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EQUILIBRIUM CONSTRAINED OPTIMIZATION PROBLEMS

Ş. İ. B İRBİL
�
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�
, J.B.G. FRENK

�
and G. STILL

�
November 10, 2003

ABSTRACT. We consider equilibrium constrained optimization problems, which have a general for-
mulation that encompasses well-known models such as mathematical programs with equilibrium con-
straints, bilevel programs, and generalized semi-infinite programming problems. Based on the cele-
brated ����� lemma, we prove the existence of feasible points for the equilibrium constraints. More-
over, we analyze the topological and analytical structure of the feasible set. Alternative formulations
of an equilibrium constrained optimization problem (ECOP) that are suitable for numerical purposes
are also given. As an important first step for developing efficient algorithms, we provide a genericity
analysis for the feasible set of a particular ECOP, for which all the functions are assumed to be linear.

KEYWORDS. equilibrium problems, existence, mathematical programs with equilibrium constraints,
problems with complementarity constraints, bilevel programs, generalized semi-infinite programming,
genericity

1. INTRODUCTION

An equilibrium constrained optimization problem (ECOP) is a mathematical program, for which
an embedded set of constraints is used to model the equilibrium conditions in various applications.
This equilibrium concept corresponds to a desired state such as the optimality conditions for the
inner problem of a bilevel optimization model, the Nash equilibrium of a game played by rational
players, and so on. For an introduction to ECOP and many applications, we refer to [14].

This paper is concerned with the analysis of some structural properties of an ECOP. In order to
pursue this analysis, we frequently use standard terms from generalized convexity and set valued
analysis. For an unfamiliar reader, we have added an appendix section (Appendix A) that reviews
the definitions of these terms and we refer to this section in our subsequent discussion.

Let
�	��
��������
����	��
�����������


be real valued functions and  ��
!�	"�
�
a set valued

mapping with closed values. A general form of an ECOP is now given by

(1.1)

#%$'&(�) * ��+-,.�0/21
s.t

+-,.�0/21�354/63  +7,81�+-,.�0/9�0:;1=<?>2�A@9:63  +-,91
�
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2 EQUILIBRIUM CONSTRAINED OPTIMIZATION PROBLEMS

where
,53E
��F�0/9�0:63G
��

and the set
4IHJ
������

is a closed nonempty set. The constraints

(1.2)
�+-,.�0/9�0:;1K<L>2�M@8:63  +7,81N�

depending on the parameter
,

and
/

, are called the parametric equilibrium constraints. For nota-
tional convenience, we now introduce the so-called graph

+  1 (see [2]) of the set valued mapping
 given by

graph
+  1��PORQ�+-,.�0/21=3G
 ����� ��/M3  +7,81TS

and the set U HJ
������ defined by

U �POIQ�+-,.�0/21�3E
 ���V� ���+-,.�0/9�0:;1K<L>2�M@8:63  +7,81NS�W
This notation allows us to denote the feasible set of (1.1) by

(1.3) X �POY4[Z U Z graph
+  1\W

Hence, we can rewrite the ECOP as follows

(1.4)
#]$'&(�) * ��+-,.�0/21
s.t

+7,V�^/;1K3 X W
A frequently used instance of (1.2) arises when  +7,81 is a closed convex set for every

,
, and the

function
�

is given by

(1.5)
�+-,.�0/9�0:;1=�PO`_7:bac/8��dA+-,.�0/210e\W

The parametric equilibrium constraints associated with the function
�

in (1.5) and the closed convex
set  +-,81 , are called the (parametric) Stampacchia variational inequalities. Moreover, it is well-
known (see [9]) that if the function

/f�gdA+-,V�^/21
in (1.5) is pseudomonotone (see Definition A.1),

then the function
�

can be replaced by

(1.6)
�+-,.�0/9�0:;1=�PO`_7:bac/8��dA+-,.�0:;10eNW

Accordingly, the parametric equilibrium constraints defined by the function
�

in (1.6) are known
as the (parametric) Minty variational inequalities. Notice that in the literature an ECOP is called
a mathematical program with equilibrium constraints (MPEC) when

�
has the form (1.5). In this

paper we have chosen the more general form (1.2) so that in addition to MPECs, our model also
includes bilevel programs and semi-infinite problems.

In Section h of this paper we investigate under which sufficient conditions on the set valued
mapping  and the function

�
, the set U Z graph

+  1 is nonempty. In Section i we then study
under which conditions on  and

�
, the set U Z graph

+  1 is closed and convex. In Section j we
derive different formulations of an ECOP as a nonlinear programming problem. We are especially
interested in formulations, which are suitable for numerical purposes. Finally, in Section k we give
a genericity analysis for the structure of the feasible set of a linear ECOP (where all the problem
functions are linear). This genericity analysis constitutes the first step towards developing efficient
algorithms.
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2. EXISTENCE OF FEASIBLE SOLUTIONS

In this section we are interested in some sufficient conditions, which guarantee that the equilib-
rium constraints, given by the set U Z graph

+  1 , contain feasible points. By the definition of the
sets U and graph

+  1 , it is clear that U Z graph
+  16lO�m if and only if there exists some

,L3L
n�
such that o +p�.�  +-,9101q�rOIQs/M3  +7,81=�t�.+7,V�^/8�^:�1K<L>u�6@9:A3  +-,81NSAlOvm2W
From now on, we fix

,
arbitrarily, define w 3yxq�

by w �PO  +-,91 and
� ( �z
���{� 


by� ( +7/9�0:;1f�PO|�+7,V�0/9�^:�1 , and assume that w is nonempty and convex. Recall that by our general
assumption in Section 1, the set w is also closed. First observe that

(2.1)

o +p� ( � w 1nOvZ�}�~�����+-:;1
where the set valued mapping

��� w " w is defined by

(2.2)
��+-:;1=�rO�Qs/M3 w ��� ( +-/9�0:;1=<L>;S�W

In order to prove that the set

o +�� ( � w 1 is nonempty, we will apply to relation (2.1) the celebrated

 	 	� lemma discussed in the Appendix. If we additionally know that the set
��+-:;1

is convex for
every

:M3 w (this holds if the function
/]��� ( +-/9�0:;1 is quasiconcave (see Definition A.2) for every:f3 w 1 , then the  5 	� lemma is a direct consequence of the separation result for disjoint closed

convex sets in a finite dimensional vector space, and for this special case one can actually prove
a stronger result. Since this is not well-known, an elementary proof of this stronger result is also
listed in the Appendix B.

The proof of the next result follows immediately from Definition A.3 and A.4.

Lemma 1. If the set valued mapping
�

is given by relation (2.2), then the following conditions are

equivalent:

(1) The function
� ( ��
��^����


is properly quasimonotone (see Definition A.3) on w W
(2) The mapping

�
is a KKM-mapping (see Definition A.4).

In general it is difficult to verify that the function
� ( is properly quasimonotone, or equivalently

(see Lemma 1), that
�

is a KKM-mapping. Therefore, a sufficient condition involving a well-known
function class is given in the next lemma.

