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Abstract 
 

Sustainability has become a major issue in most economies, causing many leading 
companies to focus on product recovery and reverse logistics.  This research is focused 
on product recovery, and in particular on production control and inventory management 
in the remanufacturing context.  We study a remanufacturing facility that receives a 
stream of returned products according to a Poisson process.  Demand is uncertain and 
also follows a Poisson process.  The decision problems for the remanufacturing facility 
are when to release returned products to the remanufacturing line and how many new 
products to manufacture.  We assume that remanufactured products are as good as new.  
In this paper, we employ a “push” policy that combines these two decisions.  It is well 
known that the optimal policy parameters are difficult to find analytically; therefore, we 
develop several heuristics based on traditional inventory models.  We also investigate the 
performance of the system as a function of return rates, backorder costs and 
manufacturing and remanufacturing lead times; and we develop approximate lower and 
upper bounds on the optimal solution.  We illustrate and explain some counter-intuitive 
results and we test the performance of the heuristics on a set of sample problems.  We 
find that the average error of the heuristics is quite low.   
 
 

 
 



 
 

1.  Introduction 
 
Sustainability has become a major issue for companies and countries as we enter the 21st 
Century.  Several European nations have mandated stringent laws for “product take back” 
after the product’s useful life ends, forcing companies to respond with product redesign, 
changes in packaging, and creative solutions to the problem of product recovery.  Efforts 
in all these areas can be seen in the automotive, computer, copier, and other industries 
(VROM (2002); EU (2002)).  

Product recovery is an attempt to reuse as much of the product as economically 
worthwhile, and it takes many forms as highlighted in Figure 1.  Many companies 
currently can remanufacture their products, making them essentially as good as new.  For 
these companies, the stream of returned products – also known as “carcasses” or “cores” 
– is uncertain.  Therefore, they face a two-fold decision problem: First, should they 
remanufacture the carcasses they have in hand, and if so, when should these be released 
to the remanufacturing line?  Second, should they manufacture new units because of low 
finished goods inventory and a trickle of carcasses, and if so, how many?  In this paper, 
we utilize a particular policy – a periodic review, “push” policy – which addresses these 
two decisions.   

Breeze-Eastern is a U.S. company that serves a niche market by producing rescue 
hoists and cargo hooks for helicopters, construction, logging and other applications.  
(Examples of rescue hoists can be seen in the movie “The Perfect Storm.”)  Rescue hoists 
are extremely sophisticated and expensive, ranging from $60,000 to $120,000 per system.  
Cargo hooks are considerably less expensive, ranging from around $3000 to $20,000.  
Both categories are remanufactured at their FAA certified repair center – the more 
expensive products generally by prearranged schedule, and the less expensive ones 
generally whenever they are returned for repair or upgrade.  Because of the prearranged 
schedule of hoists, the remanufacturing facility at Breeze-Eastern builds an inventory of 

Raw
Materials

Parts
Fabrication

Modules 
Subassembly

Product 
Assembly

Distribution Users

Recycle Cannibalize Remanufacture Refurbish Repair Reuse

Landfill

Figure 1: Product Recovery Options (adapted from Thierry et al., 1995) 



cargo hook carcasses, waiting to release them to the shop floor.  Remanufactured cargo 
hooks are as good as new, and are held in finished goods inventory waiting for sale.  
However, because the demand rate for finished goods is higher than the return rate of 
carcasses, Breeze-Eastern also manufactures new cargo hooks.  Our analysis is focused 
on the Breeze-Eastern problem of remanufacturing inventory control.  Specifically, we 
study a slightly simplified version of the remanufacturing of cargo hooks where we 
follow the Breeze-Eastern case in detail, except that, unlike the real case, we assume 
constant lead times for both remanufacturing and manufacturing, and we assume equal 
prices for products, regardless of their source.  We explain these simplifying assumptions 
further in Section 3. 

The form of the optimal policy is not known for the general problem we model.  
Nevertheless, we restrict consideration to a periodic review, push policy for several 
reasons.  First, the pervasiveness of MRP systems, including at Breeze-Eastern, suggests 
that periodic review is a good fit with the behavior of practitioners.  One such example is 
described in Section 3.  Second, van der Laan, Salomon, Dekker, & Van Wassenhove 
(1999) argues that push and pull systems are widely used in remanufacturing.  And 
finally we build on analytical work by Inderfurth (1997) that addresses these policies.   

Because the optimal policy parameters for our periodic review, push policy are 
difficult to find analytically, we develop heuristics based on traditional inventory 
policies.  We also investigate the performance of the remanufacturing system as a 
function of return rates, backorder costs and manufacturing and remanufacturing lead 
times; and we develop approximate lower and upper bounds on the optimal solution.  We 
illustrate and explain some counter-intuitive results and we test the performance of the 
heuristics on a set of sample problems. 

This paper is organized as follows.  In the next section, we review the relevant 
literature.  In section 3, we describe the assumptions, notation and system in detail; then 
in section 4, we examine the behavior of the total cost function.  In section 5, we develop 
three heuristics and then test them in section 6.  Finally, we conclude and discuss future 
research in section 7. 

 
2. Literature Review 
 
Many authors have addressed inventory management in the context of product recovery 
and remanufacturing. In this section we summarize the main findings presented in the 
literature.  The selected references highlight significant contributions but are not meant to 
be exclusive.  For more detailed reviews we refer to Silver, Pyke, & Peterson (1998), 
Chapter 12, and Fleischmann (2001). 

Although related models have been proposed as early as the 1960s, inventory 
control for product recovery and remanufacturing has been receiving growing attention in 
the past decade with the rise of environmental concern. In addition to numerous 
theoretical contributions, case studies have been reported on, e.g. for single-use cameras 
(Toktay, Wein, & Zenios (2000)), medical devices (Rudi & Pyke (2000)), automotive 
exchange parts (van der Laan (1997)), and electronic equipment (Fleischmann (2001)). 
The underlying inventory control models share two main distinctive characteristics, 
namely (i) an autonomous inbound item flow and (ii) two alternative supply options, i.e. 
product recovery versus ‘virgin’ procurement. While both of these elements as such are 
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not new in inventory theory it is their specific interrelation that gives rise to novel issues 
as we discuss below. 

