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In this paper we apply Maximum Likelihood and Bayesian methods to explain differences in 
floorspace productivity among retail establishments in the grocery trade. The model we develop is 
a switching model where sales are either supply-determined or demand-determined. Under excess 
supply the model allows for so-called ‘trading-down’. i.e., an increase in the share of selling area, 
and, thereby, a decrease in service level. 

To estimate our model we employ a cross-section of observations on individual shops. We 
present maximum likelihood results, and also study the shape of the likelihood surface by means of 
Monte Carlo numerical integration methods, With a uniform prior we obtain marginal posterior 
density functions both of the parameters of interest and of the average probability of the excess 
supply regime in the sample. The average probability of excess supply is 0.23, with a standard 
deviation of 0.06. This shows that, according to our estimates, excess demand is the rule and excess 
supply the exception in the sample that we analyse. 

1. Introduction 

Since 1973 the Dutch Research Institute for Small- and Medium-Sized 
Business (Economisch Instituut voor het Midden- en Kleinbedrijf, EIM) and 
the Econometric Institute of the Erasmus University Rotterdam cooperate in a 
research project aiming at an econometric analysis of the small- and medium- 

sized business sector in the Netherlands. Research effort has focussed so far on 

*This study is a part of the research projects ‘Fundamental Research of Small- and Medium-sized 
Business’ and ‘Equilibrium and Disequilibrium in Supply and Demand’, financed by the Dutch 
Ministry of Education and Science (Voorwaardelijke Financiering). The second author was in part 
supported by a NATO science fellowship, visiting Harvard University and the National Bureau of 
Economic Research. 

The views expressed in this paper are those of the authors and do not necessarily reflect the 
policies of the Netherlands Central Bureau of Statistics. 

The authors are grateful to Adrie S. Louter for performing the numerical integrations by Monte 
Carlo simulation. Guus Boender took care of the figures of marginal posterior density functions, 
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the explanation of firm behaviour in the retail trade. Sales level, labour volume, 
floorspace, floorspace partitioning, price-setting behaviour and financial struc- 
ture are, or will be, the subject of analysis. Data used for this purpose are 
available at the individual shop level. They stem from surveys that have been 
held by EIM for a great number of branches in the retail industry. The present 
study is a part of this project. 

In this paper we apply maximum likelihood and Bayesian methods to 
analyse an extension of a model developed by Thurik and Koerts (1984a,b) 
and Thurik (1984) to explain differences in floorspace productivity, measured 
as sales per square meter, among individual retail establishments (= shops). In 
this model floorspace productivity is related to a partitioning of the floorspace 
into selling area and remaining space used for storage, administration, own 
production, staff facilities, etc. Both selling area and remaining space are 
treated as inputs in a production technology for retail services. The model has 
been applied to a wide variety of Dutch and French supermarkets and 
supermarket-like establishments and to several Dutch non-supermarket shop 
types. Thurik (1984) has used the model to investigate whether French super- 
markets maximize profits or sales. He also analysed the influence of environ- 
mental factors on floorspace productivity, e.g., per capita consumer spending, 
population density, number of competitors, and shopping centre characteris- 
tics. No outside influences could be established, however, that were both 
plausible and statistically significant. Only supply factors, i.e., establishment 

properties, seem to play a role. 
A reason for this rather counter-intuitive result may be that the model used 

was not appropriate. Sales, hence floorspace productivity, are determined by 
the interplay of supply and demand, and cannot properly by analysed from the 
supply side alone.’ In leaving out a demand side, as Thurik (1984) does, one 
implicitly assumes that demand is always large enough to sustain sales maximi- 
zation constrained by technical possibilities alone. This may not always be true 
actually. Therefore we introduce an explicit demand side in the model. When 
demand is large enough, sales will be supply-determined and the former model 
applies. With demand too small, however, sales will be demand-determined, 
and we substitute another model. Thus we end up with a switching model, 
where sales, and the partitioning of the floorspace, ‘are either supply- 
determined or demand-determined. As we do not know which of the two 
regimes applies to each one of the available observations, we have to include 
both possibilities in the model, leaving the data to decide on the most likely 
regime distribution. To the extent that sensible results can be obtained, our 
model may serve as a framework for a renewed attempt to establish the 
influence of environmental factors on floorspace productivity. 

‘Thurik (1984, pp. 121-123) advances several other possible explanations as well. 
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Switching models with endogenous regime choice have mainly been used to 
analyse markets in disequilibrium, where it is assumed that transactions equal 
the minimum of supply and demand. They have been used to analyse, for 
example, the labour market, the housing market, the credit market. See a.o. 
Rosen and Quandt (1978) Fair and Jaffee (1972) Laffont and Garcia (1977). 
As far as we know only aggregate time series data have been used to estimate 
these models. It has often been argued that for this type of data the discrete 
switch is inappropriate as in the aggregate regime switches occur only gradu- 
ally and incompletely. In actual aggregate markets supply constraints and 
demand constraints will always coexist. Smoothed versions of the switching 
model have therefore been developed by Muellbauer (1978) Kooiman and 
Kloek (1979), Malinvaud (1982) Lambert (1984) and Kooiman (1984) aggre- 
gating over micro markets in disequilibrium. Their basic assumption is that the 
minimum principle is more likely to apply to the micro level of individual 

markets, households or firms, than to the aggregate. The alternative is, of 
course, to stick to the discrete minimum condition and apply the model to 
genuine micro data. This is the approach we take in the present paper, where 
we present estimates of the discrete version of our switching model based on a 
cross-section of observations pertaining to individual retail establishments. 

The likelihood function of the discrete switching model is rather com- 
plicated, so that no analytical results can be obtained and numerical optimiza- 
tion has to be used to find maximum likelihood estimates. A complication 
arises from the fact that the likelihood function can be shown to tend to 
infinity for suitable values of the structural parameters, when variances tend to 
zero. This feature, which does not exclude a consistent root of the likeli- 
hood equations corresponding to a local maximum, may seriously frustrate 
the application of numerical optimization techniques. For an example, see 
Kooiman and Kloek (1985). The interference of this unboundedness phenom- 
enon makes that one has to be very careful when interpreting estimation 
results. It is desirable to investigate the shape of the likelihood surface more 
closely in order to check the relevance of the estimates obtained. In this paper 
we intend to demonstrate that Bayesian methods can be used for that purpose. 