Lemma 2. If the function
� ( ��
������


satisfies
� ( +-/9�0/21c<�> for every

/�3 w and
:R�

� ( +7/9�0:;1 is quasiconvex (see Definition A.2) on w for every
/�3 w � then the function

� ( is properly

quasimonotone on w W

Proof. Let
Q�:�����W'W�W'�0:��tSfH w be given. Since the function

:c��� ( +7/8�^:�1 is quasiconvex on w for
every

/M3 w it follows for every
/M3 w that

#A��� �T�9�-���!� ( +-/9�0:���1nO #]��� }�~����N� �^}N¡ )r¢r¢r¢r) }T£\¤^¥ � ( +-/9�0:;1
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and this implies, using
� ( +-/9�^/;1�<L> for every

/M3 w � that

#A��� �N�8�7�9� � ( +-/9�0: � 1FO #A��� }�~����\� �^} ¡ )r¢r¢r¢r) }T£\¤0¥ � ( +7/9�0:;1�<L>
for every

/
belonging to ¦�§ +�Qs:��¨��W'W'W��^:��tS¨1\W Therefore we obtain that

$�&2© * ~����\� �^}T¡ )r¢r¢r¢r) }�£\¤^¥ #A��� �T�9�-��� � ( +7/8�^: � 1=<L>
and the result is verified. ª

As an immediate consequence of Lemma 1 and Theorem B.3 (or B.4) of the Appendix, we now
have the following result.

Theorem 1. Let
/6��� ( +7/8�^:�1 be upper semicontinuous (see Definition A.5) for every

:M3 w , then

the following statements hold:

(1) If the function
� ( is properly quasimonotone on w , then for every finite set

Qs: � ��W'W�W'�0: � S�H w
we have

¦\§ +«Qs: � ��¬s¬�¬��0: � S¨1�ZGZ ���� ��+7: � 1�lOvm;W
(2) If additionally the function

/f�®� ( +-/9�0:;1 is quasiconcave on w for every
:¯3 w , then the

function
� ( is properly quasimonotone if and only if for every finite set

Qs: � �sW�W'W��^: � SGH w
we have

¦\§ +«Qs:�����¬s¬�¬��0:���S¨1�ZGZ ���� ��+7:���1�lOvm;W

Proof. Since
/°��� ( +-/9�^:�1 is upper semicontinuous for every

:°3 w , all its upper level sets are
closed. In combination with

� ( being properly quasimonotone, this implies by Lemma 1 that
�

is
a KKM mapping with closed values. Applying now Theorem B.3 yields the first part. To show the
second part we observe that the quasiconcavity of the function

/]��� ( +-/9�^:�1 on w for every
:63 w ,

ensures that the set valued mapping
�

has convex values. Applying now Theorem B.4 shows the
second part. ª

By the above result, we know that every finite intersection
Z }�±�~�� ��+-: � 1

, is nonempty. To show
that the intersection

Z }�~�� ��+7:�1
is also nonempty (or equivalently,

o +�� ( � w 1?lO²m
), we need to

impose a compactness-type assumption.

Theorem 2. Suppose there exist some compact sets ³ H w and ´ H w satisfying

(2.3) $'&;© }�~�µ � ( +7/8�^:�1K¶J>
for every

/f3 w¸·�´ W If the function
/E�¹� ( +-/9�0:;1 is upper semicontinuous for every

:f3 w and
� (

is properly quasimonotone on w , then the set

o +p� ( � w 1 is nonempty.

Proof. Since there exist compact sets ³ H w and ´ H w satisfying $�&;© }�~�µ � ( +-/9�0:;1K¶�> for every/63 w¸·�´ we obtain that the set valued mapping
�

given by relation (2.2) satisfies

(2.4)
Z!}�~�µ���+7:�1nO�Qs/M3 w � $'&;© }�~�µ�� ( +-/9�0:;1=<L>;S�H ´ W
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Moreover, using
/?�º� ( +-/9�0:;1 is upper semicontinuous for every

:Y3 w � we obtain that
�

has
closed values and so by relation (2.4) the set

Z }�~�µ ��+-:;1
is a closed subset of a compact set and

hence compact. This implies that the mapping
��� w¸·�³ " w given by

��+-:;1nOY��+7:�1VZ	+�Z }�~�µ ��+7:�1^1
has compact values. Since

Z!}�~��»��+7:�1»O¼Z }�~��.½�µ ��+-:;1
, it is now sufficient by the finite intersection

property of compact sets (see [15]) applied to the collection
Q ��+7:�1b�u:¾3 w¸·�³ S to verify that the

intersection
Z ���� ��+7:���1 is nonempty for every finite collection

Qs:��¨�s¬�¬�¬V�0:��tS�H w¸·�³ . To show this,
let
Qs:��¨�s¬�¬s¬��0:��tS6H w¸·�³ be given and consider an arbitrary finite set

Q�:t� � ����¬s¬�¬��0:�� ��¿ SMH ³ . By
Theorem 1, it follows that

¦\§ +«Qs: � �sW�W'W'�0: � ��¿ S¨1�Zc+pZ � ��¿�'.� ��+-: � 101zlOvm2�
and since

Qs: � �s¬�¬s¬��0: � ��¿ S¸H ³¼À Qs: � ��¬s¬�¬��0: � S , this implies that

(2.5)
Z � ��¿��V� � �¨Á +-: � 1zlO¼m

where Á +7:�1K�rOY��+-:;1VZ	+pZ ��'.� ��+-:���1�Z ¦�§ + ³vÀ Qs:�����¬s¬�¬��^:��tS¨1^1NW
Since the set ³ is compact, the set ¦\§ + ³�À Qs: � �s¬�¬�¬��^: � S¨1 is also compact, and hence for every:�3 ³ , the nonempty set Á +7:�1 is compact. Using now again the finite intersection property for
compact sets applied to the collection

Q Á +7:�1���:63 ³ S , we obtain by relation (2.5) that

+�Z ���.� ��+7:���1^1�Z ¦\§ + ³vÀ Q�:��¨��¬s¬�¬��^:��tS¨1FOvZ�}�~�µ Á +7:�1�lOYm;�
and we have verified the desired result. ª
Remark 1. If the set w is compact, then clearly the compactness-type assumption listed in rela-

tion (2.3) is trivially satisfied by taking ´ O ³ O w , and so this condition is only nontrivial for

a noncompact, convex and closed set w . Moreover, it is straightforward to see that the typical

compactness-type condition used in the literature (see [8] and references therein) does imply rela-

tion (2.3). Actually, this compactness-type condition is a generalization of a similar condition for
�

given by (1.5) (see [12]).

Before we conclude this section, we can illustrate our feasibility results on the Stampacchia
variational inequalities. It is clear that the function

:%��� ( +7/9�0:;1 in (1.5) is linear and the condition� ( +7/9�0/21Â<Ã> holds. Thus, by Lemma 2,
� ( is a properly quasimonotone function. We make the

common assumptions as in the literature (see [8, 7]) and suppose that for an arbitrary
,

, the function/5�ÄdA+-,V�^/21
is continuous and the set valued mapping  has compact convex values (or assume

that the compactness-type condition (2.3) holds, see Remark 1). Then, as a direct consequence of
Theorem 2, we state that there exists a feasible solution for the Stampacchia variational inequality
problem. As a last note, it is well-known in the variational inequality literature that compactness-
type assumptions can be further relaxed by imposing additional assumptions on the function

d
(see

[8]).
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3. STRUCTURE OF THE FEASIBLE SET

Recall from (1.3) that the feasible set of an ECOP is given by

X Ov4[Z U Z graph
+  1NW

In this section we analyze the topological structure of X in order to state some conditions under
which the intersection U Z graph

+  1 is closed and convex. We first start with stating the conditions
for closure.

Lemma 3. If the set valued mapping  is closed (see Definition A.6) and lower semicontinuous

(see Definition A.8), and the function
�

is upper semicontinuous, then the set U Z graph
+  1 is

closed.

