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Chapter 1  

1.1 Principles of hemodialysis 

During hemodialysis treatment, many solutes, such as urea, sodium and potassium, which 

have accumulated as a result of renal failure, have to be removed. Due to reduced diuresis 

approximately 1.5-4.5 liters of water has to be removed during each treatment. During the 

procedure, blood is led through an extracorporeal circuit with an artificial kidney, and then 

returned to the patient, as first reported by Kolff  (Figure 1)[1,2].  

 

 

Figure 1. Hemodialysis block diagram 

 

In the artificial kidney, blood is separated from the dialysate by a semi-permeable membrane. 

This membrane is permeable to solutes up to several thousand Dalton, which allows fluid and 

waste products to pass through, but prevents the exchange of blood components, 

microorganisms and endotoxins. Dialysate, flows on the other side of the membrane and in 

the opposite direction (Figure 2).  
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Figure 2. The Artificial kidney 

 

Four processes control the transmembrane exchange of water and solutes: diffusion, 

ultrafiltration, convection and osmosis. When blood and dialysate flow through the dialyzer a 

transmembrane concentration gradient is formed. As governed by Fick’s law this results in 

diffusion of the accumulated solutes from the intravascular space to the dialysate compartment 

(Figure 3). By controlling the composition of the dialysate, the concentration gradient can be 

altered, resulting in an appropriate transfer of solutes. Excess water is removed by 

ultrafiltration. During this process, a trans-membrane pressure (TMP) gradient is generated 

between the blood and dialysate compartments (Figure 3). This results in the movement of 

plasma water to the dialysate compartment. As water moves across the dialyzer membrane it 

drags along solutes (convection), while solutes with a greater molecule mass, such as proteins 

(colloid solutes), remain within the vascular space [3,4]. The ratio of the amount of solute 

transported to the ultrafiltrate to the amount retained in plasma water is called the sieving 

coefficient. The sieving coefficient depends on the properties of the membrane (diameter of 

membrane pores), and on the molecular size and the chemical properties of the solute. The 

sieving coefficient of urea equals one and that of proteins is zero [5]. Cations, such as sodium, 

have a sieving coefficient slightly lower than one. This is caused by the fact that the 

negatively charged proteins in plasma attract cations, resulting in a decreased trans-membrane 

movement. This is called the Donnan effect [6-8].  
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Ultrafiltration can be performed in combination with hemodialysis, or without concomitant 

diffusive hemodialysis, i.e. isolated ultrafiltration. Osmosis is the net movement of water 

across a selectively permeable membrane, driven by a difference in the concentration of a non 

permeating solute on the two sides of the membrane (Figure 3). The water shift during 

osmosis depends on the overall concentration- and hydrostatic pressure gradients across the 

membrane. When fluid moves to the compartment with the lowest concentration, the 

hydrostatic pressure in this compartment rises, until equilibrium is reached.  The difference in 

hydrostatic pressure between both compartments in equilibrium is called osmotic pressure. 

When osmotic pressure is caused by colloids, it is called colloid osmotic (oncotic) pressure. 

During dialysis, this process does not determine water movement across the dialyzer 

membrane but it is of major importance in the distribution of water between the fluid 

compartments [9]. During hemodialysis, fluid is withdrawn from the intravascular space. 

However, the excess of fluid is distributed over all fluid compartments of the body, e.g. 

plasma volume, interstitial volume, and intracellular volume. During ultrafiltration, plasma 

volume is refilled with fluid from the other compartments, as intravascular colloid osmotic 

pressure increases and hydrostatic pressure decreases. Nevertheless, as the result of a delay in 

plasma refilling, a decrease in plasma volume is inevitable when a substantial amount of fluid 

is rapidly removed from the relatively small intravascular space. Consequently, intermittent 

hemodialysis is often complicated by hypotension, which occurs in one third of the dialysis 

procedures [10-12].  

 

Figure 3. Principles of hemodialysis 
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1.2 Hemodialysis related hypotension 

Dialysis-induced hypotension has been defined as a decrease in systolic blood pressure (SBP) 

to below 100 mmHg and/or a decrease in SBP of 25% or more during the dialysis session 

[13]. Hypotension is a major cause of morbidity such as dizziness, vomiting and 

lightheadedness [14], but also affects the prognosis of the patient through cardiac, cerebral 

and mesenteric ischaemia [15-17]. The decrease in blood volume, caused by ultrafiltration 

and delayed plasma refilling from the interstitial space plays a pivotal role in the pathogenesis 

of dialysis related hypotension [18-21]. Moreover, compensatory mechanisms, such as 

vasoconstriction, that mobilizes blood to the central active blood volume that participates in 

maintaining blood pressure, may be inadequate during hemodialysis [22-25]. As it is desirable 

to minimize the frequency of dialysis associated hypotension, the physiology of these 

compensatory mechanisms during dialysis and ultrafiltration needs to be studied and 

strategies to improve blood volume preservation and the cardiovascular response during 

dialysis needs to be devised.  

 

1.3 Blood and plasma volume during hemodialysis 

Plasma Volume 

During ultrafiltration, the driving forces for plasma refilling (J ref) are the decrease in 

hydrostatic pressure and the increase in colloid osmotic pressure gradients over the capillary 

membrane, as given by the formula of Starling: 

J ref = Lp (- p) [26,27]. 

Thus, plasma refilling is determined by the water filtration coefficient (Lp), which depends on 

the total membrane surface area and the permeability of the capillary membrane. The colloid 

osmotic pressure gradient () and the hydrostatic pressure gradient (p) also determine  

capillary refilling.  

 

Active blood volume   

During hypovolemia, the compensatory response to maintain Mean Arterial blood Pressure 

(MAP) must act on total peripheral resistance (TPR) or on cardiac output (CO = Stroke 

Volume (SV) x Heart Rate (HR)) as:    

MAP = TPR x SV x HR   
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A substantial percentage of the total blood volume is located in the venous system and its 

capacity can change markedly. This blood volume is “inactive” and does not contribute to 

blood pressure. During hypovolemic hypotension, venoconstriction mobilizes blood towards 

the central circulation. This increases stroke volume and helps to maintain blood pressure 

[28]. Both vasoactive hormones and the sympathetic nervous system regulate venous tone. 

However, venous tone also interacts with arterial pressure by means of the de Jager Krogh 

phenomenon. As arteriolar vasoconstriction decreases filling and reduces blood flow of the 

vascular bed, venous recoil of the compliant venous system reduces venous capacity and 

venous blood is translocated to the heart [29,30]. Arteriolar vasoconstriction, like venous 

vasoconstriction, results from sympathetic activation. An afferent signal to the medulla 

oblongata is given by the cardiopulmonary receptors (located in the atria and the pulmonary 

veins) and the baropressor receptors (located in the aorta and in the carotid artery) [31]. 

Norepinephrine (NE) is then released by the efferent nerves and causes vasoconstriction [32]. 

During sympathetic activation cardiac contractility (systolic function) and heart rate are 

increased [31,32]. However, from animal studies and studies using beta blockade and cardiac 

denervation, it can be concluded that during hypovolemia cardiac output is predominantly 

determined by cardiac filling [33,34]. Therefore, diastolic left ventricular function is of major 

importance in maintaining adequate cardiac output during hypovolemia. Diastolic function is 

the capacity of the ventricles to relax and to accept blood without a disproportionate change in 

ventricular pressure. When diastolic function is inadequate, stroke volume decreases rapidly 

during an ultrafiltration-induced reduction in cardiac filling [35]. 

 

1.4  Patient related factors affecting the blood pressure response to hemodialysis  

The incidence of hypotension is not uniform in all patients on hemodialysis. Some patients 

appear to be hypotension prone, whereas others are hypotension-resistant. In the hypotension 

prone patients, not all dialysis sessions lead to hypotension. 

 

Fluid status  

In hypervolemic patients hydrostatic interstitial pressure is high. This will induce a rapid fluid 

shift from the interstitial intravascular compartment during ultrafiltration. Conversely, when 
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the patient is near normovolemia, or at hypovolemia, refilling is diminished, as fluid in the 

interstitial space is depleted and interstitial hydrostatic pressure is low [36-39]. 

It is important to determine the fluid status of the individual patient. Normovolemia is 

difficult to determine and clinically normovolemia is defined as the lowest possible body 

weight after dialysis (dry weight) without the occurrence of intradialytic symptoms. However, 

as some patients need antihypertensive drugs to control interdialytic hypertension a more 

objective measure of normovolemic weight is required. The diameter of the inferior caval 

vein has been proposed as a more objective measure of dry weight. Underhydration is defined 

as a vena cava diameter < 8 mm/m2 body surface area, and overhydration as an inferior caval 

diameter >11.4 mm/m2 body surface area [40]. In some patients, increasing the target weight 

to clearly hypervolemic levels may be the only way to provide a therapy without recurrent 

dialysis hypotension. However, overhydration has unfavorable cardiovascular effects, such as 

left ventricular hypertrophy leading to diastolic dysfunction. 

 

Autonomic function 

Renal failure often results from diabetes and/or hypertension, which lead to cardiovascular 

abnormalities, such as heart failure [41,42]. Moreover, an increasing proportion of the  

dialysis patients are elderly. In diabetics [43], in patients with congestive heart failure [44,45], 

and the elderly [46,47] cardiopulmonary and pressoreflex function are often impaired, leading 

to inadequate vasoconstriction and cardiac contractility. Renal failure per se could also lead to 

autonomic insufficiency due to accumulation of metabolic waste products [48-51]. Impaired 

vasoconstriction could directly affect plasma volume preservation by a change in  hydraulic 

pressure (p) the total surface area (Lp) in Starling’s formula. However, in most studies, a 

causal relation between a diminished baroreceptor function and dialysis related hypotension 

could not be shown [52-55]. 

 

Systolic and diastolic left ventricular function  

The volume and pressure overload caused by overhydration, anemia and arterio-venous 

shunts lead to arterial stiffness and left ventricular hypertrophy. Both will affect the 

cardiovascular response during hypovolemia [56-59]. Structural abnormalities of the cardiac 

wall such as left ventricular hypertrophy or coronary ischaemia could lead to impaired cardiac 
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relaxation, which in turn results in a reduction of the compliance of the left ventricle (diastolic 

dysfunction) [60-61]. In clinical studies it has been shown that dialysis patients with an 

impaired left ventricular relaxation are particularly sensitive to hemodialysis induced 

hypotension [62]. ACE inhibitors or calcium antagonists may improve diastolic function in 

the long term, but these drugs may also induce hypotension. The most important strategy 

remains the prevention of left ventricular hypertrophy through timely and adequate treatment 

of hypertension, anemia and overhydration in the pre-dialysis phase. 

 

1.5  Dialysis related factors affecting the blood pressure response to hemodialysis  

Ultrafiltration 

The total ultrafiltration volume required during a dialysis treatment is determined by the 

patient’s interdialytic weight gain, which is related to the interdialytic sodium intake. High 

ultrafiltration rates will exceed the plasma refilling capacity [63-66]. Hypotensive episodes 

during dialysis are generally treated by stopping ultrafiltration and/or administering 

intravenous fluids. However, this will lead to a less than adequate treatment with 

overhydration and consequently cardiac failure. Cardiovascular morbidity is the major cause 

of death in dialysis patients [67-68]. The problem of sustained fluid overload can be solved by 

increasing treatment time, but this increases the infringement on the normal lifestyle of the 

patient, as generally three sessions a week are needed with a total treatment time of 12 to 15 

hours. Frequent nocturnal dialysis could improve the tolerability of frequent fluid removal. 

 

Dialysate sodium concentration 

Lower dialysate sodium concentrations are associated with an increased incidence of 

hypotensive periods as compared to higher sodium concentrations [69-71]. This could be 

explained by the fact that high dialysate sodium concentrations increase plasma osmolarity. 

The increased plasma osmolarity improves plasma refilling, by inducing an osmotic fluid shift 

(change in ) from the intracellular to the extracellular space [71-75]. The extent to which 

plasma volume changes at a given dialysate sodium concentration depends on the trans-

membrane sodium gradient, which is also determined by the plasma sodium concentration 

and the plasma concentration of anionic proteins (Donnan effect). [76,77]. On the other hand, 

the effect of a positive sodium gradient on hemodynamic stability could also be due to a direct 
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effect of sodium on vascular resistance [78]. Moreover, it is reported that dialysate sodium 

could increase stroke volume without any effect on total blood volume [79].  

However, a positive sodium gradient increases sodium load and thereby thirst and increased 

inter dialytic weight gain. This results in fluid overload and consequently left ventricular 

hypertrophy [80]. A positive sodium gradient can therefore be applied during a limited time 

only. Moreover, in order to avoid a positive sodium balance, a low dialysate sodium 

concentration must be applied at other phases of the dialysis session.  

 

Diffusive dialysis  

It has been shown by Bergström that ultrafiltration is better tolerated when dialysis is not 

performed simultaneously [81-83]. Several mechanisms could explain the improved 

hemodynamic stability during isolated ultrafiltration, such as an increased refilling, improved 

cardiac function and increased vasoconstriction. During diffusive dialysis, the decrease in 

plasma osmolarity, due to the removal of accumulated solutes, such as urea, influences the 

intercompartmental fluid shifts and could delay refilling. However, urea rapidly equilibrates 

between the intracellular and extracellular compartments and some studies failed to observe 

significant differences in plasma volume preservation between ultrafiltration and 

ultrafiltration combined with hemodialysis [84-85]. Diffusive dialysis could worsen 

hemodynamic stability in hypovolemic state, as a result of a diminished ability to increase 

vascular tone. A change in calcium concentration due to calcium shifts could impair either 

myocardial contraction and relaxation [86]. Hypokalemia may also impair protective 

circulatory reflexes needed to avoid hypotension [87]. Moreover, diffusive dialysis impairs 

the ability to increase vascular tone by an increase in body temperature.  

 

Regional blood flow  

Regional blood flow affects both the distribution of blood between pooled and active blood 

volumes and plasma refilling. The two vascular beds that are of particular importance in the 

regulation of the active blood volume are the splanchnic and cutaneous circulation [88]. 

During ultrafiltration, the perfusion of these vascular beds is decreased by sympathical 

vasoconstriction. This maintains blood pressure, either directly or through the de Jager Krogh 

phenomenon. When having a meal, blood is pooled in the splanchnic vascular bed, and active 
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blood volume is consequently decreased [89]. For that reason, ingestion of food should be 

avoided during dialysis in patients prone to hypotension.  

Blood pressure can be stabilized by cold dialysate, as this induced cutaneous vasoconstriction 

and blood is pooled from the cutaneous to the central active blood volume [90-94]. Therefore, 

an active control of body temperature can significantly improve intradialytic tolerance in 

hypotension prone patients [95]. 

A change in regional blood flow during dialysis may also affect vascular refilling by a change 

in both Lp and p in Starling’s formula. Peripheral pooling could decrease vascular refilling, 

which could contribute to the pathogenesis of hypotension during hemodialysis.  

 

Vasodilators 

During dialysis, vasodilatory substances could be released as a result of the interaction of 

blood with the membrane of the artificial kidney [96]. During these interactions complement 

activation takes place resulting in production of interleukin-1 and tumor necrosis factor in 

monocytes [97-101]. These cytokines stimulate the NO synthesis from l-arginine [102,103]. 

NO produces cyclic guanosine 3’5’ monophosphate (cGMP) in smooth muscle cells, which 

results in relaxation. Moreover, Endothelin-1, which has a potent vasoconstriction action, is 

decreased by NO [104]. L-arginine and NO synthesis are higher in uremic patients [105]. 

Increased NO production also directly decreases sympathetic tone [106]. However, there is no 

evidence that, with the exception of anaphylactic reactions, blood pressure is affected by the 

type of dialyzer used [98]. Apart from the direct effects of Nitric Oxide on blood pressure, the 

impaired vasoconstriction could also affect plasma volume by a change in hydraulic pressure 

and the total capillary surface area. 

 

1.6  Strategies to improve blood pressure stability during hemodialysis 

The absolute change in blood volume depends on the amount of ultrafiltration and the 

compensatory plasma refilling. Relative changes in total blood volume can be estimated from 

changes in hematocrit or total plasma protein concentration measurements, which can be 

measured continuously during hemodialysis [107,108]. 

Monitoring relative blood volume during hemodialysis and discontinuing ultrafiltration when 

a critical level of relative blood volume reduction is reached, has been advocated in order to 
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improve hemodynamic stability during dialysis [109,110]. In order to prevent hypotensive 

episodes, the reduction in blood volume during dialysis to critical levels can be prevented by 

deliberately changing the dialysate sodium concentration in order to combine an efficient 

ultrafiltration with a balanced sodium handling [111-118].  

Blood returning from the extracorporeal circuit to the patient is cooled by the ambient 

temperature. This cooling of the blood is prevented by the contact of blood with heated 

dialysate [119,120]. The cooling effect of the extracorporeal circulation on blood temperature 

during isolated ultrafiltration could prevent cutaneous vasodilatation. Cooling of blood could 

also increase systolic left ventricular function [121]. Differences in hemodynamic stability 

between combined ultrafiltration/dialysis and isolated ultrafiltration disappear when treatment 

modalities are matched for the extracorporeal energy transfer, suggesting that this is the most 

important factor for the divergent vascular response [122,123]. 

 

Current limitations of blood volume modeling 

At present, blood volume modeling lacks an adequate basis for several reasons.  An absolute 

and objectively critical level of Relative Blood Volume at which hypotension occurs does not 

exist. Any change in patients serum osmolarity, protein concentrations or hydration status can 

modify the critical level. Each patient should therefore be studied several times in order to 

assess his or her own critical threshold. Moreover, the critical level of Relative Blood Volume 

depends on the cardiovascular status of the patient. During blood volume modeling an 

increase in relative blood volume does not prevent dialysis related hypotension when it does 

not result in an increase of the central active blood volume. An increase in relative blood 

volume during blood volume modeling could be induced by sodium profiling, and this would 

prevent the relative blood volume to reach the critical level at which hypotension occurs. 

However, the increase in relative blood volume by sodium profiling is relatively small as 

compared to the decrease in blood volume by ultrafiltration [124,125]. Alternatively, the 

effect of sodium profiling on hemodynamic stability could also result from an improved 

cardiovascular response. Thus, sodium profiling could lower the critical blood volume level, 

rather than increasing relative blood volume. Also other factors during dialysis could induce a 

change in critical blood level, such as temperature and changes in splanchnic blood 

sequestration following meals [95-101]. Therefore, for adequate blood volume modeling, it 
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must be known in what way these factors affect both blood volume and the critical level of 

relative blood volume at which hypotension occurs. Changes in vascular resistance could also 

alter the whole body filtration coefficient, as well as the hydrostatic capillary pressure. The 

direct relation between vasoconstriction and plasma refilling has previously received little 

attention. 

 

1.7 Aim of the thesis 

The blood pressure response during dialysis depends on blood volume preservation and/on 

changes in vascular tone. However, these two are not independent. In order to delineate the 

role of blood volume profiling in the prevention of intradialytic hypotension, more 

information is needed on the relationship between these physiological defense mechanisms. 

Therefore, we performed several studies to clarify this relationship and to improve the 

understanding of dialysis related hypotension. Such understanding is desperately needed 

before preventive measures can be initiated. 

 

In Chapter 2, a mathematical model is constructed that simulates the intercompartmental fluid 

shifts during combined hemodialysis, diffusive hemodialysis, and isolated ultrafiltration. The 

relative theoretical effect of hydration status, dialysate sodium concentration, initial plasma 

concentrations of sodium and urea, and the tissue permeation capacity (change in regional 

blood flow) on changes in relative blood volume are analyzed.  

 

In Chapter 3, the reproducibility of the measurement of relative blood volume during standard 

hemodialysis sessions, with a standard dialysate sodium concentration, and in which the 

decrease in relative blood volume was corrected for the amount of ultrafiltration volume, is 

analyzed. This study is unique in its setting, as both intra- and inter-individual differences are 

studied. As it is essential for blood volume modeling that the critical level of reduction in 

relative blood volume can be predicted in individual cases, the relationship between the 

occurrence of  hypotension and the decrease in relative blood volume is studied.  

 

In Chapter 4, the change in relative blood volume during diffusive dialysis without 

ultrafiltration is analyzed and compared with the predictions from the mathematical model. It 
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is unclear whether the negative effect of diffusive dialysis on hemodynamic stability results 

from reduced blood volume preservation or from reduced vascular reactivity. The 

mathematical model does not account for a decrease in vascular tone during diffusive dialysis.  

 

In Chapter 5, the effect of isotonic saline (0.9 %), isotonic glucose (5%), hypertonic saline 

(3%), mannitol (20%) and glucose (20%) on relative blood volume are compared. The effect 

of changes in osmolarity on hemodynamic stability could be related to an effect on vascular 

refilling and/or changes in cardiovascular reactivity.  

 

In Chapter 6, the pathophysiology of hemodialysis related hypotension is studied. 

Hypotension can be due to dialysis-related factors such as changes in osmolarity and diffusive 

dialysis, but also to patient related factors such as diastolic and autonomic dysfunction. In 

order to distinguish between dialysis related and patient related factors hypotensive dialysis 

sessions are compared with Lower Body Negative Pressure experiments.  

 

In Chapter 7, we study the relationship between changes total peripheral resistance, and 

relative blood volume following pharmacological intervention. Some studies indicate that, 

vasoconstriction can increase relative blood volume, whereas other studies suggest a decrease 

in plasma volume during vasoconstriction. 

 

In Chapter 8, we attempt to answer the question why some patients are hypotension prone in 

hypovolemic state and why others are hypotension resistant. In order to study the isolated 

effect of a reduction in cardiac filling, we compared the hemodynamic response to Lower 

Body Negative Pressure (LBNP) in hypotensive prone and hypotensive resistant patients.  
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Chapter 2  

Abstract 

Hypotension is the most frequent complication during hemodialysis. An important cause of 

hypotension is the decrease in the intravascular volume. In addition, a decrease in plasma  

osmolarity may be a contributing factor. Modeling of sodium and ultrafiltration (UF) may 

help in the understanding of underlying relationships. We therefore simulated in a 

mathematical model the intercompartmental fluid shifts during standard hemodialysis (SHD), 

diffusive hemodialysis (DHD), and isolated ultrafiltration (IU). We analyzed the relative 

theoretical effect of hydration status, dialysate sodium concentration, the initial plasma 

concentrations of sodium and urea, and the tissue permeation to solutes on the magnitude and 

direction of intracellular and intravascular volume changes. 

This theoretical analysis show that the transcellular fluid shifts taking place during 

hemodialysis treatment are for a great part due to an inhomogeneous distribution of regional 

blood flow and tissue fluid volumes. During hemodialysis treatment, the cellular fluid shift in 

tissue group with a relative high perfusion of blood and a small volume fraction occurs from 

the intra- to the extracellular spaces. However, the fluid shift in the tissue group with a 

relative low perfusion of blood and a great volume fraction takes place in the opposite 

direction. The UF volume and rates, and the size of sodium (Na+) gradient between the 

dialysate and blood side of the dialyzer membrane are the most important factors influencing 

the fluid shifts. Higher UF volumes and flow rates cause an increasing decline in the plasma 

volume in both SHD and IU. High dialysate sodium concentration (150 mEq L-1) helps 

plasma refilling slightly when compared with a normal dialysate sodium concentration (140 

mEq L-1). However, a high dialysate sodium concentration is associated with a high plasma 

sodium rebound, which in turn lead to interdialytic water intake resulting from thirst and may 

cause increased weight gain and hypertension. 
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Introduction  

The most frequent complication of hemodialysis is hypotension [1]. An important cause of 

hypotension is the decrease in intravascular volume resulting from ultrafiltration (UF). 

Moreover, the changes in plasma osmolarity induced by dialysis may result in 

intercompartmental fluid shifts [2-5]. Mathematical models were proposed to predict such 

volume changes by considering a 2-pool kinetic of water, urea and sodium [6-8]. More 

comprehensive mathematical models, including a 3-pool water kinetic have also been 

proposed [9-11]. These models, which differ from each other in assumptions and parametric 

details, have led the to conclusion that the transcellular fluid shifts caused by a rapid fall in 

the plasma osmolarity are relatively small and not significant as compared with the 

transcapillary volume shifts caused by ultrafiltration. In contrast, others [12,13] have 

suggested that, even with low or moderate UF, dialysis might cause severe hypovolemia by 

inducing a significant water shift from the plasma volume toward the intracellular space. 

We simulated the intercompartmental fluid shifts during standard hemodialysis (SHD), 

diffusive hemodialysis (DHD) without ultrafiltration, and during isolated ultrafiltration (IU). 

Furthermore the relative importance of ultrafiltration volume (and flow rate), dialysate Na+ 

concentration, the initial plasma concentrations of Na+ and urea, and the tissue permeation 

capacity were determined. 

Our mathematical model is based on the concept of regional blood flow [14], in which the 

body tissues have been categorized according to their fractions of fluid volume and blood 

perfusion. The tissue group (internal organs) with a relative small volume and high blood 

perfusion is called as the high flow system (HFS). The tissue group (skin, muscle, etc.) with a 

relative great volume and low blood perfusion is called as the low flow system (LFS) [14]. In 

each tissue group, a 2-pool model of both urea and non-urea (Na+, K+, and their 

accompanying anions) kinetics is combined with a 3-pool model of water kinetic. This model 

differs from previous classical models in that the classical two-compartment model of solute 

kinetic has been combined with the model of regional blood flow [14,15]. The effect of 

cardiopulmonary and blood access re-circulation on the dialyzer clearance has been taken into 

account.  The present model is suitable for profiled hemodialysis.  
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Mathematical Model 

Model description and assumptions 

The model incorporates differential equations describing solute and water kinetics as a 

function of time (t) during hemodialysis. All symbols and units are summarized in the 

Appendix. The model equations and the initial values of variables are based on the following 

assumptions: 

1. The initial volume fraction of HFS tissue group (fv
H) equals 20% of the total body water. 

The volume fraction of LFS tissue group equals 1-fv
H. The volume fraction equals the 

ratio of tissue volume to that of total body water. The HFS blood perfusion fraction (fq
H) 

equals 80% of the systemic arterial blood, whereas the LFS tissue group equals 1-fq
H 

[14,15]. The perfusion fraction equals the ratio of flow rate of arterial blood, that enters 

the HFS tissue group, to that of the systemic arterial blood (minus the flow of blood 

entering the arterial blood access). 

2. During hemodialysis with or without ultrafiltration, solute mass and excess water are 

removed from circulating arterial blood; e.g., blood is accessed through an arterio-venous 

device (fistula). At a flow rate of 0.3 L min-1, the access re-circulation ratio equals 

approximately 3% of the blood flow entering the dialyzer. However, the access re-

circulation depends on the flow rate of blood entering the dialyzer and the functionality of 

the access device.  

3. The solute concentrations in arterial blood entering the tissue groups and blood access are 

equal. Urea, Na+, K+ and other unspecified non-urea blood enter the extracellular space 

directly. The solute mass transfer from tissue EC space to the circulating venous blood 

takes place by convection and diffusion. The tissue permeation coefficient (product of 

permeability and surface area) is constant during the whole dialysis session. However, it is 

likely that the tissue permeation alters during hemodialysis sessions. 

