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1. Introduction 

Credit risk management has become an increasingly important area of financial risk 

management, highlighted by the enormous surge in credit derivatives. A survey by the 

British Bankers Association (BBA) estimated the global credit derivatives market in 

1999 to be $586 billion, by 2000 the market had grown to around $893 billion1, and at 

the year-end of 2001 the market has been estimated to have mushroomed to an 

incredible $1.2 trillion. Indeed forecasts for 2002 estimate a market of over $1.5 

trillion. The recent global financial crisis, the need for credit protection, as well as the 

potential to enhance loan-based credit portfolio yields and the returns on bank capital 

have spurred demand for credit derivatives.  

 

Accurate assessment of credit risk depends on methods to accurately measure and 

control the potential or expected losses resulting from default. This includes 

estimation of the credit exposure, the probability of default, and the fraction of the 

market value being recovered at default. Credit spreads, the difference between the 

risky bond and a risk-free alternative, should therefore reflect the amount of credit 

risk faced. These spreads change over time due to, for example, varying market 

conditions, changes in the credit ratings of issuers, or changes in the expectations 

regarding the recovery rate. Traditional quantitative credit risk models assume that 

expected changes in spreads are normally distributed, but empirical evidence shows 

that they are more likely to be skewed and fat tailed. This results in the expected loss 

distribution for credit portfolios to be highly skewed and severely fat tailed. Among 

others Subrahmanyam, Ho Eom, and Uno [1998] show this for Japanese yen swap 

spreads and Phoa [1999] provides evidence using Australian dollar swap spread data. 

In both papers it is argued that incorporating the apparent fat tails is crucial in order to 
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correctly measure credit risk. Phoa applies Extreme Value Theory (EVT) to 

parameterise fat tailed Fréchet, Weibull, and Gumbel distributions in order to measure 

the maximum expected daily widening in swap spreads on the Australian dollar. 

However, the method used by Phoa to assess the amount of tail fatness (the tail index) 

is known to be biased. Phoa deals with this fact by showing results for two different 

tail index estimates. Recent developments in EVT have lead to the development of an 

unbiased tail index estimator, which has proven to work successfully in measuring the 

tail index, and therefore is also able to capture the additional downside risk in Value 

at Risk estimates for stocks and exchange rates2 .  

 

In this paper we apply the technique mentioned above to model the tails of the 

distribution of expected changes in swap spread. Using data from US, UK, German, 

and Japanese 10 year swap and government bond rates, we provide evidence of the 

apparent tail fatness in the empirical distributions of the changes. Furthermore, it is 

shown that the approach outperforms the normal distribution in measuring the risk 

faced by large widenings or tightenings of credit spreads. The plan of the paper is as 

follows. Section 2 focuses briefly on credit spreads. In section 3, we discuss the data 

and provide sample statistics. Section 4 introduces tail index estimation and presents 

the results. Section 5 concludes. 

 

2. Credit Spreads 

The expected credit loss is measured by the drop in value due to the possibility of 

default, λ,  over a time interval t and can be expressed simply as the probability of 

default multiplied by the proportion of the position not recovered; as shown below in 

equation (1)2. 
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   ECL ( )( ) tPtf ∆−= λ1      (1) 

Where f is a fraction representing the recovery rate and P is the price of a risk free 

bond at time t. The credit spread for a given maturity may be written in terms of 

yields, y, as in equation (2), where λ is again the probability of default over the same 

period as the maturity of the risky bond, P*, and the risk free bonds, 

   ( )λfyy −=− 1*      (2) 

The credit spread therefore represents the probability of default multiplied by the 

proportion not recovered. Indeed using equation (2) the term structure of default 

probabilities can be inferred from the term structures of risky and risk free bonds, in a 

similar manner to Jarrow and Turnball [1995]2. The term structure of credit spreads 

(and shocks to credit spreads) is indeed non-trivial. From the credit spread we can 

determine much of the risk involved in credit risk. Indeed it is this factor which is 

used as the crucial element in credit risk management. For example for the next 

periods estimate of the expected credit loss we can substitute in the credit spread as 

the markets� expectation of default and recovery. When multiplied by the credit 

exposure (average price is at the 50% confidence level), we have an estimate for the 

expected credit loss, similar to that given in equation (1), however now in terms of the 

credit spread.  