Proof. Since the set graph
+  1 is closed by hypothesis, it is sufficient to show that the set U is

closed. Let
+-, � �^/ � 1 belong to U and suppose

+-, � �0/ � 1 converges to
+7,V�^/;1\W

Choose any element:Y3  +-,91 . Since  is lower semicontinuous it follows that one can find some sequence
: � 3

 +-, � 1 converging to
:

. Hence,
�+-, � �^/ � �0: � 1q<¼> and by the upper semicontinuity of

�
we obtain

that
�+-,.�0/9�0:;1]<Ã>uW

Since
:

is an arbitrary element of  +-,91 this implies that
+7,V�0/21%3 U and the

result is proved. ª
In the next counterexample we illustrate that the condition for  being lower semicontinuous is

crucial in the above result.

Example 1. Consider the ECOP with
�+-,V�^/9�0:;1bOÅ+7:6a°/21

,  +7,81¸OÆQtÇ�S À Q�:[�FaK,?ÈÃ:[ÈÉ>;S
where

,V�^/8�^:63f

. Then the equilibrium constraints

:bac/6<L>u��@9:A3  +-,81 lead to the conditionaK, < /
for
,¯<J>

ÇÊ< /
for
,¯¶J>

So the points in
Q�+-,.�0/21q�t,¯OR>2�^>M¶�/GÈ�Ç�S

are boundary points of U but do not belong to U and

also the set U Z graph
+  1 is not closed:

U Z graph
+  1FORQ�+-,V�saK,81=��,¯<J>2S À Q�+-,V�sÇ�1���,f¶L>2S�W

Let now  be defined explicitly by

(3.1)  +-,91nORQ�:63E
 � ��ËA+7,V�^:�1=È?>;St�
where

Ë|�V
������|�Ì
!Í
is a continuous function and

:	�ÌËA+-,.�0:;1
is convex for every

,�3J
F�
.

Clearly, the graph of  becomes

(3.2) graph
+  1FO�Qt+7,V�^:�1���:63  +-,91TS�O�Qt+-,.�0:;1=��ËA+7,V�0:;1=È?>;StW

In this case, the set valued mapping  has closed convex values. In the next result we specify
sufficient conditions for  to be lower semicontinuous.

Lemma 4. Let the function
Ë²�n
!�����¹�Î
!Í

be continuous, and assume that
:?�ÎËA+-,.�0:;1

is

convex. If the set  6Ï +-,91z�PO�Q�:¯3[
�|�uËA+7,V�0:;1�¶I>;S is nonempty for every
,Ð3[
!�

, then the set

valued mapping  is lower semicontinuous.
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Proof. We will first show that the set valued mapping  �Ï is lower semicontinuous. Fix
,v3¼
F�

and consider an arbitrary sequence
, � converging to

,
. For any

:E3  6Ï +7,81 it follows by definition
that

ËA+-,.�0:;1%¶�>
and by the continuity of

Ë
this implies that there exists some ÑVÏ 3°Ò such thatËA+7, � �^:�1�¶y> for every Ñ < Ñ�Ï W Hence it holds that

:¼3  6Ï +7, � 1 for every Ñ < Ñ�Ï and so by
taking

: � OÓ: for Ñ < Ñ�Ï we have verified that  6Ï is lower semicontinuous. Since the function:M�²ËA+-,.�0:;1
is convex for every

,c3	
!�
and  AÏ +7,81 is nonempty we obtain for every

: Ï 3  AÏ +7,81
and

:¼3  +-,91 that the convex combination
:tÔ��POÖÕu: Ïz× +«Çba�Õ81�: belongs to  Ï +7,81 for every>%¶�ÕG¶YÇ

. This implies that ¦�Ø +  Ï +-,81^1»O  +-,91NW Using now that lower semicontinuity is preserved
under taking closures we obtain that the set valued mapping  is lower semicontinuous. ª

Next we study the convexity of the feasible set X . We assume that graph
+  1 is convex and for

the convexity of the set U , we prove the following result.

Lemma 5. If the set valued mapping  is concave and convex, and the function
�

is quasiconcave,

then the set U Z graph
+  1 is convex.

Proof. The set graph
+  1 is convex from the hypothesis. It is now sufficient to show that the set

U is convex. Let
+-, � �^/ � 1\�s+-, � �^/ � 1�3 U and for

ÕR3Ã+p>2�sÇ�1
define

, Ô �POÅÕ2, � × +«Çba?Õ81�, � and/ Ô �rOYÕ2/ � × +0Ç.aEÕ�1«/ � . Since the set-valued mapping  is concave, it follows for every
:63  +-, Ô 1

that there exists some
: � 3  +-, � 1 and

: � 3  +-, � 1 , such that:%OYÕu:�� × +0Çqa[Õ�1«: � W
As a direct consequence of

�
being quasiconcave, we have�+-, Ô �^/ Ô �0:;1�< #]$'& Q¨�+-, � �^/ � �^: � 1\���+-, � �^/ � �^: � 1^1N�\S¸<?>

Since
:

is an arbitrary element of the set  +-,�Ô�1 , we conclude that
+7,9Ô��0/tÔt1

belongs to U . ª
Notice that the conditions of Lemma 5 are rather strong. However, these assumptions are sat-

isfied for certain applications. The following cases illustrate some applications, where  is both
concave and convex.

Ù The mapping  is constant, i.e.,  +7,81qO w �!@8, . Then it is immediately clear that the set
valued mapping is concave and convex.Ù Let  be defined by

 +7,81=�PORQ�:63f
 � ��ËA+-:ÂacÚÛ,81=È?>;StW
where

ËÓ�;
 � �²
 Í
is convex and

Ú
an ÜÞÝGÑ matrix. Then by setting ß �rOY:%a[Úq, or:%O ß × ÚÛ, and w Ï �rO�Q ß 3G
�Æà�ËA+ ß 1KÈ?>;S we obtain

 +-,91FOIQ ß × ÚÛ,5à�ËA+ ß 1=ÈL>2S�O w»Ï × Úq,
From this representation it is obvious that  is both concave and convex.Ù In Section 6 we analyze the (linear) case

 +-,81FO�Qs:M3E
 � à ³ � , × ³ � :6ÈLá!S¸W



8 EQUILIBRIUM CONSTRAINED OPTIMIZATION PROBLEMS

It is not difficult to show that in this case  is both concave and convex if rank â ³ � ³ �\ã�O
rank ³ �GÈ Ü (i.e.,  is defined (essentially) by no more conditions than the dimension
Ü ).

In the linear case (Section 6) we consider functions of the form
�+-,.�0/9�0:;1=O�+7:ba¾/21�ä�å

(full linear
case) and

�+7,V�0/9�^:�1nO`+-:.a�/21 ä + w � , × w �N/ × wzæ : × å�1 . In the first case
�

is (trivially) quasiconcave
but in the other case, except for â w � w � wzæ ã9O¼> , it is not.

4. FORMULATION OF AN ECOP AS A REGULAR NONLINEAR PROGRAM

In this section we are interested in reformulations of ECOP, which are suitable for the numerical
solution of the problems. We transform an ECOP to a problem with bilevel structure and obtain a
formulation of the program as a nonlinear problem with complementarity constraints.

To deal with equilibrium constraints (1.2) of ECOP, consider the optimization problem

( ç +-,.�0/21 ) #]$'&} �.+7,V�^/8�^:�1
s.t.