Recently Van Dijk (1984) and Van Dijk, Kloek and Boender (this issue) 
have demonstrated the feasibility of numerical integration, hence Bayesian 
analysis, in relatively high-dimensional parameter space. They use Monte 
Carlo simulation methods for that purpose, based on importance sampling, We 
use two of their methods, named Simple Importance Sampling and Mixed 
Integration, to compute posterior first and second moments and marginal 
posterior density functions, both of the model parameters and of the average 
probability of the excess supply regime in the sample. These results, apart from 
being interesting by themselves, allow us to check whether the asymptotic 
maximum likelihood results adequately summarize the actual properties of the 
likelihood function, given the available set of data. 
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We present our switching model for retail services in section 2. In section 3 
we derive the likelihood function, and in section 4 we discuss the methods of 
analysis employed. Estimation results and likelihood diagnostics by means of 
numerical integration methods are the subject of section 5. Section 6 con- 
cludes. 

2. The model 

The model we develop and discuss in this section expands on a model 
developed by Thurik and Koerts (1984a,b) and Thurik (1984) to explain 
floorspace productivity in retailing, i.e., the level of annual sales per square 
meter of available floorspace. The model assumes that the partitioning of 
floorspace into customer or selling area and remaining space plays a predomi- 
nant role in the determination of the sales level. Differences in the partitioning 
of the floorspace reflect different marketing or operational strategies. A low 
share of selling area is found, for instance, in the traditional ‘shop around the 
corner’ with mainly counter service, where most goods are kept in stock and 
only few are displayed. A low share of remaining space is associated with 
modern self-service and cash-and-carry type shops, where most handling of 
goods takes place in the selling area and all goods are on display. 

In the model both selling area and remaining space are treated as inputs in a 
production function for retail services. Input substitution accounts for changes 
in operational policy. The model assumes that shopkeepers partition their 
available floorspace in such a way that sales are maximized. Analytically the 
level of annual sales Q and the partitioning of available floorspace W in selling 
area C and remaining space R are determined by solving the following 

problem: 

Fa;Q subject to Q I Q’(C, R; X), 

R=W-c, OlCl w, 

where X summarizes the exogenous variables of the model apart from W, and 
Q’( .) is the possibility frontier or supply function for retail services. One may 
wonder whether it is appropriate to leave the demand side out, as Thurik 
(1984) does, and explain the level of sales from the supply side alone. Actually 
demand may not be large enough to sustain the solution derived from (1). In 
order to account for this possibility we introduce an additional demand 
constraint in the maximization problem (1): 

Q I Q"(C X), (2) 

where Qd( -) is a demand function that we shall assume to be known by the 
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shopkeeper. Thus we obtain a more general model that allows for ‘demand- 
constrained’ operations of retail establishments as well. 

The general solution to the maximization problem (1) + (2) depends on the 
specification of the supply and demand functions. We employ the following 
beta-type supply function: 

Qs(C; W,X)=/?(X)(c-y)“‘(w- c)“-? (3) 

for 

o<ysc, OSmll, E>O, /?.(X)>O, 

where we have suppressed the explicit dependence on R by substituting 
R = W - C. According to this equation supply is zero, i.e., no sales are 
possible, when remaining space is zero, or when selling area C does not surpass 
a threshold level y independent of shop size, that we shall treat as a parameter 
to be estimated.2 Other parameters to be estimated are the scale elasticity E 
and the distribution parameter V. We postpone the specification of the shift 
factor p(X) until section 5, where we present our estimation results, as it is 
immaterial for the general structure of our model on which we want to 
concentrate now. We refer to Thurik (1984) for a detailed justification of (3). 

The demand function we employ is of the simple constant elasticity type: 

Qd(C; X)=c?(X)(C-y)‘, u>o, 6(X)>O, (4) 

where we have included the same threshold y as in eq. (3). The specification of 
S(X) is again postponed until section 5. In view of the stochastic specification 
of our model, which is the subject of the next section, we have to impose the 
regularity condition u 2 TE on the demand elasticity u. It guarantees3 that 
multiple intersections of the supply and demand curves are excluded on the 
interval y < C 5 W. 

Given supply and demand equations (3) and (4) the solution to the sales 
maximization problem (1) + (2) takes one of two possible forms, depending on 
the relative position of the two curves. Fig. 1 depicts both possibilities. With 
demand large enough, as in fig. la, the optimum is obtained at the top of the 
Q”( .) curve. When demand is too low to sustain this solution, the optimum is 
found at the intersection of the supply and demand curves, as in fig. lb. In 
other words, in situations of excess supply shopkeepers tend to increase the 
share of selling area, and, thereby, decrease the service level (so-called ‘ trading 

‘Originally Thurik used a threshold for remaining space as well, which was consistently found to 
be zero. so we left it out. 

‘By comparing the derivatives of the right-hand sides of (3) and (4) with respect to C it can 
directly be checked that, given II 2 BE, the demand curve intersects the supply curve from below for 
any intersection on the interval y i C I W. For continuous functions this entails that at most one 
intersection can occur. 

J Econ E 
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Q”(C W, X), 

(5) 
dQs( c,,; w, x)/aced = 0, 

Q”(C,,; W, X) = Qd(G,; X>, 

where the last two equations only serve to define the latent variables C,, and 
C,, figuring in the maximum condition for C. 

The type of model that we have obtained is known in the econometrics 
literature as a switching or minimum-condition model. Its canonical form 
obtains in the description of markets in disequilibrium, where transactions are 
assumed to equal the minimum of supply and demand, i.e., Y = min(YS, Yd) 
with Y” = YS( P; X) and Yd = Yd( P; X) as supply and demand functions, P 
being the price. The presence of an additional endogenous variable Q, that is 
not directly affected by the switch of regimes, makes our model analytically 
similar to a disequilibrium model with an additional price equation. The 
one-market disequilibrium model with endogenous prices has been described 
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by Maddala and Nelson (1974) Goldfeld and Quandt (1975) Quandt (1982) 
and others. Rosen and Quandt (1978) give an empirical application to the U.S. 
labour market. 

3. The likelihood function 

Two types of stochastic specification have been discussed in the statistical 
literature on switching models based on the minimum condition. The first one 
goes back to Fair and Jaffee (1972) and Maddala and Nelson (1974). They 
assume that the level of transactions Y equals the exact minimum of unob- 
served stochastic supply and demand: Y = min( Y”, Yd). The likelihood func- 
tion for this model can be shown to be unbounded when variances tend to 
zero. To avoid this problem Ginsburgh et al. (1980) employ certainty equiv- 
alents and add an error term to the minimum condition: Y = min(EY”, EYd) 
+ error, where E is the mathematical expectations operator. The model for Y 
then effectively reduces to a non-linear regression model. As we find it hard to 
accept the implicit restriction in the latter approach that the supply and 
demand errors are identical, we prefer to employ the former one. For model (5) 
this implies that we add structural disturbance terms to the supply and 
demand equations (3) and (4). We use a multiplicative error specification to 
avoid heteroskedasticity and because it guarantees that Qs and Qd are zero for 
C = y and Qs is zero for C = W in the stochastic version of our model as well: 

QS = Q"( C; W, X) exp ( E”), 

Qd= Qd(C; X)exp(ed). 

