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The Level Set Method of Joó and its Use in
Minimax Theory.

J.B.G.Frenk, G.Kassay

June 7, 2004

Abstract

In this paper we discuss the level set method of Joó and how to use
it to give an elementary proof of the well-known Sion’s minimax result.
Although this proof technique is initiated by Joó and based on the inter-
section of upper level sets and a clever use of the topological notion of
connectedness, it is not very well known and accessible for researchers
in optimization. At the same time we simplified the original proof of
Jóo and give a more elementary proof of the celebrated Sion’s minimax
theorem.

1 Introduction.

Let B andA be nonempty topological spaces and consider the functionf :
A×B → R. In this note we are interested under which conditions the minimax
inequality

r∗ := supa∈A infb∈B f(a,b) = infb∈B supa∈A f(a,b) := r∗ (1)

holds. This equality plays a prominent role in game theory (cf.[13]) and duality
theory in optimization (cf.[14], [6]). Actually we will give an elementary proof
of the celebrated Sion’s minimax theorem by using the level set method of Joó.
In [8] a proof of Sion’s minimax theorem is given using this approach and in
this note we will simplify this proof.

2 An elementary proof of Sion’s minimax theorem avoid-
ing the KKM lemma.

For f : A × B → R a bifunction withA andB nonempty topological spaces
we introduce for everya ∈ A andb ∈ B the related functionsGa : B → R
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andFb : A → R given by

Ga(b) = Fb(a) := f(a,b). (2)

In this note we are interested in proving Sion’s minimax theorem by an el-
ementary method and avoiding the less elementary KKM lemma used in the
original proof given by Sion (cf.[12]). It is easy to see using the definition of
r∗ andr∗ that alwaysr∗ ≤ r∗ and so forr∗ = −∞ we obtain immediately
r∗ = r∗. Therefore we always assume thatr∗ > −∞. To initiate the so-called
level set method, introduced by Joó in [7], we introduce for everyr ∈ R and
b ∈ B the upper level setU(Fb, r) ⊆ A of the functionFb : A → R, given
by

U(Fb, r) := {a ∈ A : Fb(a) ≥ r}. (3)

The following result is shown in [7] and [8] and is the starting point of the
so-called level set method.

Lemma 1 It follows thatr∗ = r∗ if and only if∩b∈BU(Fb, r) 6= ∅ for every
r < r∗.

Proof. If r∗ = r∗ > −∞, then for everyr < r∗ = r∗ there exists by the
definition of r∗ somea0 ∈ A satisfying infb∈B f(a0,b) > r. This shows
that a0 belongs to the intersection∩b∈BU(Fb, r) and so∩b∈BU(Fb, r) is
nonempty. To verify the reverse implication it is sufficient to verify thatr∗ ≥
r∗ or equivalentlyr∗ > r∗ − ε for everyε > 0. Consider nowr := r∗ − ε
for someε > 0. By our assumption it follows that∩b∈BU(Fb, r) is nonempty
and so there exists somea0 ∈ A satisfyinginfb∈B f(a0,b) ≥ r. This implies
r∗ ≥ r and so the proof is completed. �

By the above lemma we need to show that the intersection∩b∈BU(Fb, r)
is nonempty for everyr < r∗. For arbitrary bifunctionsf this result does not
hold and so we must impose some conditions onf. Before defining the proper
class of bifunctions we introduce some facts well-known within topology. For
X a subset of a topological space with topologyF andS ⊆ X the setS is
called open inX if there exists some setO belonging toF with S = X ∩ O.
The topology generated in this way is called the relative topology induced by
X and with this topology the setX is a topological space. We now introduce
the well-known notion of connectedness (cf.[5]).

Definition 2 For any topological spaceX a nonempty setC ⊆ X is called
connected, if for any two disjoint setsCi, i = 1, 2 satisfyingC = C1 ∪C2 and
Ci, i = 1, 2 open inC it follows thatC1 or C2 is empty.
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In the next definition we introduce the following class of functions already
studied within optimization theory (cf.[9]). Observe in [9] the next class of
functions is given a different definition, but as shown in Lemma 4 we are actu-
ally considering the same class of functions.

