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ABSTRACT. The present paper proposes a new approach to solve generalized

fractional programming problems through user interaction. Capitalizing on two

alternatives, we review the Dinkelbach-type methods and set forth the main diffi-

culty in applying these methods. In order to cope with this difficulty, we propose

an approximation approach that can be controlled by a predetermined parame-

ter. The proposed approach is promising particularly when a decision maker is

involved in the solution process and agrees upon finding an effective but near-

optimal value in an efficient manner. The decision maker is asked to decide the

parameter and our analysis shows how good is the value found by the approxima-

tion corresponding to this parameter. In addition, we present several observations

that may be suitable for boosting up the performance of the proposed approach.

Finally, we support our discussion through extensive numerical experiments.

Keywords. Generalized fractional programming, user interaction, approximation

approach, error analysis, performance improvement

1 Introduction

Decision makers in different application areas demand effective and easy-to-use solu-

tion methods for their optimization problems. In many circumstances, they are ready

to welcome a new approach even though this approach may yield a value close-enough

∗Research supported by Hong Kong RGC Earmarked Grants CUHK4233/01E and CUHK4174/03E.

1 May 4, 2004



1 INTRODUCTION

to the actual (or theoretical) optimal value. One way of satisfying this demand is incor-

porating approximation approaches into well-known solution methods. To our advan-

tage, the precision of an approximation approach depends on predefined parameters.

Therefore through user interaction, the tradeoff between the quality of the results and

the simplification of the problem can be controlled.

In this paper, we focus on solving a generalized fractional programming (GFP) prob-

lem by an approximation approach. GFP problems arise in many real-life applications.

One of the earliest example dates back to the time of von Neumann when he used GFP

in modeling an expanding economy [von Neumann, J., 1945]. Another important ap-

plication is within the field of multi-objective programming. In this case, the main goal

is to minimize the maximum deviation of the fractional objectives, such as input-output

ratios, from their target values [Gugat, M, 1996b, Kornbluth, J.S. and R.E. Steuer,

1981, Jagannathan, R, 1985, Ignizio, J.P., 1976]. Also in numerical analysis, GFP

methods are used for solving rational Chebyshev approximations [Barrodale, I., Pow-

ell, M.J.D. and F.D.K. Roberts, 1972, Cheney, E.W. and H.L. Loeb, 1961, Gugat, M,

1997, 1996a]. In order to study the theoretical properties of GFP problems, researchers

made use of the tools from duality theory, nonlinear programming and numerical anal-

ysis. Naturally, the study of the theoretical properties led to the development of various

solution methods [Crouzèix, J.P., Ferland, J.A. and S. Schaible, 1985, Crouzèix, J.P.,

Ferland, J.A. and S. Schaible, 1986, Crouzèix, J.P. and J.A. Ferland, 1991, Barros,

A.I., Frenk, J.B.G., Schaible, S. and S. Zhang, 1996b,a, Barros, A, 1998, Gugat, M,

1996b, 1998, Roubi, A, 2000]. The majority of these methods are the variations of

the approach suggested in the pioneering work of Crouzèix et. al. [1985]. In the lit-

erature, these methods are also known as Dinkelbach-type methods [Dinkelbach, W.,

1967], and although not immediately clear, it can be shown that these methods are ac-

tually cutting plane methods [Barros, A.I. and J.B.G. Frenk, 1995]. Dinkelbach-type

methods are based on the idea of solving a sequence of auxiliary problems so that

the solutions of the auxiliary problems converge to the solution of the GFP problem.

These methods are very powerful, however their performances heavily depend on the

effective solution of the auxiliary problems. In general the auxiliary problems are non-

smooth and nonlinear. Therefore, they might pose a major difficulty in solving the

GFP problems effectively and easily.

The main idea of this paper is replacing the difficult auxiliary problems in Dinkelbach-

type methods with relatively simple approximations. Approximations of these sort

yield ε-optimal (close-enough) values to the auxiliary problems. Consequently, we

will analyze the error committed by replacing the auxiliary problems with their ap-

proximated counterparts. Especially for large size problems, the task of speeding up

the algorithms plays an important role. Therefore, we will also propose several ap-
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2 GENERALIZED FRACTIONAL PROGRAMMING AND THE DINKELBACH
METHOD

proaches that may lead to a performance improvement. During our analysis, we will

work with a generic approximation function since the choice of the approximation

function does not alter our results. In order to illustrate our idea, we will then give two

particular approximation approaches that will be also used in an extensive numerical

results section. In terms of our main contribution, we believe that our work provides a

useful reference for a decision maker who is willing to solve a GFP problem effectively

at the cost of finding inexact but controlled solutions.