Well-established models in the inventory control literature that may help 
understand the impact of the above characteristics include repairable-item-models (see 
e.g. Nahmias (1981)) and two-supplier-models (see e.g. Moinzadeh & Nahmias (1988); 
Moinzadeh & Schmidt (1991)). Yet, neither model class fully captures the setting of 
product recovery. Repair-models, such as the classical METRIC-model (Sherbrooke 
(1968)), essentially rely on a closed-loop system structure, where each (defective) item 
return triggers an immediate demand for a replacement item. In a product recovery 
setting the correlation between the two item flows tends to be much weaker and mainly 
reflects the dependence of returns on previous demand. Since the time lag between both 
processes may be large, many authors claim that, for inventory control purposes, one may 
even assume independence. Two-supplier-models address the trade-off between 
procurement costs and lead times. Typically, the models include a slow yet cheap 
supplier and a faster but also more expensive one. In a product recovery context the 
reasoning is different. Rather than a lead time reduction it is the restricted availability of 
the (cheaper) recovery channel that calls for an alternative supply source.  

Current literature comprises both deterministic and stochastic inventory control 
models for product recovery environments. Deterministic models can be further 
subdivided into stationary versus dynamic models. The former correspond to the mindset 
of the classical economic order quantity (EOQ). As early as in 1967 Schrady proposed an 
extension to this model that includes item returns (Schrady (1967)). His analysis seeks 
optimal lot sizes for the recovery channel and ‘virgin’ procurement, both of which 
involve fixed costs. More recently, variants to this model have been discussed e.g. by 
Richter (1996) and Teunter (2001). For the dynamic case, extensions to the classical 
Wagner-Whitin model have been presented. Beltran & Krass (2002) show that return 
flows increase the combinatorial complexity of this model. In particular the fundamental 
zero-inventory-property is lost. 

Related stochastic models provide the basis for our investigation. Within this class 
one may distinguish between periodic review and continuous review approaches. Another 
important differentiation concerns single versus two-echelon models. In the single 
echelon case, the analysis is limited to end-item stock, while the two-echelon case 
involves a more detailed picture of the recovery channel, distinguishing end-item and 
recoverable stock. 

A first stream of research dates back to Whisler (1967) who analyzes the control 
of a single stock point facing stochastic demand and returns. He shows the optimality of a 
two-parameter policy that keeps the inventory level within a fixed bandwidth in each 
period by means of disposal and new supply. Both actions are immediate and the costs 
are purely linear. Simpson (1978) extends this model to a two-echelon situation. The 
optimal policy then relies on three critical numbers that control the disposal, 
remanufacturing, and new supply decision, respectively. Inderfurth (1997) shows that 
both of the previous results still hold if both supply channels involve the same lead time. 
For different lead times, though, the growing dimensionality of the underlying Markov 
model inhibits simple optimal policy structures. Fleischmann & Kuik (1998) provide 
another optimality result for a single stock point. They show that a traditional (s, S) 
policy is optimal if demand and returns are independent, recovery has the shortest lead 
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time of both channels, and there is no disposal option. Related models have also been 
analyzed by Kelle & Silver (1989) and Cohen, Nahmias, & Pierskalla (1980). 

A parallel stream of research has evolved for continuous review models. 
Muckstadt & Isaac (1981) consider a single echelon model where the recovery process is 
modeled as a multi-server queue. They propose a heuristic (s, Q) policy for the ‘virgin’ 
supply channel and approximate the optimal control parameter values. Van der Laan, 
Dekker, & Salomon (1996) present an alternative approximation for this model and 
extend it with a disposal option. Finally, van der Laan et al. (1999) provide a detailed 
analysis of the corresponding two-echelon model. The authors develop Markovian 
formulations for several alternative heuristic policies, and compare their performance 
numerically. In particular, push and pull rules for the recovery channel are contrasted. In 
line with Inderfurth’s results the authors emphasize that lead time differences between 
both supply channels may severely complicate inventory management in this setting. 

In summary, most of the literature on product recovery focuses on the structure of 
optimal policies for specific cases, while computation of these policies is very time 
consuming as they involve evaluating large-scale Markov chains.  This highlights the fact 
that practical implementation calls for more efficient evaluation of policy alternatives, 
and therefore for approximations to the optimal policy.   Our paper answers this call.  We 
provide accurate heuristics that can be evaluated almost instantaneously on a spreadsheet.  
 
 
3. System Description 
 
The system we model is based on the Breeze-Eastern case, but we employ simplifying 
assumptions to facilitate analysis and insights.  We consider a single remanufacturing 
facility that receives returned carcasses according to a Poisson process with parameter �r.  
This facility maintains a stockpile of returned, but not yet remanufactured, carcasses and 
a stockpile of finished goods, or serviceable products.  (Serviceable products are 
commonly defined as manufactured or remanufactured finished goods that are ready for 
sale.)  We assume that all returned carcasses are fit for remanufacture.  (Alternatively, we 
can assume that �r represents the return rate of carcasses that can be successfully 
remanufactured.  However, we do not consider the time or cost of determining the status 
of carcasses.)  Holding cost is charged on returned, but not yet remanufactured, products 
at a rate Chr, and on serviceable goods at Chs.  Finished goods may be sourced from 
remanufacturing in lead time Lr, or from manufacturing in lead time Lm.  These lead times 
are constant.  We choose to employ this assumption, in spite of departing from the 
Breeze-Eastern case, to gain clarity on the effect of the two lead times on system 
performance.   

