈S$j

pπ
− J

∑
π

pπqπ

)
. (32)
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Similarly, it follows from (30) and (31) that

∂2 ln L̃ (β)

∂β2
=

∂

∂β

(
J∑
j=1

∑
π∈S$j

pπq
t
π∑

π∈S$j
pπ
− J

∑
π

pπq
t
π

)
X

=

(
J∑
j=1

∂

∂β

∑
π∈S$j

pπq
t
π∑

π∈S$j
pπ
− J ∂

∂β

∑
π

pπq
t
π

)
X

= Xt

(
J∑
j=1

{∑
π∈S$j

pπqπq
t
π∑

π∈S$j
pπ

−

∑
π∈S$j

pπqπ∑
π∈S$j

pπ
·

∑
π∈S$j

pπq
t
π∑

π∈S$j
pπ

}

−J

{∑
π

pπqπq
t
π −

(∑
π

pπqπ

)(∑
π

pπq
t
π

)})
X. (33)

In particular, in case of full rankings we have that the log-likelihood (20)
simplifies to 21. Consequently, (32) becomes

∂ ln L̃ (β)

∂β
= Xt

(
J∑
j=1

qtπj − J
∑
π

pπq
t
π

)
,

and (33) becomes

∂2 ln L̃ (β)

∂β2
= Xt

(
−J

{∑
π

pπqπq
t
π −

(∑
π

pπqπ

)(∑
π

pπq
t
π

)})
X.
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