2 Generalized Fractional Programming and The Dinkelbach

Method

In this section we give an overview on generalized fractional programming and the

most common solution approach, namely, the Dinkelbach method. Before proceeding

to our subsequent analysis, let us first introduce the generalized fractional program-

ming problem

λ∗ := inf
x∈X

max
i∈I

{

fi(x)

gi(x)

}

(P )

where X ⊆ R
n is the feasible region, I := {1, 2, · · · ,m} a finite index set and for all

i ∈ I , fi : R
n → R and gi : R

n → R are the problem functions. In addition, if we

define the function p : X → (−∞,∞] by

p(x) := max
i∈I

{

fi(x)

gi(x)

}

, (2.1)

then the optimization problem (P ) can be written as

λ∗ := inf
x∈X

p(x). (2.2)

In the sequel we denote the optimal solution of problem (P ) by x∗.

Introducing now the functions gmin : R
n → R by

gmin(x) := min
i∈I

gi(x), (2.3)

it is necessary to impose the following assumption to avoid pathological instances of

problem (P ).

Assumption 2.1

gmin(x) > 0 for every x ∈ X. (2.4)
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2 GENERALIZED FRACTIONAL PROGRAMMING AND THE DINKELBACH
METHOD

The main idea of the Dinkelbach method is to provide a solution to the difficult opti-

mization problem (P ) by solving a sequence of relatively simple parameterized prob-

lems. In this overview section, we focus on two main Dinkelbach-type approaches.

The first approach is based on solving constrained subproblems, whereas the second

approach aims at reformulating the parameterized subproblems as unconstrained non-

linear optimization problems.

We start with the first approach by defining for every i ∈ I , the functions φi : R
n+1 →

R given by

φi(λ, x) := fi(x) − λgi(x) (2.5)

and for every (λ, x) ∈ R
n+1, the function

φ(λ, x) := max
i∈I

φi(λ, x). (2.6)

This leads to the associated parametric constrained optimization problem

φ(λ) := inf
x∈X

φ(λ, x). (Pλ)

After minor modifications of the proofs in [Crouzèix, J.P., Ferland, J.A. and S. Schaible,

1985], one can show the following important results.

Lemma 2.1 φ(λ) ≥ 0 if and only if −∞ < λ ≤ λ∗.

Lemma 2.2 The following conditions are equivalent.

1. The optimization problem (P ) has an optimal solution.

2. The set V defined by

V := {λ ∈ R : Problem (Pλ) has an optimal solution and φ(λ) = 0}

is nonempty.

3. The set V is a singleton with V = {λ∗}.

We now discuss the unconstrained approach. In this case the feasible region X is given

by

X := {x ∈ R
n : hj(x) ≤ 0, j ∈ J}, (2.7)

where J := {1, 2, · · · , p} is a finite index set and hj : R
n → R for all j ∈ J with

h(x) := (h1(x), · · · , hp(x))
T . Clearly, this form of the feasible set is a commonly

used form for numerical purposes.

In addition to Assumption 2.1, we also assume that the following condition holds.

4 May 4, 2004



2 GENERALIZED FRACTIONAL PROGRAMMING AND THE DINKELBACH
METHOD

Assumption 2.2 The function x → hj(x), j ∈ J are convex and the set X has a

nonempty interior, i.e., there exist some x0 ∈ R
n such that

max
j∈J

hj(x0) < 0. (2.8)

As before, we start by introducing the parametric function ψi : R
n+1 → R given by

ψi(λ, x) :=

{

fi(x) − λgi(x), for i ∈ I

hi(x), for i ∈ J
(2.9)

and consider for (λ, x) ∈ R
n+1, the function

ψ(λ, x) := max
i∈I∪J

ψi(λ, x) (2.10)

with the parametric unconstrained optimization problem

ψ(λ) := inf
x∈Rn

ψ(λ, x). (P̄λ)

It is shown in [Roubi, A, 2000, Addou, A. and A. Roubi] that the following versions

of the previous two lemmas hold.

Lemma 2.3 ψ(λ) ≥ 0 if and only if −∞ < λ ≤ λ∗.

Lemma 2.4 The following conditions are equivalent.

1. The optimization problem (P ) has an optimal solution.

2. The set W defined by

W := {λ ∈ R : Problem (P̄λ) has an optimal solution and ψ(λ) = 0}

is nonempty.

3. The set W is a singleton with W = {λ∗}.

Using the above results, we can discuss the computational procedures for both con-

strained and unconstrained cases. In order to apply the Dinkelbach-type approach

corresponding to the constrained case, we always assume that problem (P ) and for

any λ ≥ λ∗, problems (Pλ) are solvable. The general scheme of the constrained case

has now the form given in Algorithm 2.1.
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2 GENERALIZED FRACTIONAL PROGRAMMING AND THE DINKELBACH
METHOD

Algorithm 2.1 Constrained Case

1. Select x0 ∈ X and set k := 1.

2. Set λk := p(xk−1).

3. Determine an element xk of the set {x ∈ X : φ(λk, x) < 0}. If such an element

does not exist, then return (λk, xk−1), else set k := k + 1 and return to Step 2.