4. Within each tissue group, the solute exchange through the capillary wall is neglected 

because of rapid diffusive exchange of small substances and high permeability of the 

capillary wall [10]. Consequently, small solutes are evenly distributed over both the 

interstitial and plasma spaces. One exception is that for charged substances the interstitial 

concentration is corrected for the Gibbs-Donnan effect. On calculating the solute 

concentrations in plasma water, the plasma water concentrations of both Na+ and K+ 
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become very close to those in interstitial space. This is a result of the fact that the ratio of 

Donnan factor to the free water fraction is very close to1. The only barrier to solute mass 

exchange within each tissue group is the cell membrane. Therefore, the solute kinetic 

within each tissue group is described by means of a 2-pool compartment model [11]. 

5. The changes in osmolarity are based on the transcellular exchange and removal rates of 

water, urea, Na+, K+ and unspecified osmotically active solutes. For modeling, all 

unspecified solutes are lumped together as a single solute. K+, Na+, their accompanying 

anions (Cl-) and other unspecified substances (such as Mg2+, PO4
-) are called non-urea. 

6. Transvascular water exchanges according to the Starling forces. The hydraulic 

permeability and the compliance of intra- and extravascular spaces are constant 

parameters. However, it is likely that they might vary with the hydration status of the 

patient. They may also depend on  vasoconstriction or vasodilatation. Transvascular 

protein mass exchange is neglected; e.g., the plasma together with interstitial space forms 

one single compartment for indiffusable proteins. Proteins, which enter to the interstitium 

by capillary filtration, return to the venous blood through the lymphatic circulation.  

7. Initial hematocrit (Ht) in both tissue group is equal. The water volume of red blood cells 

(RBC) varies only because of the volume change of intracellular space. This is a 

consequence of 2-pool compartment model [10]. 

8. The relative change in the plasma volume represents the relative change in both the 

arterial and venous plasma volumes. The ratio of the arterial to the venous plasma volume 

is 1:4 [16]. The initial ratio of IC to EC volumes is 5:3 [16] and the initial plasma volume 

is 24% of the initial EC volume [17]. The initial value of total body water is 58% of the 

sum of patients dry weight and the weight gain [16,17]. These assumptions are true for 

non-overhydrated patients only. 

9. The residual renal function is considered negligible. 
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Solute Kinetics 

Intracellular solute kinetics 

Whole body intracellular mass (Mi,j) of solute j consists of the sum of solute masses in each 

tissue groups intracellular spaces. The mass transfer rates of intracellular substances of both 

tissue groups (Jt
i,j) are equal to the sum of mass transfer rate by diffusion and convection: 
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Here, the tissue groups are distinguished by the superscript t that refers to H representing the 

HFS-tissue group or to L representing the LFS-tissue group. The subscripts i and j represent 

respectively the intracellular space and the solute standing for Na (sodium), K (potassium), u 

(urea), X (other unspecified solutes) or n (non-urea). The first term on the right-hand side of 

Equation 1 stands for the mass transfer rate by convection from the IC to the EC space, and 

the second term for the diffusive mass transfer rate. Convective transport takes place by 

solvent drag with a volume flow rate (Qt
i), which equals the exchange rate of intracellular 

fluid volume. Solute sieving (j) determines the rate of convective mass transport. We 

consider the sieving coefficient for urea (u) to be one and those for K+, Na+ and other 

unspecified substances to be zero. The diffusive mass transfer rate across the cell membrane is 

equal to the product of the diffusive mass exchange coefficient (Dj) and the concentration 

gradient between both spaces. The whole body cellular mass exchange coefficient represents 

the product of diffusive permeability and the whole body cell surface area. The whole body 

mass transfer coefficients of urea, Na+ and K+ are 0.8 L min-1 [8], 1.5 L min-1 and 4.02x10-3 L 

min-1, [11] respectively. The solute concentration in extracellular space (Ce,j) is corrected by a 

factor (Fw) as a result of the time-dependent change in the free water fraction of blood plasma 

during hemodialysis, and by a factor (Zj) representing the solute distribution coefficient at 

equilibrium between IC and EC spaces. Both passive electro-diffusive and active transport via 

ATP-ase pumps affect the dynamic of Na+ and K+ transport through cellular membrane. 

Because Na+ is actively transported from IC to the EC space, the equilibrium distribution 

coefficient ZNa (= 0.0713) is less than 1. For K+ the coefficient ZK (= 28.2) is greater than one 

because K+ is counter transported from EC into the IC space. In contrast, the IC urea depends 
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upon the passive transport by diffusion and convection and it is not affected by active 

transport. At equilibrium, the IC urea concentration equals the EC urea concentration. 

Therefore, the urea distribution coefficient (Zu) equals 1. 

 

Extracellular solute kinetics 

Whole body mass (Me,j) of solute j in EC space consists of the sum of solute masses in each 

tissue group’s  EC space. The solute concentration (Ct
e,j) in EC volume (Vt

e) is considered to 

be distributed in blood plasma, in red blood cells, and in tissue interstitial spaces. The 

interstitial solute concentration differs slightly from that in blood plasma (Ct
p,j) because of the 

Gibbs-Donnan ratio between plasma and interstitium, which is assumed 0.95 for Na+, K+, and 

1.0 for urea and for other unspecified substance [11]. For the sake of simplicity, the RBC 

concentration gradients of Na+, K+, urea, and other unspecified substances are considered 0. 

Consequently, the EC solute mass is taken as the solute mass in blood plasma plus that in the 

interstitium. During hemodialysis, the mass transfer rates of substances in the EC spaces (Jt
e,j) 

of both tissue groups vary according to the following relationship: 
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The first term on the right-hand side of Equation 2 represents the IC mass transfer (Jt
i,j), the 

second term represents the mass transfer rate of solute from tissues’ extracellular space to the 

venous blood (Jt
av,j), and the third term is the rate of the generation or intake (Gj). In this 

simulation work, we stipulate that urea is produced in the liver and directly enters the EC 

space (the whole body Gu = 0.083 mmol min-1 [8]. Also is considered that neither sodium nor 

potassium is taken (enteral or parenteral) in the EC space (GNa=GK=0 mEq min-1). The 

following relationship gives the mass transfer rate of solute from tissue extracellular space to 

the venous blood: 
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Equation 3 expresses the rate of solute mass gain in venous blood from the tissues EC spaces. 

The flow rate (Qt
v) of blood leaving the tissue group equals the blood flow rate (Qt

a) entering 

the tissue group increased by the ultrafiltration flow rate (Qf): 
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The flow rate of systemic arterial blood (Qa) equals the cardiac output (CO) minus the flow 

rate of blood entering the blood access (Qa
AC). The solute concentration in blood leaving the 

tissue group (Ct
v,j) is assumed to relate to the tissue EC solute concentration (Ct

e,j) according 

to the following relationship [14]: 
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In Equation 5, the term mt
j represents the coefficient of concentration equilibration between 

arterial and venous sides of tissue bed. The mt
j depends upon the Péclet number, which is the 

ratio of the tissue permeation coefficient (PSj) to the flow rate of blood (Qt
v) leaving the tissue 

bed. PS stands for the product of permeability and tissue surface area. Solute transport from 

tissue bed to the venous blood is flow limited if the mt
j equals 1.0. The solute concentration in 

arterial blood (Ca,j) follows from the overall mass balance: 
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with Qv
AC and Cv

AC denoting respectively the flow rate of and the solute concentration in 

blood that returns to the venous limb. 

 

Solute kinetics in blood access and dialyzer 

Solute mass in blood entering the arterio-venous access exchanges through the dialyzer 

membrane with the solute mass in the dialysate compartment. The rate of mass transfer 

between arterial and venous limbs of the blood access device equals the rate of solute mass 
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exchange (Jdial,j) through the dialyzer membrane, which occurs by combined diffusion and 

convection [7]: 
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The second term on the right-hand side of Equation 7 stands for the mass transfer rate by 

convection combined with diffusion, in which Qwi,j denotes the flow rate of blood water 

entering the dialyzer. The solute concentration in blood entering the dialyzer is corrected for 

the Gibbs-Donnan ratio (RD,j) for charged solutes between the blood and dialysate sides of the 

dialyzer membrane, for the time-dependent change in the free water fraction of blood plasma 

(Fw), and for the cardiopulmonary re-circulation (kj
CP). The first term on the right-hand side 

(Jdif,j) represents the rate of mass transfer through the dialyzer membrane by diffusion without 

ultrafiltration (Qf = 0) as: 
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with CLj the solute dialysance by diffusion and Cd, j the solute concentration in the dialysate 

fluid entering the dialysate compartment of the dialyzer. 

 

Water Kinetics 

During hemodialysis with ultrafiltration, the EC fluid volume of both tissue groups changes 

because of isotonic volume loss (Vt
uf) by ultrafiltration (UF) and the transcellular fluid shifts: 
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The second term on the right-hand side of Equation 9 stands for the exchange rate of the 

intracellular volume (Qt
i) and the first term for the ultrafiltration flow rate (Qf): 
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The rate of change in the EC volume equals also the sum of rate of change in interstitial 

volume (Vt
is), in water volume of RBC (Vt

rc), and in plasma volume (Vt
p): 
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The first term on the right-hand side of Equation 11, representing the rate of change in the 

plasma volume, depends upon both the rate of volume gain (Vt
pr) from interstitial space and 

the rate of volume loss by ultrafiltration: 
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The second term on the right-hand side of Equation 11, representing the rate of change in the 

water volume of RBC, varies as a result of the change in the intracellular volume [10]: 
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Vi(0) and Vrc(0) stand, respectively, for the initial IC volume and the initial water volume of 

red blood cells. The initial water volume of RBC is related to the initial plasma volume, 

Vp(0), and the initial arterial hematocrit, Ht(0): 
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According to Equation 12, during dialysis with ultrafiltration the decline in plasma volume 

resulting from the volume loss by ultrafiltration is partially compensated for by the volume 

gain from the interstitial space. 

  

Transcellular fluid shifts 

The volume of fluid entering or leaving the IC compartment is referred to as the transcellular 

fluid shift. The rate of change (Qt
i) in the intracellular volume (Vt

i), which equals the rate at 

which the transcellular fluid shift takes place, is taken to be proportional to the net osmotic 

pressure gradient between both EC and IC spaces: 
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where, kc (= 19.66x10-5 L mmHg-1 min-1 [8]) is the whole body cellular water exchange 

coefficient, R (= 62.364x10-3 L mmHg K-1 mmol-1) is the gas constant, T (= 310 K) is the 

temperature. Osmt stands for the net osmolality difference due to the difference between the 

osmolality of urea (Osmu) and that of non-urea (Osmn) on both sides of the cell membrane: 
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The intra- and extracellular osmolality difference of urea is due to the difference between the 

IC urea (Ct
i,u) and EC urea (Ct

e,u) concentration: 
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with  (=0.95) [8] representing the cellular urea reflection coefficient. In fact, urea causes no 

osmolality difference at equilibrium. Depending on the removal rate of other osmotically 

effective substances from EC spaces, there may be regional differences in the urea gradients 

between IC and EC spaces. The intra- and extracellular osmolality difference of non-urea is 

due to the non-urea concentration difference between the IC (Ct
i,n) and EC (Ct

e,n) spaces: 
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where  (=1.846) [8] is the factor (osmotic coefficient) that converts the molar concentration 

(free plus bound) of non-urea into its osmotically equivalent osmolar concentration 

(osmolality). For the sake of simplicity, the osmotic coefficients of Na+, K+ and other 

unspecified non-urea solutes are taken to be equal. The molar concentration of urea is the 

same (=1) as the osmolar concentration because it is uncharged. The EC non-urea is 

considered to be Na+ (Ce,Na), K+ (Ce,K) and other unspecified electrolytes X (Ce,X). The IC 

non-urea is considered to be K+ (Ci,K), Na+ (Ci,Na) and other unspecified electrolytes X (Ci,X). 

At equilibrium, the osmolality on both side of the cell membrane is the same, and therefore 

there is no fluid exchange between intra- and extracellular spaces. 

 

Transvascular fluid shifts 

The volume (Vt
pr) of fluid exchanging between plasma and interstitial spaces is referred to as 

the transvascular fluid shift. The net rate (Qt
pr) at which the transvascular fluid exchange takes 

place depends on the rate of water filtration (Qt
wf) at the capillary end and the water 

reabsorption  (Qt
wr) at the venous capillary end: 
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Qt
pr is known as the plasma-refilling rate (PRR) when the shift takes place from interstitial to 

the plasma space. According to Starling concept, water filtration rate from the arterial 

capillaries into the interstitial space is due to the transcapillary hydraulic and oncotic pressure 

gradients: 
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with Lf (=6x10-4 L mmHg-1 min-1) [9] representing the whole body hydraulic permeability 

coefficient of the arterial capillary wall, Pt
a the hydraulic pressure in the arterial capillaries, 
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Pt
is the hydraulic pressure in the interstitial space. The hydraulic pressure in the capillary end 

varies due to changes in the plasma volume (Vt
p): 
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where Pa(0) (= 35 mmHg) is the Pa at the start (at t=0) of hemodialysis treatment, Vp(0) the 

initial Vp, and a (=0.012×venous compliance) [18] is the arterial compliance. The interstitial 

hydraulic pressure varies due to the change in the interstitial fluid volume: 
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with Pis(0) (=1 mmHg) is the initial Pis, Vis(0) the initial Vis, and is (=0.10 per unit interstitial 

hydraulic pressure) [9] the interstitial volume compliance. The oncotic pressures (p) and 

(is) in Equation 20, exerted respectively by the plasma and interstitial proteins, can be 

estimated from the following empirical relationships [19]: 
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in which the plasma (Ct
p) and interstitial (Ct

is) protein concentrations in gram per liters are 

determined from the protein mass balance between plasma and interstitial space.  The water 

reabsorption rate depends on the hydraulic permeability coefficient (Lr =3.7x10-3 L mmHg-1 

min-1) [9] of the venous capillary wall and on the net pressure gradient across the venous 

capillary wall: 
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The hydraulic pressure in the venous plasma space (Pv) varies due to the change in the plasma 

volume: 
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in which Pv(0) (=15 mmHg) is the initial hydraulic pressure in the venous plasma, and v 

(=0.15 per unit hydraulic pressure) [9] is the venous compliance. 

 

Methods 

Predicting the diffusive clearance of K+, Na+ and urea 

The urea dialysance equals the urea clearance since the urea concentration at the dialyzer inlet 

of the dialyzer is considered to be zero. However, both Na+ and K+ dialysance depends on 

their dialysate concentrations. In hemodialysis without UF the dialyzer solute clearance (CLj) 

can be estimated from the following equation [20]: 
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with KSj the overall (diffusive) permeability coefficient of solute j, which is the total 

membrane surface area times the diffusive mass transfer coefficient of the dialyzer, and Qdi 

the dialysate inlet flow rate that is assumed to be constant during hemodialysis. The overall 

permeability coefficient (KSj) of solute j is related to the permeability coefficient of urea 

(KSu) and that of creatinine (KSc) [21]: 
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with MWj the molecular weight (23 D for Na+, and 39.1 D for K+) and MWc the molecular 

weight of creatinine (113 D). The ratio of KSu to KSc has been experimentally proven to be 

1.32 [21]. The relationship given in Equation 28 might also be used to estimate the tissue 

permeation coefficient (PSj) in Equation 5 for Na+, K+ and other unspecified solutes when the 

tissue permeation for urea (PSu = 28 L min-1) is known. 

 

Cardiopulmonary and access re-circulation 

The correction factor for cardiopulmonary re-circulation follows from the following 

relationship[14]: 
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where kj
AC is the correction factor for the solute clearance due to the AV- access recirculation 

flow rate (QR,j
AC) as given by the following expression [14]: 

 

]
)(

)(
1[

)(

)(
1

)(

)(
1

)(

,,

,

,

,

tQ

tCL
 

tQ

tQ
 

tQ

tQ

tk

jwi

j

jwi

AC
jR

jwi

AC
jR

AC
j





         (30) 

 

The access re-circulation flow is corrected for the blood water fraction. We consider that it is 

equal for all solutes during hemodialysis. 

 

Blood water flow rate 

The blood water flow rate (at the blood inlet) (Qwi j) differs from the blood flow rate entering 

the dialyzer (Qbi) because of the time dependent changes in arterial hematocrit (Ht) and in 

arterial plasma protein concentration (Cp) [22]: 
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where 1-Cp(0) is the initial free water fraction of blood plasma with  = 0.00107 Lg-1 

representing a factor to calculate the protocrit from the plasma protein concentration, fj is the 

fractional volume distribution of solute j in blood cells (fu = 0.8 for urea and fNa = fK = 0 for 

sodium and potassium [22]. The first term on the right-hand side of Equation 31 represents 

the plasma water flow rate and the second term the flow rate of water in red blood cells. The 

correction factor (Fw) is the free water fraction of blood during hemodialysis with respect to 

the initial water fraction: 
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At the start of hemodialysis, where the water fraction of blood with a plasma protein 

concentration of Cp(0) = 70 g L-1 equals 0.925, the correction factor equals 1.0. The arterial 

hematocrit (Ht) varies in time according to the following relationship: 
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where the blood volume (Vb) equals the sum of plasma volume (Vp) and the volume of red 

blood cells (Vrc). 

 

The Gibbs-Donnan ratio 

The Gibbs-Donnan ratio (RD,j) between the blood and dialysate compartments of the dialyzer 

equals 1 for urea (because it is uncharged) and approximately 0.942 for Na+ and K+ [7,8], but 

also varies due to changes in the plasma protein concentration (Cp) [23]: 
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where the protein concentration at the dialyzer blood outlet (Cpo) differs from that at the blood 

inlet (Cp = Cpi) when UF takes place: 
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Without ultrafiltration (and pre-dilution), the arterial hematocrit and plasma protein 

concentration in blood leaving the dialyzer equal the hematocrit and plasma protein 

concentration in blood entering the dialyzer. 

 

Initial solute composition of extra- and intracellular spaces 

The whole body initial concentrations of the IC Na+, K+ and urea are calculated from their 

initial plasma concentrations (Cp, Na(0) = 140 mEq L-1, Cp, K(0) = 5 mEq L-1 and Cp, u(0) = 30 

mmol L-1 respectively): 
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The initial non-urea plasma osmolarity (Osmp, n) is considered mainly due to plasma Na+ (Cp, 

Na) and to a minor extend due to plasma K+ (Cp, K) and other unspecified substances (Cp, X): 

 

)]0()0()0([)0( ,,,. XpKpNapnp CCCOsm        (39) 

 

The initial EC non-urea osmolarity equals the initial non-urea plasma osmolarity divided by 

the free water fraction: 
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Because the normal initial plasma osmolarity due to osmotically active non-urea, which is 

considered to be 285 mosmol L-1, and the initial plasma Na+ and K+ concentrations are given, 

the unspecified EC non-urea concentration can be calculated as: 
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The IC non-urea is considered to be mainly K+ (Ci, K) and to a minor extent Na+ (Ci, Na) and 

other unspecified substances (Ci, X). The initial unspecified IC non-urea concentration can be 

calculated from the following relationship: 
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At equilibrium, the total initial plasma osmolality is equal to 290 mosmol L-1 with a normal 

initial urea concentration of 5 mmol L-1. 

 

Computational methods for solute and protein concentrations 

Calling t a time element on which all variables are considered to be constant, all the first 

order differential equations governing the changes in volumes and solute masses are 

numerically solved in the commercially available spreadsheet MS Excel 97  

For each tissue group, the time-dependent changes in both intracellular mass (Mt
i, j) and 

extracellular mass (Mt
e, j) of Na+, K+ and urea are computed from the following difference 

equations: 
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The initial value of Mt
i, j equals ft

vVi(0)Ci, j(0) and that of Mt
e, j equals ft

vVe(0)Ce, j(0). Jt
i,j and 

Jt
e,j are given by Equation 1 and Equation 2 respectively. Given the exchange rate of 

intracellular fluid (Qt
i) as in Equation 15 and the exchange rate of intracellular fluid (Qt

e) as in 

Equation 9, the time-dependent changes in both intra- and extracellular volumes can be 

computed from the following difference equations: 
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The initial values of Vt
i and Vt

e equal ft
vVi(0) and ft

vVe(0) respectively. The time-dependent 

change in the transcellular fluid shift is calculated as Vt
i(t)=Vt

i(0)-Vt
i(t). The starting value 

of whole body Vi (Ve) is estimated as 5/8 (3/8) times the sum of the total body water and the 

weight gain (excess water volume).  

The total body water volume is estimated as 58% of the dry body weight. The time-dependent 

changes in plasma volume (Vt
p) are calculated as the difference between the plasma refilling 

rate (Qt
pr) from Equation 19 and the cumulative volume loss (Vt

uf) by UF: 
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The initial plasma volume, Vt
p(0) = ft

vVp(0), is estimated as 24% of the initial EC volume. 

The cumulative volume gain by plasma refilling from the interstitial space and the volume 

loss from the plasma volume by ultrafiltration are computed as follows: 
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The initial values of Vt
pr and Vt

uf equal zero. At the end of dialysis session (t=Td), Equation 48 

results in the total plasma water volume gain (loss) from (to) the interstitial space. At t=Td, 

Equation 49 results in the total volume loss by ultrafiltration that equals the initially 

determined weight gain (excess water volume). The ultrafiltration flow rate can be profiled as 

desired. In this simulation work, we utilize a constant ultrafiltration flow rate during 

hemodialysis and calculate it by dividing the excess water volume by the duration of dialysis 

session. We calculate the relative time-dependent change in the plasma volume as RVt
p (t) = 

[Vt
p(t)/V

t
p(0)] –1. The time-dependent changes in the water volume of RBC are calculated as: 
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t
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t
rc  )()()(        (50) 

 

where the initial value of Vt
rc(0)=ft

vVrc(0), and Qt
rc is calculated from Equation 13. The 

interstitial volume is calculated as the EC volume minus the blood volume: 
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On dividing the solute mass by the volume, the intra- and extracellular concentrations of Na+, 

K+ and urea are calculated: 
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The unspecified substances are not removed across the dialyzer membrane. Consequently, 

their time-dependent changes in both intra- and extracellular spaces are due to changes in 

volumes: 
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Total plasma protein and interstitial protein concentrations can be computed as: 
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in which the initial plasma and interstitial protein concentration are considered respectively as 

Cp(0) = 70 g L-1 and Cis(0) = 19.2 g L-1 to obtain a zero plasma refilling rate at t = 0. 

 

 Adequacy of dialysis treatment 

To evaluate the adequacy of hemodialysis sessions we calculate the dialysis dose (Dd), which 

is known as KT/V-value in the literature [24]. An adequate dialysis treatment for urea is 

achieved if the total urea clearance per treatment is higher than the post-dialysis volume of 

urea distribution (Vi+Ve) in patients who have negligible residual renal function. This 

statement is characterized by dialysis dose. We calculate the cumulative dialysis dose during 

hemodialysis by making use of Equation 7: 
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At t=0 the dialysis dose equals zero. At t=Td (the end of dialysis session), Equation 55 results 

in the value of dialysis dose. In general, a dialysis dose of 1.2 to 1.4 achieved at the end of a 

dialysis session lasting Td = 4 hours on a trice weekly basis has been shown to be associated 

with decreased mortality [24]. 
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Results  

Simulations 

We simulated diffusive hemodialysis (DHD) session with zero UF rate (Qf = 0) to correct 

uremia with a dialysis dose of 1.2, isolated ultrafiltration (IU) treatment (CLu = CLNa = CLK = 

0) to correct excess water, and standard hemodialysis (SHD) session to correct uremia with a 

dialysis dose of 1.25 and to withdraw excess water simultaneously.  All simulated sessions, 

each lasting 4 hr, were calculated for an adult of 72 Kg dry-weight with an excess water 

volume of 3.2 L, and with an initial plasma urea concentration of 30 mmol L-1 indicating the 

initial uremic state. The dialysate Na+ and K+ concentrations were 140 and 2 mEq L-1 

respectively. The initial diffusive clearance values of urea, Na+ and K+ were calculated as 

0.225, 0.19 and 0.186 L min-1 respectively from Qbi = 0.3 L min-1, Qdi = 0.5 L min-1 and SKu = 

0.72 L min-1. The tissue permeation coefficients of Na+ and K+ were calculated from that of 

urea (PSu = 28 L min-1) according to Equation 28. The cardiac output and the arterial blood 

access flow rate were 6.3 and 0.8 L min-1 respectively. The access flow recirculation ratio was 

assumed 0.03. The fractions of tissue volume and blood perfusion were fH
v = 0.2, fH

q = 0.8, 

for HFS, and fL
v = 0.8, fL

q = 0.2 for the LFS, corresponding to mH = 0.98 and mL = 0.64 for 

urea.  

 

Transcellular fluid shifts 

Figure 1 shows time courses (bold thick lines) of the exchange rates of IC fluid (Qi) and the 

resulting fluid shifts (Vi) in HFS, LFS and HFS+LFS during DHD. Both tissue groups are 

assumed to have equal fractions of volumes (fL
v = fH

v = 0.5) and equal fractions of blood 

perfusion (fL
q = fH

q = 0.5), corresponding to mL = mH = 0.92.  During early hours of DHD, the 

sum of transcellular osmolar gradients in both tissue groups due to changes in urea and non-

urea concentrations result in a negative net osmolar gradient (Qi <0). This causes a fluid shift 

from the EC to the IC space. Note that the magnitude of fluid shift equals the area under the 

net Qi-curve. After that an equilibrium state (Qi = 0) is reached, the net osmolar gradients 

become positive (Qi >0) and increase gradually to the end of treatment, causing a decrease in 

the fluid shift from EC to the IC spaces. The osmolar gradients in both tissue groups develop 

equally. 
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Figure 1 

Simulated time changes in the exchange rate of intracellular fluid (Qi) during diffusive hemodialysis, and the 

resultant transcellular fluid shifts (Vi). The HFS and LFS tissue groups have different fractions of volume (fL
v = 

0.8, fH
v = 0.2) and blood perfusion (fL

q = 0.2, fH
q = 0.8). The HFS+LFS represents the overall tissue. The bold 

thick lines represent the changes in Qi and Vi when the tissue groups are assumed to have equal fractions of 

volume (fL
v = fH

v = 0.5) and blood perfusion (fL
q = fH

q = 0.5).   
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Figure 2 . 

Simulated time courses of Qi during diffusive hemodialysis (DHD), isolated ultrafiltration (IU) and standard 

hemodialysis (SHD), and the resultant fluid shifts (Vi). The HFS and LFS tissue groups have different fractions 

of volume (fL
v = 0.8, fH

v = 0.2) and blood perfusion (fL
q = 0.2, fH

q = 0.8). 
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Consequently, the fluid shifts in both tissue groups are equal (0.027 L in HFS, 0.027 L in 

LFS, accounting for an overall fluid shift of 0.054 L). After the end of treatment, the net 

osmolar gradients in both tissue groups tend to disappear, causing the fluid eventually to shift 

out of the cells. Figure 1 (thin lines) shows the time-dependent changes in Qi and Vi during 

DHD in the tissue groups with different fractions of volume and blood perfusion. The 

transcellular fluid in the HFS tissues shifts from IC to the EC space, while that in the LFS 

tissues takes place in the opposite direction. The overall fluid shift at the end of treatment 

accounts for 0.45 L out of the cells (0.77 L out of cells in HFS, and of 0.33 L into cells in 

LFS). This indicates that the transcellular fluid shifts taking place during DHD are, to a great 

part, due to an inhomogeneous distribution of regional blood flow and tissue fluid volumes. 