:M3  +-,81\�
depending on the parameter

+7,V�0/21
. Obviously (assuming that ç +-,.�0/21 is solvable), for a solution:%O¼:9+-,V�^/21

of ç +7,V�0/21 , we can write

(4.1) U Z graph
+  1FORQt+7,V�^/;1K��/63  +7,81 and the solution

:
of ç +-,.�0/21 satisfies

�+-,.�0/9�0:;1=<?>�S
Recall that the feasible set of an ECOP is given by X OÃ4JZ U Z graph

+  1 . So an ECOP can be
written in the form

( è � )

#]$'&(�) *¨) } ��+7,V�^/;1
s.t.

+7,V�0/21=3¯4
/�3  +-,91�+7,V�0/9�^:�1=<?>
:

is a solution of ç +7,V�0/21\W
Remark 2. In view of the constraints

�+7,V�0/9�^:�1q<J>Ð@8:63  +7,81
(if the sets  +-,91 are infinite) formally an ECOP can be seen as a so-called generalized semi-infinite
problem (GSIP) (see e.g. [17]). In the form è � it is a typical bilevel problem (see e.g [4]).

Under the extra assumption

(4.2)
�+7,V�0/9�^/;1»O¼>

for all
/

the parameter
:

in è � can be eliminated as follows. Condition (4.2) implies for any
/�3  +-,81 :

#%$'&}�~�é�� ( ¥ �+-,.�0/9�0:;1=È��+-,V�^/9�0/21nO�>u�
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i.e., if a minimizer
:

of ç +-,.�0/21 satisfies
�+7,V�0/9�^:�1Û<�>

(thus
OY>

), then
/

must also solve ç +-,V�^/21 .
So U Z graph

+  1FOIQ�+-,V�^/21���/M3  +7,81\�./ is a solution of ç +-,.�0/21FS and è � simplifies:

( êè � )
#]$�&(�) * ��+7,V�^/;1
s.t.

+7,V�0/21�354
/�3  +-,91/

is a solution of ç +7,V�0/21\W
We now assume that the sets

4
and  +-,91 are given explicitly in the form4¼O�Qt+7,V�0/21�3G
 ����� ��ë9+7,V�^/;1�ÈL>;St�  +-,81FO�Qs:M3E
 � ��ËA+-,V�^:�1qÈL>2S

with w � -functions
ëM��
���������
Vì

and
Ë���
������É��
�Í

. Let also
�

be from w � .
Let í } �+-,V�^/9�0:;1 and í } ËA+7,V�^:�1 denote the derivatives with respect to

:
. If

:
is a solution

of ç +7,V�^/;1 which satisfies some constraint qualification (CQ) then
:

must necessarily satisfy the
Kuhn-Tucker conditions :

í } �.+7,V�^/8�^:�1 × Õ ä í } ËA+7,V�0:;1{O >
Õ�ä.ËA+7,V�0:;1{O >

with some multiplier
>]ÈLÕ¯3E
 �

. So we can consider the following relaxation of ECOP.

( è æ )

#]$'&(�) *¨) } ��+-,V�^/21
s.t.

�+7,V�0/9�^:�1=<?>
í } �+-,.�0/9�0:;1 × Õ ä í } ËA+-,.�0:;1»Ov>Õ ä ËA+-,.�0:;1nO¼>
Õ��sa=ë9+7,V�0/21\��aqËA+-,.�0/21N�saqËA+-,.�0:;1=<L>

è æ is a relaxation of è � in the sense that (under CQ) the feasible set of the ECOP is contained in the
feasible set of è æ . In particular, any solution

+-,.�0/9�0:;1
of è æ with the property that

:
is a minimizer

of ç +7,V�0/21 , must also be a solution of the ECOP.

In case that (4.2) holds, problem è æ reduces to (see êè � ):

( êè æ )
#%$'&(�) * ��+-,.�0/21
s.t. í }��.+7,V�^/8�^/21 × Õ ä í }�ËA+7,V�^/;1»O�>Õ ä ËA+-,.�0/21nOv>

ÕV��a=ë�+-,V�^/21N��aqËA+7,V�^/;1�<?>

Convexity conditions for ç +7,V�0/21 . Let us now consider the special case that ç +7,V�^/;1 represents a
convex problem, i.e., for any fixed

,
and

/
the function

�+-,.�0/9�0:;1
is convex in

:
, and for any fixed,

, the function
ËA+7,V�^:�1

is convex in
:
. Then, it is well-known that the Kuhn-Tucker conditions at:

are sufficient for
:

to be a solution of ç +-,.�0/21 . So in this case any solution
+-,.�0/21

of è æ (or êè æ )
provides a solution of an ECOP. If moreover CQ is satisfied for ç +7,V�0/21 (which is automatically
fulfilled if

:%��ËA+7,V�0:;1
is linear), then è æ (or êè æ ) is equivalent with the original ECOP.

In the form è æ and êè æ , an ECOP is transformed into a nonlinear program with complementarity
constraints (see e.g. [16]). In this form the problems can be solved numerically, for instance by an
interior point method (see e.g. [22]).
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The linear case. In the next section we will analyze ECOP for the case that all problem functions
are linear,

��+7,V�^/;1FO ¦ � , × ¦ ��/ , and
ë � +-,.�0/21nO¼î �� , × î �� /MÈ?ï � �Gðn3Gñu� Ë�ò�+-,.�0/21nO¼ó �ò , × ó �ò /�È°á2ò��Aô635õcW

Here and in the rest of the paper we omit the transposed sign in the inner products, i.e.,
ît,

denotesî ä ,
. For the function

�+-,.�0/9�0:;1nO�+-/%a	:;1«dA+7,V�^/8�^:�1
, we consider the case

�.+7,V�^/8�^:�1»O`+7/bac:�1�+ w � , × w � / × w æ : × å�1
with matrices and vectors of obvious dimension. We assume that the ( ÜyÝ%Ü ) matrix wÂæ is positive
semi-definite. Then the problem ç +-,.�0/21 is convex and by the discussions above, ECOP and êè æ are
equivalent. By replacing w ��/ × wzæ / by w �\/ (for notational simplicity) our problem êè æ takes the
form

( ö ECOP)

#]$'& (�) * ¦ � , × ¦ �\/
s.t.

î �� , × î��� /�ÈLï � �GðF3fñA�PO�Q�Ç��sW�WsWN�7÷�Só �ò , × óN�ò /6ÈLá;ò��AôA3cõc�rO�Q�Ç���W�WsWN�^øtS
w � , × w �s/ × å × ùò ~�ú�� (�) * ¥ Õ ò óN�ò Ov>Õ ò <?>2�AôA3	õF+-,.�0/21

where for
+-,.�0/21=3G
�� Ý 
�� , we define the active index sets

õF+-,.�0/21��POIQNôA3	õ	��ó �ò , × óN�ò /]O�á2ò�S
and also

ñ�+7,V�^/;1��PO�QsðF3fñA��î �� , × î��� /]O¼ï � S .
Remark 3. For the special case

dA+7,V�0/9�^:�1�OÃå
, i.e. w � � w �6O�> , the problem ECOP, or equiva-

lently êè æ , can be written as a common linear bilevel problem#]$�& (�) * ¦ � , × ¦ ��/
s.t.

î �� , × î��� /6È?ï � �Eðn3Gñ/
is a solution of ç +-,81K�#]$�& å9/ba	å8:

s.t.
ó �ò , × óN�ò :6ÈLá;ò��AôA3cõ2�

and ö ECOP becomes

( ö BL)

#]$�& (�) * ¦ � , × ¦ ��/
s.t.

î �� , × ît�� /6È?ï.�^�Eðn3Gñó �ò , × óN�ò /MÈ°á2ò��6ôA3	õa=å × ùò ~�ú;� (�) * ¥ Õ ò ó\�ò O¼>u�Õ�ò¸<?>2�%ô63cõ!+7,V�^/;1\W
So for this special case the third constraints become ’independent’ from the other constraints which

means that ö ECOP has a more complicated structure than the bilevel problem ö BL.