As in the constrained case, we assume that problem (P ) and for any λ ≥ λ∗, problems

(P̄λ) are solvable. Observe that if ψ(λk, xk) < 0, then it follows automatically that

hj(xk) < 0 for every j ∈ J and hence, xk ∈ X . The algorithm for the unconstrained

Dinkelbach-type approach has now the form given in Algorithm 2.2.

Algorithm 2.2 Unconstrained Case

1. Select x0 ∈ X and set k := 1.

2. Set λk := p(xk−1).

3. Determine an element xk of the set {x ∈ R
n : ψ(λk, x) < 0}. If such an

element does not exist, then return (λk, xk−1), else set k := k + 1 and return to

Step 2.

The geometrical interpretation of Algorithm 2.1 is illustrated in Figure 2. Clearly, for

any xk ∈ {x ∈ X : φ(λ, x) < 0} we have

φ(λ) ≤ φ(λ, xk). (2.11)

Hence, at the kth iteration of Algorithm 2.1, the nonconvex function φ is approximated

from above by the polyhedral convex function λ→ φ(λ, xk). As a direct consequence

of Lemma 2.2, our main goal is to compute λ that satisfies φ(λ) = 0. Instead of this

ambitious goal, we solve the approximating equation φ(λ, xk) = 0, which leads to

λ = max
i∈I

{

fi(xk)

gi(xk)

}

. (2.12)

Notice that this solution is indeed the next iteration in Algorithm 2.1 (Step 2). A similar

interpretation can be given for Algorithm 2.2, where the function ψ is approximated

by the polyhedral convex function λ→ ψ(λ, xk).

In Step 3 of both algorithms we suggest to solve membership problems instead of

solving the optimization problems (Pλ) and (P̄λ). The reason for this suggestion is

given by the following observation. Consider the constrained approach and suppose at
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Figure 1: A typical iteration of Algorithm 2.1.

iteration k we compute the optimal solution x∗k of problem (Pλk
) and at the same time

we choose a different vector xk satisfying φ(λk, xk) < 0. It might now happen that the

value λk+1 := p(xk) is closer to λ∗ than the value λk+1 derived from x∗k. An instance

showing this behavior is given in Example 2.1. This suggests that investing time in

solving problem (Pλ) to optimality might not always be the best strategy. On the other

hand, to determine whether there exists an element of the set {x ∈ X : φ(λk, x) < 0}

or decide whether this set is empty, it is most natural to solve problem (Pλk
), and so

x∗k becomes a natural candidate.

Example 2.1 Suppose we want to solve

λ∗ = inf
x∈[0,10]

max{
−11x+ 1

2x+ 2
,
−7x+ 2

4x+ 1
,

3x− 2

16x+ 3
}.

Let x0 = 1 then λ1 = p(x0) = 1/19. If we solve problem (Pλ1
), then we find the

optimal solution x∗1 = 38/89 with the objective function value φ(λ1, x
∗
1) = −1.21.

Moreover, at the next iteration, we compute λ∗
2 := p(x∗1) = −0.068. Instead of the

optimal solution, if we select x1 = 30/89 yielding φ(λ1, x1) = −0.48, then the corre-

sponding value of λ at the next iteration becomes λ2 := p(x1) = −0.1178, which is

less than λ∗2.

This observation may also become useful whenever the optimization routine for solv-

ing the auxiliary problems requires a considerable effort. In this case, one may stop

as soon as the optimization routine finds a feasible, but not necessarily optimal, point

x that solves the membership problem. As Lemma 2.1 and Lemma 2.3 show, from a

practical point of view, we only need a decreasing sequence of λk values.
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3 THE APPROXIMATION APPROACH

3 The Approximation Approach

Notice that in both Algorithm 2.1 and Algorithm 2.2, the membership problems at Step

3 can be solved by reformulating the problems as nonlinear optimization problems,

i.e., one needs to solve (approximately, see Example 2.1), in the constrained case, the

auxiliary optimization problem

min
x∈X

max{f1(x) − λg1(x), · · · , fm(x) − λgm(x)} (3.1)

and in the unconstrained case, the problem

min
x∈Rn

max{f1(x) − λg1(x), · · · , fm(x) − λgm(x), h1(x), · · · , hp(x)}. (3.2)

Although the max function is a convex increasing function, unfortunately it is nons-

mooth. Therefore, we still encounter a nonsmooth objective function in the auxiliary

optimization problems. One promising solution to this obstacle is to approximate the

max function by a smooth alternative. Consider now a smooth, convex and increasing

function Πs : R
s → R that satisfies

lim
ε↓0

εΠs(
y

ε
) = max{y1, · · · , ys} (3.3)

and

0 ≤ εΠs(
y

ε
) − max{y1, · · · , ys} ≤ βs(ε) (3.4)

for every y ∈ R
s. As a direct consequence of the above two relations, the function

y → εΠs(
y
ε
) becomes a good candidate for approximating the nonsmooth objective

functions of the auxiliary problems. Let us now give two examples that will also be

used in the numerical results section.