 

In Figure 2, the net osmolar gradients and the resulting transcellular fluid shifts during IU and 

SHD sessions are compared with those during DHD sessions. The magnitudes of net osmolar 

gradients in HFS during both DHD and SHD sessions are almost equal, indicating that the 

effect of ultrafiltration on the fluid shift in HFS is relatively small. The magnitudes of net 

osmolar gradients in LFS during both IU and DHD sessions are almost equal, indicating that 

the effect of diffusive solute exchange on the fluid shift in LFS is, once again, relatively 

small. The overall fluid shift at the end of session accounts for –0.29 L (-0.63 L in HFS, 0.34 

L in LFS) with IU. Note that Vi<0 indicates a fluid shift from intra- to the extracellular 

space. With SHD, the overall fluid shift is –0.97 L (-0.85 L in HFL, -0.11 L in LFS). 

 

Plasma refilling rate and depletion of plasma volume 

The time courses of the transvascular fluid exchange (Qpr) and the relative changes in the 

plasma volume (RVp) during the modeled sessions of IU, DHD and SHD are depicted in 

Figure 3. Although excess water is withdrawn with constant UF flow rates, the plasma 

volumes of both HFS and LFS tissues groups decrease the fastest within the first hour of UF 

treatment. One half of the total depletion of plasma volumes occurs in this early hour, as the 

response of Starling forces to refill the plasma volume is lacking. After reaching its maximum 

value within the first hour, the Qpr in HFS tissue group decreases slightly during the later 

treatment, leading to a gradual decline of plasma volume.  

 55



Chapter 2  

 

 

 

 

Figure 3 

Simulated time changes in the plasma refilling rate (Qpr) and the relative changes in the plasma volumes (RVp) 

during DHD, IU and SHD. The HFS and LFS tissue groups have different fractions of volume (fL
v = 0.8, fH

v = 

0.2) and blood perfusion (fL
q = 0.2, fH

q = 0.8).  
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The Qpr in LFS tissue group reaches its maximum slower than that in the LFS tissue group 

and remains unchanged during the later treatment, leading to a linear decrease in plasma 

volume. The difference between the area (Vuf) under the line representing the UF flow rate 

and the area (Vpr) under the theoretical Qpr-curve corresponds to the depletion of the initial 

plasma volume due to insufficient refilling from the interstitial space. The smaller the 

difference between Vuf and Vpr ,the higher the plasma refilling capacity. The depletion of 

plasma volume in the HFS tissue group accounts for 7% while that in LFS tissue group is 

almost two times more (15.6%). After stopping the treatment, the Qpr decreases and returns to 

0. During this period, the fluid shift from interstitial space causes the plasma volume to 

increase. When the same amount of excess water is withdrawn by performing SHD, the 

degree of depletion of the plasma volume in both tissue groups is slightly smaller (1.7%) than 

with IU, emphasizing the fact that the diffusive solute removal only has a minor influence on 

plasma volume depletion. When dialysis is performed without UF, the plasma volume of the 

HFS tissue group increases up by 7.5% due to the plasma refilling from the interstitial space. 

In contrary, the plasma volume of the LFS tissue group decreases by 1.4% as a result of 

volume loss to the interstitial space. Note that the relative depletion of the overall (total) 

plasma volume is not equal to the linear sum of the relative depletions of plasma volumes of 

both tissue groups. When both tissue groups are assumed to have equal fractions of volume 

and blood perfusion, the time-dependent changes in Qpr in both systems develop equally. 

Consequently, both tissue groups contribute equally to the depletion of the overall plasma 

volume. 

 

Sensitivity Analysis  

We investigated the relative importance of variables such as ultrafiltration flow rate and 

volume, dialysate Na+ concentration, initial plasma Na+ and urea concentrations, and the 

tissue perfusion (PS) on the exchange rate of intracellular fluid (Qi) and the plasma refilling 

rate (Qpr) during SHD, by performing a sensitivity analysis (one variable changes while all 

others are held unchanged). 
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Ultrafiltration flow rate and volume.  

An UF volume equal to the excess water (several liters of fluid) is removed during the course 

of a SHD session or by IU with constant or profiled ultrafiltration flow rates. Figure 4 shows 

the effect of removing the same amount of excess water (2.4 L) with different (constant) 

ultrafiltration rates, and the effect of removing different amount of excess water (2.4 L, 4.8 L) 

within the same duration of SHD (4h) on the transcellular and transvascular fluid shifts during 

SHD. Withdrawal of an excess volume of 2.4 L in a short (Td = 2h) and fast (Qf = 20 mL min-

1) hemodialysis causes a fluid shift of –0.49 L (-0.73 L in HFS, 0.24 L in LFS). The same 

amount of excess water in a long (Td= 4h) and slow (Qf = 10 mL min-1) hemodialysis results 

in a fluid shift of –0.83 L (-0.82 L in HFS, -0.01 L in LFS). It is evident that the shorter the 

session (thus the higher the UF flow rate) the harder the net osmolar gradient develops, and 

consequently the greatest the amount of fluid shift to the EC space. However, due to diffuison 

a higher amount of solute (urea, Na+, K+) is removed in longer than in shorter hemodialysis, 

leading to a greater fluid shift at the end of a longer session than that with a shorter session. 

At the end of session lasting 4 h, the slow UF together with the fluid shift to the EC space 

improves the plasma refilling capacity by 4.7% (6.2% in HFS, 4.4% in LFS). By prolonging 

the duration of treatment session with a high UF flow rate (Qf = 20 mL min-1) 2 hours longer, 

an excess volume of 4.8 L is withdrawn, causing an increased fluid shift to the EC space (–

1.25 L, -0.92 L in HFS, -0.33 L in LFS). Nevertheless, despite this increased fluid shift to the 

EC space, the capacity to refill the plasma volume decreases by 3.6% (2% in HFS, 4% in 

LFS). The response of Starling forces to refill the plasma volume decreases with the 

increasing volume of ultrafiltration. 
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Figure 4 

Simulated time courses of the net Qi (a), the resultant Vi (b), the Qpr (c), and the RVp (d) in the HFS+LFS 

during SHD for three cases of ultrafiltration. 1) An excess water volume of 2.4 L is withdrawn in a short (2 h) 

and rapid (Qf = 20 mL min-1) hemodialysis (bold thick lines). 2) The same volume of excess water (2.4 L) is 

withdrawn in a relative long (4 h) and slow (Qf = 10 mL min-1) hemodialysis. 3) The rapid (Qf = 20 mL min-1) 

hemodialysis is prolonged to 4 h to withdraw an excess water volume of 4.8 L. 
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Dialysate sodium concentration.  

Figure 5 shows the time courses of Qi and Qpr during SHD with different dialysate Na+ 

concentrations and with an initial plasma Na+ concentration of 140 mEq L-1. At the low (120 

mEq L-1) dialysate Na+ concentration, the plasma Na+ concentration at the end of session is 

changed by 3.6% (17.4% in HFS, -0.9% in LFS). The net osmolar gradient reaches an 

equilibrium state almost at the end of the session, causing a fluid shift of 0.82 L (-0.47 L in 

HFS, 1.29 L in LFS). The plasma refilling is 5% (3% in HFS, 5.4% in LFS) less than when a 

dialysate Na+ concentration of 140 mEq L-1 (normal) is used. At the high (150 mEq L-1) 

dialysate Na+ concentration, the overall plasma Na+ concentration at the end of the session of 

SHD is changed by 8.1% (22.7% in HFS, 3.4% in LFS). The net osmolar gradient at the end 

of the session causes a fluid shift of -1.81 L (-1.03 L in HFS, -0.78 L in LFS). Due to the fluid 

shift to the EC space, the plasma refilling is improved by 2.1% (1.3% in HFS, 2.4% in LFS), 

when compared to the normal dialysate Na+ concentration. 

 

 
 

Figure 5 

Simulated time changes in the net Qi (a), the resultant Vi (b), the Qpr (c), and the changes in RVp (d) in the 

HFS+LFS during SHD. Initial plasma Na+ concentration (140 mEq L-1) is fixed and dialysate Na+ concentration 

is varied from 120 mEq L-1 to 150 mEq L-1. 
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Initial plasma sodium concentration 

The changes in Qi and RVp due to different initial plasma Na+ concentrations during SHD 

(with CdNa = 140 mEq L-1) are shown in Figure 6. The initial plasma Na+ concentration was 

varied by 3.6% from 140 mEq L-1. Hereby, the initial IC Na+ concentration was calculated 

so that at the start of each session the osmolality on both sides of the cell membrane is equal. 

At 135 mEq L-1, a fluid shift of 1.44 L (0.9 L in HFS, 0.54 L in LFS) takes place out of the 

cells due to an increased plasma Na+ concentration. The plasma refilling is 1.6% (0.4% in 

HFS and 1.9% in LHF) more than at a normal plasma Na+ concentration (140 mEq L-1). 

However, at 145 mEq L-1 the fluid shift accounts for -0.46 L (-0.81 L in HFS, +0.35 L in 

LFS). The plasma refilling is 1.8% (0.4% in HFS, 2.1% in LFS) less than at a normal plasma 

Na+ concentration. 

 

Initial urea concentration 

The changes in Qi and RVp due to different initial urea concentrations during SHD are also 

shown in Figure 6. The initial plasma urea concentrations (both in the intra- and extracellular 

space) were varied by 10 mmol L-1 from 30 mmol L-1. In all cases the fluid shift from EC to 

the IC space occurs in the first hour of treatment. The fluid shift to the EC space decreases 

slightly with the increasing urea concentration. It varies from 1 L (0.86 L in HFS, 0.14 L in 

LFS) at 20 mmol L-1 to 0.93 L (0.85 L in HFS, 0.08 L in LFS) at 40 mmol L-1. A variation in 

the initial urea concentration by 10 mmol L-1 from 30 mmol L-1 has no remarkable effect on 

the plasma refilling capacity. 

 

Tissue permeation capacity 

An averaged value of 20 L min-1 for the tissue urea permeation coefficient was reported in the 

literature [14]. It is very likely that this quantity might vary from patient to patient, and even 

during treatment in one patient. The higher the tissue permeation coefficient, the faster the 

concentration in tissue equilibrates with that in venous blood (flow-limited transport). Figures 

7 and 8 show respectively the time-dependent changes in the transcellular and transvascular 

fluid shifts during SHD, when the tissue permeation coefficient is varied by 50% from 28 L 

min-1. The lower the tissue permeation capacity the higher the amount of fluid shift out of the 

cells in the HFS tissue group, and the higher the plasma refilling capacity. In the LFS tissue 
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group, a decreased tissue permeation coefficient causes the fluid to move in the cell. The 

lower the tissue permeation capacity the lower the plasma refilling capacity in the LFS tissue 

groups. A higher value of the tissue permeation coefficient than 28 L min-1 does not affect the 

overall plasma refilling. 

 

 
 

Figure 6 

Simulated time courses of the net Qi (a) and the RVp (b) in the HFS+LFS during SHD. Dialysate Na+ 

concentration (140 mEq L-1) is fixed and initial plasma Na+ concentration is varied from 135 mEq L-1 to 145 

mEq L-1.  Time courses of the net Qi (c) and the changes in RVp (d) when the initial concentration of plasma urea 

is varied from 20 mmol L-1 to 40 mmol L-1.  
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Figure 7 

The simulated time changes in the net exchange rate of intracellular fluid (Qi) and the resultant transcellular fluid 

shifts (Vi) during SHD. All other parameters are fixed and the tissue permeation coefficient for urea is varied 

from 14 L min-1 to 56 L min-1. Since the HFS and LFS tissue groups have different fractions of volume (fL
v = 

0.8, fH
v = 0.2), their tissue permeation coefficients for urea are also different.  
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Figure 8.  

The simulated time changes in the plasma refilling rate (Qpr) and the relative changes in the plasma volume 

(RVp) during SHD. See also Figure 7. All other parameters are fixed and the tissue permeation coefficient for 

urea is varied from 14 L min-1 to 56 L min-1 

 

Discussion 

We describe a mathematical model of intercompartmental fluid and solute kinetics during 

hemodialysis. This model differs from previous models in that the IC and EC solute masses, 

IC and EC osmolarities, dialysis dose, urea clearance, Na+ and K+ dialysance, blood water 

flow rate, erythrocyte water content, and Donnan factor are all taken as variable in time. Thus, 

this model may predict changes in solute and water transport throughout the profiled dialysis 
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session. Further, a regional blood flow model is combined with the classical two-compartment 

model. Correction factors for the dialyzer performance due to cardiopulmonary and access 

recirculation, are included. Using a sensitivity analysis we assessed the relative importance of 

ultrafiltration flow rate and volume, dialysate Na+ concentration, initial plasma Na+ 

concentration and initial urea concentrations, and the tissue permeation capacity on dialysis 

induced intercompartmental fluid shifts in both HFS and LFS tissue groups. 

The greater the amount of UF the greater the amount of fluid shift to the EC space. This fluid 

shift to the EC space is not sufficient to refill the plasma volume loss by ultrafiltration. In 

addition, the higher the rates of ultrafiltration flow, the higher the decline of plasma volume. 

High dialysate Na+ concentration (150 mEq L-1) causes the cellular fluid (1.8 L) to move to 

the EC space, enhances the plasma refilling (2.2%) and, therefore, helps the plasma volume 

preservation during standard hemodialysis when performed with a normal (140 mEq L-1) 

dialysate Na+ concentration. A variation in the initial plasma Na+ concentration by  5 mEq L-

1 from normal plasma Na+ concentration causes a variation of 0.45 L in the fluid shift. A 

variation in the initial plasma urea concentration by 10 mmol L-1 from 30 mmol L-1 causes a 

variation of 0.03 L in the fluid shift, and it has no remarkable effect on the refilling rate 

capacity. Low tissue permeation in the LFS tissue group leads to an increase of the fluid shift 

in the cells, especially in the early hour of treatment, causing a delay in the plasma refilling. 

In the HFS tissue group, this has a contrary effect on the plasma refilling due to the increased 

fluid shift from intra- to the extracellular space. 

Other factors influencing the transcellular and transvascular fluid shifts, such as solute and 

fluid distributions, transvascular protein transport, volume compliance, the solute and fluid 

permeation coefficients, which we cannot measure directly, are given at the start of treatment 

as parameters. Some factors such as flow rates, dialysate Na+ and K+ concentrations, length of 

dialysis session, and urea clearance are either given at the start of treatment or can be 

measured directly. However, some other parameters such as the permeability coefficients, 

compliance and initial ratios of different volume compartments were taken from literature, are 

likely to change during dialysis therapy, and can only be estimated in vivo. However, 

differences between this mathematical model and the in vivo situation enable us to compare 

the changes in the fluid and electrolyte fluxes that are predicted, to those observed during 

actual treatment. This is bound to improve our understanding of such variables, which is 
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especially relevant, as we must assume that the dialysis treatment itself induces changes in 

these variables. 

We conclude that the magnitudes and direction of fluid shifts induced by hemodialysis 

treatment are not equal in tissue groups with different fractions of volumes and blood 

perfusion. The UF volume and flow rate, and the size of Na+ gradient between the dialysate 

and blood (EC) side of the dialyzer membrane are the most important factors influencing the 

magnitude (up to 1.8 L) and direction of transcellular fluid shifts. High dialysate Na+ 

concentration helps plasma refilling (by 2.5%). However, a high dialysate Na+ concentration 

is associated with a high EC Na+ rebound, which in turn may lead to interdialytic water intake 

resulting from thirst and may cause increased weight gain and hypertension.  
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Appendix: list of symbols and units 

Symbol   Explanation [units] 

 <ga>   a factor to calculate protocrit from plasma protein concentration [Lg-1] 

j <gg>   solute cellular sieving coefficient 

Osm   magnitude of the net transcellular osmolar driving force [mosmol L-1] 

Osmn   magnitude of osmolar gradient due to non-urea [mosmol L-1] 

Osmu   magnitude of osmolar gradient due to urea [mosmol L-1] 

t   a discrete time interval [min(utes)] 

Vi   magnitude of transcellular fluid shift [L(iters)] 

 <gk>   conversion factor from molar to equivalent osmolar concentration 

is, p <gP>  oncotic pressure in intersitial and plasma compartment [mmHg] 

u <gs>   transcellular urea reflection coefficient 

a, v, is  compliance of arterial, venous plasma and interstitial space [% mmHg-1] 

Cd, j   inlet dialysate solute concentration [mEq L-1] 

Ce, j, Ci, j, Cp, j  EC, IC and plasma solute concentration [mEq L-1, mmol L-1] 

Ca, j, Cv, j  arterial and venous concentration of solute j [mEq L-1, mmol L-1] 

Cis, Cp   interstitial and plasma protein concentration [g L-1] 

CLj   solute clearance or dialysance by diffusion [L min-1 or Lh-1] 

CO   cardiac output [L min-1] 

Dd    dialysis dose 

Dj   whole body cellular diffusion coefficient of solute [L min-1] 

fj   volume distribution of solute in red blood cell volume 

fv
t   volume fraction of tissue group t 

fq
t   blood perfusion fraction of tissue group t 

Fw   correction factor for the free water fraction of EC space 

Gj   generation or intake rate [mEq min-1, mmol min-1] 

Ht   hematocrit 

Jdial,j, Jdif,j  total and diffusive transport rate through dialyzer [mEq min-1, mmol min-1] 

Ji, j, Je, j   mass exchange rate of IC and EC solute [mEq min-1, mmol min-1] 

Jav,j   mass transfer rate from tissue to venous blood [mEq min-1, mmol min-1] 

kc   transcellular whole body water exchange coefficient [L min-1 mmHg-1] 

kCP   correction factor for cardiopulmonary recirculation 
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kAC   correction factor for arterial access blood recirculation 

Lf, Lr   arterial and venous capillary hydraulic permeability [L mmHg-1 min-1] 

mt   concentration equilibration coefficient in tissue group t  

Mi, j, Me, j  IC and EC solute mass [mEq, mmol] 

MWj   molecular weight of solute j [Dalton] 

Osmp, n   plasma non-urea osmolality [mosmol L-1] 

Pa, Pv, Pis  hydraulic pressure in arterial, venous plasma, interstitium [mmHg] 

PSj   whole body tissue permeation coefficient for solute j [L min-1] 

Qa   systemic arterial blood flow rate [L min-1] 

Qa
AC, Qv

AC  flow rate of blood entering and leaving the dialyzer [L min-1] 

Qa
t, Qv

t   flow rate of blood entering and leaving the tissue group t [L min-1] 

Qbi, Qwi, j  flow rate of blood and blood water that enters the dialyzer [L min-1] 

Qdi, Qf   dialysate inlet and ultrafiltration flow rates [L min-1] 

Qwf, Qwr  vascular water filtration and reabsorption rate [L min-1] 

Qi, Qpr, Qrc  exchange rate of IC, transvascular and red blood cell volume [L min-1] 

QR
AC   access recirculation blood (water) flow rate [L min-1] 

R   gas constant [L mmHg K-1 mmol-1] 

Rc
D, RD,j  capillary wall and dialyzer membrane Gibbs-Donnan ratio 

RVp   relative change in plasma volume with respect to its initial value [%] 

SKj   dialyzer membrane solute permeation coefficient [L min-1] 

T, Td   temperature [K(elvin)], duration of treatment session [min, hour] 

Ve, Vi, Vis  volume of EC, IC and interstitial compartment [L] 

Vp, Vb   plasma, blood volume [L] 

Vuf   excess water (weight gain) or ultrafiltration volume [L] 

Vrc,Vpr   volume of red blood cells and plasma refilling [L] 

Zj   solute distribution coefficient between EC and IC space at equilibrium 
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Abstract 

A decrease in blood volume is thought to play a role in dialysis-related hypotension. Changes 

in relative blood volume (RBV) can be assessed by means of continuous haematocrit 

measurement. We studied the variability of RBV changes, and the relation between RBV and 

ultrafiltration volume (UV), blood pressure, heart rate, and inferior caval vein (ICV) diameter.  

In 10 patients on chronic hemodialysis, RBV measurement was performed during a total of 

one hundred 4-h hemodialysis sessions. Blood pressure and heart rate were measured at 5-min 

intervals. ICV diameter was assessed at the start and at the end of dialysis using 

ultrasonography.  

The changes in RBV showed considerable inter-individual variability. The average change in 

RBV ranged from -0.5 to -8.2% at 60 min and from -3.7 to -14.5% at 240 min (coefficient of 

variation (CV) 0.66 and 0.35 respectively). Intra-individual variability was also high (CV at 

60 min 0.93; CV at 240 min 0.33). Inter-individual as well as intra-individual variability 

showed only minor improvement when RBV was corrected for UV. We found a significant 

correlation between RBV and UV at 60 (r= -0.69; P<0.001) and at 240 min (r= -0.63; 

P<0.001). There was a significant correlation between RBV and heart rate (r= -0.39; 

P<0.001), but not between RBV or UV and blood pressure. The level of RBV reduction at 

which hypotension occurred was also highly variable. ICV diameter decreased from 10.3±1.7 

mm/m2 to 7.3±1.5 mm/m2. There was only a slight, although significant, correlation between 

ICV diameter and RBV (r= -0.23; P<0.05). The change in ICV-diameter showed a wide 

variation.  

RBV changes during hemodialysis showed a considerable intra- and inter-individual 

variability that could not be explained by differences in UV. No correlation was observed 

between UV or changes in RBV and either blood pressure or the incidence of hypotension. 

Heart rate, however, was significantly correlated with RBV. Moreover, IVC diameter was 

only poorly correlated with RBV, suggesting a redistribution of blood towards the central 

venous compartment. These data indicate that RBV monitoring is of limited use in the 

prevention of dialysis-related hypotension, and that the critical level of reduction in RBV at 

which hypotension occurs depends on cardiovascular defense mechanisms such as 

sympathetic drive.  
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Introduction 

Intradialytic hypotension is a common complication in patients on chronic hemodialysis. 

Many factors have been implicated in its pathogenesis, including autonomic dysfunction, 

cardiac dysfunction and a reduction in effective blood volume [1,2]. Changes in effective 

blood volume can be measured by radioisotope dilution techniques [3], but these methods are 

complicated and not easily applied on a routine basis. Changes in relative blood volume 

(RBV), however, can be estimated by means of continuous haematocrit measurement [4-6]. 

Monitoring RBV during hemodialysis and discontinuing ultrafiltration when a critical level of 

RBV reduction is reached has been advocated in order to improve haemodynamic stability 

during dialysis [7,8]. For this it is essential that the critical level of RBV reduction can be 

predicted in individual cases. Therefore we studied the intra- and inter-individual variability of 

RBV measurement and the correlation of RBV with blood pressure (BP), heart rate (HR), and 

inferior caval vein (ICV) diameter.  

 

Subjects and methods  

Patients and hemodialysis treatments 

Ten patients on regular hemodialysis were asked to participate in this study. This study was 

approved by the ethical committee of the University Hospital Rotterdam–Dijkzigt, and 

informed consent was obtained from all patients. Age, sex, and dialysis data are given in Table 

1. Hemodialysis treatments were performed using bicarbonate buffered dialysate (sodium 138 

mmol/l, potassium 2.0 mmol/l, bicarbonate 34 mmol/l), polysulphone membranes (F60, 

Fresenius, Bad Homburg, Germany) and Fresenius 4008 E hemodialysis monitors. Blood flow 

ranged from 200 to 250 ml/min, and dialysate flow was 500 ml/min. Treatments were 

performed on a thrice-weekly basis for 4 h. Only subjects requiring at least 1000 ml of 

ultrafiltration volume (UV) during each treatment were included.  

         
Table 1. Characteristics of the patient 

     

 Age (yrs) 65.5 ± 11.9 
 male/female  5/5  
 dry weight (kg) 63.8 ± 11.8 
 time on dialysis (yrs) 5.3 ± 2.5 
 Cardiac index (L/m2) 2.3 ± 1.1 
 EA ratio 0.9 ± 0.3 
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Food and fluid intake was withheld prior to each investigative dialysis sessions. One hour 

after starting, one cup of tea and a snack were served. One hour later, another cup of tea was 

provided.  

 
Blood pressure, inferior caval vein diameter, and cardiac output measurements 

During dialysis, BP and HR was measured at 5-min intervals by means of the Accutor 3 

oscillometric device (Datascope Co., Montreal NJ, USA). Hypotension was defined as a 

systolic blood pressure 90 mm Hg. To estimate hydration status before and after dialysis., 

ICV measurements were performed using ultrasonography (Aloka SDD 1100, 3.75 MHz 

probe, Aloka Co., Tokyo, Japan). Real-time, two-dimensional ultrasonography was used, with 

simultaneous ECG monitoring. The longitudinal axis of the ICV was used to measure its 

diameter at inspiration and at end-expiration, exactly 2 cm below the diaphragm. Using a cine 

loop memory containing 10 images, an image just before the P wave on the ECG tracing was 

taken for measurement. In all patients, cardiac function was previously analyzed using 

precordial ultrasonography. Cardiac output was determined by calculating the stroke volume 

using the bi-plane discs method. Diastolic left ventricular function was assessed by Doppler 

evaluation of left ventricular filling. After measuring early (E) and atrial (A) flow over the 

mitral valve, the E/A ratio was calculated. Diastolic dysfunction was present in all patients.  

 

Relative blood volume measurement 

RBV measurement was performed by continuous optical measurement of the haematocrit 

using the Crit-line device (In-line Diagnostics Co., Riverdale, Utah, USA). Patients were 

placed in a supine position 30 min before starting RBV measurements, and this position was 

maintained throughout the investigative dialysis sessions. To ensure an adequate baseline 

haematocrit without mixture of rinsing saline, RBV measurement was started 5 min after the 

onset of hemodialysis. RBV measurement was performed during 10 consecutive weeks on the 

same weekday.  

 

Data collection 

Data from the Crit-line device and the Accutor 3 were sent to a personal computer and 

recorded by a data acquisition program. During the data collection, the occurrence of 

symptoms and/or changes in the dialysis treatment parameters was instantly recorded.  
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Statistics 

For RBV, means of 10-min periods at 60, 120, 180, and 240 min were used for comparison. 

Similarly, means of RBV values over a range of 10 ml at 500, 1000, and 1500 ml 

ultrafiltration volumes were taken. Differences in BP, HR, ICV diameter, and RBV were 

analyzed using ANOVA for repeated measurements followed by the Newman–Keuls test for 

multiple comparisons. Differences between patients were analyzed using two-way ANOVA. 