As is usually done we shall assume that the errors es and ed are independently 
and identically normally distributed with zero means and variances IJ,’ and ~2. 

It is not sufficient to include error terms in the supply and demand equations 
alone. Since we have two endogenous variables, Q and C, we need at least two 
error terms being ‘active’ for each regime. As under the excess demand regime 
both Q and C are determined from the supply function, we need an additional 
error term to be included in the determination of C,,.” Using eq. (3) the 
first-order condition aQ”(C,,; W, X)/&Z,, = 0 yields C,, = C,,(W), with 
C,,(W) = y + T( Q - y). Aiming at a multiplicative error specification here as 
well we found it convenient to employ the following equation for C,,: 

(8) 

4A similar procedure is common practice in production function studies, where an error term is 
introduced in the factor demand equations obtained from the first-order conditions for a maximum 
of (expected) profits, given the available technology. 
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where the error + is restricted to the positive reals only, and E exp ( - +) = 7~ is 
imposed in order to satisfy C,, = C,,(W) on average. We shall assume that @ 
is independently’ gamma distributed with density function g(+; (Y, $) = 

IYa)-i4C,-“F1 exp(-+/4), h w ere T(ar) is the (complete) gamma integral 

/o”za-1 exp( -z) dz. As we want to impose zero probability density on the 
event C = y, we shall impose (Y > 1. The scale parameter $ has to be positive. 
It follows directly from the moment generating function of the gamma distri- 
bution, M(t) := E exp (t+) = (1 - f#)--u, that the condition E exp ( - 4) = 7~ 
gives rise to the restriction 

alog(1-t +!J) = -log?r. (9) 

We shall use (9) to substitute for + so that the gamma distribution that we 
employ for cp only yields (Y as an additional parameter to be estimated. 

The likelihood function of our model is derived from the joint density 
function of the endogenous variables Q and C. It is demonstrated in the 
appendix that the latter takes the following form: 

h(Q,C)=JCj(C,C,,,Q,dC,,+/f(C,,,C.Q)dC,,, (10) 
Y Y 

where f( .) is the joint density function of Ced, C,, and Q as it can be derived 
from eqs. (6), (7) and (8) using the maximum condition C = max(C,,, C,,). 
Instead of deriving the general form of f( -), it is more practical to work out 
the two right-hand-side terms separately and directly derive the required 
expressions from the ‘special’ version of the general model (5) that one obtains 
under each one of the two regimes. 

We first need some notation. We have already introduced g(. ; LY, 4) to 
denote the gamma density function of +. Let G(. ; a) denote the corresponding 
standardized (4 = 1) gamma distribution function. Similarly let n( .; o) and 
N( .) denote the normal density function with zero mean and variance u 2, and 
the standard normal distribution function respectively. We also define the 

residuals 

es:= q - qs(c; W, X), 

ed := q - qd( c; X), 

p:=log(W-y)-log(C-y), 

‘One may doubt the independence of 9 and es since both errors account for discrepancies 
between our specification of the supply side and the data. Specification errors in supply equation 
(3) are likely to show up in both (6) and (8). To our defense we can point at common practice in 
production function studies that usually assume independence of ‘technical’ and ‘allocative’ 
inefficiency. The former refers to errors in the supply function per se, whereas the latter refers to 
errors in the demand equations derived from first-order conditions. Also, Thurik (1984, p. 43) 
reports correlation coefficients between the residuals of (6) and (R) that are less than 0.25 in 
absolute value. 
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where we have (partly) changed to logarithms, i.e., q := log Q and c := log C. 
Notice that these residual@ are functions of the observables only. 

Now in case of an excess demand we have q = q’, c = c,~, whereas c,, and 
qd are unobserved. Taking logarithms in eqs. (6)-(8) and substituting for qs 
and ted we directly obtain 

2=q-q’(c;W,X) (=eS), (114 

Ed = qd - qd( c; x), (lib) 

@=log(W-y)-log(C-y) (=p). (1Ic) 

The regime only applies when c,, _< c, which, given the shape of our supply and 
demand curves, is equivalent to qd 2 q; compare fig. la. This, in turn, is 
equivalent to &d 2 ed, as can be seen from the definition of ed and eq. (llb). 
Consequently the first term in the joint density function of q and c is given by 

where fed( .) is the joint density function of q, c and .sd. It can easily 
be obtained from (11) as follows. First factorize fed(q, c, .c~) as 

fdd(C)f,2d(q1C)f~~(Edlq, c). From (IIc) we obtain .%e’d(c) as (C/(C - Y)) X 
g( p; (Y, $), the first factor being the Jacobian @/L?c in absolute value. From 
(lla) f,‘d(qlc) is directly obtained as n(es; a,), whereas f,i(edlq,c) is simply 
n(ed; ad) as a consequence of the independence of .sd, 2 and @. Integration 
over .sd results in a factor 1 - N(ed/ud). Collecting factors, we end up with 

Under excess supply we have q = q’, q = qd from which c is implicitly 
determined as c_, whereas ccd is unobserved. As the alternative to (11) we now 
obtain 

&‘=q-q’(c; W,X) (=es), (124 

ed=q-qd(c;X) (=ed), (12b) 

The regime only applies when ted < c, or, equivalently, + > p, so that the 

‘Only er is a proper residual since all observations, no matter the ruling regime, have to satisfy 
the supply function. The other two, ed and p, can only be counted as observations of the error 
processes cd and $I to the extent that the correct regime applies. 
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second term of the joint density function of q and c is given by 

where f,,( q, c, +) is the joint density function of q, c and 9. Again we factorize 

f& c, +) as !&I~ c).LDlq~ c). W e obtain fet(q, c) by changing variables 

from the joint normal density function of &S and &d using (12a) and (12b). This 
yields a factor n(e’; uS)n(ed; ud) and a Jacobian factor ldqd(c; X)/de - 
dq’(c; W, X)/861, which, using eqs. (3) and (4), equals (u - ~E)C/(C - y) + 
(1 - r)K/(W- C). The density function fA(+lq, c) is R( p; (Y, $), so that the 
integration over $I 
find 

_” _ - _ 
results in a factor 1 - G( p/4; a). Collecting factors, we 

Adding a subscript 
be formulated as 

N 

x (1 - G( P/+; a>>. 

i to indicate observations, the likelihood function can now 

“=,cl {hed(ql,Cl)+h,,(q;,ci)}, (13) 

where N is the total number of observations. 

Although the likelihood function .obtained looks rather awkward its general 
structure is transparent: for each observation we obtain a weighted sum of the 
joint density functions of q and c under each of the two possible regimes. The 
weights are the unconditional probabilities that the condition under which the 
regime applies is satisfied. These probabilities do not add to unity, contrary to 
the conditional probabilities that a given observation on q and c has been 
generated under the excess supply regime or the excess demand regime.’ It is 
shown in the appendix that these probabilities are equal to 

P,,(&c> = h,,(q, c)/(h,,(q, c, +thed(q, c>), 

ped(% c, = kdh c)/(hes(q, c> +kd(% c>). 