Example 3.1 It is easy to check that the entropy-type function

Πs(y) = log

(

s
∑

i=1

eyi

)

is convex, differentiable and increasing [Fang, S.-C., Rajasekera, J. R. and H.-S. J.

Tsao, 197]. Moreover, it satisfies relation (3.3) and relation (3.4) with βs(ε) = ε log s

[Ben-Tal, A. and M. Teboulle, 1989].

Example 3.2 In some problems, entropy-type function in Example 3.1 may create

overflow problems because of the exponential function. Recently Birbil et. al. pro-

posed a more stable approximation method that aims at extending two dimensional

approximation functions to higher dimensions by recursion [Birbil, Ş.İ., Fang, S.-

C., Frenk, J.B.G. and S. Zhang, 2002]. The main idea of the method is based on

8 May 4, 2004



3.1 Constrained Case with Approximation 3 THE APPROXIMATION APPROACH

the observation that the higher dimensional max function can be written recursively

as follows

max{y1, · · · , ys} = max{max{y1, · · · , yq},max{yq+1, · · · , ys}},

where 1 < q < s. Following this observation, the method proposed by Birbil et.

al. provides a twice differentiable convex increasing function Πs that satisfies relation

(3.3). In this case, the error term in (3.4) is given by βs(ε) = ε
2(log2(s−1)+1)Π2(0),

where Π2 : R
2 → R is the base function that is used for approximating the two

dimensional max function, i.e., limε↓0 εΠ2(y/ε) = max{y1, y2}.

3.1 Constrained Case with Approximation

We first start with the constrained case of the Dinkelbach-type method. Given ε > 0,

define the function φε : R ×X → R by

φε(λ, x) := εΠm

(

f1(x) − λg1(x)

ε
, · · · ,

fm(x) − λgm(x)

ε

)

. (3.5)

Hence, instead of problem (3.1), we can consider the smooth optimization problem

φε(λ) := min
x∈X

φε(λ, x). (P ε
λ )

To derive the difference in the optimal objective function values between optimiza-

tion problems (Pλ) and (P ε
λ ) we observe by relation (3.4) and x(λ) belonging to

arg minx∈X φε(λ, x) that

φε(λ) − φ(λ) ≤ φε(λ, x(λ)) − φ(λ, x(λ)) ≤ βm(ε). (3.6)

By the same relation, we also obtain that φε(λ, x) ≥ φ(λ, x) for every x ∈ X and

λ ∈ R and this shows

φε(λ) ≥ φ(λ) (3.7)

for every λ ∈ R. Hence it follows by relations (3.6) and (3.7) that

0 ≤ φε(λ) − φ(λ) ≤ βm(ε) (3.8)

for every λ ∈ R. Therefore at the expense of some limited error, we consider the

following approximated Dinkelbach-type method.
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3.1 Constrained Case with Approximation 3 THE APPROXIMATION APPROACH

Algorithm 3.1 Constrained Case with Approximation

1. Select x0 ∈ X and set k := 1.

2. Set λk := p(xk−1).

3. Determine an element xk of the set {x ∈ X : φε(λk, x) < 0}. If such an

element does not exist, then return (λk, xk−1), else set k := k + 1 and return to

Step 2.

Before discussing the properties of Algorithm 3.1, we first introduce the nonempty

set-valued mappings S : R ×X ⇒ I and L : X ⇒ I given by

S(λ, x) := {i ∈ I : φi(λ, x) = φ(λ, x)}

and

L(x) := {i ∈ I :
fi(x)

gi(x)
= p(x)}.

It is now easy to derive the following upper and lower bounds on the difference λk+1−

λk for every k < k0, with k0 ≤ ∞ being the total number of iterations spent in

Algorithm 3.1 before meeting the stopping condition.

Lemma 3.1 The sequence λk, k < k0 generated by Algorithm 3.1 is strictly decreas-

ing and satisfies

φ(λk, xk)

maxi∈S(λk,xk) gi(xk)
≤ λk+1 − λk ≤

φ(λk, xk)

mini∈L(xk) gi(xk)
.