Demand arrives at the serviceable stockpile according to a Poisson process with 
rate �d, and any unmet demand is backordered and charged at a cost of Cb $/unit.  (As an 
additional benchmark, we also ran tests with a backorder measure of $/unit/unit-time.)  
Once again, we depart from the Breeze-Eastern situation by assuming that prices for new 
and remanufactured units are identical.  This assumption allows us to treat demand as a 
single stream of customers and therefore isolate the remanufacturing process from 
marketing issues. 
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We assume that the population of products in the field is quite large so that a 
particular sale does not influence the rate of returns.  This assumption is appropriate for 
many consumer products, and even for large durable consumer goods, but it is less 
appropriate for certain military aircraft applications that have a small number of very 
expensive parts in the field. We also assume that the cost to remanufacture is less than the 
cost to manufacture, so that there is an economic incentive to avoid scrapping all returned 
units.   

The remanufacturing production process is controlled by a periodic review, push 
policy that operates as follows.  Every R periods, release all carcasses from the returns 
stockpile into the remanufacturing facility.  Let this (stochastic) quantity be denoted Qr.  
Furthermore, let IR be the inventory position of the finished goods stockpile, which we 
define as the serviceable inventory on hand, less backorders, plus any outstanding 
(manufacturing or remanufacturing) orders.  If, after releasing the remanufacturing batch, 
IR is less than the manufacturing order-up-to level Sm, order enough products, Qm, from 
the manufacturing facility to bring inventory position up to Sm.  (See Figure 2.)   
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Figure 2: Behavior of the System 
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The total relevant cost (TC) we are considering comprises the sum of holding 

costs for remanufacturable and serviceable items and backorder costs. Note that 
remanufacturable holding costs cannot be influenced under the above policy. Yet we 
include this term in order to compare inventory costs for different return rates. Moreover, 
note that we do not include variable (re)manufacturing costs, which are again fixed under 
the above policy. To assess the profitability of remanufacturing, production cost savings 
should be added to the above cost term. 

The inventory management problem we are considering concerns minimizing TC 
by choosing an appropriate manufacturing order-up-to level Sm.  The review period, R, is 
chosen to manage batch sizes and setup times, perhaps by using an economic lot 
scheduling problem (ELSP) algorithm or a similar approach.  Other considerations, such 
as the schedule for MRP runs, also influence the choice of R. Therefore, we assume that 
R is given at this stage. (See McGee & Pyke (1996).) 

 
 
Notation 
�

�r  average return rate (units/day) 
�d  average demand rate (units/day) 
Lr  remanufacturing lead time (days) 
Lm  manufacturing lead time (days) 
n  lead time multiplier; Lm = n* Lr 
Chr  holding cost per unit per day of returned, but not remanufactured units 

($/unit/day) 
Chs  holding cost per unit per day of serviceable units, including newly manufactured 

units ($/unit/day) 
Cb  backorder cost per unit ($/unit) 
R  review period (days) 
Sm  order-up-to level for manufacturing (units) 

 
Finally, for purposes of the experimental design, we define j as follows: Cb = j*Chs.  
Roughly speaking, j is a multiplier, measured in days, that allows us to normalize the 
serviceable holding cost and vary only the backorder cost.  

 
Solution Methodology 

 
We know from Inderfurth (1997) that for the general inventory system above the 
complexity of the optimal control policy is prohibitive. From a practical perspective it 
therefore seems wise to resort to a simple heuristic policy instead. In this context, it 
should be noted that our suggested push policy reduces to a conventional (R, S) policy in 
the case of a vanishing return rate. Moreover, for the proposed remanufacturing strategy 
the manufacturing order-up-to policy can be shown to be optimal as long as Lr � Lm (see 
Fleischmann & Kuik, 1998). In the case of Lr = Lm this policy also coincides with 
Inderfurth’s (1997) policy if we disregard the option of disposal.  It is worth adding that 
several numerical studies suggest that disposal is a relevant option only for excessively 
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high return rates (see, e.g. Teunter & Vlachos, 2002); Fleischmann, 2001)). All in all our 
suggested policy appears to be a natural extension of several well-grounded policies to a 
domain where optimality is beyond reach. 

Once the policy is fixed the decision problem is reduced to choosing an 
appropriate order-up-to level Sm. As for conventional inventory models, determining 
optimal parameter values by means of a Markovian analysis does not appear to be 
attractive in a practical setting. Therefore, we develop several heuristics, which can easily 
be implemented on a spreadsheet basis. We test our heuristics by means of simulation, 
using the off-the-shelf simulation package, PROMODEL. Moreover, we use analytical 
work to narrow the simulation search and to develop bounds and heuristics. In this way, 
we aim at understanding the behavior of the system when the periodic review push policy 
is employed and to gain insight into the effect of return rates, backorder costs and lead 
times on system performance. 
 
Parameters for the Experiments 
 
For testing the heuristics, we employ the experimental design shown in Table 1.  To test a 
variety of lead time settings, we vary the manufacturing lead time from ½ to 4 times the 
remanufacturing lead time.  Likewise, to test a wide range of backorder/holding cost 
ratios, we vary the backorder cost multiplier from 5.7 to 50.  We selected a range of 5.7 
to 50 for the backorder multiplier on the basis of the behavior of such systems. Recall 
that our study employs $/unit as the measure for backorder cost. A backorder multiplier 
value of 50 is quite high and therefore generates policies that have very few backorders.   
However, a multiplier below 5.0 generates an optimal safety stock of negative infinity in 
the traditional inventory model approximation. Similarly, if we use $/unit/unit-time as the 
measure for backorder cost, we experience similar results for any value of the backorder 
multiplier below 5.7.   Clearly negative infinity safety stock is a nonsensical solution, and 
therefore is not valid for developing insights.  (See Lau, Lau, & Pyke (2000) for further 
explanations of degenerate inventory policies like this.)  Because we use this traditional 
model for our bounds and heuristics, we set 5.7 as the lower value for the backorder cost 
multiplier.  With a backorder multiplier of 5.7, the solution is to hold very little 
inventory, allowing us to test both high (j = 50) and low (j = 5.7) inventory cases.  The 
backorder costs in our experiment correspond to fill rates of 98%, 95%, 90% and 85%. 
 