Variability was assessed by calculating the coefficient of variance. Correlation was assessed 

using linear correlation by calculating Pearson's correlation coefficient. All data are presented 

as mean±standard deviation. A P value of <0.05 was assumed to indicate statistical 

significance.  

 
Results 
Ultrafiltration volume 
Measurements were performed in 100 hemodialysis sessions. UV after 4 h was 2438±457 ml. 

With a mean body weight of 65.9±9.3 kg; this represents 3.7% of the total body weight. The 

mean UV corrected for body surface area (BSA) was 1428±311 ml/m2 (Table 2. In 19 

sessions, ultrafiltration was temporarily stopped because of hypotension or other symptoms.  

 

time (minutes) start 60 120 180 240 F P 

UV (ml/m2)   386 ± 118 746 ± 184 1098 ± 254 1428 ± 311   

ICVD-exp. (mm/m2) 10.3 ± 1.7        7.3 ± 1.5  <0.001

SAP (mm Hg) 151.4 ± 20.6 151.1 ± 14.1 150.5 ± 18.6 148.1 ± 18.9 140.0 ± 17.3 2.4 <0.05 

DAP (mm Hg) 84.0 ± 7.1 82.7 ± 7.7 83.8 ± 6.5 83.6 ± 7.9 79.8 ± 7.7 6.2 <0.001

HR (bpm) 73.9 ± 7.9 74.9 ± 10.1 76.9 ± 9.2 80.0 ± 9.2 81.3 ± 10.2 33.7 <0.001

 
Table 2. Weight gain, ICV measurement, blood pressure, RBV, and ultrafiltration volume (mean of all sessions) 

 

Mean systolic blood pressure (SAP) decreased from 151.4±20.6 mmHg at the start of 

hemodialysis to 140.0±17.3 mmHg at the end (P<0.05; Figure 1.) Diastolic blood pressure 

(DAP) decreased from 84.0±7.1 to 79.8±7.7 mmHg (P<0.001), while the heart rate increased 

from 73.9±7.9 to 81.3±10.2 b.p.m. (P<0.001).  
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Fig. 1.  

Systolic and diastolic blood pressure during 4 h of hemodialysis in 10 patients (thick lines, mean of all patients; 

thin lines, ±standard deviation). 

 

ICV measurement 

At the start of dialysis, mean ICV diameter at end-expiration and at inspiration were 10.3±1.7 

mm/m2 and 8.2±2.2 mm/m2 respectively. At the end of dialysis, mean ICV diameters had 

decreased to 7.3±1.5 mm/m2 at end-expiration and 5.3±1.5 mm/m2 at inspiration (P<0.001; 

Table 2).  

 

Blood volume monitoring 

Changes in RBV showed marked inter-individual variability (Figure 2a. For all patients, the 

change in RBV was -3.8±2.5% at 60 min and -10.3±3.6% at the end of dialysis (Table 2. At 

60 min, mean RBV of 10 single patients varied between -0.51% and -8.17% (P<0.001), and at 

the end of dialysis, RBV varied between -3.71% and -14.55% (P<0.001; Table 3). The 
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coefficients of variability demonstrate a wide variation in RBV after 60, 120, 180, and 240 

min between different patients (CV 0.66, 0.52, 0.41, and 0.35 respectively; Table 3.  

Within individual patients, changes in RBV were also highly variable. Mean coefficients of 

intra-individual variability ranged from 0.66 after 60 min to 0.35 at the end of dialysis (Table 

3) 

 

Figure 2.  

Mean changes in relative blood volume of 10 patients in 10 hemodialysis sessions (thin lines), and mean of all 

patients (thick line), plotted (a) against time and (b) against ultrafiltration volume 
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 RBV at CV RBV at CV RBV at CV RBV at CV 

 60 minutes  120 minutes  180 minutes  240 minutes  

Patient 1 -4.24 0.57 -6.70 0.32 -10.15 0.33 -13.71 0.19 

Patient 2 -2.43 0.67 -3.00 0.74 -5.35 0.33 -6.98 0.30 

Patient 3 -2.27 0.68 -5.20 0.46 -7.96 0.38 -9.99 0.31 

Patient 4 -0.51 3.65 -0.52 6.41 -1.20 2.83 -3.71 0.87 

Patient 5 -1.37 1.58 -3.51 0.76 -6.12 0.55 -8.23 0.37 

Patient 6 -4.12 0.43 -7.13 0.35 -11.23 0.22 -14.55 0.23 

Patient 7 -8.17 0.29 -10.05 0.27 -10.94 0.25 -8.64 0.42 

Patient 8 -7.48 0.29 -8.68 0.27 -11.27 0.16 -12.84 0.17 

Patient 9 -2.77 0.70 -3.89 0.74 -6.44 0.59 -9.73 0.20 

Patient 10 -4.51 0.40 -5.41 0.59 -9.02 0.37 -14.51 0.22 

Mean -3.79 0.66 -5.41 0.52 -7.97 0.41 -10.29 0.35 

Inter- 
individual CV 

0.93  1.09  0.60  0.33  

 

Table 3. Relative blood volume of 10 patients (mean of 10 hemodialysis sessions) at 60, 120, 180, and 240 min 

of dialysis 

 
 

When changes in RBV were plotted against UV corrected for BSA, inter-individual variability 

remained considerable (Figure 2b). Coefficients of variation ranged from 0.48 to 0.23 (Table 

4). Intra-individual variability was also marked (mean intra-individual CV 0.95 to 0.37; Table 

4).  

 

Correlation between relative blood volume, ultrafiltration volume, heart rate, blood pressure, 

and inferior caval vein measurement 

The change in RBV was highly correlated with ultrafiltration volume both at 60 min (r= -

0.69; P<0.001), and at 240 min (r= -0.63; P<0.0001; Figure 3a). Interestingly, there was no 

significant correlation between the change in RBV and either systolic or diastolic blood 

pressure, at 60 min and at 240 min (Figure 3b). Ultrafiltration volume was not correlated with 

either systolic or diastolic blood pressure. The change in heart rate was correlated with change 

in RBV at 240 min (r=-0.39; P<0.0001; Figure 3c), but not with ultrafiltration volume. 

Although there was a marginally significant correlation between the change in RBV and ICV 
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diameter (r=-0.23; P<005), there was a considerable variation in the decrease in ICV diameter 

(Figure 3d).  

 

          
  RBV at CV  RBV at CV  RBV at CV 
  500 ml UV   1000 ml UV   1500 ml UV  

Patient 1  -4.40 0.60  -7.57 0.36  -11.56 0.24 

Patient 2  -2.15 0.80  -5.59 0.55  - - 

Patient 3  -3.22 0.64  -7.36 0.30  -10.16 0.29 

Patient 4  -0.60 5.24  -3.03 0.98  -3.96 1.34 

Patient 5  -3.52 0.52  -8.95 0.30  - - 

Patient 6  -6.76 0.22  -9.39 0.12  -12.38 0.08 

Patient 7  -5.04 0.27  -10.04 0.24  -14.63 0.17 

Patient 8  -8.20 0.28  -10.27 0.26  - - 

Patient 9  -3.31 0.47  -5.15 0.32  -8.58 0.29 

Patient 10  -4.86 0.48  -8.40 0.23  -14.47 0.08 

Mean  -4.20 0.95  -7.57 0.37  -10.81 0.37 

Inter-individual CV  0.48   0.31   0.23 

 
Table 4. Relative blood volume of 10 patients (mean of 10 hemodialysis sessions) at 500, 1000, and 1500 ml of 

ultrafiltration volume/m2 of body surface area 

 

Incidence of hypotension, and corresponding relative blood volume and haematocrit 

The incidence of hypotensive episodes was relatively low. Hypotension occurred in seven 

hemodialysis sessions, all in two patients. Systolic blood pressure ranged from 63 to 89 

mmHg in patient 1 (four sessions), and from 84 to 89 in patient 7 (three sessions). In six 

sessions, hypotension was accompanied by a heart rate of 60 b.p.m. or less. In both patients, 

RBV at which hypotension occurred, varied markedly (patient 1, -9.2 to -16.0%; patient 7, -

1.4 to -16.5%). In addition, the corresponding haematocrit values showed considerable 

variation (patient 1, 0.27 to 0.31; patient 7, 0.32 to 0.37). Change in ICV diameter was not 

significantly different from sessions without hypotensive episodes.  
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Figure 3.  

(a) RBV (%) vs ultrafiltration volume after 240 min of hemodialysis. (b) RBV (%) vs change in systolic blood 

pressure after 240 min of hemodialysis. (c) RBV (%) vs change in heart rate (%) after 240 min of hemodialysis. 

(d) RBV (%) vs decrease in ICV diameter (end-expiration; mm/m2) after 240 min of hemodialysis. 

 
 

Discussion 

In this paper, the variability of RBV changes during hemodialysis is reported for the first time. 

We observed a considerable inter-and intra-individual variability of RBV changes during 

hemodialysis, even when corrected for UV. Although there was a significant correlation 

between RBV and ultrafiltration volume, a correlation between RBV and blood pressure was 

not found. Ultrafiltration volume was not correlated with blood pressure or heart rate. There 
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was, however, a significant correlation between RBV and heart rate, and a slight correlation 

between RBV and ICV-diameter.  

It is not surprising that we observed high inter-individual variability of RBV changes as 

differences in body composition, hydration state, and the cardiovascular status are known to 

affect the course of RBV during dialysis [1,2,9]. However, we found that the intra-individual 

variability was equally high. In our study, this variability could not be explained by 

differences in food and fluid intake during dialysis, as these were restricted according to a 

standardized time and quantity schedule. Also, medication was not changed during the 10-

week trial period, and intercurrent changes in the cardiovascular status such as the occurrence 

of myocardial ischaemia or systemic infection were not observed.  

It is tempting to assume that the observed intra-individual variability in RBV changes was 

caused by differences in ultrafiltration volume, as there was a significant correlation between 

UV and RBV. However, when the RBV curves were plotted against UV instead of time, we 

found only a minor improvement of the variation coefficients. Thus, differences in 

ultrafiltration rate are unlikely to account for the day-to-day variation of the blood volume 

response to hemodialysis, and other factors must be involved.  

There was no correlation between RBV and blood pressure, which is contrary to other 

observations [6,10,11]. However, a discrepancy between blood pressure and blood volume has 

been reported before [12]. Blood pressure was also not dependent on UV. There was, 

however, a significant correlation between RBV and heart rate. This suggests that a reduction 

in RBV, through ultrafiltration, stimulates the autonomic nervous system, which prevents a 

decrease in blood pressure by an increase in heart rate. In patients who did develop 

hypotension during dialysis, we were unable to determine a critical level of RBV reduction. 

Moreover, in six out of seven hypotensive dialysis sessions, patients were bradycardic instead 

of tachycardic, indicating that in these patients hypotension was caused rather by a failing 

cardiovascular response than by critical level of blood volume reduction.  

In our study, ICV diameter decreased significantly during dialysis. However, when we studied 

the relation between the change in ICV diameter and the change in RBV during dialysis, the 

correlation proved to be poor. This means that filling of the central venous compartment, 

which is assumed to be represented by the ICV diameter [13], does not change in parallel to 

changes in RBV. Therefore a redistribution of blood within the vascular compartment must be 
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assumed. This most probably results from cardiovascular defense mechanisms such as 

peripheral and/or venous vasoconstriction, or a change in cardiac output.  

We conclude that RBV changes have a considerable intra- and inter-individual variability, not 

only in time but also when plotted against UV. No correlation was observed between UV or 

changes in RBV and either blood pressure or the incidence of hypotension. Heart rate, 

however, was significantly correlated with RBV. Moreover, IVC diameter was only poorly 

correlated with RBV, suggesting a redistribution of blood towards the central venous 

compartment. These data indicate that RBV monitoring is of limited use in the prevention of 

dialysis-associated hypotension. The critical level of reduction in RBV at which hypotension 

occurs may depend more on cardiovascular defense mechanisms such as sympathetic drive, 

than on the reduction in RBV.  
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Abstract  

Combined dialysis and ultrafiltration leads to more frequent episodes of hypotension than 

isolated ultrafiltration. It has been suggested that decreased plasma volume preservation could 

be responsible for this phenomenon. The present study evaluates the effects of diffusive 

dialysis on the changes in relative blood volume. Six stable hemodialysis patients, without the 

need for ultrafiltration, were studied during ten sessions of diffusive dialysis (bicarbonate) 

lasting four hours. Relative blood volume (RBV) was monitored continuously by 

measurement of hematocrit. During the first and second hour RBV increased by 2.4 ± 1.4 and 

2.5 ± 0.8 % respectively, returning to baseline levels at the end of dialysis. No changes in 

blood pressure or heart rate were noted. We conclude that during diffusive dialysis without 

ultrafiltration relative blood volume is increased. A decrease in vascular resistance, or 

changes in regional blood distribution could explain the findings. 

 

Introduction 

Hypotension is a major complication of hemodialysis, which occurs in approximately one 

third of the patients [1]. It has been shown that isolated ultrafiltration without simultaneous 

dialysis is better-tolerated [2]. This could suggest that the hemodynamic instability that occurs 

during dialysis results from changes in osmolality [3-5]. Using kinetic modelling, the rapid 

fall in the urea concentration of the extracellular compartment, is predicted to induce a 

volume shift from the extracellular to the intracellular compartment [6,7,8]. On the other 

hand, some studies failed to observe differences in plasma volume preservation between 

ultrafiltration and ultrafiltration combined with hemodialysis [9,10,11]. However, differences 

between blood volume decrement during isolated ultrafiltration and ultrafiltration combined 

with dialysis could be masked in these studies, as there is an intra-individual variability in 

change of blood volume during ultrafiltration, which is relatively large as compared to the 

expected change in blood volume during diffusive dialysis [12,13]. To avoid these problems, 

the effect of blood volume can best be studied during dialysis without net ultrafiltration 

(diffusive dialysis). The effect of diffusive dialysis on changes in blood volume has been only 

reported by Fleming et al. [14]. However, this study was set up to investigate the effect of 

different dialysate sodium concentrations on blood volume, rather than the effect of diffusive 
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dialysis on blood volume.  At present, it is therefore unclear whether the negative effect of 

diffusive dialysis on hemodynamic stability results from reduced blood volume preservation 

or from altered vascular reactivity. The present study evaluates the effects of diffusive dialysis 

on blood volume preservation by continuously measuring the change in relative blood 

volume. In order to correct for intra-individual variability, all subjects were studied during ten 

dialysis treatments.  

 

Subjects and Methods  

Patients 

 We studied 6 patients, 4 men and 2 women, requiring chronic hemodialysis (time on dialysis 

2 months - 5 years) with such a residual diuresis (900ml - 2000 ml/24 hr) that ultrafiltration is 

not necessary. None of these patients suffered from diabetes mellitus. As there were no 

further exclusion criteria all six patients were studied. Mean age of the subjects was 59  20 

years. Their mean weight was 72 16 kg. The local ethics committee approved the study and 

informed consent was obtained in all subjects. Medication was changed during the 

experiments. 

 

Dialysis prescription 

In this study we examined 10 sessions for each patient. All dialysis sessions were performed 

on the same day of the week. Dialysis was performed three times a week for four hours using 

bicarbonate dialysate. Dialysate contained a sodium concentration of 138 mEq/L. Fresenius F-

60 high-flux dialyzers (Fresenius AG, Bad Homburg, Germany) and Fresenius 4008E 

hemodialysis monitors were used to perform the treatments. Patients were connected to the 

circuit after the priming volume of saline was discarded. Blood and dialysate flow rates were 

200-300 ml/min and 500 ml/min respectively. Delivered Kt/V ranged between 1.1 and 1.3 on 

a trice weekly basis, including residual renal function. All patients remained supine starting 

from 30 minutes before being connected to the dialysis circuit till the end of the treatment. No 

intravenous infusions were given during the treatment and the intake of fluids and food was 

withheld during the treatment.  
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Measurements 

Blood volume was measured optically by means of the CRIT-LINE device (In-line 

Diagnostics Co., Riverdale Utah). Before dialysis a sterile plastic disposable blood chamber 

was placed between arterial bloodline and the dialyzer. The CRIT-LINE uses a transmissive 

photometric technique to determine the hematocrit with a 95 % confidence interval from + 

2.32 to – 2.31 hematocrit % and a repeatability 95 % interval from + 0.56 to - 0.55 hematocrit 

% [15]. The CRIT-LINE device calculates relative blood volumes (RBV) from initial 

hematocrit and the subsequent changes in wavelength as the erythrocytes pass the through the 

blood chamber. For each patient, we calculated a mean relative blood volume and standard 

deviation at 60, 120, and 180 minutes, and at the end of treatment. From all the mean relative 

blood volumes of each patient, we calculated a grand mean relative blood volume. Blood 

pressure was measured by means of an oscillometric device (Accutor 3, Datascope Co., 

Montreal, NY) at 5-minute intervals. Blood pressure and heart rate were calculated as the 

average of three consecutive measurements. Hypotension was defined as decrease in systolic 

blood pressure (SBP) of more than 30%. Blood samples were taken before and after the 

dialysis session for measurement of the sodium and urea concentrations and for the mean 

corpuscular volume (MCV) of the erythrocytes. We used the ionometric method for 

determination of the sodium concentrations, because this method refers to the activity of the 

sodium capable of crossing the membranes of the dialyzer [16].  

 

Statistical analysis 

All data are presented as mean  standard deviation (SD). For changes in relative blood 

volume 95 % confidence intervals were calculated. Differences between study periods were 

assessed by means of ANOVA with repeated measures. All calculations were performed 

using the SPSS statistical software package.  
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Results 

Relative blood volume 

RBV increased significantly during the first (+ 2.4  1.4 %; p< 0.05) and second hour (+2.5  

0.8 %; p< 0.05) of the treatment (fig 1.). After reaching a plateau, RBV tended to decrease at 

the end of the treatment. We observed no correlation between the changes in RBV and plasma 

urea or sodium concentrations prior to dialysis (table 1). The observed increase in RBV did 

not result from a change in MCV (91 ± 3.7 vs. 92 ± 2.8 fL). There was a similar pattern of 

increase in all patients studied. However, there were considerable inter- and intra- individual 

differences (table 2). 

 

Patient  AHT* [Na]  SD [Urea]  SD RBV120  SD BP120 ± SD 

1 A, C, E 142  1 27.4  0.3 0.51 2.71 1  12 

2 None 138  2 28.5  3.6 4.35  4.2 10 ± 12 

3 B, D 142  1 26.5  0.7 6.90  1.74 -9 ± 28 

4 None 141  2 26.4  14 3.70  0.35 2 ± 10 

5 D 140  1 31.5  0.7 1.90  0.99 0 ± 9 

6 None 134  2 32.1  0.2 0.73  2.16 5 ± 11 

Mean  140  3 28.4  3 2.45  1.62 0.55 ± 15.4 

 

Table 1. Relationship between the use of anti-hypertensive drugs, osmolarity, blood pressure and blood volume  

Abbreviations are : aHT = antihypertensive drugs, [Na] = mean plasma sodium concentration  (mmol/l) , [Urea] 

= mean plasma urea concentration (mmol/l), SD = standard deviation, BP120 = % increase in systolic blood 

pressure in the first two hours, RBV120 = % increase in relative blood volume in the first two hours.  

A = Nitates, B =  blocker, C = Calcium antagonist, D = ACE inhibitor, E =  1 blocker 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Relative Blood Volume Changes in 6 patients during diffusive dialysis. Each curve represents the 

avarage of 10 dialysis sessions. The bold curve represents the avarage of all 6 patients. 
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 60 minutes 120 minutes 180 minutes 240 minutes 

 RBV 

(%) 

95% conf. 

Interval 

RBV

(%)

95% conf. 

Interval 

RBV 

(%)

95% conf. 

Interval 

RBV 

(%) 

95% conf.  

Interval 

Patient 1  2.71  (0.36-5.06) 0.51 (-2.2-3.22) -1.36 (-5.07-2.35) -2.41 (-6.89-2.01) 

Patient 2 2.42  (0.84-4.00) 4.35 (0.15-8.55)  3.45  (0.00-6.90)  3.02  (1.04-7.08) 

Patient 3 4.40  (3.21-5.59) 6.90 (5.16-8.64)  5.77  (3.45-8.10)  7.51  (5.07-9.93) 

Patient 4  1.33  (0.27-2.39) 3.70 (3.35-4.05)  4.17  (2.17-6.17)  2.23  (0.01-4.45) 

Patient 5  3.00  (1.69-4.39) 1.90 (0.91-2.89)  0.44  (-1.40-2.28) -0.29 (-2.07-1.48) 

Patient 6 0.48 (-0.43-1.39) 0.73 (-0.26-2.89)  0.80 (-0.78-2.38)  0.32 (-2.21-2.93) 

Mean 2.39  (1.03-3.75) 2.45 (1.64-3.26)  2.21 (- 0.46-4.89)  1.73 (-1.69-5.15) 

Table 2: Relative blood volume measurements and 95% confidence intervals during four hour 

 
Blood pressure 

SBP and heart rate remained unchanged during the procedure (141 ± 35 vs. 148 ± 39 mmHg 

and 84 ± 9.8 vs. 87 ± 8.8 bpm respectively (table 3). No episodes of symptomatic hypotension 
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were noted. We observed no relationship between changes in RBV and usage of anti-

hypertensive drugs (table 1). There was also no association between serum sodium 

concentration prior to dialysis and pre- dialysis SBP or change in SBP, although blood 

pressure tended to increase when initial serum sodium was low (table 1). 

 

  Systolic blood pressure (mmHg) 

  0 min. 60 min. 120 min. 180 min. 240 min. Significance 

 Patient 1 179 7 177 6 18010 184 3 193 5 n.s 

 Patient 2 15740 15741 16730 16830 16831 n.s 

 Patient 3 17327 15412 16612 16517 17718 n.s. 

 Patient 4 1122 112 6 11313 108 7 105 4 n.s 

 Patient 5 135 7 13110 134 7 136 8 14411 n.s 

 Patient 6 90 7 96 4 97 7 95 3 98 5 n.s. 

 Total 14135 138 30 14333 n.s. 14336 14839 

   

    Table 3: Blood pressure measurement 

 
 

Discussion 

This study demonstrates that a decrease in plasma osmolality by diffusive dialysis (regular 

dialysis without ultrafiltration) is associated with a significant increase in RBV.  

This finding is contrary to predictions derived from mathematical modeling in which RBV is 

predicted to decrease [6-8] (Figure 2).  
 

-1 .4  

-1  

-0 .6  

-0 .2  

0  60  120  180  240  300  

 

Figure 2. Change in Relative Blood Volume during diffusive dialysis according our Mathematical model  
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Diffusive dialysis leads to a decreased extracellular osmolarity, as there is an efflux of urea 

from the extracellular space. Theoretically, such a decrease in extracellular osmolarity would 

lead to a decreased tonicity of the extracellular space, and this would result in an osmotic fluid 

shift towards the intracellular space. This fluid shift would in turn lead to a decrease in blood 

volume [6-8]. As we find an increase in blood volume, the decrease in osmolarity by 

decreased plasma urea concentrations does not result in a volume shift towards the 

intracellular compartment. These findings are in accordance with those of Fleming et al, who 

previously observed that changes in blood volume are not correlated with urea efflux [14].  

However, in this study there was a positive correlation between changes in blood volume and 

the extra cellular sodium concentration. As sodium penetrates the cells much less rapidly than 

urea it has a far greater impact on tonicity. A small increase in the extracellular sodium 

concentration during dialysis would thus favor an increase in plasma volume, even when a 

concomitant efflux of urea exists, that leads to a net decrease in osmolarity. 

In our study, the average effective sodium concentration in the blood compartment of the 

dialyzer accounting for both plasma-water concentration and the Donnan-Gibbs ratio, was 

145 mmol/l [7,8]. Using a dialysate sodium concentration of 138 mmol/l would therefore 

result in a sodium transport towards the dialysate compartment, even if backfiltration were to 

occur. The observed changes in blood volume can therefore not result from sodium kinetics.  

Several other mechanisms could explain the observed blood volume patterns by such as: an 

increase in the volume of the erythrocytes, an increase in the total amount of intravascular 

protein, and changes in vascular resistance, especially when the patients are overhydrated. 

Blood volume measurements by CRIT-LINE assume the constancy of erythrocyte mass and 

volume. In theory, the observed decrease in hematocrit could be explained by a fluid shift 

from the erythrocyte to the intravascular space, thereby reducing erythrocyte volume. 

However, we observed no differences between MCV measured before and after dialysis, 

findings that are similar to previous reports [17,18]. Moreover, such a fluid shift from the 

erythrocyte to the intravascular space is unlikely to occur under these circumstances as the 

changes in osmolality during dialysis favor a water flux towards the intracellular compartment 

[8,18].  
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An increase in the total amount of protein in the intravascular space would also result in an 

increase in plasma volume. As the total fluid shift between intra- and extra-vascular 

compartments is determined by the transmural oncotic pressure gradient. The interstitial fluid 

pressure determines lymph drainage, which increases the back-flow of proteins. However, 

during dialysis there is a decrease in osmolality in the interstitial space. As this will decrease 

rather than increase the interstitial volume, it is unlikely that such a backflow of protein would 

occur.  

According to Starlings law, the fluid shift between the vascular and interstitial compartments 

depends on changes in hydrostatic and oncotic capillary pressure and on the filtration 

coefficient of the capillary basement membrane [19]. This filtration coefficient varies 

considerably from one tissue to the other. The whole body filtration coefficient represents the 

mean value of filtration coefficients of all segments of the regional micro-vascular system, 

each segment weighted for its fraction in capillary surface area. A change in vascular 

resistance will alter the blood flow distribution to different sections of the micro-vascular 

system and could therefore influence the whole body filtration coefficient, as well as 

hydrostatic capillary pressure. This would result in a different Starling equilibrium between 

the interstitial and intravascular space. 

Wehle et al. [20] observed that diffusive dialysis, using acetate buffered dialysate reduces 

peripheral resistance. Moreover, several other investigators observed that the increase in 

peripheral resistance and venous tone during isolated ultrafiltration was significantly reduced 

by concurrent diffusive bicarbonate dialysis [21, 22].  These results suggest that bicarbonate 

dialysis reduces peripheral resistance. Wehle et al also observed that, when a dialysate sodium 

concentration of 140 mmol/L is used, the observed decrease in peripheral resistance during 

diffusive dialysis is counterbalanced by an increase in cardiac output [23]. This is in 

accordance with our results that showed no change in blood pressure during diffusive dialysis.  