In [18] a genericity analysis was done for linear bilevel (i.e. for the case ö BL). Note that also the
(full) linear case

�+7,V�0/9�^:�1KOIît, × óT/ × ¦ : leads (via è æ ) to a problem of bilevel structure. In the
next section we are going to analyze the structure of ö ECOP from a generic point of view (structure
in the general case).
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5. THE GENERIC STRUCTURE OF LINEAR ECOP

In the present section we reconsider the (linear) ECOP of the form ö ECOP. We are going to
analyze the structure of ö ECOP from a generic point of view (structure in the general case). In [18]
a genericity analysis was done for the linear bilevel problems ö BL, which corresponds to the case

â w � w � ãzO|> (see Remark 1). Since both problems ö BL and ö ECOP have a similar structure, the
genericity analysis for ö ECOP can be performed with similar techniques. We therefore present the
results here in a concise form but emphasize that the more general problem ö ECOP leads to a more
complicated structure of the feasible set than problem ö BL.

First we introduce some abbreviations

û O�+7,V�0/21\� ¦ O�+ ¦ � � ¦ � 1N�Gî��.O�+pî �� ��î �� 1N�¯ó ò O`+�ó �ò �Tó �ò 1�3f
 ����� and w O`+ w � � w � 1\W
We define the matrices

Úb� ³ � ³ � with rows
î��0�0ð=3¯ñ

,
ó ò ��ô�3[õ

,
óN�ò ��ôE3¾õ

, respectively, and for the
vectors

ï	O`+pï � �sW�WsW\�^ï ì 1 , á	O`+-á � ��WsW�Ws�0á Í 1 , we also introduce the constraint sets

ç�ü OIQ û ��Ú û ÈLïnS�� ç µ OIQ û � ³ û ÈJáFS�� ç O ç�ü Z ç µ W
This leads to the following compact form

( ö ECOP)

#%$'& ¦ û
s.t.

Ú û ÈLï
³ û ÈJá
w û × å × ùò ~�ú;� (�) * ¥ Õ�ò�ó\�ò O¼>Õ�ò¸<L>2�AôA3cõF+-,V�^/21NW

Note that if we assume that ç is compact (bounded) and that the feasible set of ö ECOP is non-empty,
it is clear that a solution always exists.

For linear bilevel problems, the feasible set simply consists of a union of faces (of dimension Ñ )
of the polyhedron ç . Moreover, for the special case

ñ]Ovm
, the feasible set (in general non-convex)

is (path-)connected. Both facts are no more true for ö ECOP.

Genericity. For fixed problem parameters
+ Ñ � Ü �p÷V�^ø�1 any ö ECOP can be seen as an element from

the problem set
ý OIQ è O�+ ¦ ��Ú¸� ³ �^ï»�0án� w �«å�1TS�þv
 é with  O Ñ × + Ñ × Ü × Ç�1�+ Ü × ÷ × ø�1\W

Throughout the paper, by a generic subset
ý Ï of

ý þv
 é
we mean a set, which is open in


 é
and

has a complement set of measure zero (notation ÿ +7
 é · ý Ï 1ÛOÃ> ). Note that this implies that the
set
ý Ï is dense in


 é
. For details on genericity we refer to [6] and [11].

Our genericity analysis will be based on the following ’non-trivial’ result (see [6]).

Lemma 6. Let
÷L��
 é ��


be a polynomial function,
÷Rlþ�>

. Then, the solution set
÷�� � +p>�1�O

Q ß 3°
 é à�÷.+ ß 1zOÓ>;S is a closed set of measure zero. Equivalently the complement
ËÆOÉ
 é ·÷�� � +p>�1

is a generic set in

 é

.
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Remark 4. The result of Lemma 6 will be used repeatedly as follows. By noticing that
����� ÚyO

ù	� ~�
� sign � î � � � �0¥ ¬�¬�¬^î ¿ � � ¿ ¥ defines a polynomial mapping
÷R�!
!¿�� ¿A� 


we directly are led

to the following result: Let

o
¿ denote the set of real

+ Ø=ÝcØ 1 -matrices,

o
¿ OÅQ�Ú OÞ+7î � ò¨1 � ) ò .� )r¢r¢r¢r) ¿à�î � òM3[
nSfþ`
¿��;¿

. Then, the set

o Ï¿ OÓQ�ÚÓ3
o
¿ à ����� ÚÃO�>;S

is a closed set of measure zero in
¿��;¿
. Equivalently the set

o �¿ O o ¿ · o Ï¿ of regular matrices is generic in

!¿�� ¿

.

In the sequel, û Ï O�+-, Ï �^/ Ï 1 will be a point such that with appropriate multipliers
Õuò���ôA3	õF+ û Ï 1 ,

the constraints of ö ECOP are fulfilled. We then call û Ï or
+ û Ï �TÕ�1 a feasible point for ö ECOP. Often the

abbreviation
ñ Ï Ovñ�+ û Ï 1N�»õ Ï O�õF+ û Ï 1 will be used.

We say that at a feasible point
+ û Ï ��Õ81 the strict complementary slackness condition holds if for

all
ôA3cõ

:

(SC)
Õ;ò��L>�� +-á;òKa[ó^ò û Ï 1FOv>2W

Among others it will be analyzed whether genericly the condition SC holds at a solution of ö ECOP.
The answer will be negative.

Remark 5. For the special case that ç ü is contained in the interior of ç µ (implying ç O ç ü ) our

problem takes the form of a common LP:

( ö ECOP)

#%$'& ¦ ûÚ û ÈLï
w û OIa=å�W

Here, the generic structure is simply given by the well-known generic structure of such an LP.

We now are going to analyze the structure of the feasible set of ö ECOP near a feasible point+ û Ï ��Õ Ï 1 and define õ��Ï OIQNôA3	õ Ï � â Õ Ï ã ò�Ov>;S with
õ �Ï O�õ Ï�· õ��Ï W

The following observation is crucial for the analysis below. Since the vector
a¸+ w û Ï × å�1q35
�� is

an element of cone
Q¨ó\�ò ��ôA3	õ��Ï S by Caratheodory’s theorem we can assume

(5.1)
àPõ �Ï à�È Ü W

Consider now a feasible direction � Ï at
+ û Ï ��Õ Ï 1 given by a solution

+ � Ï ��� Ï 1 of the system:

(5.2)

î�� � È >u��ð»3Eñ Ïó^ò � È >u�]ô635õ �Ïó^ò � O >u�]ô635õ �Ïw�� ×Äùò ~�ú�� � ò óN�ò O >u��Nò�+pó^ò � 1{O >u�]ô635õ �Ï�Tò < >uW
The following necessary condition for local minimizers is obvious.

Lemma 7. Let
+ û Ï ��Õ Ï 1 be feasible for ö ECOP. Then if û Ï is a local minimizer there is no solution+ � ����1 of (5.2) such that ¦�� ¶?> , i.e., there is no feasible descent direction.
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Note that for any solution
+ � ����1 of (5.2) the points

+ û + �01N�TÕV+ �0101nO�+ û Ï × � � �TÕ Ï × �!��1
are feasible

for ö ECOP if
�»<?>

is not too large. As a first genericity result we obtain the following lemma.

Lemma 8. Genericly for any local solution û Ï of ö ECOP the condition
à ñ8+ û Ï 1sà × àPõF+ û Ï 1�à9< Ñ must

hold.