Proof. For every k < k0 we know by relation (3.4) and (3.5) that φ(λk, xk) ≤

φε(λk, xk) < 0, and since φ(λk+1, xk) = 0 and λ → φ(λ, xk) is strictly decreas-

ing, this yields λk+1 < λk. We now verify the above inequalities. By the defini-

tion of λk+1, it follows for every i∗ belonging to arg maxi∈S(λk ,xk) gi(xk) satisfying

gi∗(xk) = maxi∈S(λk ,xk) gi(xk) that

λk+1 − λk ≥
fi∗(xk) − λkgi∗(xk)

gi∗(xk)
=

φ(λk, xk)

maxi∈S(λk,xk) gi(xk)
.

Also for every i∗ belonging to arg mini∈L(xk) gi(xk) satisfying gi∗(xk) =

mini∈L(xk) gi(xk), we obtain by using again the definition of λk+1 that

λk+1 − λk =
fi∗(xk) − λkgi∗(xk)

gi∗(xk)
≤

φ(λk, xk)

mini∈L(xk) gi(xk)
,
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3.1 Constrained Case with Approximation 3 THE APPROXIMATION APPROACH

and this completes the proof. �

If at the kth step of Algorithm 3.1, we observe that φε(λk, xk) ≤ δ for some δ < 0,

and it holds that g∗ := maxx∈X maxi∈I gi(x) < ∞, then it follows by Lemma 3.1

and relation (3.4) that

λk+1 − λk ≤
φε(λk, xk)

mini∈L(xk) gi(xk)
≤

−δ

g∗
. (3.9)

Hence in this case the improvement in the objective function value is at least −δ/g∗,

and in most cases it can be expected that this is a conservative bound. In addition to

the number of iterations, we are also interested in the quality of the solution generated

by Algorithm 3.1. This means that one likes to derive an upperbound on the difference

λ∗ − λk0
with k0 being the iteration at which the stopping condition applies. First we

need the following lemma.

Lemma 3.2 If g∗ := infx∈X gmin(x) > 0, then it follows for every k < k0 that

0 ≥ λ∗ − λk+1 ≥
φε(λk+1) − βm(ε)

g∗
.

Proof. It is obvious that 0 ≥ λ∗−λk+1 and to prove the reverse inequality, we observe

for every k < k0, x∗ an optimal solution of optimization problem (P ) and i∗ belonging

to arg maxi∈S(λk+1,x∗) gi(x
∗) that

0 ≥ λ∗ − λk+1 ≥
fi∗(x

∗) − λk+1gi∗(x
∗)

gi∗(x∗)
=

φ(λk+1, x
∗)

maxi∈S(λk+1,x∗) gi(x∗)
. (3.10)

This shows that φ(λk+1, x
∗) ≤ 0, and since maxi∈S(λk+1,x∗) gi(x

∗) ≥ g∗, by using

relation (3.10) we obtain that

λ∗ − λk+1 ≥
φ(λk+1, x

∗)

maxi∈S(λk+1,x∗) gi(x∗)
≥
φ(λk+1, x

∗)

g∗
. (3.11)

Applying now relation (3.4) shows that

φ(λk+1, x
∗) ≥ φε(λk+1, x

∗) − βm(ε) ≥ φε(λk+1) − βm(ε),

and by relation (3.11) the desired result follows. �

Notice that the stopping condition in Algorithm 3.1 is satisfied if φε(λk0
) ≥ 0 for finite

k0. Therefore, in combination with Lemma 3.2, we have

λ∗ − λk0
≥

−βm(ε)

g∗
. (3.12)

11 May 4, 2004



3.2 Unconstrained Case with Approximation 3 THE APPROXIMATION APPROACH

Finally we observe in this subsection that the optimization problem (P ε
λ ) is a smooth

convex optimization problem if λ > 0, X is a convex set defined by differentiable

convex inequalities and the functions fi, (gi) for all i ∈ I are differentiable and convex

(concave). In this case, the function x → gmin(x) is also a concave function and

hence, the value g∗ can be computed by solving a concave minimization problem.

Such a problem is in general NP-hard [Horst, R, Pardalos, P.M and N.V. Thoai, 1995].

3.2 Unconstrained Case with Approximation

Similar to the previous section, we start with introducing an approximation function

ψε : R
n+1 → R defined by

ψε(λ, x) := εΠm+p

(

f1(x) − λg1(x)

ε
, · · · ,

fm(x) − λgm(x)

ε
,
h1(x)

ε
, · · · ,

hp(x)

ε

)

.

(3.13)

We can now consider the smooth optimization problem

ψε(λ) := min
x∈Rn

ψε(λ, x). (P̄ ε
λ )

In this case the counterpart of relation (3.8) becomes

0 ≤ ψε(λ) − ψ(λ) ≤ βm+p(ε) (3.14)

for every λ ∈ R. The adapted version of Algorithm 2.2 with the approximation is now

given in Algorithm 3.2.

Algorithm 3.2 Unconstrained Case with Approximation

1. Select x0 ∈ X and set k := 1.

2. Set λk := p(xk−1).

3. Determine an element xk of the set {x ∈ R
n : ψε(λk, x) < 0}. If such an

element does not exist, then return (λk, xk−1), else set k := k + 1 and return to

Step 2.