Moreover, Wehle et al. found that at a low dialysate sodium concentration, which decreases 

extracellular sodium concentration, the increase in stroke volume was much smaller and blood 

pressure dropped [23]. Indeed, in those patients that had a low baseline serum sodium 

concentration (2 and 6) and hence a relatively high dialysate concentration, we observed a 

tendency for an increase in blood pressure as compared to the other patients. 
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When diffusive dialysis without ultrafiltration is performed in overhydrated patients, the 

decrease in vascular resistance would induce an even greater increase in RBV than in 

normohydrated patients. It has been shown that during ultrafiltration in overhydrated patients 

plasma volume preservation is better than in normohydrated patients [24, 25].  As the 

compliance of the interstitium is high in overhydrated patients a decrease in intra-vascular 

hydrostatic pressure resulting from ultrafiltration will not lead to a decreased interstitial 

pressure hence reabsorption of fluid into the capillaries. In our study ultrafiltration was not 

performed, but a decrease in vascular resistance could also result in a decreased intravascular 

hydrostatic pressure. Consequently, the high compliance of the interstitial space in 

overhydrated persons will thus lead to increased absorption of fluid from the capillaries and a 

greater increase in RBV. Despite the considerable diuresis in our patient group, some patients 

might have been fluid overloaded, as two patients had elevated systolic blood pressure and 

several patients used anti-hypertensive medication. In our study, we found no correlation 

between initial blood pressure or usage of anti hypertensive drugs and RBV during dialysis.  

However, this does not exclude a relationship between initial fluid overload and the observed 

increase in RBV.  

The relationship between vascular tone and plasma volume expansion was directly assessed 

by several investigators, who found a plasma volume expansion, following the administration 

of a vasodilator agent [26,27,28]. Many factors could alter vascular tone during diffusive 

dialysis, such as induction of cytokine production in the presence of dialysate-derived 

contaminants or a change in body temperature [29,30]. Cold dialysis results in a greater 

decrease in relative blood volume, compared to standard treatment [31]. We did not measure 

body temperature. However, others have shown that body temperature rises during diffusive 

dialysis and ultrafiltration with a dialysate temperature of 37 C [32].  

The changes in blood volume in this study are small compared to those measured during 

routine hemodialysis with substantial ultrafiltration rates. Previous studies, in which RBV was 

studied during dialysis with ultrafiltration and during isolated ultrafiltration showed a 

tendency for a less pronounced fall in RBV during ultrafiltration combined with dialysis, 

although this difference was not significant [7,8,9]. However, the relatively large decrement 

in RBV during ultrafiltration could easily mask the relatively small increase in RBV during 

diffusive dialysis, as there is a considerable intra-individual variability in RBV during 
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ultrafiltration [12]. This could explain why these previous studies failed to observe significant 

differences. Fleming et al [14] studied blood volume changes during diffusive dialysis, and 

found no significant change in blood volume. However, in this study only twelve sessions 

with standard sodium concentration were studied, and only 1 or 2 (17 in total) blood volume 

measurements were done, while in our experiment relative blood volume was measured 

continuously during 60 sessions.  

We conclude that during diffusive dialysis without ultrafiltration relative blood volume is 

increased. A decrease in vascular resistance or changes in regional blood distribution could 

explain these findings.  
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Abstract  

Intradialytic morbid events, such as hypotension and cramps during hemodialysis are 

generally treated by infusion of iso-or hyper-tonic solutions. However, differences may exist 

between solutions with respect to plasma refilling and vascular reactivity.  

We compared the effect of no infusion (NI), with iso-volumetric infusion of isotonic saline 

0.9% (IS), saline 3% (HS), isotonic glucose 5% (IG), glucose 20% (HG) and mannitol 20% 

(HM), in 6 patients during the first hour of 6 standardized hemodialysis sessions with 

ultrafiltration. Relative blood volume was monitored continuously by measurement of the 

intravascular amount of protein. Blood pressure was measured by an oscillometric method, 

while cardiac output was measured by a thoracic impedance technique.  

At baseline no differences in serum urea, sodium, potassium, glucose and osmolarity were 

found between the various infusion experiments. The maximum increase in relative blood 

volume directly after infusion was significantly greater with HG (5.1±0.7%) than with all 

other infusions (p 0.05). Stroke volume increased (21.019.2 %, p 0.05) and total 

peripheral resistance decreased significantly (15.4  16.4 %, p 0.05) after HG infusions.  

Infusion of hypertonic glucose during dialysis results in a greater increase in relative blood 

volume than equal volumes of other solutions. As mannitol has the same osmolarity, molecule 

mass and charge, the greater increase in RBV following hypertonic glucose appears to be a 

specific effect, possibly related to a decline in vascular tone. It is therefore uncertain whether 

the observed increase in plasma volume during hypertonic glucose infusions will be of 

clinical benefit.  

 

Introduction 

Hemodialysis is frequently accompanied by acute symptoms or complications, such as 

hypotension, severe muscle cramps, dizziness, and lightheadedness [1]. An important 

contributing factor for these intradialytic morbid events (IME) is hypovolemia due to removal 

of fluid from the intravascular space by ultrafiltration and inadequate refilling from the 

extravascular compartment [2]. Inadequate constriction of both arterial and venous vascular 

beds may also be of importance in the pathogenesis of IME, especially during hypotension 

[3]. Infusion of fluids to increase blood volume has been advocated to prevent IME. 

Increasing plasma osmolarity during dialysis has also been shown to reduce IME [4]. The 
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reduction of symptoms may result from improved refill of the intravascular compartment by 

the induction of an osmotic gradient between the vascular and the extravascular compartment 

[4,5], but may also be related to a direct effect of osmolarity on cardiovascular reactivity [6]. 

In clinical practice isotonic saline (0.9 %) or hypertonic (3%) saline infusions are most 

frequently used in order to prevent IME. However, increasing the sodium load during dialysis 

has been shown to increase interdialytic thirst and weight gain [7]. Alternatively, glucose or 

mannitol solutions can be given. The acute and specific effects of these solutions and their 

osmolarities on vascular refilling and reactivity are largely unknown. Clear insight into the 

exact effects of the solutions on hemodynamics and osmolarity is pivotal for the 

determination which solution should be given during dialysis associated morbidity. We 

therefore compared the effects of saline 0.9 and 3 %, glucose 5 and 20 %, and mannitol 20 % 

on vascular refilling and vascular reactivity during combined hemodialysis and ultrafiltration 

(HD+UF). In order to obtain optimal reproducibility, the dialysis sessions as well as the 

infusions were standardized. Moreover, the infusions were given during the first hour of the 

treatment, when variability in blood volume decrement between dialysis sessions is relatively 

low [8]. 

 

Subjects and Methods  

Patients  

Six clinically stable patients, 3 men and 3 women, requiring chronic hemodialysis were 

studied. The patients had a mean age of 48  5.9 years and time on hemodialysis averaged 

18.5 ± 12.5 months. Renal failure resulted from polycystic kidney disease (2), nephrosclerosis 

(2), renal artery stenosis (1) and antiglomerular basement membrane nephritis (1). Exclusion 

criteria were acute infectious diseases, diabetes, severe coronary or valvular heart disease and 

compromised left ventricular function. The patients did not use anti-hypertensive drugs, 

except for one patient who used nifedipine. This drug was stopped one week prior to entry in 

the study. The local ethics committee approved the study and informed consent was obtained 

from each patient. Dry weight was considered when patients remained without symptoms of 

dyspnea or edema during the interdialytic period. Moreover, inferior caval vein diameter 

(VCD) measurements were performed at intervals of three weeks. Overhydration was defined 
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as a VCD of more than 11.4 and underhydration was defined as a VCD of less than 8 mm/m2 

body surface area [9].  

 

Dialysis prescription 

Dialysis was performed three times a week with the procedure normally used at our 

institution, using bicarbonate dialysate (32 meq/L). Dialysate further contained sodium 138 

mmol/L, potassium 2 mmol/L, calcium 1.75mmol/L, glucose 5.5 mmol/L with a total 

osmolarity of 292 mosm/L, a conductivity of 11.7 mS/cm (Fresenius SK-F213, Fresenius AG, 

Bad Homburg, Germany) and a temperature of 37 ºC.  Fresenius F-60 high flux dialyzers and 

Fresenius 4008E hemodialysis monitors were used to perform the treatments. Blood and 

dialysate flow rates were 200-300 ml/min and 500 ml/min respectively. Delivered Kt/V 

ranged between 1.1 and 1.3, including residual renal function. Patients were connected to the 

circuit after the priming volume of saline was discarded.  

 

Study protocol 

All sessions were performed on the same day of the week during six consecutive weeks. The 

patients remained supine throughout the experiments and no food or beverages were provided. 

The investigations were performed during the first hour of six hemodialysis sessions. The 

ultrafiltration rate was standardized at 20 ml/kg/hr. The study was started after the patients 

had had a supine rest for 30 min, after which the needles were inserted (t=0). After exactly 10 

minutes of UF one of the test solutions was infused by an infusion pump for ten minutes (t=10 

to t=20) at the same rate as the ultrafiltration rate (20 ml/kg/hr), so that no net fluid was 

extracted from the body during the infusion period. In each patient, the effects of no infusion 

(NI), isotonic saline 0.9%  (IS), hypertonic saline 3% (HS), isotonic glucose 5% (IG), 

hypertonic glucose 20% (HG), and mannitol 20% (HM) (Baxter BV, Utrecht, The 

Netherlands) were compared. The order in which the solutions were infused was random. The 

osmolarity of HS (900 mOsmol/L) was roughly comparable to the HM and HG solutions. The 

HM and HG solutions were iso-osmolar (both 1098 mOsmol/L).  
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Measurements  

Relative Blood Volume (RBV) was measured by means of a blood volume monitor (BVM, 

Fresenius, Bad Homburg, Germany), which measures the total protein concentration, the sum 

of hemoglobin and plasma proteins in the vascular space. Changes in total protein 

concentration during dialysis are used to estimate changes in plasma volume. This method has 

a very good agreement with a standard reference method involving calculation of RBV from 

serial measurements of hemoglobin levels (SD 1.7%, r > 0.96) and allows precise and reliable 

measurement of RBV [10].  Moreover, these measurements showed no sensitivity to changes 

in blood components such as sodium and glucose. Systolic, diastolic and mean arterial blood 

pressures (SAP, DAP, MAP) and heart rate (HR) were measured in triplicate at 10-minute 

intervals by means of an oscillometric device (Accutor 3, Datascope Co., Paramus, NJ). The 

average of three consecutive measurements was used for analysis. Stroke volume (SV) was 

measured every 10 minutes using electrical impedance cardiography (Cardioscreen Medis, 

Ilmenau, Germany). Impedance cardiography is based on the fact that when blood is pumped 

into the aorta from the electrically well isolated heart, the electrical impedance of the thorax 

changes. SV can be subsequently calculated on the basis of this pulse synchronous change in 

impedance.  This method has proven to give reliable information about the changes in stroke 

volume during hemodialysis [11]. Moreover, the results of impedance cardiography are highly 

reproducible (SD 0.36 l/min) [12].  One pair of electrodes was placed on each side of the 

neck. A third and fourth pair were placed on the lateral thorax at the xiphisternal level. Of 

each pair one electrode was placed exactly 5 cm above the other. The upper neck and lower 

xiphisternal electrodes were stimulated by a 60 kHz sinusoidal current and the resulting 

voltage was monitored from the inner recording electrodes. Two separate electrodes were 

placed in order to obtain the ECG signal. Stroke volume was calculated with the equation of 

Bernstein [13]:    

SV= VEPT x LVET x (dZ/dtmax)/TFI (ml), where VEPT is the volume of electrically 

participating tissue, which depends on height and weight of the patient. The weight of the 

patient at the moment of the measurement was considered as the predialysis weight minus the 

weight of the net ultrafiltrationvolume. LVET is the left ventricular ejection time (ms), 

dZ/dtmax (Ώ /ms) is the magnitude of the peak value of the impedance derivative and TFI (Ώ) 

is the thoracic fluid index, which is given by the basic impedance. At 10- minute intervals the 
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patients were asked to keep perfectly still and during 20 heart cycles in the course of the 

examination the impedance curves were transported into a cardioscreen trend 

softwarepackage (version 3.1) and recorded on a PC screen. A mean impedance curve was 

calculated by the software program and the curves that varied more than 5% from average 

were discarded manually. When no more than five curves were discarded stroke volume was 

calculated from the remaining heart cycles. Total peripheral resistance (TPR) was calculated 

from, SV, HR and MAP using the following formula: TPR = (MAP/(SV x HR)) x 80 (dyn/sec 

/cm-5 ). Before (t=0) and after one hour of treatment (t=60) blood samples were taken for the 

determination of urea, sodium, potassium, glucose, and osmolarity.  

Sodium concentration was measured by ionometry. Osmolalarity was measured by determing 

the crystallizing temperature of the sample by freezing point depression then using the 

temperature and calibration curve to determine the osmotic pressure. 

 

Statistical analysis  

All data and values are presented as mean ± standard deviation. 

Differences in body weight, hemodynamic parameters and laboratory between the procedures 

were analyzed by one way ANOVA with the post hoc LSD test using the SPSS statistical 

software package (SPSS version 8.0).  Changes in hemodynamic and laboratory parameters 

compared to baseline were analyzed with a paired t-test. 

 

 

Results  

Body Weight  

The average dry weight was 53.8  13.5 kg, while the mean interdialytic weight gain was 4.6 

 2.0 % of body weight (Table 1). During the 6 weeks period dry weight remained stable in 

all patients. The average interdialytic weight gain was comparable for all infusion 

experiments. 
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However, patient 2 and 3 showed an intra-individual variability in interdialytic weight gain.  

 

Patient Dry weight (kg) NI (%) IS (%) HS (%) IG (%) HG (%) HM (%)  

1 56.5 6.9 7.6 6.4 6.7 6.5 8.4  

2 32.0 2.5 4.1 8.4 6.2 7.1 4.7  

3 70.0 3.8 3.3 3.2 1.6 1.7 1.6  

4 49.5 4.8 3.2 4.6 3.6 4.4 3.6  

5 65.5 2.4 2.9 2.4 3.5 2.7 2.1  

6 49.5 6.6 6.5 5.6 6.6 4.2 6.5  

Mean 53.8 13.5 4.5 1.9 4.6 1.9 5.1 2.1 4.7 2.1 4.42.1 4.52.6 n.s. 

 

   Table 1: Dry weight and interdialytic weight gain. Means are given  standard deviation   n.s.= not significant 

 

 

 
RBV(%) 

t=20 min 

RBV(%) 

t=30 min 

RBV(%) 

t=40 min 

RBV(%) 

t=50 min 

RBV(%) 

t=60 min 

No Infusion -1.5±0.8 b -1.9±1.1 -3.4±1.9 -4.6±2.3 -6.0±2.3 

Isotonic Saline (0.9%) 0.5±1.0 -1.1±1.4 -2.4±2.0 -3.6±2.4 -4.9±2.7 

Hypertonic Saline (3%) 1.5±0.8 a -0.8±2.3 -2.4±1.2 -3.6±1.2 5.0±2.2 

Isotonic Glucose (5%) 1.6±1.0 a -0.3±2.4 -1.8±3.5 -3.3±3.9 -4.3±4.7 

Hypertonic Glucose (20%) 4.6±0.6 a b 2.6±1.4 a b -0.7±2.2 -2.7±1.6 -4.6±3.8 

Hypertonic Mannitol (20%) 2.6±1.2 a 0.8±1.9 -1.1±1.9 -2.6±2.6 -3.8±3.1 

  

Table 2.Changes in relative blood volume (RBV) compared to the start 

of the infusions (t= 10 min.) All values are given as mean  standard deviation  
  a =P < 0.05 increase compared to baseline,  b =P < 0.05 compared to all other infusions. 

.   

 

Relative blood volume 

During ultrafiltration, at a rate of 20 ml/kg/hr, RBV fell by 0.13 %  in the first 10 minutes in 

all patients (Fig 1). A 10-minute infusion at a rate equal to the rate of ultrafiltration prevented 

a further decrease in RBV, as RBV at the end of the infusion (t=20) was significantly 

different from the control experiment for all solutions infused (Table 2). With infusion of HG 

the increase in RBV was significantly greater than the increase observed with all other 

infusions (Fig 1, Table 2). Moreover, the time at which RBV reached the same level as the 
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level at which the infusion was started was 18  2 min for HG, which was significantly longer 

than all other infusion experiments (p<0.05, Fig 1). In patient 2,  the interdialytic weight gain 

during the HG and HS infusion session were comparable and RBV increased by 4.8% during 

the HG infusions whereas RBV increased only 1.8% during the HS infusions (from t=10 to 

t=20 min). Moreover, RBV increased only by 2.3% during the HM session, despite the fact 

that interdialytic weight gain was relatively low. The interdialytic weight gain for patient 3 

during the HG and HM sessions were comparable. During the HG infusions the increase in 

blood volume was larger than during the HM infusion (4.1% by HG and 2.3% during HM).  

  

 

 

 

Figure 1: Mean changes in relative blood volume (RBV; %) for all patients during combined dialysis and 

ultrafiltration (20 ml/kg/hr) following the infusion of different solutions. The increase in RBV is significantly 

greater during infusion of hypertonic glucose (5). 1= No infusion, 2 = isotonic sodium 3= hypertonic sodium 4= 

isotonic glucose 5= hypertonic glucose 6= hypertonic glucose 
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Blood pressure, heart rate and stroke volume. 

Blood pressure and heart rate remained unchanged during all experiments (Table 3). No IME 

events were noted. After infusion of HG blood pressure tended to increase but these changes 

did not show statistical significance. No episodes of symptomatic hypotension were noted. 

Stroke volume increased and TPR decreased significantly after the HG infusion. 

 

  SAP (%) HR (%) SV (%) TPR (%) 

 No Infusion  -0.3  5.0 +2.2  5.6 -6.8  10.6 +9.7   12.6 

 Isotonic Saline (0.9%) -1.0  3.6 -1.6  3.7    +4.2  13.4  -1.4  14.6 

 Hypertonic Saline (3%) -0.5  4.8  0.0  2.3 +6.0  23.6    0.0  27.0 

 Isotonic Glucose (5 %) -1.0  8.1   +3.0  5.0 +6.9  18.4   -1.2  18.2 

 Hypertonic Glucose (20%) +7.4 10.8 0.4  5.4 +21.0  19.2 a b  -15.4  16.4 ab 

 Hypertonic Mannitol (20%) +1.3   4.5    -3.8  4.1 +9.3   18.0   -6.1 17.6 

 

Table 3: Changes in systolic arterial pressure (SAP, %) heart rate  (HR, %), stroke volume (SV, %), and 

total peripheral resistance  (TPR, %) between beginning (t=10) and end (t=20) of the infusion period. All 

values are given as mean ± standard deviation.  a =P < 0.05 compared to baseline. b  =P < 0.05 compared to no 

infusions  

 
 
Laboratory parameters 

At baseline no differences in serum urea, glucose, sodium, potassium, and osmolarity were 

found between the various infusion experiments (27.9 6.8 mmol/l, 6.7  1.7 mmol/l, 137 

2.9 meq/l, 5.370.72 meq/l, and 3078 mOsmol/l respectively). After one hour of dialysis, 

serum urea concentration was decreased by a similar extent in all experiments (Table 4). Not 

surprisingly, serum sodium increased significantly after HS (from 137 ± 2.9 to 140.3 ± 3.0 

meq/L; p<0.05) and sodium decreased after the HM compared to the most other solutes (136 

±2.5 to 135 ±2.0 meq/l). Serum potassium was lowered significantly during all experiments. 

The decrease was significantly greater after HG compared to NI, HM and IS experiments (5.4 

± 0.7 to 4.1 ± 0.6 meq/l; p<0.05). Glucose increased significantly after HG infusion only 

(6.3± 0.9 to 8.2 ±1.2 mmol/L; p<0.05). Plasma osmolarity decreased during NI and IG and 

tended to decrease in all infusion experiments, but this decrease did not reach statistical 

significance.  
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 Urea Na+ K+ Glucose Osmol 

 (mmol/l)  (mmol/l)  (mmol/l)  (mmol/l)  (mosmol/l) 

No Infusion -11.9  6.5 a 2.53.2 -0.85  0.29 a -1.35  2.02 -10.4  5.8 a 

Isotonic Saline (0.9%) -11.5  7.9 a 2.84.8 -0.83  0.41 a -1.12  1.31 -3.8  9.5 

Hypertonic Saline (3%) -11.0  5.3 a   3.0 1.1 a   -0.95  0.11 a -1.07  0.83 a -5.8  7.0 

Isotonic Glucose (5%) -9.4   2.4 a 1.32.0 -0.98  0.26 a -0.13  1.18 b -8.2  7.2 a 

Hypertonic Glucose (20%) -10.1 3.4 a 0.51.8   -1.30   0.57 abce 1.93  1.22 a f -6.9  7.4  

Hypertonic Mannitol (20%) -7.7  1.4 a   -1.21.5 bcd -0.86  0.40 a -0.17  1.18 -2.2  5.0 

 

Table 4: Changes in laboratory parameters between the start of the dialysis session (t=0) and one hour of dialysis 

(t=60). All values are given as mean ± standard deviation. a =P < 0.05 compared to baseline 

b =P < 0.05 compared to no infusions c =P < 0.05 compared to isotonic saline,  d =P < 0.05 compared to 

hypertonic saline  e =P < 0.05 compared to mannitol,  f =P < 0.05 compared to all other infusions. 

 

Discussion: 

The results of our study demonstrate that during hemodialysis with ultrafiltration, infusion of 

hypertonic glucose solution (20%) results in a greater preservation of RBV than isovolumetric 

infusions of either normotonic or hypertonic saline or mannitol. Compared to the other 

infusion experiments, the increased RBV during hypertonic glucose infusion was associated 

with an increase in stroke volume and a decrease in vascular resistance. In our study, the 

finding that infusion of hypertonic glucose is more effective in increasing RBV than infusion 

of mannitol 20% is remarkable. Van der Sande et al. [14] compared colloids, such as albumin 

and or hydroxyethylstarch (HES) with saline and found a much greater increase in blood 

volume and blood pressure after the infusion of colloids. These differences were attributed to 

an increase in oncotic pressure during the colloid infusions. However, comparing the osmotic 

agents used in our study, mannitol closely resembles glucose in that it has the same molecular 

mass and charge and both solutions do not increase the oncotic pressure. Unlike glucose, 

which is rapidly transported from the extracellular to the intracellular space by insulin, 

mannitol is slowly eliminated from plasma [15,16]. Thus compared to infusion of mannitol, 

infusion of glucose is associated with a shorter lasting increase in plasma osmolarity. Indeed, 

in the present study, osmolarity, 40 minutes after infusions were discontinued, tended to be 
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slightly higher after administration of mannitol than after administration of glucose.  As 

changes in osmolarity, hence oncotic pressure, do not provide an explanation for the greater 

increase in RBV after infusion of hypertonic glucose, it is tempting to speculate that glucose-

induced vasodilatation accounts for the observed increase in RBV. Compared to other 

infusions or no infusion at all, infusion of hypertonic glucose was associated with a 

vasodilator response reflected by a decrease in vascular resistance and an increase in stroke 

volume. One could argue that the changes in electrolyte composition of the plasma induced by 

the sudden infusion of hypertonic salt or water directly affect impedance and might cause 

errors in the estimation of stroke volume and the subsequent calculation of vascular 

resistance. However, this change will not alter the magnitude of the peak value, as a 

correction for the baseline impedance is made. Therefore we don’t expect problems with the 

adequacy of the impedance cardiography. Moreover, hypertonic glucose infusion will give a 

much higher electrical resistance than the infusion of hypertonic saline, which is an 

electrically active compound. As electrical resistance is inversely related to impedance and 

stroke volume, changes in stroke volume during hypertonic glucose infusion would be 

underestimated and those during saline would be overestimated.  It has been shown that 

infusion of hypertonic glucose, but not of normotonic glucose or hypertonic mannitol into the 

brachial artery, is associated with a forearm vasodilator response [17].  A Study using 

vasodilator agents demonstrated that vasodilatation is associated with an increase in plasma 

volume without a concomitant increase in body weight, indicating that redistribution of the 

extracellular volume between the intravascular and extravascular compartments underlies this 

increase in plasma volume [18]. Recruitment of capillaries leading to an expansion of the 

vascular area could explain the vasodilatation- induced increase in RBV. Such a mechanism 

would be especially favorable for the action of glucose, as it can increase the disposal of 

glucose to the intracellular compartment [19].   

It is uncertain whether the observed increase in RBV is of clinical benefit, as a change in 

peripheral resistance could induce a change in the critical value of blood volume at which 

IME occurs. The relatively small increase in blood volume during hypertonic sodium infusion 

could therefore lead to a more effective RBV and cardiac filling pressure. Previous studies 

showed that hypertonic saline infusion during hypotension is effective in raising blood 

pressure and cardiac filling pressure [5.6].  A dissociation between blood volume and vascular 
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tone would also change the algorithms for those clinical settings, in which RBV 

measurements are performed with a feed back control in order to prevent IME 

We conclude that infusion of hypertonic glucose during dialysis results in a greater increase in 

RBV than equal volumes of other solutions. As mannitol has the same osmolarity, molecule 

mass and charge, the greater increase in RBV following hypertonic glucose appears to be a 

specific effect, possibly related to a decline in vascular tone. It is therefore uncertain whether 

the observed increase in RBV will be of clinical benefit during IME.  
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Abstract  

Hypotensive episodes are a major complication of hemodialysis. Hypotension during dialysis 

could be directly related to a reduction in blood volume or to a decrease in cardiovascular 

activation as a response to decreased cardiac filling. A decreased cardiovascular activation 

could be due to patient-related or to dialysis-related factors. In order to study the isolated 

effect of a reduction in filling pressure, lower body negative pressure (LBNP) causes 

activation of the cardiovascular reactivity with a decrease in cardiac filling, but without the 

influence of the dialysis procedure that could affect cardiovascular reactivity. 

We studied the relationship between Relative Blood Volume (RBV), Central Venous Pressure 

(CVP), Systolic Arterial Pressure, Heart Rate, Stroke volume Index (SI), and Total Peripheral 

Resistance Index (TPRI) during a combined dialysis/ ultrafiltration and during LBNP to –40 

mmHg in 21 hemodialysis patients with a high incidence of hypotension. Systolic arterial 

pressure, heart rate, SI, and TPRI were measured by Finapres. CVP was measured after 

cannulation of the jugular vein. During dialysis RBV was measured by a blood volume 

monitor (BVM). In order to study the conditions in which hypotension occurred after the 

dialysis, we divided the patients into two groups: Hypotensive (H) and non-Hypotensive (NH) 

during dialysis.  

Baseline levels did not show any significant differences. During dialysis systolic arterial 

pressure declined gradually in the H group from 30 minutes before the onset of hypotension. 

There was a similar decrease of RBV and increase of heart rate in both groups with a large 

inter-individual variation. At hypotension, H patients showed a significantly smaller increase 

in TPRI, as compared to NH patients. The reduction in SI tended to be greater at hypotension, 

while CVP decreased to a similar extent in both groups.  

Moreover, during LBNP, a similar reduction in CVP resulted in a much smaller decrease in 

SI.   

Systolic arterial pressure was only slightly lowered due to a much greater increase in TPRI. 

We conclude that dialysis related hypotension in our patient group did not result from an 

inability to maintain blood volume or from decreased cardiac filling. Hypotension appeared to 

result from the inability to adequately increase arteriolar tone and a reduction in left 

ventricular function. 
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Both vascular tone and left ventricular function appeared to be impaired by the dialysis 

procedure. 