Proof. Suppose that
à ñ Ï à × àPõ Ï à.¶ Ñ (

ñ Ï O�ñ�+ û Ï 1N��õ Ï OyõF+ û Ï 1 ). We will show that genericly this
implies that there is a solution

+ � ����1 of (5.2) satisfying ¦�� ¶?> and the result follows by Lemma 6.
To do so consider the system

¦�� O a�Ç
î � � O >u� ðF3fñ Ïó^ò � O >u� ôA3	õ Ï

w�� × ùò ~�ú"� � ò ó\�ò O >�Tò O Ç�� ôA3	õ Ï
with # �rO`Ç × à ñ Ï à × àrõ Ï à × Ü × àrõ Ï à equations in Ñ × Ü × àrõ Ï à�< # unknowns. Genericly the system
matrix has full rank (see Remark 4) and thus admits a solution. ª

Noticing that
/ Ï is a boundary point of  +-, Ï 1 if and only if

õF+-, Ï �0/ Ï 1JlO�m
, we obtain the

following result as a corollary.

Corollary 1. Genericly for any local minimizer û Ï O�+-, Ï �0/ Ï 1 of ö ECOP which satisfies
à ñ�+ û Ï 1�à�¶ Ñ ,/ Ï must be a boundary point of  +-, Ï 1 .

The next theorem states that in the generic case the feasible set of an ö ECOP is Ñ -dimensional (in
the û -space).

Theorem 3. Genericly the (projection onto the û -space of the) feasible set of ö ECOP consists of a

(finite) union of polyhedras of dimension Ñ .

Proof. Let be given
+ û Ï ��Õ Ï 1 , feasible for ö ECOP with corresponding index sets

ñ Ï ��õ Ï ��õ �Ï ��õ��Ï ,
àPõ��Ï à�È

Ü (see (5.1)). We will show that genericly near û Ï the feasible set (in the û -space) has exactly
dimension Ñ .

dimension at most Ñ : Any feasible point
+ û ��Õ81 must be a solution of an equationó ò û O¼á ò �yô635õ��Ï

w û ×Îùò ~�ú%$� Õ;ò�óN�ò O�a=å
for some subset

õV�Ï'& õ with
àrõ��Ï àuÈ Ü . Genericly this system has full rank

àrõ.�Ï à × Ü and thus its
solution set is of dimension Ñ × Ü × àrõV�Ï à�a Ü avàPõ��Ï à�O Ñ in the

+ û ��Õ81 -space. Consequently its
dimension in the û -space (projection) cannot exceed Ñ .
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dimension at least Ñ : Note first that
+ û Ï ��Õ Ï 1 is a solution of the equations

(5.3)

î�� û Ovï�«� ð»3Eñ Ïó ò û O�á ò �yô63	õ Ï
w û × ùò ~�ú�$� Õ;ò¨óN�ò O�a=åW

Genericly this system has full rank( O #]$'& Q�à ñ Ï à × àPõ Ï à × Ü � Ñ × Ü × àrõ �Ï àPS
with

àrõ��Ï à�È Ü . Moreover the system of Ñ × Ü × àrõV�Ï à unknowns must satisfy the relation

(5.4)
à ñ Ï à × àPõ Ï à × Ü È Ñ × Ü × àPõ �Ï à or equivalently

à ñ Ï à × àPõ �Ï à�È Ñ W
To see this assume that

à ñ Ï à × àPõ Ï à × Ü < Ñ × Ü × àrõ �Ï à × Ç , then the vector
+7ï»�0áF�sa=å�1�3f
*) + � ) � ) ú"� ) ���

(right-hand side of (5.3)) is contained in the ( Ñ × Ü × àrõ.�Ï à )-dimensional space spanned by the
columns of the system matrix in (5.3), (a closed set of measure zero in


,) + � ) � ) ú � ) ���
). This is

genericly excluded.

Consider now the system î � � O a�Ç��Åðn3Gñ Ïó ò � O >2� ôA3cõ��Ïó ò � O a�Ç�� ôA3cõ �Ï
w�� × ùò ~�ú�$� �TòsóN�ò O >

Since genericly
à ñ Ï à × àPõ �Ï à�È Ñ must hold (see (5.4)) this is a system of

à ñ Ï à × àPõ Ï à × Ü È Ñ × Ü × àPõ��Ï à
equations in Ñ × Ü × àrõV�Ï à unknowns. So genericly there is a solution

+ � ����1 of this system (possibly
zero in the case

ñ Ï O�õ �Ï OYm ). By construction for any
� � �?>

small enough the point+ û ����Õ9��1FO�+ û Ï �TÕ Ï 1 × �^��+ � ����1
is feasible for ö ECOP with

ñ8+ û � 1]OÞm;��õ!+ û � 1AO�õ��Ï ( â Õ � ã ò-� >2�nô?3�õF+ û � 1 ). Consequently, near+ û � ��Õ � 1 all points
+ û �TÕ�1FO�+ û � ��Õ � 1 × �\+ � ����1 , �.�L>

(small) are feasible if
+ � ����1 solves the equations

(5.5)

ó ò � Ov>2� ô63	õ��Ï
w�� × ùò ~�ú�$� �Nò�óN�ò O¼>

This system of
àPõ��Ï à × Ü equations genericly has a solution set of dimension

Ñ × Ü × àrõ �Ï à�a?àPõ �Ï à�a Ü O Ñ
in the

+ û ��Õ81 -space. But genericly also the projection of this solution set to the û -space is of di-
mension Ñ . To see this, consider the system (5.5). Since

àrõ �Ï à9È Ü we can decompose the system
as /01 ³ >

w � ³ ��
w � ³ ��

2"3465 � �87 O /01 >
>
>

2"34
with a

àrõ��Ï à Ý àrõ��Ï à -matrix ³ �� , which is genericly regular. From the last
àPõV�Ï à equations we can

eliminate
�
, ��O�a¸+ ³ �� 1 � � w � �
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resulting in the system
³9� O¼>+ w �Ka ³ �� + ³ �� 1:� � w � 1 � O¼>

with Ü equations for the Ñ × Ü unknowns. With the help of Lemma 6 it is not difficult to show
that also this system genericly has full rank Ü , i.e., genericly the solution space has dimension

Ñ × Ü a Ü O Ñ . ª
Remark 6. More precisely, according to the proof of Theorem 3, genericly, the feasible set (pro-

jected onto the û -space) of ö ECOP has the following structure. The polyhedron ç is genericly empty

or has full dimension Ñ × Ü . So ö ECOP consists of the sub-polyhedron
Q û 3 ç � w û × åvOy>;S

(genericly empty or Ñ -dimensional) together with a (finite) union of Ñ -dimensional sub-polyhedra

on faces defined by the equalities
óTò û O�á2ò . Note that by convexity, each of these faces can only

contain one of these feasible polyhedras.

Finally we illustrate the structure of the feasible set of ö ECOP by a simple example showing that
in contrast to ö BL (see Remark 4 and [18]), in case

ñAORm
then the feasible set of ö ECOP need not be

connected.

Example 2. Consider the ö ECOP with Ñ O Ü O`Ç and the feasible set defined by (
+ û O`+7,V�0/21 )ó^ò û È á;ò��6ôA3	õ	�PO�Q�Ç�� h � i � j S

w û × å O a ù ò ~�ú;�<;T¥ Õ ò óN�ò
The feasible set is given by the points in ç �POÓQ û à�óTò û ÈYá2ò��.ôEO Ç���W�WsW\� j S which satisfy one of

the relations w û O�a=å or

(5.6)
ó�ò û O á;ò

w û × å O aÛÕ8óN�ò �{Õ¯<J>
for the indices

ôG3°õ
. The structure of the feasible set depends on the choice of the data w ��ó�� etc.