Table 1: Experimental Design 
�r  0, 4, 8 units per day 
�d  10 units per day 
Lr  2, 5 days 
Lm  Lm = n* Lr 
n  0.5, 1, 2, 4 
Chr   0.4 $/unit/day 
Chs   0.8 $/unit/day  
Cb  Cb = j*Chs $/unit 
j 5.7, 10, 20, 50  
R  5 days 
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Finally, note that the return rate is always less than the demand rate.  In general, 

we observe three stages in a product life cycle pertaining to remanufacturing.  Early in a 
product’s life, few units are in the field, and therefore there are no carcasses to 
remanufacture.  This is captured by the case of �r = 0.  In the middle, and hopefully, 
longest stage of the life cycle demand exceeds returns and the firm must manufacture and 
remanufacture to satisfy customers.  Late in the life cycle, demand declines and returns 
increase, implying that the firm will not remanufacture every carcass.  A new policy 
parameter must be introduced – the number of carcasses to dispose of.  We leave this 
latter stage for further research. 
 
4. Behavior of the System 
 
From Figure 3 it is clear that the cost function is quasiconvex (i.e. level sets are convex) 
or even convex in S for the cases shown.  This behavior was evident in every case we 
tested, so we were confident in employing simple search techniques for finding the 
optimal policy.  Nevertheless, in a subset of cases we extended the search by significant 
amounts to be certain we had found the global optimum. 

To further our understanding of the behavior of the cost function, we examined its 
shape using alternative backorder cost measures ($/unit and $/unit/unit-time).  As can be 
seen from Figure 4, for high inventory, there are few shortages and the cost functions 
converge.  As one would expect, for low inventory, costs increase dramatically, 
especially for the $/unit/unit-time measure.  The $/unit measure has high, but flat, costs 
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Total Cost Functions (Lr =5,Lm=2.5)
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Figure 4: Cost Functions for the Two Shortage Cost Measures (j = 20) 

for low Sm because below a certain point, all units are backordered – there is no additional 
penalty cost and there is no additional holding cost savings by reducing Sm.  (Figures 4 – 
6 illustrate results for j = 20; however, conceptually the figures are similar for different 
backorder costs.) 
 Some interesting results are illustrated in Figures 5 and 6.  Figure 5 shows the 
total cost of the system when Lr < Lm and Figure 6 when Lr > Lm. First, consider the 
behavior of the optimal order-up-to level.  From Figure 5, the optimal order-up-to level is 
the largest when the return rate, �r, is zero.  This is because there are never any returns to 
process and therefore all demand is met from manufacturing.  Recall that the 
manufacturing order-up-to level, Sm, generates an order from manufacturing for whatever 
gap is left after the remanufacturing batch has been released. When there are returns of 2 
per day, and these are remanufactured in half the manufacturing lead time (5 days versus 
10 days, as in Figure 5), the optimal order-up-to level decreases.  This is because it is 
faster to meet demand from the remanufacturing process than the manufacturing process, 
and therefore it is not necessary to provide higher levels of safety stock from the 
manufacturing side.  The pattern continues as the return rate increases.  As expected, 
when the remanufacturing lead time is twice the manufacturing lead time, the pattern is 
the opposite (as in Figure 6) – the optimal Sm increases as the return rate increases. The 
push inventory policy pushes carcasses into the remanufacturing facility that takes a 
longer lead time to remanufacture. Therefore to avoid higher shortage costs the optimal 
value of Sm increases. 

Second, consider the total cost for a given Sm. In a periodic push policy, a higher 
return rate implies that more units are held in both returned and serviceable stockpiles. 
Hence for high values of Sm the inventory costs in Figure 5 are increasing in �r. On the 
other hand, in the case of moderately low (below optimal) values of Sm, costs are 
decreasing in �r. In this case, there is not enough inventory to service the demand. 
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Total Cost Functions (Lr=5,Lm=10)
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Figure 5: Effect of Return Rate – (Lr < Lm,  j = 20) 

Furthermore, returns inventory is held for R periods before being released to 
remanufacturing. Therefore shortage costs are significantly higher even though returned 
and serviceable inventory holding costs are lower. For very low values of Sm, every unit 
is backordered, so shortage costs are identical in all cases. Serviceable inventory costs are 
essentially zero because inventory is sold as soon as it becomes available. 

When the remanufacturing lead time is twice the manufacturing lead time (Figure 
6), the total cost pattern is exactly the opposite for high and moderately low (above and 
below the optimal) values of Sm.  However, they are the same as before when a given Sm 
is very low, as shortage costs dominate the other costs in this case.  Consider the case of 
high Sm.  At higher return rates the push policy ensures that more demand is met from the 
slower remanufacturing facility. Consequently, serviceable inventory is less and the 
carcasses reside longer in a lower cost state.  Furthermore, because Sm is so high, there 
are essentially no shortages. Hence, for high values of Sm, total costs are decreasing in the 
return rate. When Sm is moderately low, shortage costs are significantly higher when the 
return rate is higher because of the long remanufacturing lead time.  These costs 
dominate both types of inventory cost, and total costs are higher for larger return rate. 