‘We refer to Gersovitz (1980) and Kiefer (1980) for a discussion of the issue of regime 
classification in disequilibrium models. 
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Once the model has been estimated we can use these expressions to obtain 

estimates of the two regimes probabilities for each observation in the sample. 
This is most interesting from a policy point of view as it provides us with an 

estimate of the extent to which the sector under study operates supply-con- 
strained or demand-constrained. It also allows us to check whether a short-cut 
is possible based on the assumption that all observations effectively come from 
one regime only. 

We conclude this section with a few remarks on the unboundedness of our 
likelihood function (13). In the appendix we show that the likelihood becomes 
unbounded in switching models of this type when variances tend to zero and 
other parameters take such values that completely one-sided samples are 
implied. For the present model this occurs when ad tends to zero and the 
demand-side parameters take such values that all observations sat’sfy Q I 
Qd(C; X), with equality for one observation at least. The likelihood also 
becomes unbounded in the opposite situation where the variance of (p tends to 
zero and the supply-side parameters take such values that all observations 
satisfy C 2 C,,(W), with equality for one observation at least. The condition 
C 2 C,,(W) implies that, for arbitrary but given y, r has to be fixed at the 

smallest value of (C - y)/( W - y) in the sample. Moreover, the variance of $ 
is aq2. As we have imposed (Y > 1 it can only be equal to zero when \r, equals 
zero. From (9) it is clear then that in this situation the likelihood can only 
become unbounded when a tends to infinity. 

4. Estimation methods 

Estimation of our model proceeds in two steps. First we compute classical 
maximum likelihood estimates of the model parameters. An estimate of the 
covariance matrix is obtained in the usual way as minus the inverse of the 
Hessian matrix of the log-likelihood function evaluated at the point estimates 

obtained. Secondly, we check whether these asymptotic results adequately 
summarize the properties of our actual likelihood function. For this purpose 
we use a Bayesian methodology applying numerical integration by means of 
Monte Carlo methods. We obtain posterior means and the posterior covariance 
matrix of the parameters of the model. We also compute marginal posterior 
density functions for individual parameters of interest. The methods employed 
allow for the computation of marginal posterior density functions of arbitrary 
functions of the parameters as well. We exploit this feature to compute the 
posterior mean and variance, and the posterior density function of the average 
probability of the excess supply regime for the observations in our sample. 
Thus we get an idea about the information content of the data with respect to 
the regime distribution. 
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4. I. Maximum likelihood 

The first step in our analysis consists of finding the maximum of the 
likelihood function (13). The main problem is, of course, that the likelihood 
function is known to become unbounded when either a,, goes to zero or a 
tends to infinity, and other parameters take suitable values as well. Compare 
the discussion at the end of the preceding section. Actually we are not really 

interested in the properties of the likelihood in this region of the parameter 
space as zero variances of the errors have a priori probability (density) zero in 
the rather simple and highly stylized model we analyse.* What we are really 
looking for is a (local) maximum located in a domain in parameter space that 
excludes this anomalous region. Hartley and Mallela (1977) have shown that 
the usual asymptotic properties of maximum likelihood apply to such a point, 
provided the true parameter vector is located in the interior of the domain 
considered. 

This leaves us with the need to include a penalty function such that the 
unboundedness region is effectively suppressed without affecting the shape of 
the likelihood in a more realistic domain of the parameter space. One possible 
way to proceed is to impose a strictly positive lower bound.on ad and an upper 
bound on a, but it is rather difficult to make up one’s mind as to what values 
are acceptable. So we adopted another strategy. When the likelihood becomes 
unbounded we obtain an almost entirely one-sided sample with all observa- 
tions assigned to one regime with probability 1, except for one or two 
observations that are assigned with probability 1 to the other regime. From eq. 
(14) it is clear that regime probabilities are obtained without extra costs as a 
by-product when evaluating the likelihood function. This suggests to constrain 
the range of acceptable values for the average probability of, say, the excess 
supply regime in the sample. So, in order to keep the optimization path away 
from the unboundedness region in the parameter space, we added the follow- 
ing penalty function to the log-likelihood function: 

P = b(1 - ~~,/B,)2/p,, iff p,, 5 B,, 

= 0 elsewhere, 

where b is a scaling factor that serves to vary the intensity of the penalty, and 
B, and B, are lower and upper bounds for the average probability of the 

‘Note that. quite contrary to this statement, the usual ‘non-informative’ prior p(o) = o 1 does 
give high credit to this state of nature. 
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excess supply regime in the sample 

compare eq. (14). Note that this penalty function is continuously differentiable 
with respect to p,,, which in turn is a complicated, but continuously differen- 
tiable function of the model parameters. This guarantees that the function to 
be maximized has a continuous gradient, which is desirable in view of the 
optimization routine that we used.’ 

4.2. Likelihood diagnostics 

From now on we shall reinterpret our likelihood function as the kernel of a 
joint posterior density function of the model parameters. Obviously, this 
entails the use of a constant prior for our further analysis. The switch to a 
Bayesian methodology allows us to investigate global properties of the likeli- 
hood surface by means of numerical integration methods. Van Dijk (1984) has 
demonstrated that numerical integration, hence Bayesian analysis, is feasible 
even in relatively high-dimensional parameter space, when using Monte Carlo 
simulation methods. Posterior means and (co-)variances and marginal pos- 
terior density functions can be computed, both of parameters of interest and of 
interesting functions of those parameters, like multipliers, adjustment speed, 
etc. 

In this subsection we shall briefly describe the methodology involved. More 
details can be found in Van Dijk (1984) and in Van Dijk, Kloek and Boender 
(in this volume). 

Let p(B) be the kernel of a joint posterior density function of a parameter 
vector 8. Suppose we want to investigate the distribution of some scalar 
function f(0) of 8. Evaluation of, say, its first two moments requires the 
computation of 

(17) 

(18) 

‘) We used NAG-liberty routine EOUBF, with numerical first derivatives. One optimization run 
takes between 500 and 1000 functions evaluations, which costs between 50 and 100 seconds cpu on 
a CDC Cyber 170-855. To evaluate N(z) and T(a) we used NAG routines SlSABF and S14ABF, 
respectively. Values for the incomplete gamma integral G(r; a) were obtained by means of an 
expansion presented by Lau (1980) (algorithms AS 147). 