        (3) ( ) tPyyECL 50.0* −=

If however an estimate of the unexpected credit loss is required we multiply the price 

of the risk free asset instead by the worst credit exposure at a chosen confidence 

interval, c. For risky debt the credit exposure is the principal, so Pc
t simplifies to the 

assets� Value-at-Risk for a given confidence level. For products like derivatives it is 

only when the derivative contract is in the money that potential credit risk arises, so 
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we also need to multiply by the probability of being in the money at time t, denoted 

by probability m.  

   UCL      (4) ( ) t
cPyym −= *

This approach to estimating unexpected credit loss however does not take into 

account the risk associated with changes in the size of the credit spread, credit spread 

risk, or changes in the probability of default and the recovery rate. So unless this is 

incorporated into the worst case CaR estimate3 it is vital that scenario analysis is used 

to track the sensitivity of the CaR measure to either credit spread risk or changes in 

default and recovery rates. Changes in the credit spread, (credit spread risk) is 

therefore the risk involved with changes in the size of the credit spread. This can have 

implications for worst case scenario analysis of credit risk for fixed income products, 

as well as for pricing credit derivative products where the credit spread is a 

determining factor for the value of the derivative. 

 

In the following section we provide empirical evidence of the probability distribution 

of credit spread changes, so that sensitivity analysis used in worst case-scenario 

analysis for credit risk management, and in the pricing and hedging of derivatives 

products on credit spreads can be more accurately determined.  

 

 

3. Historical Credit Spread Tightenings and Widenings 

To estimate the distribution of shifts in credit spreads for a variety of countries, we 

employ daily data for the US, UK, Germany and Japan from Datastream over the 

period January 1990 until January 2000. The credit spread prices the additional risk 

over a base asset such as the Treasury bill rate. We therefore use 10 year Government 
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Bond yields for the respective countries as the base asset. The swap rate is commonly 

taken as a proxy for the AA credit rate, since the swap market is significantly deeper 

and more liquid than that for corporate bonds4. We therefore also use the 10 year 

Datastream Swap Rate, which is a value-weighted index of the middle yield on U.S. 

swaps. The swap spread (credit spread) is the swap rate less the yield on the current 

10-year Government Bond. As a word of caution it may not always be appropriate to 

use the Treasury yield as the risk-free rate since Treasuries are more liquid and repo at 

lower rates. It may therefore be more appropriate to use a swap rate as the risk-free 

rate. A further limitation is that in using a constant-rating series we are not able to 

reflect spread shifts which result from rating migrations. 

 

The summary statistics for the daily shifts in credit spreads are given in table 1. We 

can see that the average daily shift is extremely small with standard deviations 

ranging from 6.2% for Germany, to 8.8% for the UK. The distribution of credit spread 

shifts in Japan is highly skewed, and all countries credit markets exhibit significant 

excess kurtosis.  

INSERT TABLE 1 

Deviations from normality will result in the probability of large movements in credit 

spreads to be higher than stipulated under the assumption of normally distributed 

returns. The assumption of gaussian innovations generates a smaller probability of 

extreme movements, so the assumption of normality is likely to underestimate the 

credit spread risk of either large tightenings or widenings in credit spreads. The 

degree of misspecification is of course vital for accurate estimation in risk 

management for both credit risk, and worst-case scenario analysis. The histogram of 

shifts in swap spreads is given for the US in figure 1 against the probabilities 
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assuming normality. We do indeed observe a greater than normal probability of 

extreme movements in credit spreads, exemplifying the small but looming potential 

for increases in default risk to have severe implications on the size of credit spread 

risk.  