Let us now choose w O`+7>2�sa�Ç�1\��åGO¼>2�Vá��qO?á � O?á æ O�á>=�O�Ç
and

ó � O�+7>u��Ç¨1N�ó � O`+0a�Ç���Ç@? h 1N�.ó æ O`+«Ç���ÇA? h 1\�ó = O�+7>2�sa�Ç�1»W
Then the feasible set consists of the set

d Ï O`Q û OÃ+7,V�0/21=3 ç à w û O`a=å.S�O`Q�+-,V��>�1qà2a�Ç�È?,5ÈÇ�S
and the parts on the faces of ç given by (5.6) for

ôÂOIÇ���WsW�W\� j :
d � O Q û O�+7,V�0/21=3 ç à�ó � û OIÇ�� w û O`aÛÕ�ó � � ��Õ¯<J>;S�OIQt+7,V��Ç¨1Kà�a�ÇA? h ÈL,¯ÈYÇA? h Sd � O Q�+ Ç

h
/ÂaJÇ��0/21Kà�>%ÈL/MÈvÇ�S

d æ O Q�+«ÇKa Ç
h
/9�0/21Kà�>%ÈL/MÈvÇ�S

d = O Q�+-,.��a�Ç�1Kà;a�Ç�W k ÈL,¯ÈvÇ�W k S

So obviously, the feasible set
d�O¼Z =ò  Ï d�ò is not connected.

Note that this situation is stable with respect to (small) perturbations of the parameter values.
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We finally make some observation which are important from a theoretical and practical point of
view. For any given subset

õ Ï & õ we consider the LP:

( è +�õ Ï 1 )

#]$�& ¦ û
s.t.

Ú û ÈLï
³ û ÈJáó�ò û O?á;ò��6ô635õ Ï
w û × å × ùò ~�ú�� Õ ò ó\�ò O�>2�Õ;ò�<L>u�]ô635õ Ï W

So obviously, to solve ö ECOP amounts to solving the problem:

Ù Find the index set
õ Ï (
õ Ï & õ ) such that the objective value of è +�õ Ï 1 is minimal.

In a forthcoming paper we describe a descent method which by updating
õ Ï in each step finds a

local minimizer of ö ECOP. With regard to the problem è +«õ Ï 1 we can directly deduce the following

Ù Genericly, every point û Ï in ç , i.e., every feasible point of ö ECOP, satisfies
à ñ�+ û Ï 1sà ×àPõ!+ û Ï 1�à2È Ñ × Ü .Ù Genericly each problem è + û Ï 1 attains a (unique) solution at a (non-degenerate) vertex+ û Ï ��Õ Ï 1 of the corresponding polyhedron. In particular Ñ × Ü × àrõ Ï à constraints must

be active. This implies that precisely for Ñ a[à ñ�+ û Ï 1�à indices
ô635õ

either
Õ ò Ov>

for
ôA3	õ Ï

must be active or
ó ò û Ï O?á ò , for

ôA3cõ · õ Ï . So in the extreme case
ñÂOYm

the (SC) condition
is violated for Ñ indices.

APPENDIX A

We refer to [3] for generalized convexity related definitions and for definitions from set valued-
analysis we refer to [2].

Definition A.1. A function B ��
!����
��
is called pseudomonotone if for every

,.�0/M3G
F�
_ B +-,81\�0,Ea	/2e�<L> implies that

_ B +-/21N�^,6a	/2e�<?>2W
Definition A.2. A function B �;
!�c�²


is called quasiconvex if all its sublevel sets are convex. A

function B is quasiconcave if
a B is quasiconvex.

Definition A.3. A function B �=
!���Ä� 

is called properly quasimonotone on the convex setC HL
��

if $�&;© * ~����\� � ( ¡ )r¢r¢r¢r) ( £\¤^¥ #]��� �N�8�7�9� B +-/9�0,8��1K<J>
for every finite set

Qs,�����W'W�W'�0,9��S�H C
.

Definition A.4. A set valued mapping D � C " C
is called a KKM-mapping if

¦\§ +�Q�,9����W'W�W'�0,9�tS¨1�H À ��'.� D +7,���1
for every finite set

Qs, � ��W'W�W'�0, � S�H C
.
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Definition A.5. A function B � C � C
is called upper semicontinuous if all its upper level sets are

closed. Similarly, it is called lower semicontinuous if all it lower level sets are closed.

Definition A.6. A set valued mapping D � C " C
is called closed if the set graph

+ D 1 is closed.

Definition A.7. A set valued mapping D � C " C
is convex if and only ifÕ D +-,���1 × +«Çqa[Õ81 D +-, � 1�H D +pÕu,9� × +0Çqa¾Õ81�, � 1

for every
, � �^, � 3 C

and
>%È�ÕGÈYÇ

. Accordingly, we call a set-valued mapping D concave ifD +�Õ2, � × +0ÇKa¾Õ81�, � 1�H?Õ D +-, � 1 × +«ÇKa[Õ81 D +-, � 1
for every

, � �^, � 3 C
and

>%È�ÕGÈYÇ
.

Definition A.8. A set valued mapping D � C " C
is called lower semicontinuous at

,53 C
if for

every
:c3 D +-,91 and for every sequence

, � converging to
,

, there exists a sequence
: � 3 D +7, � 1 ,

such that
: � converges to

:
. D is called lower semicontinuous if it is lower semicontinuous at every,f3 C

.

APPENDIX B

To show that under certain conditions the intersection in relation (2.2) is nonempty, we apply
the important KKM lemma from nonlinear analysis. Before introducing this lemma, let E � be theðGF H

unit vector in

 � �0ð=O�Ç��sW�W'W'� Ñ and introduce for every subset

õJHJI²�POÉQ�Ç���W'W�W'� Ñ S the simplexK ú9�
given by

(5.7)
K]ú �rO ¦\§ +«Q E ò��sô63cõS�1�HJ
 � W

Definition B.1. The collection of sets U ò¸H¼
 � �sÇ¸ÈÐô6È Ñ satisfies the KKM property if for every

subset
õcHvQtÇ��sW�W'W�� Ñ S it holds that

KAú H À ò ~�ú U ò�W
The KKM lemma is now given by the following result (cf. [23], [13], [5]).

Theorem B.1. If U �FHL
��!��ðO`Ç���W'W'W�� Ñ are closed sets satisfying the KKM property
�
then it follows

that
Z���'.� U �=lO¼m2W

The  5 	� lemma is a consequence of Sperner’s lemma (see Theorem h W k W L of [21] or Lemma
i W k W�Ç of [19]) and Sperner’s lemma can be proved by combinatorial arguments (cf. [1] or Theorem
i W j W i of [19]). If the sets U � �sÇMÈ�ð�È Ñ are additionally convex, then an elementary proof of the
KKM lemma can be given (see Theorem B.2) by using the next result of Berge (cf. [20]). The result
of Berge is based on the well-known separating hyperplane result for disjoint finite dimensional
compact convex sets and its proof can be found in [20].

Lemma B.1. If w �»H¼
 � ��Ç¸È?ð=ÈNM
and

MA< h are closed convex sets satisfying À ��'.� w � is convex

and for any
õJH�Q�Ç���W'W�W'�OMtS

with
àrõnà2OPM�a?Ç

it holds that
Z ò ~�ú w ò is nonempty, then it follows thatZ ��'.� w � is nonempty.
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Before giving a proof of an improvement of the  	 	� lemma for closed convex sets based on
Lemma B.1, we introduce the following definition.