 

Introduction 

Hypotensive episodes are a major complication of hemodialysis [1]. Hypovolemia resulting in 

a decrease in preload has been implicated as a major causative factor. Hypovolemia results 

from fluid withdrawal from the intravascular space during ultrafiltration and inadequate 

refilling from the extravascular space [2]. Whether hypovolemia leads to hypotension is 

dependent on the increase in systemic vascular resistance and maintenance of cardiac output. 

In response to the decrease in filling pressure adequate cardiac filling and stroke volume (SV) 

will especially depend on the diastolic function of the left ventricle (LV). Dialysis related 

hypotension is generally believed to have a multifactorial genesis, involving patient related 

factors such as sympathetic responsiveness [3], cardiac function [4], age [5] as well as dialysis 

associated factors such as body heating, [6,7], release of vasodilator agents [8,9], osmolar [10] 

and electrolyte changes [11].  

We studied the relationship between Relative Blood Volume (RBV), Central Venous Pressure 

(CVP), Stroke volume Index (SI), Heart Rate, Systolic Arterial Pressure, and Total Peripheral 

Resistance Index (TPRI) during combined dialysis/ ultrafiltration in 21 hemodialysis patients 

with a high incidence of hypotension. Depending on the blood pressure response during the 

dialysis session after the dialysis the patients were divided into two groups; those that became 

hypotensive during dialysis (H) and those that did not (non-hypotensive; NH). However, 

given the multifactorial genesis, it is difficult to study the contribution of separate factors 

within the setting of hemodialysis.  

The application of negative pressure to the lower part of the body can be used to decrease 

venous return, thereby simulating hypovolemia. In order to study the isolated effect of a 

reduction in filling pressure, we compared the hemodynamic circumstances under which 

hypotension occurred during dialysis with the response to Lower Body Negative Pressure 

(LBNP) in H patients. During LBNP, we measured the same parameters except for relative 

blood volume. Moreover, LBNP was performed under identical conditions at the same 

hydration status.  
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Methods  

Twenty-one patients on chronic hemodialysis with a high incidence of hypotension during 

dialysis (i.e more than 30 % of their sessions) were studied during a combined 

dialysis/ultrafiltration session and a LBNP session. The LBNP sessions were performed on 

the same day as the dialysis session. Following LBNP, patients were allowed to rest for 60 

minutes but refrained from fluid intake before the start of dialysis. The ethical committee of 

the Erasmus Medical Centre Rotterdam had approved the study, and all participants had given 

written informed consent.  

 

Dialysis procedure  

The dialysis procedure was performed with the procedure generally used at our institution, 

using bicarbonate dialysate (32 mmol/L) and a sodium concentration of 138 mmol/L 

(Fresenius SK-F213, Fresenius AG, Bad Homburg, Germany) and a temperature of  of 37 ºC.   

The dialysate contained lesser than 50 CFU/ml water and the limulus amoebycyte lysate test 

was negative.  Fresenius 4008H hemodialysis monitors and biocompatible hemophane (MA-

12; Kawasumi, Tokyo, Japan) or polysulphone (F-60S; Fresenius MC, Bad Homburg, 

Germany) hemodialyzers were used to perform the treatments. Blood and dialysate flow rates 

were 200 ml/min and 500 ml/min respectively. All patients were ultrafiltrated with a constant 

ultrafiltration rate until dry weight in a 4-hour session. Inferior caval vein measurements were 

done at intervals of one month and dry weight was adjusted accordingly. Dry weight was 

considered optimal when patients remained without symptoms of dyspnea or edema during 

the interdialytic period. Overhydration was defined as a caval vein diameter of more than 11.4 

and underhydration as a caval vein diameter of less than 8-mm/m2 body surface area [12,13]. 

All patients remained supine starting 30 minutes before being connected to the dialysis circuit 

until the end of the treatment. No intravenous infusions were given during the treatment and 

intake of fluids and food was withheld during treatment, unless hypotension occurred. 

Hypotension was defined as a decline in systolic arterial blood pressure by more than 30 %. 
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LBNP procedure  

During the LBNP procedure, the patients were placed in a box up to the iliac crest, and an 

airtight connection was attached to the patient’s waist.  Evacuating air from the box created a 

lower body negative pressure. After an equilibration period, LBNP of –20 mmHg was applied 

for 15 minutes. LBNP was subsequently increased to –40 mmHg for 15 minutes. 

Measurements were taken at the end of each 15 minutes of LBNP. 

 

Measurements 

During the LBNP and combined dialysis/ultrafiltration sessions systolic arterial pressure and 

heart rate were measured continuously by the Finapres device (Ohmeda 2300, Englewood, 

CO), using the middle finger of the nonfistula arm. This apparatus measures the blood volume 

under an infrared plethysmograph. When blood volume is kept constant at a set point value by 

controlling the cuff pressure, Systolic arterial pressure and heart rate can be calculated from 

these changes in cuff pressure. This method has been validated in many studies against 

invasive blood pressure measurements [14]. Changes in stroke volume and total peripheral 

resistance were derived on a beat-to-beat basis from the pulse pressure curve of the Finapres 

and computed by the Modelflow program (TNO, Amsterdam, the Netherlands) [15]. These 

parameters have been validated even in patients with shock [16].  However, for highest 

accuracy and precision a calibration of the model parameters is required [14]. Therefore, 

before the Finapres measurements were started, all patients underwent an echocardiographic 

measurement of stroke volume to calibrate the model. The volume of the left ventricle was 

calculated from the apical two- and four chamber views using a modification of Simpson’s 

rule [17]. The principle of Simpson’s rule is to divide the left ventricle into known slices of 

thickness. The volume of the ventricle is then equal to the sum of the volume of the slices. 

The endocardial borders of these views were digitally traced at end diastole and end systole. 

Stroke volume was calculated as the difference between end-diastolic and end-systolic 

volume. Measurement of CVP was performed continuously with a small bore catheter with a 

diameter of 0.6 mm, which was inserted in the right jugular vein using the Seldinger 

technique. 
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Statistical analysis  

Hemodynamic data are given as mean ± standard deviation. SI and TPRI are given per m2 

body surface. Differences in baseline hemodynamics between H and NH were tested with the 

unpaired two-tailed Student’s t-test. Differences in medication were tested with the Fischer’s 

exact test. All changes are given as percentages, except for the changes in CVP, which are 

given in mmHg. Differences between the groups (H and NH) and procedures (LBNP vs. 

dialysis) and changes versus baseline were analysed using ANOVA for repeated 

measurements, and followed by the SNK test for multiple comparisons if appropriate. The 

level of significance was defined at 0.05.   

 

Results  

Baseline characteristics  

Eleven of the 21 patients experienced a hypotensive period (H group) during dialysis, while 

the remaining 10 patients had no such event (NH group). Age, dry weight, time on dialysis, 

interdialytic weight gain, ultrafiltration rate/kg dry weight, and medication were comparable 

between the two groups (Table 1). Before dialysis systolic arterial pressure appeared to be 

lower in the H group, although this was not significant (127±26 vs.151±46 mmHg; Table 2). 

Baseline values in both groups for heart rate, SI, TPRI and CVP also did not show any 

significant differences.  

 

Dialysis procedure  

During dialysis, hypotension occurred on average 150 minutes after the start of the dialysis 

session. We therefore compared the 150-min measurements in the NH group with the moment 

of hypotension in the H group (Table 3). Most hypotensive patients developed severe 

symptoms, which necessitated intervention. Therefore, as we wanted to make a reliable 

comparison with the NH group, all data after the occurrence of hypotension were not 

analyzed.  
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Table 1. Patient characteristics 
 

   Hypotensive (H) Non Hypotensive (NH)  p 

Number   11 10   
Age (yr.)   60.6 ± 13.3 53.4 ± 12.0 n.s. 
M/F   6/5 8/2  n.s. 
Time on dialysis (yr.)  2.5 ± 2.1 2.4 ± 1.5 n.s. 
Dry weight (kg)  65.7 ± 6.9 67.3 ± 10.4 n.s. 
Interdialytic weight gain (kg) 3.0 ± 1.4 3.0 ± 2.5 n.s. 
Ultrafiltration rate/ kg dry weight 
(ml/min/kg) 

10.3 ± 2.6 9.0 ± 2.9 n.s. 

Medication     

Beta-adrenergic blockers 3 5  n.s. 
ACE- inhibitors   1 2  n.s. 
Calcium antagonists  3 4  n.s. 
Values are mean ± SD   n.s. = not significant  
 

 
Table 2. Baseline hemodynamic data in Hypotensive and Non Hypotensive patients 
 

  Hypotensive Non Hypotensive p  

       

SAP (mmHg) 127 ± 26 151 ± 46 n.s.  

HR (bpm)  70 ± 10 67 ± 10 n.s.  

SI (ml /m2 ) 33 ± 8 34 ± 11 n.s.  

TPRI (dyne/sec/cm-5)/ m2) 1225 ± 483 1277 ± 529 n.s.  

CVP (mmHg) 11.0 ± 7.0 10.2 ± 4.8 n.s.  

Hemodynamic data are mean ± SD   n.s. = not significant SAP= Systolic Arterial Pressure; HR= Heart Rate;  

SI= Stroke volume Index; TPRI= Total Peripheral Resistance Index; CVP= Central Venous Pressure 

 

 

In most patients systolic arterial pressure declined gradually, starting twenty minutes before 

the onset of hypotension (Figure 1). Ten minutes before the onset of hypotension blood 

pressure had already declined significantly compared both to baseline and the NH group (-9 ± 

12 vs. +3±6; Table 3). In two patients systolic arterial pressure had dropped by up to 20 % at 

thirty minutes before the onset of hypotension, whereas in two other patients the drop in 

systolic arterial pressure occurred in only five minutes (Figure 1). Heart rate increased to a 

similar extent in both groups (Table 3). During or before hypotension no episodes of 

bradycardia were observed (Figure 1).  During the hypotensive episode SI tended to be lower 

than at the corresponding time in the NH group (-41±20 vs.-28±18%; Table 3). At 
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hypotension this difference did not reach statistical significance. However, in the H group, SI 

had already declined within the first hour of the dialysis session (-20± 15 vs.-4±15%; Table 

3). CVP tended to decrease comparable in both groups (Table 3). 

 

 

Table 3: Hemodynamic changes (%) at each hour, at 30 and 10 minutes before hypotension and at Hypotension 

(H) or the corresponding moments (NH). 

   

 Non Hypotensive group (n=10)        
Time (min) SAP (%) HR (%) SI (%) TPRI (%) CVP (mmHg) RBV (%) 

60  2 ± 14 0 ± 7 -4 ± 15 11 ± 32 -1.3 ± 1.3 a -1.5 ± 2.4 
120  3 ± 8 5 ± 8 -17 ± 14 a 51 ± 71a -1.5 ± 3.4  -4.1 ± 2.9 a

150  3 ± 6 9 ± 14 -28 ± 18 a 82 ± 83 a -1.7 ± 2.7  -6.5 ± 3.5 a

180  -2 ± 8 11 ± 9 a -28 ± 15 a 64 ± 75 a -1.7 ± 3.0  -7.6 ± 4.3 a

240  -4 ± 9 13 ± 14 a -40 ± 11 a 81 ± 76 a -2.8 ± 2.5 a -9.6 ± 5.3 a

Hypotensive group (n=11)            

Time (min)  SAP (%)    HR (%) SI (%) TPRI (%) CVP(mmHg) RBV (%) 

60  2 ± 16 4 ± 9 -20 ± 15 a, b 25 ± 31 a -1.5 ± 2.3a -3.6 ± 2.9 a

H-30   (120 ± 60 min)  -4 ± 17 10 ± 16 -27 ± 19 a 34 ± 27 a -2.6 ± 2.1a -6.5 ± 5.2 a

H-10   (140 ± 60 min) -9 ± 12 a,b 13 ± 17  -35 ± 13 a 35 ± 26 a -2.8 ± 3.0 a -8.5 ± 5.0 a

H        (150 ± 60 min) -31 ± 1  16 ± 16 a -41 ± 20 a 25 ± 28 b -3.0 ± 2.3 a -8.5 ± 5.3 a

240 -22 ± 17 18
. 

± 20 -35 ± 30 a  18 ± 43 -3.3 ± 2.1 -10.5 ± 5.0 

All values are expressed as Mean ±  Standard Deviation;  H= time of hypotension  SAP= Systolic Arterial  

Pressure ;HR = Heart Rate SI=Stroke volume Index; TPRI=Total Peripheral Resistance Index; CVP=Central  

Venous Pressure; RBV= Relative Blood Volume. a: p < 0.05 compared to baseline.  b: p<  0.05 compared to  

NH at the corresponding moment (H and H-10 are both compared to 150  min) 
 

 

In the H group, the increase in TPRI at the moment of hypotension was significantly smaller 

when compared with NH patients at 150 minutes (25±28 vs. 82±83 %; Table 3).  

At the onset of hypotension RBV had dropped by 8.5 % (Table 3). At this point, the 

ultrafiltration volume was 920 ml/m2. Mean RBV and ultrafiltration volume for NH at 150 

min was not significantly different  (-6.5 ±3.5 % and 870 ml/m2 respectively). At 

hypotension, there was a huge variation in decline of RBV (Figure1).  

 120



Pathophysiology of Hemodialysis-Related Hypotension 

 

-30

-10

10

30

-30 -20 -10 0
time (min)

ch
an

ge
 in

 S
A

P
 (

%
)

H

-20

0

20

40

60

-30 -20 -10 0
time (min)

ch
an

ge
 in

 H
R

 (
%

)

H

-80

-60

-40

-20

0

20

-30 -20 -10 0
time (min)

ch
a

n
g

e
 in

 S
I 

(%
)

H

-50
-30
-10
10
30
50
70
90

110
130
150

-30 -20 -10 0

time (min)

C
h

a
n

g
e

 in
 T

P
R

I 
(%

H

-10

-5

0

5

-30 -20 -10 0

time (min)

C
h

a
n

g
e

 in
 C

V
P

 (
m

m
H

g

H

-20

-15

-10

-5

0

-30 -20 -10 0

time (min)

R
B

V
 (

%
)

H

 

 
Figure 1 :  Hemodynamic changes in hypotensive dialysis sessions from 30 minutes before the onset of 

hypotension. SAP= Systolic arterial Pressure ; HR = heart rate; SI = Stroke Volume Index; TPRI = Total 

Peripheral Resistance Index; CVP = Central Venous Pressure, RBV= Relative Blood  Volume. 

 

LBNP compared to dialysis procedure 

In the patients in which hypotension occurred during dialysis, we compared the 

hemodynamics with those during the LBNP experiment. The reduction in CVP at which 

hypotension occurred was achieved by –20 mmHg of LBNP. However, the reduction in 

systolic arterial pressure at this level of LBNP was markedly lower than during dialysis (4±5 

vs. 31±1 % ; Table 4). Moreover, the reduction in SI was significantly less during LBNP (-

22±12 vs -41±20%). At –40 mmHg LBNP the reduction in SI was comparable with that 

during hypotension. However, the systolic arterial pressure was still significantly higher, as 

TPRI  as compared to baseline (Table 4). 
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Table 4: Changes in hemodynamics in hypotensive patients at moment of hypotension and during LBNP.  

 

Hypotensive group 
 

 Dialysis Hypotension LBNP -20 mmHg LBNP -40 mmHg 

Hemodynamics       

SAP (%) -31 ± 1  -4 ± 5a,b -15 ± 16 a,b 

HR (%) 16 ± 16 a  2 ± 5 6 ± 16 

SI (%) -41 ± 20 a  -22 ± 12a,b -37 ± 16a 

TPRI   (%) 25 ± 28  27 ± 19 a 53 ± 53a 

CVP  (mmHg) -3.0 ± 2.3a  -3.3 ± 2.1a -5.2 ± 4.3a 

 

All values are expressed as  Mean ±  Standard Deviation  SAP=Systolic Arterial Pressure; HR=Heart Rate; SI= 

Stroke Volume index; TPRI =Total Peripheral Resistance;  CVP=Central Venous Pressure; a: p < 0.05 compared 

to baseline  b: p<  0.05  compared to dialysis hypotension 

 

 

Discussion 

Hypovolemia is generally thought to play an important role in the pathogenesis of 

intradialytic hypotension [2]. However, in our study hypovolemia did not seem to play a 

pivotal role in the pathogenesis of hypotension, as the change in blood pressure was not 

related to the decline in RBV.  Moreover, at the onset of hypotension there was a huge 

variation in decline of RBV. These results are in agreement with our previous results, in 

which RBV and blood pressure varied significantly during 100 dialysis sessions, even when 

corrected for ultrafiltration volume [18]. We also found that the change in RBV at the 

moment of hypotension varied markedly, even within the same patient.  

It is known that two essentially different patterns of dialysis related hypotension can be 

distinguished. One of these has a more or less gradual decrease in blood pressure, whereas the 

other is characterized by a sudden onset of bradycardia. The bradycardia associated 

hypertension is presumed to result from a Bezold-Jarish reflex, i.e. paradoxical 

symphaticoinhibition during severe underfilling [19]. All hypotensive episodes observed in 

our study were preceded by a gradual increase in heart rate. These findings suggest that the 

hypotensive episodes did not result from severe underfilling or an inability to increase heart 

rate, but rather from an incapability to maintain SI and/or to increase vascular tone. 

In hypotensive subjects SI was decreased within one hour of the start of dialysis. The 

reduction in SI also tended to be greater at the moment of hypotension  than the 
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corresponding moment in the non-hypotensive patients. This reduction in SI occurred at a 

similar reduction in filling pressure, as estimated by CVP. Moreover, when the hypotensive 

patients were subjected to LBNP, a similar reduction in CVP resulted in a much smaller 

decrease in SI. Thus the inability to maintain cardiac output appears to be related to the 

dialysis procedure.  

Dialysis may impair either systolic or diastolic left ventricular function. We previously 

observed a decreased myocardial contractile reserve in hypotension prone patients [20]. 

Further, previous studies have shown that the dialysis procedure appears to interfere with the 

systolic left ventricular function [10,11]. However, there is evidence to suggest that increases 

in cardiac inotropy are not very important during hypovolemic conditions [21,22].  

Alternatively diastolic function, can be reduced by the reduction in filling pressure, as a 

decreased pressure difference between left atrium and ventricle results into a reduced early 

left ventricular filling [23]. Moreover, diastolic dysfunction during dialysis has been 

suggested to result from shifts in ionized calcium [24]. Decreased availability of calcium to 

the myocardium could impair both myocardial contraction and relaxation. Diastolic 

dysfunction is a complex process that may also be influenced by ventricular interaction. 

The observed episodes of hypotension may also have resulted from the inability to adequately 

increase vascular tone. The increase in vascular resistance at hypotension in the H group, was 

smaller than the corresponding time in the NH group. During LBNP, the hypotensive subjects 

were able to increase arteriolar tone and thereby maintain blood pressure despite a similar fall 

in SI.  Therefore, the dialysis procedure appears to interfere with arteriolar tone.  

An inadequate increase in arteriolar tone during dialysis is either due to decreased 

sympathetic activation or to decreased vascular responsiveness.  Many previous studies 

showed that dialysis normally stimulates sympathetic nerve activity during gradual 

hypotension [25, 26]. On the other hand, it has also been suggested that sympathetic function 

detoriates during dialysis as plasma norepinephrine levels do not rise appropriately. [27]. 

Analysis with heart rate variability with spectral analysis also failed to show an increase in 

sympathetic tone during hemodialysis in hypotensive patients [3,28].  

The dialysis sessions in our study lasted for four hours. It is possible that prolonging the 

dialysis session, as described in the Tassin study, would have resulted in an improved blood 

pressure profiles during hemodialysis [29]. 
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A decreased vascular response during dialysis could result from a positive thermal balance, 

due to an inability to dissipate the excess of heat [6,7].  Further, a change in the Nitric Oxide–

Endothelin–1 balance as a result of mechanical and chemical stimuli may also be involved in 

the pathogenesis of dialysis induced hypotension [8,9]. Other dialysis related factors that 

could cause an impaired vascular response include changes in plasma sodium, potassium, acid 

base composition and use of anti hypertensive drugs [21].   

As the decrease in CVP was comparable in both groups, a decrease in venous tone was 

unlikely responsible for the occurrence of the hypotensive episodes in our study. This is in 

agreement with previous study that showed a decreased venoconstriction in stable sessions as 

well [30,31].  

We conclude that dialysis related hypotension in our patient group did not result from an 

inability to maintain blood volume or from decreased cardiac filling. Hypotension appeared to 

result from the inability to adequately increase arteriolar tone and a reduction in left 

ventricular function. Both vascular tone and left ventricular function appeared to be impaired 

by the dialysis procedure. 
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Effect of Vasoconstriction on Relative Blood Volume 

 

 

 

Chapter 7: Norepinephrine-Induced Vasoconstriction Results in Decreased 

Blood Volume. 
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Abstract  

Hypotension during hemodialysis is due to an inadequate cardiovascular response to  

ultrafiltration induced hypovolemia.  In some studies, it is suggested that plasma volume 

could decrease by vasoconstriction, whereas several other studies in non dialysis patients 

observed a decrease in plasma volume. We studied the effect of norepinephrine induced 

vasoconstriction, compared to no infusion, on Relative Blood Volume in six dialysis patients. 

During the infusion we measured RBV, blood pressure, Stroke Volume Index, Ejection 

Fraction , Heart Rate, and body temperature.  

At baseline, both groups were comparable. At the end of infusion or at the comparable 

moment, no significant change in SI (-4 ± 21 vs 0 ± 8 %), HR (-5 ± 19 vs –4 ± 5%), EF (7 ± 

14 versus –2 ± 10%)  and CI (-10 ± 21 versus –3 ±  6%), and T body  (0 ± 2 versus –1 ± 1 %) 

were observed. However, a significant increase in SAP (27 ± 12 vs 0 ± 8 %; p<0.01) and 

TPRI (47 ± 47 versus 4 ± 17%; p<0.01) was found. This decrease was concomitant with a 

significant decrease in RBV (-9±.3 vs. 0±1 % p<0.01).  

We conclude that a norepinephrine induced increase in total peripheral resistance results in a 

decrease in RBV. This indicates that the improved hemodynamic stability during 

hemodialysis through vasoconstriction can be accompanied by a decrease in RBV, and part of 

the variability in blood volume may be due to changes in arterial tone.  

 

Introduction 

Hypotension is a major complication during hemodialysis (HD) [1]. Decreased plasma 

volume preservation, due to the fluid withdrawal from the intravascular space and a delay in 

plasma refilling by ultrafiltration, combined with inadequate compensatory vasoconstriction 

are directly responsible for this phenomenon [2,3]. The Relative Blood Volume (RBV) can be 

derived from the measured percentual changes in total protein concentration. Blood volume 

monitoring (BVM) enables us to measure the relative changes in blood volume (RBV) 

continuously during hemodialysis in the arterial bloodline [4]. It has been thought that an 

increase in peripheral arterial resistance during dialysis can increase venous return by means 

of the DeJagher-Krogh phenomenon [5,6,7]. This implies that when arterial resistance is 

increased, flow and intra-capillary pressure are reduced and vascular refilling is increased. 

Moreover, due to passive recoil, venous capacity is decreased and sequestered blood is 
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translocated back to the heart. Consequently it is suggested that arterial vasoconstriction 

increases RBV [8-10].  

However, evidence for a positive correlation between changes in plasma volume and 

peripheral resistance has never been found. Evenmore, there is evidence suggesting an  

inverse relationship. In non-dialysis patients plasma volume decreased as a result of an 

adrenergically induced vasoconstriction. [11-14]. Moreover, both during diffusive dialysis 

and glucose infusion, procedures in which vascular resistance is decreased, we observed a 

concomitant increase in RBV [15,16]. Dialysis, using a lower dialysate temperature, increases 

peripheral resistance but decreases RBV [17].  

In order to clarify the relationship between vascular resistance and plasma volume, we studied 

the effect of norepinephrine induced vasoconstriction, compared to no infusion, on RBV in 

six dialysis patients. During the infusion we measured RBV, Blood Pressure, Stroke Volume 

Index, Ejection Fraction , Heart Rate, and Body Temperature.  

 

Material and methods 

Patients 

We studied six patients requiring chronic hemodialysis.  None of the patients had severe 

valvular heart disease, heart failure (>NYHA class I) or arrhythmia’s. All medication was 

stopped on the day of the investigation. In the patients using ß blockers, this medication was 

withdrawn the day before the experiment. The ethical review committee of our hospital 

approved the study and written informed consent was obtained from all patients.  

 

Study design 

Each patient was studied during two dialysis sessions, which were performed on the same day 

of the week. On arrival, the patients were weighted and were placed in a dialysis chair, where 

they rested for 30 min (t= -30). During the study, the patients remained supine and no food or 

beverages were provided throughout the experiment. The patients were connected to the 

extracorporeal circuit (Fresenius 4008H machines with Fresenius F60-S polysulphone 

artificial kidneys and BVM/BTM arterial and venous lines; Fresenius MC Bad Homburg; 

Germany). During connection to the dialysis circuit, the priming volume of saline was 

discarded. At the start of this procedure blood was drawn from the access for laboratory 
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measurements. Blood flow was set at 250 ml/min. Neither diffusive dialysis nor ultrafiltration 

was performed throughout the investigation. After being connected to the dialysis circuit 

RBV, Systolic, diastolic and mean arterial blood pressures (SAP, DAP, MAP) and heart rate 

(HR) were measured continuously throughout the experiment. At the start of the experiment 

(t=0), echocardiography was performed to obtain Stroke Volume, and Ejection Fraction. 

Directly after these measurements (t=0 min), either Norepinephrine (Nor) was infused or a 

control experiment was performed in which no infusion was given (Cont).  Nor was given at 

an initial dose of  0.02 g/kg/min I.V. This was increased with 0.03 g/kg/min each 5 minutes 

until after 20 minutes a maximum dose of 0.14 g/kg/min was reached or until systolic blood 

pressure was raised by more than 30%. The infusions and control experiments were 

performed in random order and the patient was blinded to the infusion. Ten and thirty minutes 

(t=10 and t=30) after the start of the Nor, or at the comparable moments for the Cont 

experiments, a second and a third echographic measuments were done. Moreover, 

temperature measurements were performed. After these measurements the study was ended. 

For safety reasons dialysis was started at least 10 minutes after the infusion was discontinued.  

 

Measurements 

 RBV was measured continuously throughout the experiment by means of a blood volume 

monitor (BVM, Fresenius, Bad Homburg, Germany). The blood volume monitor measures 

the total protein concentration in the arterial bloodline, which is the sum of hemoglobin and 

plasma proteins in the vascular space. Changes in total protein concentration during dialysis 

are used to estimate changes in plasma volume. This method has a very good agreement with 

a standard reference method involving calculation of RBV from serial measurements of 

hemoglobin levels (SD 1.7%, r > 0.96) and allows precise and reliable measurement of RBV 

[4]. Systolic, diastolic and mean arterial blood pressures (SAP, DAP, MAP) and heart rate 

(HR) were measured continuously throughout the experiment by the Finapres device 

(Ohmeda 2300, Englewood, CO), using the middle finger of the nonfistula arm. This 

apparatus measures the blood volume under an infrared plethysmograph. When blood volume 

is kept constant at a set point value by controlling the cuff pressure, SAP and HR can be 

calculated from these changes in cuff pressure. This method has been validated in many 

studies against invasive blood pressure measurements [18].  Echocardiograms were obtained 
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using a ultrasound machine (Sonos 5500, Hewlett Packard Medical products, Boston, MA). 