INSERT FIGURE 1 

Of course the prevalence of skewed distributions could also result in an alternative 

probability for large downward shifts in the swap spread than for upward shifts, so we 

shall look at both tails of the distribution of shifts in swap spreads. A simple approach 

to modelling the additional tail fatness in distributions is by parameterising the 

student-t distribution with degrees of freedom in accordance with the tail estimate of 

section 2. This approach follows the approach of Huisman, Koedijk and Pownall 

[1998] in their VaR-x approach, however instead of focussing directly on Value-at-

Risk estimation, here we focus on quantile estimates. These quantile estimates can 

then be directly incorporated into scenario analysis for Credit-at-Risk analysis, or 

indirectly, when pricing far out-of-the-money credit risk derivatives.  

 

4. Tail Index Estimation 

Recent developments in the application of Extreme Value Theory to risk management 

enable us to provide a good estimate of the tail index of the distribution of daily 

movements in credit spreads. Tail index estimation is the specification of the degree 

with which the tail of a distribution exhibits tail fatness, and was first introduced by 

Hill [1975]. The tail index measures the speed with which the distribution�s tail 

approaches zero; the fatter the tail the slower the speed and the lower the tail index 

given. The tail index has the attractive feature that it is equal to the number of existing 

moments of the distribution, and thus can be used to parameterise the student-t 
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distribution. Hence the link to the fatter tailed Student-t distribution, which nests the 

normal distribution as a limiting case. We use a modified version of the Hill 

estimator, developed by Huisman et al [1997] to estimate the tail index, which has 

been modified to account for the bias in the Hill estimator. Specifying k as the number 

of tail observations, and ordering their absolute values as an increasing function of 

size, we obtain the tail estimator proposed by Hill. This is denoted below by γ and is 

the inverse of α, (5).  

   ∑
=

−+− −=
i

j
injn xx

k
k

1
1 )ln()ln(1)(γ     (5) 

As pointed out by Phoa (1999) in practical applications of the Hill estimator an 

uncomfortable trade-off exists between variance and bias. This occurs through the use 

of fewer observations as we move further out into the tails of the distribution, so that 

although the estimate is less biased (reflects more fully the tail of the distribution) the 

variance of the estimate increases. The bias of the Hill estimator is therefore a 

function of the sample size used for the estimate, and is shown in figure (2) for the US 

swap spread data5.  

INSERT FIGURE 2 

 

Following the methodology of Huisman et al. [1997], we can use a modified version 

of the Hill estimator [1997] to correct for the bias in small samples. A bias corrected 

tail index is therefore obtained by observing the bias of the Hill estimator as the 

number of tail observations increases up until κ, whereby κ is equal to half of the 

sample size: 

   κεββγ ....1),()( 10 =++= kkkk     (6) 
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The optimal estimate for the tail index is the intercept β0. And the α estimate is just 

the inverse of this estimate. This is the estimate of the tail index that we use to 

parameterise the Student-t distribution. Recent applications of this approach for 

estimating market risk have been shown to work well for a variety of financial time 

series6. We have estimated the tail estimates using the alpha HKKP estimator for the 

four countries, and the estimates for both tails, the left tail and the right tail 

respectively are given in table 2.  

INSERT TABLE 2 

 Since all the series exhibited excess kurtosis it is not surprising that the alpha 

estimates used to parameterise the student-t distribution generate much fatter tailed 

distributions than under normality. We also observe that the alpha estimate for the left 

tail alone for all the series is slightly smaller than the estimate using both tails, and the 

right tail of the distribution only. This provides evidence of a greater probability 

attached to credit spread tightenings than to credit spread widenings. This may result 

from the fact that sharp rises in Treasury yields appear more frequently than sharp 

falls7. We therefore analyse the quantile estimates for the downward and upward 

shifts in credit spreads separately, using the tail index estimator for the respective tail. 

In figure 3 we have plotted the quantile estimates using the two approaches for 

quantiles ranging from 7.5% to 92.5% in the right and left tails of the distributions 

respectively.  