One final graph illustrates the effect of lead time on the system at the optimal Sm.  
Figure 7 shows that when �r = 0 or when Lr = 5, total costs increase as manufacturing 
lead time increases; however, when Lr = 2 and �r ≠ 0 total costs at optimality actually 
decrease when n (the manufacturing lead time multiplier) increases from 1 to 2.  In other 
words, costs may decrease when manufacturing lead time increases.  Several 
observations help explain this counter-intuitive behavior.  First, note that when the return 
rate is zero, the system behaves like a traditional periodic review inventory system: 
increasing the value of n results in a larger manufacturing lead time and therefore higher 
costs.  It is when the return rate is greater than zero that costs may decrease as n 
increases.  The fundamental argument for why this may happen is a batching one: it is 
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Total Cost Functions (Lr=5,Lm=2.5)
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Figure 6: Effect of Return Rate – (Lr > Lm,  j = 20) 

often more desirable to receive smaller batches more frequently than to receive larger 
batches less frequently.  Smaller batches decrease holding costs, at the expense of slightly 
higher shortage costs.   

Consider the case in which Lr = 2 and �r = 8.  When n = 1, both remanufacturing 
and manufacturing batches arrive at the same time.  In terms of a traditional inventory 
diagram such as Figure 2, the saw tooth diagram has large spikes when both orders 
arrive.  Now when n = 2, the remanufacturing batch arrives in two days, while the 
manufacturing batch arrives two days later.  Therefore, the saw tooth has more frequent, 
smaller spikes, such as in the second replenishment cycle of Figure 2.  Of course, 
shortage costs increase with the longer manufacturing lead time, but most shortages occur 
at the end of the review period, R.  Thus, from the perspective of reducing shortages, 
there is little benefit to receiving the manufacturing batch two days earlier.  On the other 
hand, from the perspective of reducing serviceable inventory cost, there is great benefit to 
delaying the receipt of the manufacturing batch for two days.  This same argument 
explains why the cost is monotonic in n when Lr = 5: the best situation for both holding 
and shortage costs is to have a fast lead time with evenly spaced batches, i.e. Lr = 5 and 
Lm = 2.5 (n = 0.5).  When n = 1, both batches arrive together, increasing both holding and 
shortage costs.  The same is true for Lm = 10: the two batches arrive simultaneously, 
except that the manufacturing batch arrives one cycle later than the remanufacturing 
batch.  We conclude by noting that a similar, counterintuitive lead time effect has been 
reported by van der Laan (1997) for a continuous review model. In that case, the 
difficulty is to define an appropriate inventory position for coordinating manufacturing 
and remanufacturing decisions. 
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Effect of LT multiplier, n , when j =20
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Figure 7: Effect of Lead Time Multiplier at the Optimal Sm 

 
5. Bounds on Sm

* and Heuristics for Solving for Sm
* 

 
In this section we introduce upper and lower bounds on the optimal solution and then 
develop three heuristics for obtaining the approximately optimal order-up-to level.  We 
test the tightness of the bounds and the accuracy of the heuristics in the next section.  The 
purposes of the bounds are twofold.  First, they provide intuition about the behavior of 
the system, and second, they help narrow the search for the optimal.  Because of the use 
of approximate formulas in the bounds, however, they are sometimes violated, and they 
should be denoted approximate bounds.  Therefore, if one is looking for the true optimal 
parameters, rather than employing a heuristic, it is wise to search several values of Sm 
beyond the bounds.  Of course, the quasiconvexity of the cost function simplifies the 
search. 
 The upper bound on Sm is based on the most pessimistic assumptions: ignore 
returned units, thereby increasing net demand, and employ the maximum lead time.  To 
quickly compute the bound, we approximate Poisson demand with a normal distribution, 
and we use an approximate traditional periodic review inventory model from Silver et al. 
(1998).  (Note that the normal distribution is a very accurate approximation for the 
Poisson when mean lead time demand is larger than about 10.  In our experiments, the 
mean demand over the review period and lead time is at least 70.)  The assumptions of 
larger demand and lead time will cause the approximate model to choose a larger Sm.  
More formally, to compute the upper bound: 
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Upper Bound 
1. Define a pessimistic average lead time demand based on the largest lead time and 

no returns:  Let max( , )d d r mR L R L� �� � � � .   
2. Compute the standard deviation of the approximate lead time demand distribution 

for use in the normal approximation:  Let d d� ��� �  
3. Compute a safety factor based on an approximate traditional inventory model 

using he costs of our system:  Use the continuous review formula 7.23 from Silver 

et al. (1998), 
2

( )u
Qrp k
DB�

� , where Q is the order quantity, r is the annual 

carrying charge, D is the annual demand, and B2 is the fractional charge per unit 
short.  ( )up k

�
is the probability that a unit normal random variable is greater than 

or equal to k.  Now in the notation of this paper, translated to a periodic review 
case, Q is the average order quantity, or 5 days of demand = �dR.  Let v be the 
value of the item. Then, B2 = Cb/v, while Cb = Chs * j, and Chs = rv/250, assuming 
250 days per year.  Therefore, in our case, ( )up k

�

)
= R / j. Find k from unit normal 

tables, or in Excel, NORMSINV(1 – (up k
�

). 
4. Compute the optimal order-up-to level for the pessimistic parameters: 

 UB
m dS k� �� �� � d

r r� � �

 
Note that formula 7.23 Silver, et al. (1998) is an approximation that degenerates as 
backorder cost decreases (Lau et al. (2000)).  Therefore, for low backorder cost, the upper 
bound is more likely to be violated. 
 The lower bound is based on the most optimistic assumptions: a lower demand 
rate and a shorter lead time, implying that the choice of the order-up-to level will be 
smaller.  Then use the normal approximation and the same approximate inventory model: 

 
Lower Bound 

1. Compute the optimistic average lead time demand based on the smaller of the 
two lead times and a reduced demand rate: Let 

.  The max (·) term allows us to 
reduce the demand rate from the actual parameters but maintain a tighter 
bound than would min(�

[min( , )]max( , )d r m dR L R L��� � � � �

d, �r). 
2. Compute the standard deviation:  Let d d�� ���� �  
3. As in the upper bound: ( )up k

�

( )u

= R / j. Find k from unit normal tables, or in 
Excel, NORMSINV(1 – p k

�
). 