134 P. Kooiman et al., Micro-economic disequilibrium model for retail services 

where the integration is over the entire domain of 8. The posterior density 
function of f(0) can be approximated once we are able to evaluate posterior 
probabilities of the type Pr(a, <f(0) I a,), where (a,, az) is a small interval 
in the range of possible values for f(0). These probabilities, however, can 
easily be seen to be equal to the expectation of a dummy function D(0) 
defined as 

o(0) = 1 iff a, -q(e) 2 a2, 

09) 
= 0 elsewhere. 

Consequently, the general numerical problem involved is how we can compute 

integrals of the type 

for arbitrary functions g(8). 

The integration method we employ is based on so-called importance sum- 
pling. Let Z(e) be a density function associated with a probability distribution 
from which we can easily generate (pseudo-)random drawings by means of a 

computer. Then 

P(e) T=Jg(e) z(e) 
-z(e)de= E, 

where E, denotes the mathematical expectation with respect to Z( 0). From the 
law of large numbers it follows directly that Yg can consistently be estimated 
from a random sample 6, ( j = 1, . . . , J) drawn from a distribution with density 
z(e) as 

We call Z( 0) the importance function as it specifies the density of the sampling 
process for each point in the domain of integration, i.e., its relative importance. 
The numerical precision of the estimate (20) crucially depends upon the 
variance of g(f3)p(O)/Z(O). Therefore it is desirable to select an importance 
function that approximates the posterior density function as closely as possi- 
ble. Several alternative methods of Monte Carlo integration originate in 
different principles to select or construct an appropriate importance function. 
We shall discuss two methods that have proved to be successful in some 
applications. 
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The first method is Simple Importance Sampling (SIS) where we use a 
member of the multivariate Student-t family of density functions as our 
importance function. The multivariate normal density function is a limiting 
member of this family. Maximum likelihood estimates are used to specify the 
values of the location and scale parameters. Tail behavior can be varied by 

choosing different values for the degree of freedom parameter. As we expected 
the posterior density function to have relatively fat tails we opted for one 
degree of freedom in the present application of the method. The actual 
integration results suggest that a somewhat larger value might have been more 
appropriate, though. 

The other technique we employ is Mixed Integration (MIN). Its distinctive 
feature is that it employs a ‘mixture’ of classical numerical quadrature and 
importance sampling. Importance sampling is used to generate directions in 
parameter space, whereas for each direction a one-dimensional classical in- 
tegration step is performed. Contrary to SIS, which is based on a symmetric 
importance function, MIN is robust towards asymmetric tail behaviour, or 
multivariate skewness, of the posterior density function. 

Actually, the MIN technique proceeds by changing variables in the in- 
tegrand of ~9, using a transformation of the k-vector 19 of parameters into a 
pair (p, II). The (k - l)-vector 17 represents the direction of the vector 0 - 8,,, 
19, being the posterior mode. The scalar p satisfies p2 = (0 - B,)‘V-‘( tI - O,), 

V being the importance covariance matrix. A sign convention for p is added 
to ensure that the transformation is one-to-one. The actual transformation 
employed involves a Jacobian determinant 1 p 1 k - ‘1 J( 77) 1, where, as indicated, 
the factor lJ(q)( only depends on n. Letting O(p, 7) denote the inverse 
transformation, we obtain for Yg 

<= s(e(P,~>)p(e(P,17))Iplk’(J(17)ldPd~ / 

=E 
IJI g(e(p,71))p(e(p,17))ipik-ldp 

where E,,, denotes the mathematical expectation with respect to lJ( 77) I consid- 
ered as the kernel of a density function for 7. From the transformation 
employed it can easily be shown that random drawings q, can be generated 
from a distribution which has a density function proportional to [J(n)1 by 
simply generating random drawings t9, from a multivariate normal with mean 
vector 0, and covariance matrix V, and then applying the transformation 
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involved. Accordingly, we can estimate Yg using J random drawings n, aslo 

. 

For each random drawing vi we have to compute the value of the integral 
over p, for which we use a 16-point Gaussian quadrature. Numerical conver- 
gence is checked by running separate integrations over subranges of the 
domain of p. Thus the actual number of function evaluations per integration 
step is considerably larger than 16. The numerical quadrature step complicates 
the computation of marginal posterior density functions according to eq. (19). 
The value obtained from the integral over p has to be ‘redistributed’ over the 
various intervals (a,, a*) that partition the domain of each of the parameters. 

A crude but effective solution consists of assigning the contribution of each of 
the parameter points at which the integrand is evaluated to the interval in 
which this parameter point happens to fall. 

5. Results 

We have estimated our model with data from a survey of Dutch independent 
supermarkets and superettes conducted in 1979 by the Research Institute for 

Small- and Medium-Sized Business EIM. l1 The sample consists of 215 shops 
with floorspace ranging from approximately 110 to 1600 m*. For these estab- 
lishments a large number of operational, financial and environmental variables 
have been observed. For this study we only make use of a limited number of 
these variables. Our selection was primarily based on the results earlier 
obtained by Thurik (1984) where the reader Cain also find a detailed account of 
the available variables. 

We first discuss the specification of the shift factors p(X) and S(X) of our 
supply and demand functions (3) and (4). Some preliminary exercises indicated 
that the following specification performed rather well: 

P(X) = exp (&>(I + M)@l, (21) 

S(X)=exp(6,+6,F)(1+M)‘+C”2, (22) 

where M is the fractional gross margin (Q - PV)/PV, PV being the purchas- 
ing value of sales Q, H is occupancy costs per square meter, and F is the 
relative share of sales of fresh products, as e.g., dairy products, bread, fruits, 
and vegetables. Meat and meat products are not included in this variable. 

“Proportionality is sufficient as we always compute ratios of integrals, so that the integration 
constants cancel. Compare eqs. (17) and (18). 

“The data can be obtained from the authors upon request. 
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The factor (1 + M) in (21) is a proxy for prices, that we do not observe. 
Being equal to Q/PV its role is to transform the value of sales Q into its 

volume, that we assume proportional to the purchasing value PI/. In (22) the 
factor 1 + M is present for the same reason, but also because we expect prices 
to influence the level of demand. Consequently, we interpret the parameter S, 

as a price elasticity, expected to be negative. It is customary in retail productiv- 
ity studies to assume that productivity increases with factor prices.‘* High 
factor costs urge the shopkeeper to exploit his resources efficiently. Housing 
being a production factor in the retail industry, we have included occupancy 
costs in (21), where it serves as a proxy for efficiency. We expect the parameter 
pi to be positive. Occupancy costs are likely to be correlated with the quality 
of the site too. Thus one can argue equally well that H has to be included in 
(22) where it serves as a proxy for attractiveness, i.e., environmental factors 
influencing demand. Including H in (22) instead of (21) we obtained entirely 
unacceptable estimates, though. We have also tried to include H in both (21) 
and (22). Constraining the elasticities to be non-negative, we invariably ob- 
tained zero elasticity of demand, so we continued with the specifications 
according to (21) and (22). We expect the parameter 6, in (22) to be positive as 
the availability of fresh products is likely to exert a positive influence on 
demand. 