Observe that if ψε(λk, x) < 0, then ψ(λk, x) ≤ ψε(λk, x) < 0, and hence x belongs

toX . As before we are now interested in the difference λk+1−λk with the sequence of

λk values generated by Algorithm 3.2. Again, k0 denotes the total number of iterations

spent in Algorithm 3.2 before meeting the stopping condition.

Lemma 3.3 The sequence λk, k < k0 generated by Algorithm 3.2 is strictly decreas-

ing and satisfies

λk+1 − λk ≤
ψ(λk, xk)

mini∈L(xk) gi(xk)
.
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3.2 Unconstrained Case with Approximation 3 THE APPROXIMATION APPROACH

Proof. Redoing the last part of the proof of Lemma 3.1 leads to

λk+1 − λk ≤
φ(λk, xk)

mini∈L(xk) gi(xk)

and using now φ(λk, xk) ≤ ψ(λk, xk) yields the desired result. �

In order to give an upperbound on the error λk − λ∗ we will use the strong duality

theorem for Lagrangean duality. To apply this result we need to impose some well

known additional properties on the functions fi and gi.

Assumption 3.1 The following conditions hold:

1. The functions fi : R
n → R, i ∈ I are convex on R

n and nonnegative on X .

Moreover, the functions gi : R
n → R, i ∈ I are concave on R

n and nonnegative

on X .

2. The functions hj : R
n → R, j ∈ J are convex and there exists some x0 ∈ R

n

such that α0 := maxj∈J hj(x0) < 0.

If the functions fi, i ∈ I are convex and gi, i ∈ I are concave, this does not necessarily

imply that the ratio of these two functions is convex. Consequently, the generalized

fractional programming problem (P ) is not necessarily a convex optimization problem.

Introducing now for every α0 < α < 0 the nonempty perturbed feasible region

X(α) := {x ∈ R
n : hj(x) ≤ α, j ∈ J}

we define for α0 < α ≤ 0 the following perturbed optimization problem

v(α) := minx∈X(α) p(x).

By the definition of v(α), it is clear that λ∗ = v(0) and 0 ≤ v(α) ≤ λ∗ for α0 < α <

0. In the next lemma we give a lower bound on λ∗ − v(α).

Lemma 3.4 If g∗ := infx∈X gmin(x) > 0 and Assumption 3.1 holds, then it follows

that

λ∗ − v(α) ≥
µ>∗ (α)α

g∗

with µ>∗ (α) the optimal Lagrangean multiplier associated with the convex optimization

problem

minx∈X(α) φ(v(α), x).
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3.2 Unconstrained Case with Approximation 3 THE APPROXIMATION APPROACH

Proof. By the strong duality theorem (cf.[Bertsekas, D.P., 1995]) we obtain for every

α0 < α < 0 that

φ(v(α)) = minx∈X φ(v(α), x)

= maxµ≥0 minx∈Rn φ(v(α), x) + µ>(h(x) − α) + µ>α.

This shows applying Lemma 2.2 and using again the strong duality theorem that

φ(v(α)) ≥ minx∈Rn φ(v(α), x) + µ>∗ (α)(h(x) − α) + µ>∗ (α)α (3.15)

= maxµ≥0 minx∈Rn φ(v(α), x) + µ>(h(x) − α) + µ>∗ (α)α

= minx∈X(α) φ(v(α), x) + µ>∗ (α)α = µ>∗ (α)α.

By relation (3.15) it follows for every x ∈ X that there exist some i ∈ I satisfying

fi(x) − v(α)gi(x) ≥ µ>∗ (α)α.

and this shows the desired result. �

Using Lemma 3.4 one can now show the following result.

Lemma 3.5 Let Assumption 3.1 hold and assume g∗ > 0 and 2κ > α0 with κ :=

−βm+p(ε). If the algorithm stops at iteration k0, then the vector xk0−1 belongs to X

and

0 ≥ λ∗ − λk0
≥

2κµ>∗ (2κe)e + κ

g∗

with µ>∗ (2κe) the optimal Lagrangean multiplier associated with the convex optimiza-

tion problem

minx∈X(2κe) φ(v(2κe), x).

Proof. If the algorithm stops at iteration k0,then clearly xk0−1 belongs to X and so we

obtain 0 ≥ λ∗ − λk0
. Moreover, by the stopping rule we know that ψε(λk0

) ≥ 0 and

this implies for every x ∈ R
n that ψε(λk0

, x) ≥ 0. Applying now relation (3.4) and

(3.13) yields for every x ∈ R
n that

ψ(λk0
, x) ≥ κ (3.16)

By relation (3.16) and using the definition of ψ(λk0
, x) we obtain for every x ∈

X(2κe) that

φ(λk0
, x) = ψ(λk0

, x) ≥ κ.