4. . LB
m dS k� ��� ��� � d

 
One final note about the lower bound: when the lower bound is very tight and the lead 
time in step 1 is fractional, we observe that the optimal solution is actually lower than the 
lower bound.  The reason is that the simulation treats days as discrete events, whereas the 
approximation does not.  To remedy this situation, we actually modified step 1 as 
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follows:  Let , where min( , ) max( , )d r m dR L R L��� � � � �� �� � r r� � � x� �� � is the integer part of 
x.  Both bounds can be computed on a spreadsheet in seconds. 
 
Narrowing the Search 
 
As might be expected, total costs at the optimal Sm increase as backorder costs increase.  
These backorder cost effects, in conjunction with the insights from Figures 5 and 6, allow 
us to devise a strategy to improve the efficiency of the simulation experiments by 
dynamically updating bounds when running the entire experimental design, thereby 
saving significant computer time.  The rules are as follows. 

 
1. When moving from a lower backorder multiplier (j1) to a higher one (j2), the lower 

bound for the latter case, LB(j2), equals the optimal Sm for the former case – 
Sm

*(j1). 
2. When moving from a lower return rate (�r1) to a higher return rate (�r2) 

a. If Lr > Lm, then LB(�r2) = Sm
*(�r1) 

b. If Lr < Lm, then UB(�r2) = Sm
*(�r1) 

c. If Lr = Lm, then Sm
*(�r2) = Sm

*(�r1) 
 
Heuristics 
 
The first two heuristics employ the same traditional periodic review approximate 
inventory model.  The first heuristic uses a weighted average lead time in conjunction 
with actual demand.  Returned units, �r per period, are available for sale in Lr periods, 
while manufactured units represent the remainder (�d – �r) and are available in Lm 
periods.  The lead time for the heuristic is the demand-weighted average of these.  The 
heuristic value of Sm is then computed in the same way as the bounds. 
 

Heuristic 1 
 

1. Let ( )m d r r r
d d

d

L LR � � �

�

� �� �
���� �� �

	 

� � .   

2. Let d d��� ����� �  
3. ( )up k

�

( )u

= R / j. Find k from unit normal tables, or in Excel, NORMSINV(1 – 
p k

�
).   

 

4. . 1
m dS k� ���� ���� � d

 
 
The second heuristic uses similar logic but uses the sum of two order-up-to levels – one 
based on returns only and the other based on the remaining demand met from 
manufacturing. 
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Heuristic 2 
 

1. Let � � .   ( )r rR L� � � r

2. Let r r� ��� �  
3. 1 1( )up k�

1 1( )u

= R / j. Find k1 from unit normal tables, or in Excel, NORMSINV(1 – 
p k� ).   

4. . 2 1r
m rS k� �� �� � r

)r�5. Let � � .   ( )(m m dR L� � � �

6. Let m m� ��� �  

7. 2 2( )up k�

2 (u

= R / j. Find k2 from unit normal tables, or in Excel, NORMSINV(1 
– 2 )p k� ).   

8. . 2 2m
m mS k� �� �� � m

29. . 2 2r m
m m mS S S� �

 
Both of these heuristics rely on approximating the two alternative supply channels (i.e. 
manufacturing and remanufacturing) by a single aggregated channel. In a third alternative 
we model both channels separately. To this end, note that the inventory level in our 
system may have two ‘peaks’ per review cycle, corresponding to the arrival of a 
remanufacturing batch and a manufacturing batch (see Figure 2). The safety stocks 
corresponding to both of these epochs can be approximated in much the same way as in a 
traditional (R, S) system (see Silver et al. (1998)). To be specific, let SSr and SSm denote 
the expected net stock just before arrival of a remanufacturing batch and a manufacturing 
batch, respectively. Moreover, for the time being assume that Lr < Lm � R. Ignoring a 
potential excess of the order-up-to level Sm we can then approximate SSr by 

SSr  �  E[Sm – Xr],      (1) 

where Xr is distributed as demand during a time interval of length R+Lr. Letting  
�r := E[Xr] = �d(R+Lr) and �r

2 := Var[Xr] = �d(R+Lr) and using a normal demand 
approximation, the expected shortage at this epoch is approximated by �r G((Sr -�r)/�r), 
where G(.) denotes the usual normal loss integral. Analogously, we get 

 SSm  �  E[Sm – Xm+ Qr],     (2) 
where Xm is distributed as demand during a time interval of length R+Lm and Qr as the 
number of items returned during one review period, and both distributions are 
independent. The expected shortage just before arrival of a manufacturing batch therefore 
approximately equals �m G((Sr - �m)/�m), with �m := E[Xm  -Qr] = �d(R+Lm) - �rR and  
�m

2 := Var[Xm-Qr] = �d(R+Lm) + �rR . Putting all of these terms together yields the 
following approximation of the expected holding and shortage costs per review cycle 
(ETCR) 

     ETCR(Sm) � Cb [ �r G((Sm-�r)/�r) + �m G((Sm-�m)/�m)]  +  Chs ( Sm + c) R , (3) 
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with some constant c that is independent of Sm. From this we get the following first order 
condition for Sm  

 pu�((Sm-�r)/�r) + pu�((Sm-�m)/�m) = R / j .       (4) 

This equation differs from the one for a standard (R, S)-system in that the left-hand side is 
a sum of two stockout probabilities, both depending on Sm. Therefore, (4) cannot be 
solved for Sm analytically. However, since both probabilities are strictly decreasing in Sm 
the equation can easily be solved numerically, e.g. using Excel’s GOALSEEK function. 
Alternatively, (4) may be used as a basis for more simplistic heuristics, e.g. by replacing 
the two individual probabilities by a single value pu�(.) at some intermediate point or by 
ignoring one of the two terms. 