Confronting our model with the available data the first step to be taken was 
to find the maximum of the likelihood function - or equivalently: the posterior 
mode - and to evaluate the inverse Hessian matrix of the log-likelihood at the 
optimum. Initially optimization runs did not properly converge due to mis- 
specification of p(X) and 6(X), and the presence of outliers. During the 
process of selecting eqs. (21) and (22) we also deleted 7 out of the 215 available 
observations. These showed up as clear outliers, either because of an extremely 
bad fit on the supply curve (3), or because of a very low likelihood value (13). 
The first two columns of table 1 give the optimisation results obtained with the 
remaining 208 sample points. Taking B, = 1 - B, = 0.1 and b = 50 in penalty 
function (15) a unique local maximum obtains. According to the implied 
estimates of the regime probabilities the average probability of the excess 
supply regime in the sample is 0.242. Although this implies that the penalty is 
not active at the final point, it does play an important role during the iterations 
leading to this point: leaving out the penalty function we repeatedly (but not 
invariably) end up in the unboundedness region with the optimization routine 
failing to converge. 

Now turning to the point estimates obtained, we first notice that we have 
deleted the threshold y figuring in eqs. (3) and (4) since it invariably ended up 
at the imposed lower bound of zero. Thurik (1984) reports the same result for 

“For references see, for instance, Journal of Retailing. Special issue on Productivity, Vol. 60, no. 
3. Fall 1984. 
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Table 1 

Parameter estimates (standard errors in parentheses). 

Par. Eq. 
ML 

ML (82 = 0) MIN 

8” 

PI 

e 

77 

” 

=d 

a 

log L 

Fe, 

(21) 

(21) 

(3) 

(3) 

(6) 

(22) 

(22) 

(22) 

(4) 

(7) 

(9) 

2.942 2.943 
(0.261) (0.261) 

0.749 0.749 
(0.052) (0.052) 

0.865 0.865 
(0.026) (0.026) 

0.642 0.643 
(0.015) (0.015) 

0.223 0.223 
(0.011) (0.011) 

6.524 6.451 
(0.296) (0.158) 

1.390 1.377 
(0.540) (0.531) 

PO.362 0.000 
(1.24) 

0.910 0.907 
(0.050) (0.049) 

0.195 0.195 
(0.027) (0.027) 

5.492 5.503 
(0.633) (0.633) 

317.913 A 317.955 

0.242 0.240 

2.945 
(0.264) 

0.748 
(0.053) 

0.865 
(0.026) 

0.644 
(0.017) 

2.950 
(0.265) 

0.747 
(0.053) 

0.866 
(0.027) 

0.644 
(0.016) 

0.226 0.226 
(0.011) (0.011) 

6.487 6.493 
(0.182) (0.183) 

1.363 1.351 
(0.617) (0.598) 

0.000 0.000 

0.906 
(0.056) 

0.209 
(0.034) 

5.558 
(0.647) 

0.904 
(0.059) 

0.210 
(0.035) 

5.568 
(0.633) 

0.227 
(0.066) 

0.225 
(0.063) 

SK Thurik 

3.046 

0.724 

0.857 

0.683 

0.220 

5.207 

- 332.987 

this particular data set. The other supply-side parameters take plausible values 
and appear to be fairly well determined. There is a strong effect of occupancy 
costs on sales performance (pi = 0.75), on which we have already commented. 
There are slight but significant diseconomies of scale (E < 1) and on average 
sales performance is maximal when about two-thirds of the available area is 
selling area (r = 0.66). The demand side appears to be somewhat less well 
determined, except for the elasticity with respect to selling area, V, which is 
close to unity. The price elasticity 6, has a very large standard error, probably 
because gross margin is a bad proxy for selling prices. We have deleted it in 
our further experiments in order to economize on the size of the model. It can 
be checked that the effect is negligible by comparing the first two columns of 
the table. The share of fresh products sold, with elasticity 6,F, shows up 
relatively weak as well. The null hypothesis of no effect is rejected at the 95% 
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Fig. 2. Cumulative distribution of estimates of P_ in the sample. 

level on a likelihood ratio test, though, twice the logarithm of the likelihood 
ratio being equal to 5.34. 

We have tried to improve upon the specification of our demand equation by 
including a locational dummy in (22) indicating whether the establishment is 
located at a large shopping centre or not. This proved to be insignificant, twice 
the logarithm of the likelihood ratio being only 0.90. We have also included a 
dummy indicating whether or not the establishment contains a butcher’s shop, 
but this consistently ended up at the imposed lower-bound of zero. 

Finally, considering the error terms of our model, the standard deviations of 
the supply and demand errors &S and ed are about 20’%, which is acceptable for 
cross-sectional data. The same figure obtains for the error + in eq. (8) for the 
optimal partitioning of the floorspace. Its standard deviation can easily be 

obtained from eq. (9) and the estimates for (Y and n as 100~~;$ = 19.7%. 
Now turning to the regime probabilities, fig. 2 displays the cumulative 

distribution of our estimates of P,, in the sample. We have already referred to 
the average value of these estimates, which is 0.24. It can be checked from the 
figure that the median value is about 0.15, and that more than 80% of the 
observations have a probability of excess supply less than one half. This 
illustrates that according to these estimates the majority of the observations are 
strongly supply determined. This may partly explain why the demand side is 
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not so well determined. It also entails that Thurik’s (1984) model, which 
assumes excess demand for all observations, may be an acceptable approxima- 
tion. This is reflected in the last column of table 1, where we have reestimated 
our supply side under this assumption. Point estimates are only slightly 
different. The demand side is not identified when all observations are assumed 
to be supply determined.13 Neither can log-likelihood values be compared in 
the usual way since the models are not properly nested. 

It is possible, in principle, to compute estimates of the standard error of p,, 
by evaluating the square root of (ap,J&9)‘V,( aP,_,/H), where V, is the 
estimated covariance matrix of the parameters. As the programming of the 
gradient vector of p,, is not a trivial task, we prefer to deal with matters of 
precision in the context of the Bayesian approach, to which we shall turn now. 

We gain further insight in the shape of the likelihood surface once we shift 
from a classical maximum likelihood (ML) approach to a Bayesian methodol- 
ogy. For that purpose we first have to specify the prior information that we 
want to use. As we are interested in the shape of the likelihood function per se 
we opt for uniform priors on relatively wide, but bounded intervals for all our 
parameters. The bounds that we employ determine the domain in parameter 
space where we perform integrations using SIS and MIN techniques. They 
have been selected using the earlier ML results and some preliminary integra- 
tion runs. The domain of integration was further restricted by imposing 6, 2 0, 
and the regularity condition u > TE that we discussed in section 2. The domain 
includes values for the demand-side parameters for which we have an excess 
demand for all observations,‘4 i.e., Q I Qd(C; X), with equality for at least 
one observation. In this situation the likelihood increases without bound when 
ad goes to zero, which is the lower bound we employ for this parameter. 