The volume of the left ventricle was calculated from a two dimensional parasternal view. 

Endocardial borders of these views were digitally traced at the end of systole and diastole and 

their volume was calculated. Stroke volume was calculated as the difference between end-

diastolic and end-systolic volume. A mean stroke volume of five consecutive beats was taken. 

Stroke Volume Index (SI) was calculated from stroke volume and body surface area, which 

was calculated from length and height, according the Dubois formula [19]. Directly after each 

ultrasonography, SAP, DAP and MAP were also measured by an oscillometric device 

(Accutor 3, Datascope Co., Paramus, NJ). Body Temperature (Tbody) was measured by an ear 

thermometer after each ultrasonography. Total peripheral resistance index (TPRI) was 

calculated from MAP, measured by datascope, and cardiac index (CI).  

 

Statistical analysis 

Hemodynamic data are given as mean ± standard deviation. Differences during the 

experiments and between groups were tested with the Analysis of Variance with repeated 

measurements. If significant multiple comparisons were made using the Student Neuman 

Keuls test. The Graphpad Prism software program was used to perform these calculations. A 

p-value of less than 0.05 was assumed to indicate statistical significance.  

 

Results  

Patients 

Six hemodialysis patients, five male and one female participated in the study (Median time on 

dialysis 2.6 years, range 1.5- 4 years; Table 1). The median age of the subjects was 53  11 

years (range; 35-62 years: Table 1). Median residual diuresis was 252 mL/ 24 hr (range 0-950 

mL/ 24 hr ml; Table 1). Three patients had a residual diuresis of less than 5 mL/day, while the 

other three had a rest diuresis of 500 mL/liter or more. One patient with diabetes was 

included, and two patients were hypertensive.  Mean dry weight was 70.6 ± 12.9 kg and 

interdialytic weight gain was comparable in the two sessions (3.6 ± 1.4 kg versus 3.6 ± 2.3 kg; 

n.s.; Table 1).  
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Table 1. Characteristics of the patients    

           
  1 2 3 4 5 6 Mean  SD 

           
M/F  M M M F M M    
age (yr)  57 52 54 36 62 35 49 ± 11 
time on dialysis (yr) 4.0 3.0 1.5 2.5 2.0 2.5 2.6 ± 0.9 
dry weight (kg) 69.0 75.0 69.0 47.5 77.5 85.5 70.6 ± 12.9 
IWG(%) Cont  2.9 2.9 5.1 3,4 1.9 5.4 3.6 ± 1.4 
IWG(%) Nor  2.0 2.8 5.6 2.1 1.2 7.9 3.6 ± 2.3 
residual diuresis 5 825 0 0 950 500 380 ± 440 
           
         Y/N  

Diabetes mellitus - - - + - +  2/4  
hypertension  - - - + + -  2/4  
           
Medication           
beta-adrenergic 
blockers 

- - - - + -  1/5  

ACE-inhibitors  - + - + + +  4/6  
Calcium antagonists - - - + + -  2/4  
Nitrates  - - - - + -  1/5  

IWG, interdialytic weight gain; Cont, control ; Nor, Norepinephrine 

 

 

 

Table 2. Baseline Laboratory data   

  Control                      
Norepinephrine 

             p 

urea (mmol/L) 22.9 ± 6.3 22.2 ± 4.7 n.s. 
osmolarity 
(mosmol/L) 

298 ± 9 299 ± 10 n.s. 

Na (mmol/L) 138 ± 3 138 ± 3 n.s. 
K (mmol/L) 4.8 ± 0.9 4.7 ± 0.5 n.s. 
Ca (mmol/L) 2.38 ± 0.12 2.43 ± 0.08 n.s. 
ionized Ca (mmol/L) 1.24 ± 0.05 1.20 ± 0.07 n.s. 
PO4 (mmol/L) 1.47 ± 0.46 1.51 ± 0.48 n.s. 
Alb (g/L) 38 ± 2 38 ± 2 n.s. 
pH  7.39 ± 0.02 7.40 ± 0.03 n.s. 
pCO2 (kPa) 5.2 ± 0.5 4.8 ± 0.6 n.s. 
HCO3- 22.7 ± 2.4 23.1 ± 3.2 n.s. 
PTH (pmol/L) 93 ± 78 119 ± 74 n.s. 
Hb (mmol/L) 7.4 ± 1.2 7.1 ± 1.0 n.s. 
Ht  (L/L) 0.35 ± 0.06 0.34 ± 0.05 n.s. 

 

Data are ± standard deviation.  Na, sodium; K, potassium;Ca, Calcium; PO4, phosphate; Alb, Albumin, 

pCO2carbon dioxide tension, HCO3-, bicarbonate; PTH, parathormone; Hb, Hemoglobin; Ht, hematocrit  n.s., 

not significant 
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Table 3. Baseline Hemodynamics       

         

  No infusion  Noradrenaline  p 
SAP (mmHg) 165 ± 23  139 ± 35  n.s. 
MAP (mmHg) 113 ± 20  101 ± 20  n.s. 
DAP (mmHg) 84 ± 12  71 ± 13  n.s. 
HR (b.p.m.) 75 ± 17  78 ± 12  n.s. 
CI (ml/m2) 1516 ± 458  1283 ± 541  n.s. 
T body(C) 36,3 ± 1,0  36,9 ± 0,9  n.s. 
n.s., not significant          
 

 

Baseline Values  

At baseline, no differences were found in laboratory data between the Cont and the Nor 

sessions (Table 2).  SAP tended to be lower during the Nor experiment, but this did not reach 

statistical significance (139 ± 35 versus 165 ± 23 mmHg; Table 3). Datascope blood pressure 

measurements were comparable to the Finapres measurements and were  165 ± 24 vs 142 ± 

34 mmHg for Nor and Cont respectively (Table 3). HR, SI, and TPRI were comparable in 

both experiments (75±17 vs 78±12 b.p.m., 20 ± 3 vs 18 ± 6 ml/m2, and 6154 ± 1486 vs 6940 

± 3215 dynes.s m2/cm5 respectively; Table 3) Core Temperature (Tbody) and EF were 

comparable between both groups (36.3 ± 1.0 vs. 36.9 ± 0.9 C, and 47±17 vs. 42±7 %  

respectively; Table 3).  

 

Response to norepinephrine 

The patients tolerated the infusion of Norepinephrine well with minor complaints of anxiety 

and no palpitations. All patients completed the protocol. At 10 minutes SAP tended to 

increase in the Nor group, RBV decreased as compared to baseline (-3 ± 2 %; p< 0.05; Table 

3, Figure 1). HR, MAP, SI and TPRI did not change significantly (Figure 1; Table 4).  

At 30 minutes both SAP and DAP were increased in the Norepinephrine group both compared 

to baseline as compared to the Nor group (SAP; 21±12 %, DAP; 18±12 % by finapres and 

datascope respectively; p< 0.05; Table 4, Figure 1).   
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Table 4. Hemodynamic changes during sessions in the No Infusions and the Norepinephrine group 
 

 Control Norepineprine 
  t= 10 

min 
 t=30 min t= 10 min t=30 min  

RBV(%) 0 ± 1 0 ± 1 -3 ± 2 a -9 ± 3  a,b 
SAP(%) -6 ± 8 -2 ± 14 12 ± 10 a b 24 ± 15 a,b 
MAP(%) 0 ± 12 4 ± 16 13 ± 15 25 ± 17 a,b 
DAP (%) -2 ± 10 4 ± 14 14 ± 5 18 ± 12 a,b 
HR(%) -4 ± 2 -4 ± 5 -6 ± 13 -5 ± 19 
SI(%) 5 ± 18 0 ± 8 1 ± 10 -4 ± 21 
CI(%) 3 ± 19 -3 ± 6 4 ± 18 -10 ± 21 
TPRI (%) 1 ± 16 4 ± 17 6 ± 14 47 ± 47 a 
T body 1 ± 2 0 ± 2 -1 ± 1 -1 ± 1 
EF (%) -5 ± 7 -2 ± 10 3 ± 10 7 ± 14 
 

RBV. Relative blood volume; SAP systolic arterial pressure; MAP, Mean arterial pressur; DAP , diastolic 

arterial pressure; HR, heart rate; SI, Stroke volume Index; CI, Cardiac Index; TPRI, total peripheral resistance 

index , T body, body temperature; EF, ejection fraction  

a significant compared to baseline p< 0.05   b significant compared to control 

 

There was a good agreement between changes in blood pressure by datascope and by finapres. 

No significant change in SI (-4 ± 21 vs 0 ± 8 %; p>0.05), HR (-5 ± 19 versus –4 ± 5; p>0.05), 

EF (7 ± 14 vs –2 ± 10; p>0.05), CI (-10 ± 21 versus –3 ± 6 %; p>0.05) and T body  (-1 ±1 vs 0 

± 2% p>0.05) were observed between both groups  (Table 4, Figure 1). However, in the Nor 

group TPRI increased as compared to baseline (47 ± 47 %; p < 0.05), whereas in the Cont 

group TPRI did not change significantly (4 ± 17 % by finapres; p>0.05) (Table 4).  

This increase in vascular resistance decrease was accompanied by a concomitant decrease in 

RBV (-9±3 vs 0±1 % (p<0.001; Table 4, Figure 1) RBV dropped in all patients and no 

relation was found between the decrease in RBV and the patient characteristics, such as the 

presence of hypertension and/or diabetes and the amount of volume overload.  

was found. The increase in TPRI did not result from Cooling of blood by the extracorporal 

circuit, as BT (-1±1 vs 0±2 C) did not decrease significantly.  
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Discussion  

This study demonstrates that infusion of norepinephrine in patients on dialysis results in a 

direct and substantial  decrease in RBV.  

The observed decrease in RBV during the norepinephrine infusions can be either due to a 

relative increase in the erythrocyte cell mass or to a decrease in the total amount of plasma 

fluid.  

Erythrocyte cell mass could change during vasocontriction, as the erythrocyte cell mass is not 

uniformly mixed and the hematocrit of the peripheral vascular beds is much lower than that of 

the large vessels [20,21].  However, it is unlikely that this mechanism could explain the 

observed decrease in RBV, as during vasoconstriction, blood with a relatively low eryhrocyte 

content is shifted to the large vessels and arterial bloodline, in which RBV is measured. This 

would result in an increase in RBV, rather than a decrease. 

Erythrocyte cell mass could also be increased by splenic contraction. However, previous 

studies showed, that in humans, the spleen does not serve as an important reservoir for red 

blood cells over splenic constraction,  could only account for an increase of 1-2% [22,23].   

Changes in plasma volume can be explained by Starlings law, which determines the fluid shift 

between the vascular and the interstitial compartments and depends on changes in hydrostatic 

and oncotic capillary pressure and on the filtration coefficient of the capillary basement 

membrane [24]. Reduced perfusion of capillary beds during arteriolar constriction leading to a 

decrease of the vascular surface area could explain the norepinephrine-induced decline in 

RBV. A decrease in perfused vascular beds could also increase hydrostatic capillary pressure 

in the remaining vascular beds. This could in turn lead to a decreased vascular refilling and 

hence blood volume. However, there is only a slight relation between the change in peripheral 

resistance and RBV. This can be explained by the fact that total peripheral resistance is 

calculated from blood pressure and cardiac out put. Each of these measurements varies, and 

their summed contribution can lead to considerable variability in the calculated TPR. On the 

other hand, the constriction of the veins could also contribute to the decrease in RBV. When 

vasoconstriction is more pronounced at the venular than at the arteriolar end of the capillaries, 

intracapillary hydrostatic pressure will rise, thereby promoting a shift of fluid from the 

intravasular to the interstitial compartment [25]. Many previous studies lend evidence that 

blood volume increases after a decrease in total peripheral resistance by arterial vasodilatation 
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[26-28]. Moreover, the increase in plasma volume after vasodilatation induced by infusion of 

an alpha-receptor antagonist, was found to be inversely related to the change in CVP [30].  

The results of our study are in accordance with most previous studies in which the effect of 

norepinephrine on plasma volume was studied in non dialysis patients or animals [11-14]. 

In one study, erythrocyte cell mass increased. However, this study was done in dogs in which 

the spleen is a far more important red blood cell reservoir [11]. 

In another study, a norepinephrine-induced increase in peripheral resistance showed no 

significant change in plasma volume, although hematocrit was increased in three out of four 

patients [13]. This experiment differs from ours in the fact that norepinephrine was given for 

six hours, while in our experiment norepinephrine was given for only twenty minutes. It is 

known that in response to prolonged norepinephrine infusions the cardiac output increases 

and consequently peripheral resistance decreases, due to the release of endogenous 

epinephrine [29]. This could diminish the increase in RBV.  

The results of our study have major implications for the interpretation of measurements and 

the applications of a biofeed back control systems in order to prevent dialysis related 

hypotension. When performing maneuvers to improve vascular stability during dialysis, such 

as isolated ultrafiltration, or lowering dialysate temperature, RBV decreases and the critical 

RBV, at which hypotension occurs, will be lowered [17,30]. This can explain the findings of 

Schneditz et al. who describe improved hemodynamic stability, in spite of a greater reduction 

in RBV during cold dialysis. Differences in arteriolar tone may also explain the observed 

variabilility in RBV during hemodialysis and the difficulties to observe a critical  value, at 

which hypotension occurs [31]. Conversely, an increase in RBV does not always lead to an 

increase in effective plasma volume and cardiac filling pressure. Hypertonic glucose infusions 

during dialysis result in a greater increase in RBV than equal volumes of mannitol, which has 

the same osmolarity, molecule mass and charge [16].  

These difference could be related to a decline in vascular tone during the glucose infusion. 

Moreover, during diffusive dialysis, a procedure in which vascular resistance is decreased, we 

observed an increase in RBV [15]. 

We conclude that a norepinephrine induced increase in total peripheral resistance results in a 

decrease in RBV. This indicates that the improved hemodynamic stability during 

hemodialysis through vasoconstriction can be accompanied by a decrease when n RBV, and 
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part of the variability in blood volume may be due to changes in arterial tone. Such changes 

must be taken into account of RBV measurements are used to improve the hemodynamic 

tolerance of dialysis 
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Chapter 8: Hemodynamic response to lower body negative pressure in 

hemodialysis patients. 
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Abstract 

Hypovolemia is thought to play an important role in the pathogenesis of dialysis-related 

hypotension. We studied the effect of hypovolemia simulated by lower body negative 

pressure (LBNP) in 11 hypotension prone (HP) and 11 hypotension resistant (HR) 

hemodialysis patients. LBNP was applied step-wise from 0, to -20 to -40 mmHg. Systolic 

arterial pressure, heart rate and central venous pressure (CVP) were recorded continuously 

after canulation of the right jugular vein. Stroke Volume Index (SI) was measured at each step 

echocardiographically. At the end of each level of LBNP, blood samples were taken for 

norepinephrine (NE), epinephrine (E) and atrial natriuretic peptide (ANP) levels. At baseline, 

CVP (12±5 and 16±7 mmHg), heart rate (72±9 and 70±13 bpm), Cardiac index (2.3±0.6 and 

2.5±0.9 l/min), NE (median ,341 pg/mL [range, 198 to 789 pg/mL], and 365 pg/mL [range, 

177 to 675 pg./mL] or 2.02 nmol/L [range, 1.17 to 4.66 nmol/L] and 2.16 nmol/L [range, 

1.05-4.00 nmol/L]), E (median, 46 pg/mL [range, 18 to 339 pg/mL] and 58 pg/mL [range, 21-

122 pg/mL] or 251 pmol/L [range, 98-1951 pmol/L] and 317 pmol/L [range, 115-666 

pmol/L]) were similar, whereas systolic arterial pressure (141±26 vs164±22 mmHg) and ANP 

(441 (152-1330) vs. 804 (517-3560) pg./ml or ng/L) were lower (p<0.05) in HP patients. In 

response to LBNP (-40 mmHg) CVP decreased by 6.5±4.0 mmHg in the HP-group and by 

4.9±4.9 mmHg in the HR-group. In HP patients, this decrease was associated with a greater 

fall in SI (37 ± 16% versus 27 ± 16%) and systolic arterial pressure (19±21% versus 4±14%) 

than HR patients. Plasma ANP levels did not change, whereas the rise in NE and E was 

similar in HP and HR patients. We conclude that patients which frequently experience 

episodes of hypotension during dialysis are also prone to develop hypotension during LBNP, 

which results from reduced myocardial contractile reserve and/or inadequate sympathetic 

tone. 

 

Introduction 

Hypotension is an important cause of morbidity during hemodialysis treatment and occurs in 

approximately 30% of the dialysis sessions. Factors that may contribute to the occurrence of 

hemodialysis-induced hypotension include the reduction in blood volume and the osmotic 

shifts that occur during dialysis [1]. Failure of the heart and/or the autonomous nervous 
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system to respond to the hypovolemia induced by hemodialysis may also result in decreased 

blood pressure preservation [2,3]. The degree in which hypovolemia occurs during dialysis is 

highly variable. We have demonstrated that both intra- and inter-individual variability of 

blood volume changes during dialysis is high and cannot be explained by differences in 

ultrafiltration rate [4]. As these factors may all interact, it is difficult to establish the relative 

importance of each factor during hemodialysis.  

Applying lower body negative pressure (LBNP) allows the isolated manipulation of venous 

return to the heart [5], thereby mimicking controlled hypovolemia. In healthy volunteers, 

LBNP causes a reduction in central venous pressure (CVP) starting at –20 mmHg LBNP 

followed by a reduction in stroke volume index (SI) and cardiac index at higher levels. Blood 

pressure usually remains unchanged due to an increase in total peripheral resistance and heart 

rate, but hypotension may occur at levels of -40 mmHg and higher [5-9]. In healthy 

volunteers, hypovolemia increases the risk for hypotension [8]. 

In order to determine the importance of hypovolemia in the pathogenesis of dialysis related 

hypotension, we studied the cardiovascular response to LBNP in hypotension prone and 

hypotension resistant hemodialysis patients. 

 

Patients and Methods 

Patients 

Twenty-two patients on chronic hemodialysis, 11 hypotension-prone (HP) and 11 

hypotension-resistant (HR), were studied. The ethical committee of the University Hospital 

Rotterdam-Dijkzigt approved the study, and all participants gave written informed consent. 

Criteria for classification as hypotension-prone were: decrease of systolic arterial pressure to 

less then 100 mmHg accompanied by symptoms of hypotension (dizziness and/or syncope) 

occurring in at least one third of dialysis sessions during the last three months prior to 

inclusion in the study. Patients with diabetes mellitus were excluded from the study.  

Age and sex distribution was not different in both groups (Table 1). Time on dialysis was also 

not significantly different in HP and HR patients. The average number of antihypertensive 

drugs was 1.0 in HP patients vs. 1.6 in HR patients (n.s.). All dialysis treatments were 

performed on a trice-weekly basis, using bicarbonate buffered dialysate and biocompatible 

membranes (Hemophane or Polysulphone). Dry weight was considered optimal when patients 
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remained without symptoms of dyspnea or edema during the interdialytic period. Inferior 

caval vein diameter measurement was performed at intervals of one month. Overhydration 

was defined as a caval vein diameter of more than 11.4 and underhydration as a caval vein 

diameter of less than 8 mm/m2 body surface area [10,11]. When inferior caval vein diameter 

before dialysis was outside the normal limits, dry weight was adjusted accordingly.  

 

 

Table 1. Characteristics of the patients      

      
 hypotension prone hypotension resistant  p 

         

n = 11 11    
age (yr) 61.5 ± 15 56.8 ± 9.4  n.s. 
M/F 8/3 8/3    
time on dialysis (yr) 2.82 ± 1.65 1.89 ± 1.9  n.s. 
Interdialytic weight gain (kg) 2.76 ± 0.83 3.36 ± 1.1  n.s. 

        
Medication      
beta-adrenergic blockers 4 7   n.s. 
ACE-inhibitors 2 3   n.s. 
Calcium antagonists 3 5   n.s. 
Nitrates 2 3   n.s. 

      

 

Study design 

All studies were performed in the morning before hemodialysis, in a quiet room with an 

ambient temperature of 24 °C. Smoking and beverages containing alcohol or caffeine were 

avoided for at least 12 hours before the investigation. The patients were placed in a box up to 

the iliac crest, and an airtight connection was attached to the patient’s waist. Evacuating air 

from the box created LBNP. After local anesthesia, catheter with a diameter of 0.6 mm was 

inserted into the right jugular vein for measurement of CVP. Blood pressure and heart rate 

were measured continuously.  

After a 45-minute equilibration period, baseline echocardiography was performed and 

baseline blood samples were collected. Subsequently, LBNP of -20 mmHg was applied for 15 

minutes. At the end of this period, echocardiography and blood sampling were repeated. 

LBNP was subsequently decreased to -40 mmHg for 15 minutes, again followed by 

echocardiography and blood sample collection.  
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Measurements 

Blood pressure and heart rate were registered continuously through finger blood pressure 

measurement by the Finapres device (Ohmeda 2300, Englewood CO, USA). CVP was 

measured continuously using a pressure transducer (Ohmeda single transducer kit) positioned 

at heart level, and a monitor (HP 1290A, Hewlett Packard, California, USA). The average of 

all blood pressure, heart rate and CVP measurements during a one-minute period at the end of 

equilibration, -20 mmHg and -40 mmHg LBNP, were used for analysis. Left ventricular end-

diastolic volume, Stroke volume and cardiac output were assessed in triplicate by 

echocardiography, using the bi-plane discs method. The volume of the ventricle was 

calculated from the apical two- and four chamber views using a modification of Simpson’s 

rule[12]. The principle of Simpson’s rule is to divide the left ventricle into known slices of 

thickness. The volume of the ventricle is then equal to the sum of the volume of the slices. 

Two and four chamber apical views were recorded and stored. The endocardial borders of 

these views were digitally traced at end diastole and end systole. Each projection was divided 

in 20 sections along the long axis. Then the volumes were computed. Stroke volume was 

calculated as the difference between end-diastolic and end-systolic volume. Diastolic left 

ventricular function was assessed by pulse wave Doppler evaluation of left ventricular filling. 

The pulse wave Doppler studies were recorded from the apical four chamber view, with the 

doppler sampler positioned just within the inflow portion of the left ventricle, midway 

between the annular margins of the mitral valve. Mitral velocity profiles were digitized from 

the modal velocity of the Doppler tracings. After measuring early (E) and atrial (A) flow over 

the mitral valve, the E/A ratio was calculated. Total peripheral resistance was calculated from 

mean arterial pressure and cardiac output. Concentrations of plasma epinephrine (E; normal 

limit: < 120 pg/ml (< 655 pmol/L) and norepinephrine (NE; normal limits: 100-600 pg/ml 

(0.59-3.55 nmol/L) were measured by fluorometric detection after high-performance liquid 

chromatography as described previously [13]. Plasma atrial natriuretic peptide levels (ANP; 

normal limits: 60-120ng/L) were measured by means of a commercially available 

radioimmunoassay  (Nichols institute, Wijchen, The Netherlands) [14].  
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Statistics  

Hemodynamic data are given as mean ± standard deviation. Stroke volume, cardiac output, 

and total peripheral resistance are expressed per m2 body surface area and are mentioned SI, 

Cardiac index, and total peripheral resistance index respectively . Differences in the baseline 

data were tested with the unpaired two-tailed Student’s t-test. Changes during LBNP were 

analyzed using Analysis of Variance for repeated measurements, in the case of a significant F-

ratio followed by the Student Neuman Keuls test for multiple comparisons.  

Plasma concentrations of vasoactive hormones are given as median values and range. 

Baseline data were tested with Mann-Whitney’s non-parametric test. Changes during LBNP 

were tested with Friedman P-test, when significant, followed by the Dunn test for multiple 

comparisons.   

Of all parameters, changes at –20 and –40 mmHg LBNP are given as percentages of change 

compared to baseline. However, the changes in CVP are given as absolute values. 

Correlations were assessed by calculating Pearson’s correlation coefficient, in the case of 

vasoactive hormones after log-transformation. A p-value of less than 0.05 was assumed to 

indicate statistical significance.  

 

Results 

Baseline values 

At baseline, CVP tended to be lower in HP patients, but this difference was not significant 

(Table 2). Baseline SAP was significantly lower in the HP-group than in the HR-group. Heart 

rate, SI, cardiac index and total peripheral resistance index were all similar in both groups. 

Diastolic dysfunction (E/A ratio <1.0) was present in 19 out of 22 subjects, with no 

significant differences between both groups. Median values of NE and E were within normal 

limits and were not different in the two groups. However, all patients in both groups had 

elevated ANP-levels. In HR-patients, ANP levels were significantly higher than in HP-

patients.  
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Table 2 Baseline hemodynamic and hormonal data in hypotension-prone (HP) and hypotension-resistant (HR) 

patients 

 HP                   HR  p 
  

 
     

n =  11       11     
        

Hemodynamics        
CVP (mmHg) 12 ± 5  16 ± 7  n.s. 
SAP (mmHg) 141 ± 26  164 ± 22  <0.05 
MAP (mmHg) 95 ± 11  110 ± 15  n.s. 
DAP (mmHg) 73 ± 8  85 ± 14  n.s. 
HR (bpm) 72 ± 9  70 ± 13  n.s. 
SV (ml) 55 ± 11  63 ± 27  n.s. 
CO (l/min) 4.0 ± 1.1  4.3 ± 1.6  n.s. 
TPR (dyne/sec/cm-5) 205

5
± 645  2297 ± 749  n.s. 

E/A ratio 0.85 ± 0.30  0.85 ± 0.44  n.s. 
E/A ratio > 1 2/11     1/11    

        
Vasoactive hormones        
NE (pg/ml) 341 ( 198 - 789 ) 365 ( 177 - 675 )  n.s. 
E (pg/ml) 46 ( 18 - 339 ) 58 ( 21 - 122 )  n.s. 
ANP (pg/ml) 441 ( 152 - 1330 ) 804 ( 517 - 3560 )  <0.05 

         
        

Note. Hemodynamic data are expressed as mean ± SD, hormonal data expressed as median (range). To Convert 

to SI units: for norepinephrine, 1pg/mL = 0.00591 nmol/L; for epinephrine, 1 pg/mL= 5.46 pmol/L; for ANP, 1 

pg/mL = 1 ng/L. Abbreviation: NS, not significant. 

 

 

Hemodynamic and hormonal changes during LBNP 

In HP-patients, -40 mmHg LBNP induced a decrease in CVP of 6.5 ± 4.0 mmHg. Systolic 

arterial pressure decreased significantly by 19 ± 21% at -40 mmHg LBNP. Interestingly, heart 

rate did not change during the investigation. SI decreased by 37 ± 16%, while cardiac index 

decreased by 34 ± 18% at –40 mmHg LBNP. Total peripheral resistance index increased by 

44 ± 47%. Both E and NE levels increased significantly at –40 mmHg LBNP, while ANP did 

not change. 