Definition 3 If X is a topological space, the functionh : X → R is called
connected if for everyx1,x2 ∈ X there exists a connected setCx1x2 ⊆ X
containingx1,x2 such that

h(x) ≤ max{h(x1), h(x2)}

for everyx ∈ Cx1x2 .

If X is a topological vector space (cf.[4]) the interval[x1,x2] := {αx1 +
(1−α)x1 : 0 ≤ α ≤ 1} is connected inX and so the above definition includes
as a special case the set of quasiconvex functions (cf.[3]). As for quasiconvex
functions it is easy to show the following result. Although the proof uses stan-
dard arguments from topology, we will list the proof for completeness.

Lemma 4 The functionh : X → R is connected if and only if for everyr ∈ R
the lower level setL(h, r) := {x ∈ X : h(x) ≤ r} is connected.

Proof. To show that the lower level sets are connected, consider some lower
level setL(h, r) with x1 belonging toL(h, r) and letx2 be another arbitrary
point belonging toL(h, r). Since the functionh is connected there exists some
connected setCx1x2 ⊆ X containingx1,x2 such that

h(x) ≤ max{h(x1), h(x2)}

for everyx belonging toCx1x2 . This showsCx1x2 ⊆ L(h, r) and sincex2 is
an arbitrary element ofL(h, r) we obtain

∪x2∈L(h,r)Cx1x2 = L(h, r). (4)

By construction the intersection∩x2∈L(h,r)Cx1x2 contains the vectorx1 and
since for everyx2 ∈ L(h, r) the setCx1x2 is connected also∪x2∈L(h,c)Cx1x2

is connected (cf.[5]). Applying now relation (4) shows the desired result. To
prove the reverse implication, consider some arbitraryx1,x2 ∈ X and intro-
ducer = max{h(x1), h(x2)}. Take now the setCx1x2 equal to the connected
setL(h, c) and this set satisfies the desired property. �

As already observed the above class of connected functions coincides with
the class of the so-called LE-connected functions discussed by Martin (cf.[9]).
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Actually this class is more general than the class of functions studied by Avriel
and Zang (cf.[2], [3]). In [2] and [3] a similar definition as done above is given
with the additional condition that the setCx1x2 is an arc-wise connected set.
Finally, we like to mention that the class of connected functions withCx1x2

is an arc-wise connected set were first introduced by [10] in an attempt to
generalize the properties of quasiconvex functions. In order to prove our main
lemma we also introduce the following class of functions.

Definition 5 If X is a topological space, the collection of functionshγ : X →
R, γ ∈ Γ is called equiconnected if for everyx1,x2 ∈ X there exists a con-
nected setCx1x2 ⊆ X containingx1,x2 such that

hγ(x) ≤ max{hγ(x1), hγ(x2)}

for everyx ∈ Cx1x2 andγ ∈ Γ.

If the setX is a topological vector space and for everyγ ∈ Γ the function
fγ is quasiconvex, then by takingCx1x2 = [x1,x2] it follows immediately
that the collection of functionsfγ , γ ∈ Γ is equiconnected. Using now some
properties of connectedness straightforward from the definition, the main result
of this note is easy to show. The proof of this result is inspired by a similar
proof as given in [8] with some nontrivial simplifications. Before mentioning
this result we denote byF(B) the set of all finite subsets onB, while the
functionFJ : A → R, J ∈ F(B) is given by

FJ(a) := minb∈J Fb(a). (5)

Also recall that a function is called lower (upper) semicontinuous if its lower
(upper) level sets are closed (cf.[1]).

Theorem 6 If the functionsFb,b ∈ B, respectivelyGa,a ∈ A, are upper
(lower) semicontinuous, the function−FJ is connected for everyJ belonging
toF(B) and the collection of functionsGa,a ∈ A, is equiconnected, then for
everyr < r∗ andJ ∈ F(B) the intersection∩b∈JU(Fb, r) is nonempty.