This implies for every x ∈ X(2κ) that p(x) − λk0
≥ κg−1

∗ ,and so it follows that

v(2κe) − λk0
≥ κg−1

∗ . (3.17)
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4 OBSERVATIONS FOR PERFORMANCE IMPROVEMENT

Applying now Lemma 3.4 and relation (3.17) yields

λ∗ − λk0
= λ∗ − v(2κe) + v(2κe) − λk0

≥ (2κµ>∗ (2κe)e + κ)g−1
∗

and this shows the desired inequality. �

Finally we note for the unconstrained case that if additionally the functions fi and

gi are convex for all i ∈ I , then the optimization problem (P̄ ε
λ ) is a smooth uncon-

strained convex optimization problem as a direct consequence of Assumption 2.2 and

Assumption 3.1.

4 Observations for Performance Improvement

Decision makers often face with large size problems and in many cases, the perfor-

mance of an algorithm worsens when the size of the problem increases. So, improving

the performance of an algorithm plays an important role for solving real problems. In

this section, we present several observations that may lead to a performance improve-

ment for the approximation approach discussed in the previous section.

4.1 Weaker Stopping Condition

Notice that in the constrained case of the proposed approximation method, the stopping

rule, φε(λk) ≥ 0 in Step 3 of Algorithm 3.1 can be replaced by a weaker condition

φε(λk) ≥ −δ for some δ > 0. Implementing this observation may reduce the number

of iterations. However, in this case the accuracy of the results may also decrease. The

following result provides an upperbound on the number of subproblems to be solved

and gives an upperbound on the difference between the optimal objective function

value, λ∗ and the objective function value computed after applying the weaker stopping

condition.

Lemma 4.1 Suppose k0 := min{k : φε(λk) ≥ −δ}, then it follows that

k0 ≤
(λ1 − λ∗)g∗

δ
and λk0

− λ∗ ≤
δ + βm(ε)

g∗

Proof. By using λk ≥ λ∗ for all k < k0 and relation (3.9), it follows that

λ∗ − λ1 ≤

k0−1
∑

k=1

(λk+1 − λk) ≤
−δk0

g∗
.
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Multiplying both sides by −1 yields the first part. Using now φε(λk) ≥ −δ and

Lemma 3.2 shows that

λ∗ − λk0
≥

−δ − βm(ε)

g∗
.

Again multiplying both sides by −1 shows the second part. �

A similar but less exciting discussion can be given for the unconstrained case after

replacing the stopping rule, ψε(λk) ≥ 0 in Step 3 of Algorithm 3.2, by the weaker

condition ψε(λk) ≥ −δ for some δ > 0. Here we state the result without the proof.

Lemma 4.2 Suppose k0 := min{k : ψε(λk) ≥ −δ}, then it follows that

k0 ≤
(λ1 − λ∗)g∗

δ
and λk0

− λ∗ ≤
−(2κµ>∗ (2κe)e + κ)

g∗
.

4.2 Normalization

In order to improve the rate of convergence, Crouzèix et. al. proposed to replace

problem (Pλ) at iteration k by

min
x∈X

max
i∈I

{

fi(x) − λgi(x)

gi(xk−1)

}

. (4.1)

Crouzèix et. al. have shown that the rate of convergence becomes at least linear with

the above modification and they have proved that whenever the sequence {xk} is con-

vergent, the convergence is superlinear [Crouzèix, J.P., Ferland, J.A. and S. Schaible,

1986]. Following our previous results, one way to explain the intuition behind the

normalization is as follows. Introduce for every i ∈ I the functions φ̄i : R
2n+1 → R

given by

φ̄i(λ, x, y) :=
fi(x) − λgi(x)

gi(y)

and the function φ̄ : R
2n+1 → R defined by

φ̄(λ, x, y) := max
i∈I

φ̄i(λ, x, y).

The parametric optimization problem associated with the above function is now given

by

φ̄(λ, y) := min
x∈X

φ̄(λ, x, y).

Moreover, to define the approximation let

φ̄ε(λ, x, y) := εΠm(
φ̄1(λ, x, y)

ε
, · · · ,

φ̄m(λ, x, y)

ε
)
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and consider the approximated parametric optimization problem

φ̄ε(λ, y) = min
x∈X

φ̄ε(λ, x, y).

The constrained algorithm with normalization as well as approximation is now given

in Algorithm 4.1.

Algorithm 4.1 Constrained Case with Normalization and Approximation

1. Select x0 ∈ X and set k := 1.

2. Set λk := p(xk−1).

3. Determine an element xk of the set {x ∈ X : φ̄ε(λk, x, xk−1) < 0}. If such an

element does not exist, then return (λk, xk−1), else set k := k + 1 and return to

Step 2.