INSERT FIGURE 3 

More extreme cases the assumption of normality severely underestimates the size of 

the potential shift in the credit spread shift. Indeed this is the case for all the series, 

which we analysed, and the results for the quantile estimates for potential daily 

tightenings and widenings are given in tables 3 and 4. 
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INSERT TABLES 3 & 4 

The probability of credit-spread tightenings has historically been slightly larger than 

similar sized upward movements. However all the results provide evidence of severe 

underestimation of the potential changes in large movements of credit spreads. Indeed 

the fatter tailed student-t distribution parameterised by the alpha tail index estimator 

provides basis point movements for monthly, yearly, 5, and 10 yearly events much 

more in line with those having been observed in recent years. It would therefore 

appear to be much more prudent to use these larger estimates in risk management 

techniques and derivative pricing and hedging strategies incorporating credit spread 

risk. 

 

5. Conclusions 

Estimation of credit-spread risk is not only important for pricing and hedging credit 

derivatives but also for accurate risk management. Small but looming possibilities of 

default however render the expected return distribution for financial products 

containing credit risk to be non-normal. To correctly assess the true probability of 

large movements in credit widenings and tightenings we apply recent techniques 

developed to incorporate additional downside risk resulting from non-normalities in 

managing market risk to data on swaps and swap spreads. The downside of our results 

is that for unexpected events the assumption of normality results in credit spread risk 

in many countries� credit markets to be grossly underestimated. Estimation of swap 

and credit spread risk for such events is dramatically improved when the severity of 

the additional downside risk is measured and incorporated into current estimation 

techniques. These results are not only crucial for improving credit risk management 

but also in pricing out-of the money credit derivatives. 
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Table 1 

Summary Statistics 

The table gives the summary statistics for daily shifts in credit spreads over the period January 1990 � 

January 2000.  

 

 

 

CREDIT SPREAD 

 

US 

 

UK 

 

GERMANY 

 

JAPAN 

 

OBSERVATIONS 

 

2610 

 

2610 

 

2610 

 

2610 

 

AVERAGE DAILY SHIFT -5.747E-06 -2.797E-04 1.226E-04 -1.782E-04 

 

STANDARD DEVIATION 0.076 

 

0.088 0.062 0.069 

 

SKEWNESS  

 

-0.052 

 

0.015 

 

-0.042 

 

-0.344 

 

KURTOSIS 

 

7.224 

 

9.352 

 

7.353 

 

28.723 
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Table 2 

Alpha Estimates 

The table gives the alpha estimates for daily shifts in credit spreads over the period January 1990 - 

January 2000, using the HKKP estimator.  

 

 

 US UK GERMANY JAPAN 

ALPHA  (BOTH) 3.848 3.423 3.550 2.939 

KAPPA 1305 1305 1305 1305 

ALPHA  (LEFT) 3.957 3.035 2.803 2.735 

KAPPA 603 618 732 582 

ALPHA  (RIGHT) 4.506 3.835 4.230 3.561 

KAPPA 701 686 572 723 
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Table 3 

Credit Spread Tightenings – Quantile Estimates 

The table gives the quantile estimates for daily shifts in swap spreads over the period January 1990 � 

January 2000, assuming normality and the student-t distribution, with degrees of freedom 

parameterised by the alpha estimates for the left tail as described in Table 3.   

 

MONTHLY EVENT 4.76% EMPIRICAL NORMAL STUDENT-T (αL) 

US -12.0 -12.7 -11.7 

UK -13.0 -14.7 -12.3 

GERMANY -9.0 -10.4 -8.3 

JAPAN -9.0 -11.5 -9.0 

YEARLY  EVENT 0.397%  EMPIRICAL NORMAL STUDENT-T (αL) 

US -29.6 -20.2 -26.6 

UK -35.0 -23.4 -32.2 

GERMANY -24.7 -16.5 -22.8 

JAPAN -31.9 -18.3 -25.1 

5-YEARLY  EVENT 0.079% EMPIRICAL NORMAL STUDENT-T (αL) 

US -37.0 -24.1 -41.4 

UK -57.4 -27.8 -55.8 

GERMANY -32.5 -19.7 -41.1 

JAPAN -62.9 -21.8 -46.0 

10-YEARLY EVENT 0.040% EMPIRICAL NORMAL STUDENT-T (αL) 