In HR-patients, CVP decreased by 4.9 ± 4.9 mmHg at –40 mmHg LBNP. Blood pressure and 

heart rate remained constant, while SI and cardiac index decreased by 27 ± 16% and 24 ± 

19% respectively. These changes were accompanied by a 38 ± 25% increase in total
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Table 3. Hemodynamic and hormonal changes during LBNP in hypotension-prone (HP) and hypotension-

resistant (HR) patients 

 HP HR 

LBNP -20 mmHg LBNP   -40 mmHg LBNP -20 mmHg LBNP -40 mmHg LBNP 

           

Hemodynamics  

 

        

CVP (mmHg) -4.0 ± 2.4 c -6.5 ± 4.0 c,e -3.8 ± 3.5 b -4.9 ± 4.9 c 

SAP (%) -3 ± 7 -19 ± 21 b,d 0 ± 6  -4 ± 14  

MAP (%) 1 ± 9 -10 ± 18   3 ± 7  2 ± 13   n.s.

DAP (%) 3 ± 10 -2 ± 18   5 ± 7  6 ± 14   n.s.

HR (%) 0 ± 7 5 ± 14   -1 ± 6  4 ± 15   n.s.

SV (%) -20 ± 13 c -37 ± 16 c,f  -16 ± 18  -27 ± 16 b,d  <0.05 
CO (%) -19 ± 17 b -34 ± 18 c,e -17 ± 17  -24 ± 19 c,d   n.s.

TPR (%) 29 ± 29 44 ± 47 b  27 ± 21  38 ± 25 c  n.s.

              

Neurohormones             
NE (%) 28 (3-61) a 87 (27-182)c 21 (0-73) 53 (15-86)c n.s.

E (%) 33 (0-66) 144 (-4-1030)b 37 (-17-71) 115 (17-625)b,d n.s.

ANP (%) 28 (3-61) -4 (-31-29) 1 (-33-132) -19 (-42-104) n.s.

 

Hemodyamic changes are mean ± SD. LBNP, lower body negative pressure; CVP, central venous pressure; SAP, 

MAP and DAP, systolic, mean and diastolic 

arterial pressure; HR, heart rate; SV, stroke volume; CO, cardiac output; TPR, total peripheral resistance. 

Hormonal changes are given as median and range NE, norepinephrin; E, epinephrin; ANP, atrial natriuretic 

peptide; a p<0.05, b p<0.01 and c p<0.001 vs baseline; d p<0.05, e p<0.01, f p<0.001 vs -20 mmHg LBNP 

 
 
peripheral resistance index. Again E and NE levels increased significantly at –40 mmHg 

LBNP and ANP-levels remained constant.  

The decrease in CVP was comparable in HP and HR-patients. However, this resulted in a 

decrease in systolic arterial pressure in HP-patients, but not in HR patients. At –40 mmHg 

LBNP, the decrease in SI was significantly higher in HP than in HR patients (Table 3; 

p<0.05). Changes in cardiac index, total peripheral resistance index, NE-, E- and ANP-levels 

were not significantly different in both groups. During –40 mmHg of LBNP five patients 

experienced symptomatic hypotension, four of which were classified as hypotension prone. In 

order to study the factors responsible for hypotension in these patients we also presented the 

data in these patients compared to the patients in which hypotension did not occur during 

 150



LBNP in Hemodialysis Patients 

LBNP (Table 4). In the patients in which hypotension occurred during LBNP, the decrease in 

CVP was not significantly diff 

rent from the other patients. There was however a significantly greater reduction in SV and 

cardiac index. Heart rate remained stable, although it decreased in 4 out of 5 hypotensive 

subjects. Plasma E levels increased in both groups, but the magnitude of the increase was 

fourfold higher in the patients that became hypotensive. 

 
 
 
 
Table 4. Hemodynamic and hormonal data in patients who experienced hypotension during -40 mmHg LBNP 

 
 
Patients  1  2  3  4  5  

hypotensive 
patients (H) 

 (1-5) 
all other patients  

H 
versus. 
all other 
patients

 Group: HP HP HP HP HR    P 

No. of patients       5      

Haemodynamic  
Changes 

          

17 

    

 CVP (mmHg) -12 -10 -4 -4 -2 -6.4 ± 4.3   -5.5 ± 3.2  n.s. 

 SAP (%) -47 -27 -57 -33 -41 -40.9 ± 11.7   -2.9 ± 12.1   

 MAP (%) -30 -23 -43 -24 -25 -29.0 ± 8.3   3.4 ± 11.4   

 DAP (%) -13 -15 -32 -20 -21 -20.2 ± 7.3   8.5 ± 7.2   

 HR (%) 28 -10 -15 -6 -26 -5.6 ± 20.3   7.5 ± 4.8  n.s. 

 SI (%) -50 -25 -48 -49 -40 -42.6 ± 10.8   -
23.9 

± 9.9  < 0.05 

 CI (%) -36 -32 -56 -52 -56 -46.5 ± 11.4   -
28.9 

± 9.4  < 0.05 

 TPRI (%) 10 14 29 59 68 36.2 ± 26.4   42.4 ± 22.9  n.s. 

Hormonal changes         

 NE (%) 141 84 91 45 21 84 (21 - 141) 62 (15 - 182)  n.s. 

 E (%) 415 147 1030 371 625 415 (147 - 1030) 81 (17 - 625)  < 0.05 

 ANP (%) 3 3 24 -15 -11 3 (-15 - 24) -15 (-42 - 104)  n.s. 

Medication         

 beta-blockers no no yes No no  1/5  10/17  < 0.05 

 
Hemodyamic changes are mean ± SD. LBNP, lower body negative pressure; CVP, central venous pressure; 

SAP, MAP and DAP, systolic, mean and diastolic arterial pressure; HR, heart rate; SV, stroke volume index;  

CO, cardiac  index; TPR, total peripheral resistance index. Hormonal changes are given as median and range  

NE, norepinephrin; E, epinephrin; ANP, atrial natriuretic peptide 
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Discussion 

In the present study we assessed whether the hemodynamic and neurohumoral responses to 

LBNP in HP and HR hemodialysis patients are different. Our findings showed that a 

comparable LBNP-induced decrease in CVP is associated with a greater fall in SI and systolic 

blood pressure in HP than in HR patients, whereas the neurohumoral responses between the 

two groups of patients did not differ. These findings could imply a greater dependency of SI 

on cardiac filling pressure in HP resulting from reduced diastolic function, inadequate 

sympathetic tone or impaired cardiac contractility. 

Baseline values of CVP and ANP were elevated in both groups of patients. Compared to HR 

patients, baseline values of ANP were lower and baseline values of CVP tended to be lower in 

HP patients. These findings strongly suggest that overhydration was less pronounced in the 

HP patients. This contention is supported by the finding that interdialytic weight gain (Table 

1) was lower in HP than in HR patients. 

An explanation why LBNP was associated with a greater decrease in SI in HP than in HR 

patients is not easy to provide. Echocardiographic examination did not reveal the presence of 

valvular, pericardial or pulmonary abnormalities that could cause a decrease in cardiac inflow 

in either HP or HR patients. Left ventricular hypertrophy and uremic myocardial fibrosis are 

commonly observed in hemodialysis patients[15]. These abnormalities impair ventricular 

relaxation and diastolic function, resulting in a decrease in SI when cardiac-filling pressure is 

lowered. Diastolic dysfunction can be diagnosed by considering the ratio of the mitral flow 

velocities of early ventricular filling to atrial assisted ventricular filling (E/A ratio), as 

measured by pulse wave Doppler Echocardiography [16]. An E/A ration below 1.0 indicates 

the presence of diastolic dysfunction. Of the patients participating in the present study almost 

all (19/22) had diastolic dysfunction. No difference in E/A ratios was observed between the 

HP and HR. A caveat for using the E/A ratio as a measure for diastolic function is the 

dependency of this parameter on volume status [17]. Unfortunately E/A ratio’s in the present 

study were only determined before application of LBNP and before hemodialysis. It is 

therefore possible that a difference in the diastolic properties of the left ventricle between the 

groups of subjects has been missed.  

Differences in blood pressure behavior during LBNP could be due changes in sympathetic 

tone and/or systolic function. Of the 22 patients studied five (four of the HP and one of the 
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HR group) developed hypotension during –40 mmHg of LBNP. In all five subjects the 

hypotension was caused by a decrease in cardiac index. Although the decrease in cardiac 

index was predominantly due to a fall in SI, heart rate in all but one of the subjects decreased 

as well.  

A reduction in heart rate during episodes of hypotension has been described by Converse et 

al, who ascribed this response to a paradoxical withdrawal of sympathetic activity [18]. This 

phenomenon, also known as the Bezold-Jarisch reflex, is thought to result from increased 

activity of left ventricular mechanoreceptors as a consequence of a decrease in stroke volume 

and increased cardiac contractility. This form of bradycardia-associated hypotension occurs as 

a result from marked hypovolemia [19].  

However, the results concerning the heart rate response have to be interpreted with care, as  

fluctuations in heart rate normally occur. Mean heart rate remained stable in the HP and a 

severe bradycardia occurred only in one patient, in the HR group. Therefore heart rate was of 

minor importance in the pathogenesis of hypotension during LBNP, although no increase in 

the baroreceptor mediated heart rate response was found. Beta blockade was not likely to be 

responsible for the impairment in the baroreceptor mediated heart rate response, as these were 

mainly used in non hypotensive patients.  It is known that bradycardia can exist independently 

of defects in the autonomic nervous system [20] 

Although plasma norepinephrine almost doubled, we found no differences in norepinephrine 

levels between hypotensive and non-hypotensive subjects. In view of the hypotensive 

response, the increase in plasma norepinephrine concentration in these subjects can be 

considered inappropriate. This would suggest the presence of sympathetic inhibition.  

In patients experiencing hypotension plasma epinephrine concentration was markedly 

increased. As hypotension is a powerful stimulus of epinephrine secretion by the adrenal 

gland and epinephrine concentrations were measured several minutes after the hypotensive 

episode, this could be considered a secondary phenomenon.  

SI was decreased in HP despite comparable filling pressures and sympathetic tone. This 

suggests a reduced sensitivity of  adrenoreceptors. 

The seemingly comparable level of sympathetic drive could also suggest an incapability to 

maintain sympatic tone. The pivotal role of the heart in patients prone to develop hypotension 

during dialysis can be demonstrated by infusion of dobutamine, a -adrenergic receptor 
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agonist. In this group patients, prone to develop hypotension during dialysis, we observed 

impaired myocardial contractile reserve in response to sympathetic stress [21]. These findings 

support the hypothesis of impaired myocardial contractile reserve in the pathogenesis of 

dialysis-induced hypotension. An impaired myocardial contractile reserve could be partly due 

to the fact that patients were by mean five years older and had spent by mean one year more 

on dialysis. 

We conclude that patients that frequently experience episodes of hypotension during dialysis 

are also prone to develop hypotension during LBNP. The hypotension during LBNP results 

from reduced myocardial contractile reserve and/or inadequate sympathetic tone. 
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Summary and Conclusions 

 

Chapter 1 is a brief introduction is to the physical principles and the technical procedure of 

hemodialysis. Factors that can contribute to the occurrence of dialysis related hypotension are 

discussed. We concluded from the available literature that for most factors it is unknown 

whether the most detrimental effect on effective blood volume during hemodialysis is due to a 

decreased plasma refilling or to an inadequate cardiovascular response. Moreover, we 

hypothesized that both mechanisms can affect each other. We concluded that more knowledge 

concerning this relationship is essential before blood volume monitoring and modeling, in 

order to prevent of dialysis related hypotension, can be applied clinically. 

 

In chapter 2, we constructed a mathemathical model of the intercompartmental fluid shifts 

during combined hemodialysis, diffusive hemodialysis, and isolated ultrafiltration (IU). We 

analyzed the relative importance of the factors that govern plasma refilling. We concluded 

that the ultrafiltration rate, the size of sodium gradient between the dialysate and blood side of 

the dialyzer membrane, and the change in regional blood flow are the most important factors 

influencing the magnitude of plasma refilling.  

 

In chapter 3, we analyzed the reproducibility of the decrease in relative blood volume during 

hemodialysis, as it is essential for the application of blood volume modelling that a critical 

level of reduction in relative blood volume can be determined. However, we observed a 

considerable intra- and inter-individual variability and no correlation was observed between 

changes in relative blood volume and either blood pressure or the incidence of hypotension. 

We concluded that the critical level of reduction in relative blood volume, at which 

hypotension occurs, depend more on cardiovascular defence mechanisms, such as 

sympathetic drive.  

 

In chapter 4, we evaluated the effects of diffusive dialysis on the changes in relative blood 

volume during diffusive dialysis without ultrafilitration. During the first and second hour, 

relative blood volume was paradoxically increased. Thus, the detrimental effect of diffusive 
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dialysis may be caused by a decrease in vascular resistance, rather than by reduced plasma 

volume preservation.  

In chapter 5, we have compared  the effect of isotonic saline (0.9 %), glucose (5%), 

hypertonic (3%) saline, mannitol (20%) and glucose (20%) on RBV, as these infusions are 

most frequently used in order to prevent hemodynamic instability during dialysis. We 

observed that hypertonic glucose during dialysis results in a greater increase in relative blood 

volume than equal volumes of other solutions. As mannitol has the same osmolarity, molecule 

mass and charge, the greater increase in RBV following hypertonic glucose appears to be a 

specific effect, possibly related to a decline in vascular tone.  

 

In chapter 6, we studied the pathophysiology of hemodialysis related hypotension. In order to 

distinguish between dialysis related and patient related factors hypotensive dialysis sessions 

were compared with Lower Body Negative Pressure experiments. We observed that dialysis 

related hypotension did not result from an inability to maintain blood volume or from 

decreased cardiac filling. Hypotension appeared to result from the inability to increase 

arteriolar tone adequately and from a reduction in left ventricular function. Both vascular tone 

and left ventricular function appeared to be impaired by the dialysis procedure. 

 

In chapter 7, we observed that an increase in total peripheral resistance resulted in a decrease 

in relative blood volume. This indicates that the improved hemodynamic stability during 

hemodialysis through vasoconstriction can be accompanied by a decrease in relative blood 

volume. Part of the variability in blood volume as described in chapter 4 may be due to 

changes in arterial tone. A diminished vasoconstriction during diffusive dialysis could also 

explain the observed increase in relative blood volume, as observed in chapter 5. Moreover, it 

can be concluded that glucose, which increases relative blood volume more than equal 

amounts of mannitol or sodium, is paradoxically of less benefit in the prevention of dialysis 

hypotension. Therefore, during sodium profiling, the cardiovascular effect of sodium during 

on plasma refilling should be taken into account. 
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In chapter 8 we observed that patients that frequently experience episodes of hypotension 

during dialysis are also prone to develop hypotension during Lower Body Negative Pressure, 

which results from reduced myocardial contractile reserve and/or inadequate sympathetic 

tone. 
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Chapter 10 

 
Samenvatting en Conclusies 

Hoofdstuk 1 is een beknopte inleiding tot de physische aspecten en de technische uitvoering 

van hemodialyse. Factoren die kunnen bijdragen aan bloeddrukverlaging (hypotensie) in 

samenhang tot hemodialyse worden besproken. Uit de beschikbare literatuur konden wij 

vaststellen dat het voor de meeste factoren onbekend is of deze de bloeddruk tijdens 

hemodialyse verlagen via een verminderde vulling vanuit de extravasculaire ruimtes (plasma 

refilling) of door een ontoereikende reactie van het hartvaatstelsel op de door ultrafiltratie 

ontstane hypovolemie. Wij veronderstellen echter dat beide mechanismen elkaar kunnen 

beïnvloeden. Wij kwamen tot de conclusie dat meer kennis betreffende deze relatie absoluut 

noodzakelijk is voordat het kritisch volgen en bewaken van het bloedvolume, ter voorkoming 

van aan dialyse gerelateerde bloeddrukverlaging, klinisch kan worden toegepast. 

 

In hoofdstuk 2 hebben we een rekenkundig model ontworpen van de vloeistofstromen binnen  

de verschillende compartimenten tijdens gecombineerde hemodialyse, hemodialyse zonder 

ultrafiltratie en geïsoleerde ultrafiltratie. Hiermee analyseerden we de relatieve waarde van de 

factoren op de plasma refilling. We kwamen tot de conclusie dat de snelheid van ultrafiltratie, 

de grootte van het natrium gradiënt over de dialyse membraan en de verandering van de 

bloedstroom ter plaatse, de belangrijkste factoren zijn die in hoge mate de plasma refilling 

beïnvloeden. 

 

In hoofdstuk 3 is de reproduceerbaarheid bepaald met betrekking tot de verlaging van het 

relatieve bloedvolume gedurende de hemodialyse sessie. Dit is van wezenlijk belang voor de 

toepassing van bloedvolume regulering, omdat dan bij een eventueel kritisch niveau van de 

verlaging van het relatief bloedvolume de hypotensieve episode kan worden voorspeld. We 

hebben echter aanzienlijke intra-en interindividuele afwijkingen waargenomen. Er is ook geen 

correlatie gevonden tussen veranderingen in het relatieve bloedvolume en bloeddruk of het 

ontstaan van hypotensie. We zijn tot de conclusie gekomen dat het kritisch niveau van 

verlaging in bloedvolume, waarbij hypotensie ontstaat met name afhangt van de reactie van 

het hartvaatstelsel op de door ultrafiltratie ontstane hypovolemie. 
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In hoofdstuk 4 hebben we de effecten geëvalueerd van hemodialyse zonder ultrafiltratie op de  

veranderingen in relatief bloedvolume. Tijdens het eerste en tweede uur was het relatieve 

bloedvolume paradoxaal verhoogd. Dus, het schadelijke effect van diffunderende dialyse zou 

eerder veroorzaakt worden door een verlaging van de vasculaire bescherming dan door het in 

stand houden van een gereduceerd plasma volume. 

 

In hoofdstuk 5 hebben we het effect vergeleken tussen fysiologische zoutoplossing (0,9%), 

glucose (5%), hypertone zoutoplossing (3%), mannitol (20%) en glucose (20%) op het 

relatieve bloedvolume (RBV) omdat deze infusievloeistoffen het meest worden gebruikt om 

hemodynamische instabiliteit tijdens de dialyse te voorkomen. We hebben waargenomen dat 

hypertonisch glucose tijdens de dialyse in een grotere toename van het relatieve bloedvolume 

resulteerde dan een gelijk volume van de andere oplossingen. Alhoewel mannitol dezelfde 

osmolariteit, molecuul massa en elektrische lading heeft, blijkt de toename van het RBV met 

hypertone glucose groter te zijn, welke mogelijkerwijs gerelateerd is aan de verminderde 

capaciteit van glucose om de vaatweerstand te verhogen. 

 

In hoofdstuk 6 wordt de pathosfysiologie van hemodialyse gerelateerde hypotensie 

bestudeerd. Om een onderscheid te maken tussen hemodialyse gerelateerde en patiënt  

gerelateerde factoren, werden hypotensieve dialyse sessies vergeleken met experimentele 

situaties waarbij kunstmatig een hypovolemie werd gecreëerd zonder dat dialyse plaatsvond 

(Lower Body Negative Pressure).  Hypotensie bleek met name te worden veroorzaakt door 

het onvermogen om de arteriële vaatweerstand toereikend te verhogen en door een afname in 

de linker ventrikel functie.  

 

In hoofdstuk 7 hebben we waargenomen dat een verhoging van de totale perifere 

vaatweerstand resulteerde in een verlaging van het relatieve bloedvolume. Dit geeft aan dat de 

verbeterde hemodynamische stabiliteit tijdens de hemodialyse, door vasoconstrictie, gepaard 

kan gaan met een verlaging van het relatieve bloedvolume. Deels kan dus de variatie in 

bloedvolume, zoals beschreven in hoofdstuk 3, veroorzaakt worden door veranderingen in de 

arteriële vaattonus. Een verminderde vasoconstrictie tijdens dialyse zonder ultrafiltratie zou 

ook de waargenomen verhoging in relatieve bloedvolume kunnen verklaren, zoals aangegeven 
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in hoofdstuk 5. Bovendien kan worden vastgesteld dat glucose, dat het relatieve bloedvolume 

meer verhoogd dan gelijke delen mannitol of natrium, paradoxaal minder voordeel laat zien 

ter voorkoming van dialyse hypotensie. Om deze reden zou, tijdens Natrium-profiling 

rekening moeten worden gehouden met het cardiovasculair effect van natrium tijdens de 

plasma refilling.  

 

In hoofdstuk 8 hebben we vastgesteld dat patiënten die regelmatig perioden doormaken van  

hypotensie tijdens de dialyse, tevens neigen naar het ontwikkelen van hypotensie tijdens  

Lower Body Negative Pressure. 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 



 

Curriculum Vitae 

 

Robert Willem Nette werd op 7 september 1967 geboren te Vlaardingen.In 1986 behaalde hij 

het diploma Atheneum-B aan de christelijke scholengemeenschap "Groen van Prinsterer" te 

Vlaardingen. In hetzelfde jaar begon hij met de studie Geneeskunde aan de Erasmus 

Universiteit Rotterdam. Na een afstudeeronderzoek over onstabiele angina pectoris op de 

afdelingen Cardiologie en Klinische Besliskunde haalde hij in 1991 zijn doctoraal examen 

geneeskunde, gevolgd door zijn arts examen in 1993. In november van hetzelfde jaar werd hij 

opgeroepen voor zijn militaire dienstplicht die hij vervulde als eerste luitenant-arts in de regio 

Harderwijk-Ermelo als kazerne arts.  

Na de militaire diensttijd werd in 1995 begonnen als AGNIO neurologie in het Erasmus MC 

te Rotterdam. Van 1996 tot 1998 in de funktie van AGNIO Inwendige Geneeskunde in het 

Leyenburg Ziekenhuis in Den Haag. Vanaf 1998 begon hij als arts-onderzoeker bij de 

afdeling Inwendige Geneeskunde van het Erasmus MC te Rotterdam o.l.v.Dr.R.Zietse. Sinds 

2001 is hij in opleiding tot Internist bij de afdeling Inwendige Geneeskunde van het Erasmus 

MC(2001-2003) o.l.v. Prof.dr.H.A.P. Pols en bij de Reinier de Graaf Groep,locatie Delft o.l.v. 

Dr.E.Maartense (vanaf 2003 tot heden). 

 

 

 

 

 

 

 

 

 

 

 167



 

Nawoord 

 

De laatste pagina's van een proefschrift zijn altijd voor een dankwoord. Vroeger vond ik dat 

bij het lezen van een proefschrift een beetje onzin, mede door het feit dat het een soort 

formaliteit geworden is, zoals ook de bedankjes bij de oscaruitreiking mij nooit kunnen 

boeien. Nu ik bij het maken van het dankwoord het proefschrift nog eens aanschouw, zie ik 

echter dat ik veel mensen oprecht veel dank verschuldigd ben. Het zijn er zelfs zoveel dat ik 

niet iedereen persoonlijk kan bedanken en daarom beperk ik me tot de meest betrokkenen.  

 Als eerste bedank ik mijn promotor, Willem Weimar, met name voor het gestelde 

vertrouwen  Verder waren zijn commentaren altijd waardevol, waardoor  het proefschrift 

significant verbeterd kon worden. 

 Natuurlijk bedank ik mijn begeleider, Bob Zietse. Ik heb vooral geleerd dat het doen 

van goed onderzoek korte en scherpe vragen en antwoorden vereist. Dit lijkt heel simpel, 

maar het is datgene wat onderzoek juist zo moeilijk, maar ook uitdagend maakt. De in jou 

gewaardeerde scherpe humor zal dan ook niet snel overtroffen worden. Ik wil je echter vooral 

bedanken, omdat je bergen werk verzet hebt en je een sociaal bewogen man bent waarmee het 

plezierig is om mee te werken.  Ik ben er trots op de eerste te zijn die onder jouw begeleiding 

promoveert. Het is ook verheugend te noemen dat de onderzoeksactiviteiten naar de 

hemodynamische stabiliteit van de patiënt tijdens de hemodialyse behandeling in onze 

hemodialyse research unit (HRU) zeker gecontinueerd gaan worden. Hierbij wil ik dan ook 

mijn collega's van de HRU bedanken die mede aan mijn proefschrift gewerkt hebben.  

Harmen Krepel, toen ik in 1998 aan het onderzoek begon was het best eenzaam en verder had 

ik geen idee waar ik moest beginnen. Gelukkig was jij daar op dat moment, jij had al 

onderzoekservaring en was al bijna nefroloog. Jij hebt belangeloos alle energie in mij 

gestoken, en je was mijn mentor op de HRU. Verder hebben we heel wat afgelachen, zeker 

toen Han-Yo Ie onze HRU kwam versterken.   

Han-Yo, ik heb veel steun aan je gehad. Jij weet als geen ander dat promoveren op een dialyse 

onderwerp doorzettingsvermogen vereist, zeker gezien het feit dat uit het grootste deel van 

onze inspanning weinig tot niets concreets is gekomen. Niettemin is mijn proefschrift af en 
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schrijf jij nu wel hele mooie artikelen voor jou onderzoek. Het feit dat jij er altijd in geloofde, 

stimuleerde mij en ik wil je daar heel erg voor bedanken.  

Rene van den Dorpel wil ik natuurlijk ook bedanken, met name voor hoofdstuk zes en acht, 

waarvan een groot deel zijn inspanning is.  

Verder bedank ik Emin Akcahuseyin, onze klinisch fysicus, voor het doornemen van de vele 

mathematische formules. Je hebt me bijgebracht je door formules niet te laten afschrikken; ze 

helpen juist de huidige inzichten te verduidelijken. Dat is in dit proefschrift ook wel gebleken.  

De leden van de promotiecommissie bedank ik voor hun snelle commentaar op dit 

proefschrift.  

Verder wil ik de dialyseverpleging bedanken, die al die jaren mij hebben geholpen met 

bepaalde dialyseopstellingen en metingen, ook buiten hun werktijd.  

Veel dank ben ik verschuldigd aan de dialysepatiënten, die aan dit onderzoek hebben 

meegewerkt. Niet alle onderzoeken waren voor hen even leuk. Niettemin meldden de 

patiënten zich weer spontaan voor een nieuw onderzoek. Zonder hun bereidheid was dit 

onderzoek natuurlijk nooit tot stand gekomen. Tijdens die vijf jaar heb ik een aantal patiënten 

dan ook beter leren kennen en heb van hen veel geleerd hoe het is om chronisch ziek te zijn. 

Een les die voor een dokter van onschatbare waarde is.  

Als laatste wil ik natuurlijk mijn ouders bedanken. Met hun onvoorwaardelijke steun is het 

begonnen. Jullie hebben in mij geloofd vanaf het moment dat ik de cito toets op de lagere 

school moest doen. Een vak kiezen wat je leuk lijkt en doorzetten dan lukt het wel, was altijd 

jullie devies. Jullie hebben gelijk gehad, maar zonder jullie steun was dit nooit gelukt. 
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