Obviously it is very dangerous to perform numerical integration when the 
integrand has a pole in the domain of integration. We even cannot be sure that 
the expectations we try to estimate exist. One possible way to proceed is to get 
rid of the pole by restricting ad to be strictly positive. Then, of course, the 
sensitivity of the final results with respect to the actual choice of the lower 
bound for ad becomes the central issue. It can be addressed by repeating the 
integrations for different choices. This, however, is very costly, so we choose to 
take the more risky approach and check during our integration runs whether 
any signs of actual problems of this type could be detected. Both with SIS and 
MIN we have checked for outliers, i.e., random drawings that contribute more 

t3 We can assume that all observations satisfy the demand equation as well, but then we obtain 
an equilibrium model, and this entails the necessity to introduce a third endogenous variable in the 
model, i.e., one that adjusts fast enough to close temporary disequilibria. 

14Since we use a bounded interval for a our domain of integration excludes unboundedness of 
the likelihood function originating in the opposite event of a general excess supply. Compare the 
discussion at the end of section 3. We have not checked the sensitivity of the integration results 
with respect to the value of the upperbound for a. as the results obtained did not indicate any 
influence whatsoever. 



P. Kooimrrn et ul., Micro-economic di,sequdrhun~ model for returl serwces 141 

than expected to the value of the integral obtained. For the same purpose we 
have also monitored the convergence of the integration runs, both with SIS and 
MIN. Finally, we have tested for the occurrence of multiple modes when 
integrating along the directions randomly selected in the context of the MIN 
procedure. On these checks we have not obtained even the slightest indication 
that unboundedness problems might interfere. Unimodality was always con- 
firmed, integration runs always converged fast and smoothly, and the distribu- 
tion of the values of the integrand obtained for all random drawings was 
always quite acceptable. Consequently we are inclined to conclude that either 
the mass involved in the unboundedness region is negligible, or, when this is 
not the case, this region is sufficiently isolated and concentrated at the 
boundary of the domain of integration to cause no practical problems. 

Now turning to the integration results, the third and fourth columns of table 
1 present the posterior means and standard deviations obtained with the MIN 
and SIS methods, respectively. The methods estimate the same expectations, so 
differences in the results are only due to sampling variance in the Monte 
Carlo procedure. This variance is easily computed for SIS, whereas it can be 
approximated for MIN; compare Van Dijk (1984, subsection 3.8). The 
differences between the MIN and SIS estimates of the posterior means fall 
within 2a bounds so computed. The MIN results are based upon 2000 random 
directions, with on average 90 function evaluations per quadrature for each of 
the directions obtained. SIS results are based on 50,000 function evaluations. 
As the methods converge relatively fast acceptable results are already available 
after 5-10,000 function evaluations. 

Comparing the integration results with the ML estimates the similarity is 
striking. For the supply-side parameters the results are virtually identical. The 
asymptotic standard errors of the ML estimates of the demand-side parameters 
are consistently somewhat too low as compared to the (exact!) posterior 
standard deviations. Point estimates are close together here as well. Mode and 
mean being so close together, the posterior density function and hence the 
likelihood function, is likely to be almost symmetrical. This is confirmed by the 
shape of the marginal posterior density functions of the model parameters. Fig. 
3 gives some examples, that are representative for the general pattern we 
found. The apparent symmetry of the likelihood function explains why SIS, 
which is based on a symmetrical importance function, performs so well. 
According to the estimated sampling variance it is even slightly more efficient 
than the MIN technique on the present model. In conjunction with the fast 
convergence of both methods, i.e., small sampling errors, this strongly indicates 
that the likelihood surface has a regular shape that can adequately be repre- 
sented by a member of the multivariate Student-t family of density functions. 

We have also computed integration results for the average probability of the 
excess supply regime, p,,. Its marginal density function is depicted in fig. 4. 
According to this result the data strongly reject the excess supply hypothesis 
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for the majority of the observations, the probability density being practically 
zero for values larger than one half. The skewness of the density function is 
reflected in the fact that the mean is slightly smaller than the mode. A nice 
feature of the integration methodology employed is that we can get estimates 
of the precision practically without additional costs. The standard deviation of 
p,, is estimated as 0.065. This confirms the idea that, given the specification of 
our supply and demand sides, the data are quite informative with respect to the 
regime distribution. 

We conclude our discussion of the estimation results with fig. 5 which gives 
the marginal posterior density function of ad. It shows that values for ad less 
than 0.05 have a probability density practically equal to zero. This is in accord 
with the finding that unboundedness problems seem to play no role whatsoever 
in the integration results that we have presented. 

6. Conclusion 

From the statistical point of view our switching model of retailing services 
performs reasonably well. We have, of course, made some preselection, both in 
terms of model specification and data, but not more so than it is customary in 
empirical econometric work. Contrary to what we had expected, the likelihood 
surface seems to have a very regular and symmetrical shape, so that the 
standard asymptotic ML results are fully adequate as a summary of the sample 
information, given our model specification. 

Unboundedness of the likelihood function, that can be shown to exist in our 
model, did not interfere, neither in the classical ‘optimization’, nor in the 
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Bayesian ‘integration’ stages of the estimation process. Apparently the ‘spikes’ 
associated with this phenomenon are sufficiently concentrated and isolated at 
the boundary of parameter space not to frustrate the numerical procedures that 
we have used for the diagnosis of the likelihood function of our model. 

The integration methods that we have used, i..e, Simple Importance Sam- 
pling and Mixed Integration, perform very well. This is not a surprise in view 
of the regularity of the likelihood surface. It is still an open question whether 
the techniques perform equally well in a less friendly environment. 

Now turning to the model that we have investigated, its main purpose was to 
help create a framework for further research into the influence of environmen- 

tal factors on floorspace productivity. More knowledge is needed in this field in 
view of the desire of EIM to build and maintain a decision support system for 
retailers and consultants. The presence of both a supply side and a demand 
side in the model also allows us to estimate the degree of over-capacity for 
branches in the retail industry. This may be valuable from a policy point of 
view. 

The estimation results allow for two main conclusions. The first is that 
occupancy costs are a supply factor, not a demand factor. It is a supply factor, 
probably, because the efficiency of the shopkeeper is positively correlated with 
the factor prices he has to pay: only efficient producers can afford to employ 
expensive resources. It is not a demand factor, probably, because occupancy 
costs are not a good proxy for environmental factors influencing demand. The 
second conclusion is that there is no drastic overcapacity in the small Dutch 
independent grocery trade in 1979. Given the observations in our sample the 
average probability of excess supply is estimated as 24% with a standard 
deviation of 6+%. In view of the fact that small independent grocers have the 
least competitive power in the grocery trade, it is likely that in 1979 no 
overcapacity occurred in the Dutch grocery trade as a whole. 