The above reasoning goes through for the more general lead time conditions as 
introduced in Section 2 if we adjust Xr and Xm to the net demand during the 
corresponding relevant time intervals for both supply channels. We summarize our third 
heuristic in its general form as follows. 

 
Heuristic 3 

 
1. Let n denote the number of remanufacturing batches arriving before the 

manufacturing batch ordered in the current period, i.e. n = �Lm / R� if 
remanufacturing orders arrive before manufacturing orders in each review 
cycle and n = �Lm / R� -1 otherwise. 

2. Let �r = �d (nR+L ) - � R (n-1). r r 
3. Let )1()( ���� nRLnR rrdr ��� . 

4. Let �m = �d (R+L ) - �m r Rn. 
5. Let RnLR rmdm ��� ��� )( . 

6. Find Sm numerically from pu�((Sm-�r)/�r) + pu�((Sm-�m)/�m) = R / j.   
 
 
6. Tightness of the Bounds and Performance of the Heuristics 
 
The experimental design for testing the bounds and heuristics was given in Table 1.  In 
this section we report the results of the experiment, testing the tightness of the bounds 
and the performance of the heuristics.  Table 2 contains the optimal values of Sm as well 
as the lower and upper bounds in the format (UB, LB) Optimal.   

First, observe that the lower bound is very tight for n ≤ 1 and �r = 0.  Otherwise, 
the bound is not particularly tight.  When the return rate is zero, the “reduced” demand 
rate equals the actual demand rate, so we should expect a tight bound.  However, if one 
lead time is considerably longer than the other, regardless of the return rate, using the 
lower lead time for the bound is quite optimistic and the bound is not tight.  Nevertheless, 
it does restrict the search for the optimal by at least 50% over the case with no lower 
bound. 

 
 
 

 16



Table 2: Bounds and Optimal Values 
 

    Lr = 2 days Lr = 5 days 

LT mult 
(n) 

Backorder 
mult (j) �r = 0 �r = 4 �r = 8 �r = 0 �r = 4 �r = 8 

  5.70 
0.50   (61,51) 56 (61,29) 56 (61,39) 61 (89,60) 65 (89,34) 73 (89,47) 85 

  10.00 
    (70,60) 61 (70,36) 61 (70,48) 65 (100,70) 71 (100,42) 77 (100,56) 91 
  20.00 

0.50   (76,65) 65 (76,40) 65 (76,52) 68 (107,75) 77 (107,46) 80 (107,61) 96 
  50.00 
    (81,69) 71 (81,43) 71 (81,56) 72 (113,80) 82 (113,50) 85 (113,65) 102 
  5.70 

1.00   (61,60) 65 (61,34) 65 (61,47) 65 (89,88) 95 (89,51) 95 (89,69) 95 
  10.00 
    (70,70) 71 (70,42) 71 (70,56) 71 (100,100) 102 (100,60) 102 (100,80) 102 
  20.00 

1.00   (76,75) 77 (76,46) 77 (76,61) 76 (107,106) 108 (107,65) 108 (107,86) 107 
  50.00 
    (81,80) 82 (81,50) 82 (81,65) 81 (113,112) 114 (113,69) 114 (113,91) 113 
  5.70 

2.00   (79,60) 85 (79,34) 74 (79,47) 66 (136,88) 145 (136,51) 125 (136,69) 105 
  10.00 
    (90,70) 92 (90,42) 77 (90,56) 71 (150,100) 153 (150,60) 133 (150,80) 113 
  20.00 

2.00   (97,75) 97 (97,46) 82 (97,61) 76 (159,106) 160 (159,65) 140 (159,86) 121 
  50.00 
    (103,80) 103 (103,50) 86 (103,65) 82 (166,112) 166 (166,69) 147 (166,91) 129 
  5.70 

4.00   (117,60) 125 (117,34) 100 (117,47) 75 (232,88) 245 (232,51) 185 (232,69) 124 
  10.00 
    (130,70) 133 (130,42) 106 (130,56) 83 (250,100) 255 (250,60) 195 (250,80) 135 
  20.00 

4.00   (138,75) 139 (138,46) 111 (138,61) 90 (261,106) 264 (261,65) 204 (261,86) 146 
  50.00 
    (145,80) 146 (145,50) 117 (145,65) 97 (271,112) 272 (279,69) 213 (271,91) 155 

 
Legend: (LB, UB) Optimal 

 
 
The upper bound reveals some interesting results.  First, when Lm = Lr and j ≥ 10, 

the optimal solution is at the upper bound (within the error introduced by simulation and 
the approximation).  When the lead times are identical, an order is placed at review 
epochs and either source of the product, manufacturing or remanufacturing, makes the 
product available Lm = Lr days later.  Therefore, returns have no influence on the choice 
of Sm, and the simple approximate inventory model used in the bound is close to optimal.   
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Second, there are a number of cases in which the optimal solution is actually greater than 
the upper bound.  Some of these are due to simulation error and minor errors introduced 
by the approximation.  Note, for instance the case of Lr = 2, �r = 0, and n = 4.  When j 
increases from 10 to 50, the difference between the optimal Sm and the upper bound 
decreases from 3 units to 1 unit.  It is well known that the inventory approximation 
assumes relatively few backorders and that the approximation degrades as the backorder 
level increases.  (See Silver et al. (1998), p. 253, and Lau et al. (2000).)  Thus, when 
backorder cost is very low (j = 5.7), the inventory approximation degenerates rapidly and 
the optimal solution is actually greater than the upper bound.   