US -53.4 -25.6 -49.7 

UK -58.9 -29.5 -70.4 

GERMANY -35.9 -20.9 -52.7 

JAPAN -69.7 -23.1 -59.4 

20-YEARLY EVENT 0.019% EMPIRICAL NORMAL STUDENT-T (αL) 

US - -27.0 -59.5 

UK - -31.2 -88.7 

GERMANY - -22.1 -67.7 

JAPAN - -24.4 -76.7 
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Table 4 

Credit Spread Widenings – Quantile Estimates 

The table gives the quantile estimates for daily shifts in swap spreads over the period January 1990 � 

January 2000, assuming normality and the student-t distribution, with degrees of freedom 

parameterised by the alpha estimates for the right tail as described in Table 3.   

 

MONTHLY EVENT 4.76% EMPIRICAL NORMAL STUDENT-T (αR) 

US 12.9 12.7 12.0 

UK 14.0 14.7 13.5 

GERMANY 10.0 10.4 9.7 

JAPAN 10.0 11.5 10.3 

YEARLY  EVENT 0.397%  EMPIRICAL NORMAL STUDENT-T (αR) 

US 26.3 20.2 25.8 

UK 33.5 23.4 31.0 

GERMANY 23.6 16.5 21.3 

JAPAN 26.3 18.3 24.6 

5-YEARLY  EVENT 0.079% EMPIRICAL NORMAL STUDENT-T (αR) 

US 29.9 24.1 38.5 

UK 43.7 27.9 48.7 

GERMANY 29.9 19.6 32.5 

JAPAN 38.4 21.8 39.8 

10-YEARLY EVENT 0.040% EMPIRICAL NORMAL STUDENT-T (αR) 

US 31.9 25.6 45.4 

UK 52.2 29.6 58.8 

GERMANY 31.0 20.9 38.7 

JAPAN 40.4 23.2 48.7 

20-YEARLY EVENT 0.019% EMPIRICAL NORMAL STUDENT-T (αR) 

US - 27.0 53.3 

UK - 31.2 70.7 

GERMANY - 22.0 45.8 

JAPAN - 24.4 59.2 
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Figure 1 

Histogram of Daily Spread Shifts 

This figure gives the quantile estimates for daily shifts in swap spreads over the period January 1990 � 

January 2000. We compare the empirical distribution to that under the assumption of normality.  
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Figure 2 

Hill Tail Index Estimator  

This figure gives the bias in the Hill estimator as the sample size m increases for the tail index 

estimation as given in equation (8). Daily shifts in US swap spreads over the period January 1990 � 

January 2000. We compare the empirical distribution to that under the assumption of normality.  
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Figure 3 

Quantile Estimates using Alternative Parametric Distributions 

This figure gives the quantile estimates for daily shifts in swap spreads over the period January 1990 - 

January 2000, assuming normality and the student-t distribution, with degrees of freedom 

parameterised by the alpha estimates for the left tail as described in Table 3.   
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Endnotes 
 
 
1 Credit Risk Survey, BBA [2000]. 

2 See Huisman, Koedijk, Kool, and Palm [2000], Pownall and Koedijk [1999], and 

Huisman, Koedijk, and Pownall [1998] 

34 Jarrow and Turnball [1995] provide a consistent methodology for pricing and hedging 

derivative securities involving credit risk, assuming no arbitrage and complete 

markets. 

45 Even though a confidence level (commonly 95%) is taken for the distribution of the 

underlying asset, it is not commonly assumed for the distribution of shifts in the 

credit spread, however it is a simple exercise to incorporate this directly into the 

estimate using a bivariate distribution.  

6 The Datastream Value-weighted index of the middle yield on U.S. corporate bonds 

index for example with which includes all maturities and investment grade credit 

ratings could have been used, however the market is much less liquid with only weekly 

data available for the same sample period.  

67 A similar pattern emerges for all the series studied.  

78 See Huisman, Koedijk & Pownall [1998] for an application to US stocks and Bonds, 

and Pownall & Koedijk [1999] for Asian stock markets, as well as Campbell, Eicholtz 

& Huisman [2000] for the US and Dutch real estate markets. 

89 See Phoa [1999]. 
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