Appendix 

Some properties of the minimum of two random variables 

This appendix is included for expository purposes mainly. To accommodate 
the non-technical reader we use only elementary tools of mathematical statis- 
tics. The results derived are not new, similar derivations can be found in 
Maddala and Nelson (1974) Goldfeld and Quandt (1975) Quandt (1982) 
Maddala (1983) and others. 

We shall deal with the canonical form of the model for a market in 
disequilibrium, where transactions y are the minimum of stochastic supply y” 
and demand yd with joint density function g(y”, yd). We shall first derive the 
density function of y. Then we obtain expressions for the conditional regime 
probabilities Pr(yd 5 y”ly) and Pr(y” < ydly). We shall also demonstrate the 
unboundedness of the likelihood function associated with a random sample of 
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observations on y. Finally, we show that the introduction of an additional 
endogenous variable that is not directly affected by the regime switch is 
straightforward. 

We directly obtain the density function f(y) by differentiation of the distri- 
bution function F(Y) := Pr(y I Y). As the two regimes are disjoint we have 

F(Y)=Pr(yd5 YAyd_<y”)+Pr(y”I Yr\y”<yd) 

= 1’ Jmg( y”, y”) dy”d 
pfX2 I.d 

yd + Jy ‘/=g( y”, y”) dyddy”. 
-CC 1.’ 

Differentiation with respect to Y, and subsequent replacement of Y by y yields 
the density function f(y), 

f(y)= 91 y=v=f’“(y)+f’d(yL 64.1) 

where 

f’“(y):= J[,xg(v’> y)dy”> 64.2) 

fed(y) := jlag( y. y”> dyd. (A.3) 

Notice that in each of the two terms the domain of integration consists of the 
range of admissible values of the unobserved side of the market, given the 
observed level of transactions y. In case of a ‘maximum’ condition, as in the 
main text, this entails that integration bounds will be - cc and y instead of y 
and 00. 

Now turning to the regime probabilities we shall derive the following 
property: 

Pr(yd ~y”ly) =fYy)/f(y). (A.41 

For that purpose we introduce the auxiliary random variable z := yd - y’. Let 
h(y, z) be the joint density function of y and z, as it can be obtained from 
g( y”, yd) by changing variables. We obtain the conditional density function of 
z, given y, as h(y, z)/f( y). Then 

Pr(ydlySly)=Pr(z201y) 

/ 
a3 h(z, Y> = 

0 f(y) dz 

1 

/ f(Y) 0 
?z(z, y)dz. 
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To evaluate the right-hand-side integral we transform back to (y”, yd) again. 
As z 2 0 corresponds to yd sy” and, obviously, h(z, y) transforms into 
g(y’, yd), we end up with f’“(y). This proves (A.4). Similarly we have 

Pr(y”~ydly) =fed(y)/f(y). (A.51 

It follows directly from (A.l) that both regime probabilities add to unity, as it 
should be. 

We shall now demonstrate the unboundedness of the likelihood function L 
associated with a random sample y, (i = 1,. . . , N) of observations on y: 

(A.6) 

where I is the index set { 1, , . . , N }. Without loss of generality we concentrate 

on finding a set of parameter values associated with the density function 
g(y”, yd) such that L tends to infinity when the variance CJ~ of yd tends to 
zero. This only occurs when we impose some, relatively weak, conditions on 

g(y”, yd). As it is rather difficult, and not very rewarding, to try and find 
necessary conditions, we shall be content with the following set of sufficient 
conditions, where g”(y’) and gd(yd) are the marginal density functions of ys 
and yd, respectively: 

Assumption. A set of admissible parameter values exists such that 

dY”Y Y”> = g”(Y”)gd(YdL - (A.71 

Vi E I, &%,)‘O~ (A.8) 

Vi E I, y, - E.Y,~ < 0, (A.9) 

3i’ E I, y,, - Ey,! = 0. (A.lO) 

The first two conditions state the independence of ys and yd and the strict 
positivity of g”( .) on the sample. In practice these conditions can always be 
met. The other two conditions are crucial in the proof. When, for instance, the 
model for yd contains a constant term, i.e., EyP = c + x;p, where X, is a vector 
of explanatory variables and j3 a vector of parameters, (A.9) and (A.lO) can be 
satisfied for any value of /? by choosing c equal to the maximum of y, - x:p 
over all observations. Without a constant term, however, no value of p may 
exist for which (A.9) can be satisfied, and the likelihood function will be 
bounded. 

Now turning to the proof we choose a set of parameter values such that 
(A.7)-(A.lO) are satisfied and let ad tend to zero. Substituting (A.2) and (A.3) 
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and using (A.7) we obtain from (A.6) 

(A.11) 

where G”( 0) and Gd( .) are the distribution functions of yS and yd, respec- 
tively. When ad tends to zero the distribution of yd degenerates. The density 
gd( y) will tend to infinity for y = Eyd, and to zero elsewhere. The distribution 
cd(y) tends to zero for y < Eyd, to one half for y = Eyd, and to unity for 
y > Eyd. Using these properties, and the fact that the distribution of yS is not 

affected by a,, it can easily be checked from (A.8)-(A.lO) that all factors in 
(A.ll) will be strictly positive, whereas the factor corresponding to observation 
i’ tends to infinity. This completes the proof. 

When, finally, we introduce an additional endogenous variable, say an 
equation for prices p, we can reinterpret all results obtained so far as applying 
to the conditional distribution of y given p. Conditioning on p on both sides 
of (A.3) and multiplying with the marginal density function gP( p) of p, we 
obtain the joint density function f’(y, p) of y and p as 

(A.12) 

where 

Y(Y>P):= CCg’(y’>y,p)dy”, / 
(A.13) 

.v 

Yed(y> P> := /‘“g’(y, yd, p)dyd, 
I 

(A.14) 

g’( .) being the joint density function of y”, yd and p. Conditioning on p on 
both sides of (A.4) and (AS) we obtain the regime probabilities conditional on 
y and p as 

PrbSQdlyy d =fes(Ylp)/f(ylp) =f”“(rT p)/f’b, p), 64.15) 

Prbd <Y"IY, P) = I- Pr(ySiydly, p). (~.i6) 

The likelihood function factorizes as 

L= lJ,f’(y,?PJ= ~,g”(P,)lJ,mP,). 
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Assuming strict positivity of gp( p,) for all i, compare assumption (AX), the 
unboundedness of L follows from the unboundedness of the second factor as 
before. 
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