Fortunately, we observed that the cost effect of violating the upper bound is 
minor.  If one used the upper bound in place of the optimal Sm in cases in which the upper 
bound is violated, the average cost error is only 1.58%, although there was one case with 
an error of 11% and a second case with an error of 7%.  All others had errors of 4% or 
less, and most were less than 1%.  The lesson from this exercise is that, as in many cases 
in inventory theory, the models and bounds apply best when the parameters are such that 
the backorder level is low.  As is clear from the table, we searched beyond the bounds to 
test their performance and to be certain of finding the optimal solution, subject to 
simulation error.  However, managers should use the bounds with care when the optimal 
solution is to hold very little inventory due to a very small backorder cost.  Fortunately, a 
very small backorder cost is quite rare in practice. 

 
Accuracy of the Heuristics 

 
The first two heuristics perform very well as can be seen from Table 3.  Heuristic 1, 
based on weighted lead times, has an overall average cost error of 3.27%, measured as 

1 *

*

( ) ( )
( )

m

m

TC S TC S
TC S

� m ), where TC is the total cost at the optimal order-up-to level.  

Heuristic 2, based on the sum of two order-up-to levels, has an overall average cost error 
of 5.96%, measured similarly.  Heuristic 3 outperforms both other heuristics, achieving 
remarkably smaller average (0.44%) and maximum errors (see Tables 3 and 4).  This 
performance is very good news indeed.  It appears that managers can use simple 
approximate models from standard inventory theory to solve complex problems in the 
remanufacturing environment.   

*( mS

Not all the news is good, however.  Table 4 shows maximum errors for the three 
heuristics.  Maximum errors can be quite high for the Heuristics 1 and 2, especially for a 

Back order 
multiplier

Pure 
manufacturing 

� r  = 0 � r  = 4
Heuristic 1 

� r  = 8 Overall � r  = 4
Heuristic 2 

� r  = 8 Overall � r  = 4
Heuristic 3 

� r  = 8 Overall
5.7 4.86 2.91 1.70 2.31 8.79 5.79 7.29 0.77 1.55 1.16
10 1.01 3.10 1.00 2.05 3.10 1.00 2.05 0.28 0.18 0.23
20 0.74 4.56 2.45 3.51 7.70 3.77 5.74 0.32 0.08 0.20
50 0.67 6.10 4.31 5.21 11.71 5.78 8.75 0.25 0.11 0.18

All cases 1.82 4.17 2.37 3.27 7.83 4.09 5.96 0.41 0.48 0.44

Table 3: Performance of the Heuristics: Average Percentage Cost Error 

 18



 
 

Back order 
multiplier

Pure 
manufacturing 

� r  = 0
Heuristic 1 

� r  = 4 � r  = 8
Heuristic 2 

� r  = 4 � r  = 8
Heuristic 3 

� r  = 4 � r  = 8
5.7 11.02 6.03 2.76 14.12 8.09 2.02 3.99
10 2.35 15.19 2.55 15.19 2.55 0.54 0.46
20 4.06 22.39 7.21 32.34 14.27 1.79 0.40
50 3.94 27.32 11.17 42.59 18.44 1.52 0.56

Table 4: Performance of the Heuristics: Maximum Percentage Cost Error 

return rate of 4.  The average error is still very small, however, even for �r = 4 – likely 
smaller than the effect caused by inaccuracies in most real input data.  However, let us 
understand the reasons for the few cases of poor performance.  An examination of the 
detailed data (available from the authors) shows that the largest errors occur when Lr = 2 
and Lm = 4, or Lr = 5 and Lm = 2.5, and of course �r = 4.  Recall the discussion in Section 
4 explaining how total cost could decrease when manufacturing lead time increases.  The 
ideal situation, from a cost perspective, is to have many small batches arriving frequently, 
which is precisely what happens in the large-error cases we are examining; i.e. roughly 
half of the demand is met from each source, and the batches arrive in regular intervals 
(about every 2 days, or every 2.5 days).  Heuristics 1 and 2 employ averages, in effect 
assuming that the batches arrive together, thereby creating larger inventory spikes, and 
thus requiring a larger-than-optimal Sm.  Therefore, the errors can become quite large.  
Heuristic 3 circumvents this pitfall by explicitly recognizing two batch arrivals per 
review period. The results in Tables 3 and 4 illustrate that this approach reduces the error 
significantly. 

When the return rate is 0 or 8, the errors of Heuristics 1 and 2 are smaller because 
either manufacturing or remanufacturing is the dominant source of inventory, so the 
actual inventory spikes are not of the same relative magnitude, and the approximate, 
average model is more accurate. 

 
7. Conclusions and Future Research 
 
In this paper we analyzed an inventory system with remanufacturing and manufacturing.  
Modeling the system using simulation, we observed the quasiconvexity of the objective 
function in the decision variable, and we saw some unusual behavior, such as costs 
decreasing when lead times increase.  We developed bounds and heuristics based on 
traditional approximate inventory models that can be calculated easily on a spreadsheet.  
Each is based on simple, intuitive adjustments to the parameters of the traditional model.  
The two first approaches rely on an approximation of the manufacturing and 
remanufacturing sources by a single aggregate channel. The third approach explicitly 
considers the impact of both channels separately The performance of all the three 
heuristics is quite good on average, with average total cost errors of 3.27%, 5.96%, and 
0.44% respectively. Maximum errors can be significant for the first two heuristics if both 

 19



supply channels supply similar volumes and batches arrive equally spaced during the 
review period. In this case, modeling both channels separately yields better performance.     
 It seems valuable for future research to try and extend the analysis presented in 
this paper to other remanufacturable inventory models. In particular, addressing 
remanufacturing-pull models appears to be worthwhile.  A pull model triggers a 
remanufacturing batch only if serviceable inventory falls below a certain threshold.  In 
contrast to the push policy examined in this paper, a pull policy may postpone 
remanufacturing activities by keeping excess carcasses in stock beyond a single review 
period.  Additional research should also focus on formulating a policy framework for the 
entire life cycle of the product, from the new product stage with few returns, to the end-
of-life stage with returns outpacing demand.  In the latter case, the inventory policy must 
consider disposal of returned units, thereby adding an additional parameter. 
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