Definition B.2. The collection of sets U � Hv
��!��ÇÂÈ�ð�È Ñ � satisfies the simplex finite intersection

property if for every subset
õ	H'I��rO�Q�Ç���W'W�W'� Ñ S it holds that

K6ú Z	+pZVò ~�ú U ò�1�lOvm2W
For convex sets one can now give the following improvement of the KKM lemma by elementary

methods. This proof is adapted from the proof of a related result in [10].

Theorem B.2. If U �FHJ
 � �sÇ�ÈLðFÈ Ñ � is a collection of closed convex sets the following conditions

are equivalent:

(1) The collection U � �sÇ�ÈJðnÈ Ñ � satisfies the simplex finite intersection property.

(2) The collection U �«�sÇ�ÈJðnÈ Ñ , satisfies the KKM property.

Proof. To prove the implication hNQ Ç
we verify by induction that for every

MvÈ Ñ and
õ H

QtÇ���W'W'W�� Ñ S satisfying
àPõFà2È8M

it holds that

(5.8)
K ú�Z	+�Z ò ~�ú U ò 1�lOvm2�

if the collection U �^��ÇÐÈ ðGÈ Ñ � satisfies the KKM property. Since the KKM property holds it
follows that E ò 3 U ò and so relation (5.8) holds for

MEOÆÇ�W
Suppose now that relation (5.8) holds

for
MMO Ø a�Ç and consider a subset

õLHRI®�PO�Q�Ç���W'W�W'� Ñ S consisting of Ø elements. Since the sets
U ò���ôA3	õ are closed and convex also the nonempty sets U òZ K]ú ��ôA3cõ

are closed and convex. By
the KKM property we obtain

KAú H À ò ~�ú U ò and this implies

(5.9) À ò ~�ú + U ònZ K]ú 1FO K]ú W
Moreover, it follows by the induction hypothesis for every

ô635õ
that the set

K úASN� ò ¤ Z¸+�Z ò ~�úAST� ò ¤ U ò�1
is nonempty and since clearlyK úAST� ò ¤ Z	+�Z ò ~�úAST� ò ¤ U ò 1�H�Z ò ~�úASN� ò ¤ + U ò Z K ú�1
we obtain for every

ô635õ
that

(5.10)
Z ò ~�úASN� ò ¤ + U ò Z K ú�1�lOvm2W

Using now relations (5.9) and (5.10) we may apply Berge’s lemma with w � replaced by U � Z K]ú
and this shows

K]ú Zc+pZVò ~�ú U ò�1�lOvm completing the induction step. To show the implication
Ç Q�h

we need to verify for U � ��Ç]Èvð�È Ñ satisfying the simplex finite intersection property that for any
subset

õcH'I|�POIQtÇ���W'W'� Ñ S with
àrõnà�ÈTM

and
ÇzÈTM%È Ñ it follows that

(5.11)
K]ú H À ò ~�ú U ò

If
M�O�Ç

then
õcH'I|�rO�Q�Ç���W'W�W'� Ñ S consists of one element

ô
and so by the simplex finite intersection

property we obtain that E ò O K ú�3 U ò
showing that relation (5.11) holds for

MLO²Ç�W
Suppose now relation (5.11) holds for any subsetõ

with
àrõnà=ÈUM]aRÇ

and let
,�3 K]ú

with
àPõnànOVM

. This means
,YO ù ò ~�ú Õ;ò E ò with

Õ�ò[< >
and ù ò ~�ú Õ�ò	O�Ç�W

If some
Õ;ò

equals
>

we may apply the induction hypotheses and so without
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loss of generality we may assume that
Õ2òW�Ã>

for every
ô¾3võ2W

Since the collection U � �sÇGÈ`ð¸È
Ñ � satisfies the simplex finite intersection property it follows that there exists some nonnegative
sequence ÿ ò���ôA3	õ satisfying ù ò ~�ú ÿ ò�OIÇ and

(5.12)
,¯�POJX ò ~�ú ÿ ò E ò 3fZ ò ~�ú U ò W

Introducing now the finite number Y
�PO #]��� Q ÿ ò Õ � �ò �sô635õ�S

we obtain using ÿ �TÕ¾3 K ú
that

Y
<�Ç�W

If

Y
O�Ç

this implies that ÿ ò OÃÕ ò for every
ôG3Jõ

and so
by relation (5.12) it follows that

,GO ,c3 À ò ~�ú U ò and we are done. Therefore

Y ��Ç
and consider

now Õ[Zò �PO Õ ò a Y � � ÿ òÇKa
Y � � ��ôA3	õ

By the definition of

Y
we obtain ù ò ~�ú Õ Zò OIÇ and

Õ Zò <?>2W Since
Õ Zò O¼> for some

ôA3cõ
it follows

by our induction hypothesis that
, Z �PO\X ò ~�ú Õ Zò E òz3 U ò:]

for some
ô Z 3	õ2W

Moreover, by relation (5.12) we obtain
,¯3 U ò ] and since

,EO
Y � � , × +«Çua Y � � 1«, Z

it follows by the convexity of U ò:] that
,f3 U ò:] H À ò ~�ú U ò W This completes the induction step. ª

We will now extend the KKM lemma to set valued mappings D � w " w with nonempty values.

Definition B.3. The set valued mapping D � w " w is called a KKM mapping if ¦�§ +�Qs:;����W'W�W'�0:���S¨1�H
À �ò .� D +-:�ò�1 for every finite subset

Q�: � �sW�W'W��^: � S
of the set w W

An important consequence of the KKM lemma to set valued mappings is given by the following
result.

Theorem B.3. If D � w " w is a set valued KKM mapping with closed values, then it follows for

every finite set
Q�: � ��W'W�W'�0: � SzH w that

¦�§ +�Qs: � ��W'W�W'�0: � S¨1�Z	+pZ �ò .� D +7:�ò�101�lOYm;W
Proof. Introduce for every

Ç]ÈvðÛÈ (
the sets U �K�POÉQ¨Õ[3 K_^ � ù �ò .� Õ ò : ò 3 D +7:��p1TStW Since the

sets D +-:���1\�;ðzOÖÇ���W'W'� ( are closed, it follows that the sets U �¸HÉ
�� are also closed. Moreover, ifõcH¼Q�Ç���W'W�W'� ( S
and

Õf�PO�+�Õ8����W'W'W��TÕ���1�3 K úEH?
�
we obtain, using ¦�§ +�Qs: ò �sô635õ�S¨1�H À ò ~�ú D +7: ò 1N�

that X �
ò .� Õ;òs:�ò�OJX ò ~�ú Õ;ò�:�ò�3 À ò ~�ú D +-:�ò�1\W

This shows that
Õ

belongs to À ò ~�ú U ò and so
K]ú H À ò ~�ú U ò�W Applying now the KKM lemma yields

the desired result. ª
If the set valued mapping D � w " w has closed convex values one can show the following

improvement of Theorem B.3.
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Theorem B.4. If D � w " w is a set valued mapping with closed convex values, then it follows

that D is a KKM mapping if and only if for every finite set
Qs: � ��W'W'W��^: � S�H w it holds that

¦�§ +�Qs: � ��W'W�W'�0: � S¨1�Z	+pZ �ò .� D +7:�ò�101�lOYm;W
Proof. If D is a KKM mapping we obtain by Theorem B.3 the desired result. To prove the reverse
implication we adapt in an obvious way the proof of Theorem B.2. ª
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