Proof. If J is a subset ofB consisting of one element, the result clearly holds
by the definition ofr∗ listed in relation (1). Suppose now for all setsJ belong-
ing toF(B) and consisting of at mostk elements that

∩b∈JU(Fb, r) 6= ∅ (6)
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for everyr < r∗. To prove the result for all setsJ belonging toF(B) con-
sisting of at mostk + 1 elements we assume by contradiction that there exists
some setJ0 := {b0, ...,bk} ⊆ B and somer0 < r∗ satisfying

∩k
i=0U(Fbi

, r0) = ∅ (7)

Since the collection of functions(Ga)a∈A is equiconnected, one can find for
the pointsb0,b1 some connected setCb0b1 containingb0 andb1 and satisfy-
ing

f(a,b) ≤ max{f(a,b0), f(a,b1)} (8)

for everyb ∈ Cb0b1 anda ∈ A. Introduce now the set valued mappingΦr :
Cb0b1 → 2A, given by

Φr(b) := {a ∈ A : minβ∈{b2,....,bk,b} Fβ(a) ≥ r} (9)

Since the functiona → −minβ∈{b2,....,bk,b} Fβ(a) is quasiconnected and the
functionsFb are upper semicontinuous for everyb it follows by relation (9)
that the setΦr(b) is connected and closed for everyb belonging toCb0b1 and
r < r∗. Moreover, by the induction hypothesis, listed in relation (6), we obtain
thatΦr0(b) is nonempty for everyb ∈ Cb0b1 and by relations (8) and (9) that

Φr0(b) ⊆ Φr0(b0) ∪ Φr0(b1) (10)

for everyb ∈ Cb0b1 . Also by relations (7) and (9) it follows thatΦr0(b0) ∩
Φr0(b1) = ∅ and so the nonempty sets

Si := {b ∈ Cb0b1 : Φr0(b) ⊆ Φr0(bi)}, i = 0, 1 (11)

are disjoint and satisfyS0 ∪ S1 ⊆ Cb0b1 . To show thatS0 ∪ S1 = Cb0b1

consider for anyb ∈ Cb0b1 the closed sets

Ai := Φr0(b) ∩ Φr0(bi), i = 0, 1.

By relation (10) we obtain thatA1 ∪ A2 = Φr0(b) and sinceΦr0(b) is con-
nected it must follow thatA0 or A1 is empty. Hence by relation (10) either
Φr0(b) ⊆ Φr0(b1) orΦr0(b) ⊆ Φr0(b0) and so the pointb belongs toS0∪S1.
This means that the nonempty setsS0, S1 satisfy

S0 ∪ S1 = Cb0b1 andS0 ∩ S1 = ∅. (12)

We will now show that the setsS0 andS1 are open. Letb∗ be an arbitrary
element belonging toS0. By our induction hypothesis we know that the set
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Φr(b∗) is nonempty for everyr < r∗ and this implies by the definition of
Φr(b∗) that

supa∈A infb∈{b2,...,bk,b∗} f(a,b) ≥ r

for everyr < r∗.This implies

supa∈A infb∈{b2,...,bk,b∗} f(a,b) ≥ r∗ > r0

and so one can find somea0 ∈ ∩k
i=2U(Fbi

, r0) satisfying

f(a0,b∗) > r0 (13)

By the lower semicontinuity of the functionb → f(a0,b) and relation (13)
there exists some neighborhoodU(b∗) of b∗ such thatf(a0,b) > r0 and so

a0 ∈ Φr0(b) (14)

for everyb belonging toU(b∗). Sinceb∗ ∈ S0 and soΦr0(b
∗) ⊆ Φr0(b0) it

follows by relation (14) that

a0 ∈ Φr0(b) ∩ Φr0(b0)

for every b belonging toU(b∗) ∩ Cb0b1 . This shows by relation (12) that
Φr0(b) ⊆ Φr0(b0) for everyb belonging toU(b∗) ∩ Cb0b1 or equivalently

U(b∗) ∩ Cb0b1 ⊆ S0.

Sinceb∗ ∈ U(b∗) ∩ Cb0b1 is a set open inCb0b1 andb∗ ∈ S0 arbitrary this
shows that

S0 = Cb0b1 ∩ (∪b∗∈S0U(b∗))

and so the setS0 is open inCb0b1 . Similarly one can verify that the setS1

is open inCb0b1 and by relation (12) andCb0b1 connected it must follow
that eitherS0 or S1 is empty. Since by relation (11) the pointbi belongs to
Si, i = 0, 1 this yields a contradiction and the proof is completed. �

Applying now Lemma 1 we immediately deduce from Theorem 6 the fol-
lowing result.

Theorem 7 If the conditions of Theorem 6 hold and the setB is finite, then it
follows that

minb∈B supa∈A f(a,b) = supa∈A minb∈B f(a,b).

Moreover, ifB is an infinite set, we obtain

infb∈B supa∈A f(a,b) = infJ∈F(B) supa∈A minb∈J f(a,b).
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Proof. The first formula is an immediate consequence of Lemma 1 and Theo-
rem 6. To verify the second formula we observe that

infb∈B supa∈A f(a,b) = infJ∈F(B) minb∈J supa∈A f(a,b).

Applying now the first part yields the desired result. �

To give a proof of Theorem 9 we first need to verify the following standard
result.

Lemma 8 If the topological spaceA is compact set and the functionsfb are
upper semicontinuous for everyb ∈ B, thenmaxa∈A infb∈B f(a,b) is well
defined and

infJ∈F(B) supa∈A minb∈J f(a,b) = maxa∈A infb∈B f(a,b)

Proof. Since the functionFb is upper semicontinuous for everyb ∈ B we
obtain thatp(a) := infb∈B f(f(a,b) is upper semicontinuous onA and so by
the Weierstrass-Lebesgue lemma (see Corollary1.2 of [1]) andA compact the
functionp attains its maximum onA. This shows thatmaxa∈A infb∈B f(a,b)
is well defined and to check the equality it is sufficient to verify that

α := maxa∈A p(a) ≥ infJ∈F(B) maxa∈A minb∈J h(x, y) := β.

If we assume by contradiction thatα < β there exists some finiteγ satisfying
α < γ < β and this implies by the definition ofα that

∩b∈B{a ∈ A : f(a,b) ≥ γ} = ∅. (15)

SinceA is compact andfb upper semicontinuous onA for everyb ∈ B we
obtain that the set{a ∈ A : f(a,b) ≥ γ} is compact for everyb ∈ B and by
relation (15) and the finite intersection property of compact sets (cf.[11]) we
obtain for someJ0 ∈ F(B) that

∩b∈J0{a ∈ A : f(a,b) ≥ γ} = ∅.

This impliesminb∈J0 f(a,b) < γ for every a ∈ A and by the first part
maxa∈A infb∈B f(a,b) < γ < β. This contradicts the definition ofβ and
soα ≥ β. �

By Applying Lemma 8 and Theorem 7 one can show the following result,
which contains as a special case Sion’s minimax theorem. In Sion’s minimax
theorem it is additionally assumed that the setsA andB are convex, while the

7



functionsGa are quasiconvex for everya ∈ A andFb are quasiconcave for
everyb ∈ B. This implies using Lemma 1 that the function−FJ is connected
for everyJ belonging toF(B) and the collection of functionsGa,a ∈ A is
equiconnected.

Theorem 9 If the conditions of Theorem 6 hold and the setA is a compact
topological space, then it follows that

minb∈B supa∈A f(a,b) = supa∈A minb∈B f(a,b).

Proof. SinceA is compact andFb is upper semicontinuous for everyb ∈ B
we obtain by Lemma 8 that

infJ∈F(B) supa∈A minb∈J f(a,b) = maxa∈A infb∈B f(a,b) (16)

and applying Theorem 7 yields the desired result. �

Actually by standard arguments one can slightly weaken the condition that
A is a compact topological space by replacing the compactness assumption
by the condition that there exists some setJ ∈ F(B) such that every upper
level set of the functionFb is compact. Hence instead of assuming thatA is
compact we assume that for everyr ∈ R the set∩b∈J{a ∈ A : f(a,b) ≥ r}
is compact for everyr ∈ R. This extension also covers as a special case duality
results for convex programming problems with an interior point in its feasible
region (Slater’s condition).

3 Conclusion.

In this paper we have given an elementary proof of the important Sion’s min-
imax result by means of the so-called level set method of Joó. Although a
related proof already appeared in [8] we have simplified this proof and tried to
make it accessible for operations researchers. As observed Sion minimax theo-
rem can be used to prove the duality results in convex programming. From the
proof of the main lemma it should be clear that the only properties of convex
sets which are important in this proof are the observation that any intersection
of convex sets is again convex and every convex set is connected. It also shows
that Sion’s minimax result is actually a topological result based on connect-
edness and so the duality results in convex optimization theory can be seen as
topological results.
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