Before discussing the bounds on the improvement λk+1 − λk for this algorithm, we

introduce the following set valued mapping S̄ : R ×X ×X ⇒ R given by

S̄(λ, x, y) := {i ∈ I : φ̄i(λ, x, y) = φ̄(λ, x, y)}.

Lemma 4.3 Suppose Algorithm 4.1 stops at iteration k0. The sequence λk, k < k0

generated by Algorithm 4.1 is strictly decreasing and satisfies

φ̄(λk, xk, xk−1)min
i∈S̄

gi(xk−1)

gi(xk)
≤ λk+1 − λk ≤ φ̄(λk, xk, xk−1) max

i∈L(xk)

gi(xk−1)

gi(xk)

where S̄ := S̄(λk, xk, xk−1).

Proof. A straightforward modification of the proof of Lemma 3.1. �

Using similar discussions as in Lemma 3.2 and Lemma 4.1, we can also give re-

sults regarding the difference λ∗ − λk0
and the number of iterations required to sat-

isfy φ̄(λk, xk, xk−1) > −δ. Notice that if xk is close to xk−1, then the value of

maxi∈L(xk)(gi(xk−1)/gi(xk)) is approximately equal to 1. Therefore, in certain in-

stances we expect that the convergence of the proposed method will improve consid-

erably. Our numerical experiments in Section 5 supports this observation.

4.3 Additional Remarks

The membership problems in Step 3 of Algorithm 3.1 and Algorithm 3.2 are usually

solved by reformulating them as optimization problems. As we have discussed be-

fore, the optimal solutions of these optimization problems do not necessarily yield a
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λk value that is closer to λ∗ than a λk value computed by a point that satisfies the con-

dition in Step 3 (see Example 2.1). Therefore, at any iteration if the solution method

for the optimization problems finds a point that satisfies the condition in Step 3, then

the solution method can be terminated and the algorithm can move to the next itera-

tion. Solving the optimization problems in Step 3 constitutes the major computational

burden of Algorithm 3.1 and Algorithm 3.2. In this regard, terminating the solution

methods before finding the optimal solution may save some computational effort.

An important advantage of Algorithm 3.2 over Algorithm 3.1 is that at each iteration

one needs to solve an unconstrained membership problem rather than a constrained

membership problem. Usually, solving unconstrained problems is easier than solving

the constrained counterparts. However, in Algorithm 3.2 the constraints are also incor-

porated into the problem and only an approximated function is used. Thus, the solution

of the unconstrained problem may be an infeasible point of the original problem. On

the other hand, the solution of the constrained membership problem in Algorithm 3.1

is always feasible. In order to balance the tradeoff between the speed and feasibility, at

early iterations one can start with solving the unconstrained problems and then switch

to solving the constrained problems.

Recall that in Lemma 3.1 and Lemma 3.3, the differences between λk+1 and λk are

given by

λk − λk+1 ≥
−φ(λk, x)

mini∈L(xk) gi(xk)
(4.2)

and

λk − λk+1 ≥
−ψ(λk, xk)

mini∈L(xk) gi(xk)
, (4.3)

respectively. Therefore, for faster convergence, one may consider to increase these

differences as much as possible. In this case it seems reasonable to solve, in the con-

strained case, the optimization problem,

max
x∈X

−φ(λk, x)

mini∈L(x) gi(x)
(4.4)

and in the unconstrained case, the following problem should be solved

max
x∈X

−ψ(λk, x)

mini∈L(x) gi(x)
. (4.5)

Although this may be an effective way of speeding up the algorithms, it may not be

easy to solve problems (4.4) and (4.5), unless there exists a special structure.
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5 Numerical Results

We have programmed Algorithm 3.1 and Algorithm 3.2 with MATLAB. The entropy-

type function given in Example 3.1 and the recursive function given in Example 3.2

are used for approximating the max function. In order to implement the recursion, we

have used the following two dimensional approximation function

Π2(y) =

√

(y1 − y2)2 + 1 + y1 + y2

2
.

which leads to the following approximation function

εΠ2(
y

ε
) =

√

(y1 − y2)2 + ε2 + y1 + y2

2
. (5.1)

The right hand side of the equation (5.1) is also known as Chen-Harker-Kanzow-Smale

function and it has been used frequently as a stable alternative for approximating the

two dimensional max function [Chen, C. and O.L. Mangasarian, 1995].

Notice that an overflow easily occurs when the exponential function in Example 3.1 is

computed with a very large argument. A well-known technique to handle this potential

problem is introducing a constant z ≥ max{y1, · · · , ys} and then computing

εΠs(
y

ε
) = ε log

(

s
∑

i=1

e
yi−z

ε

)

+ z. (5.2)

In our experiments we have also used this technique.

In Step 3 of both algorithms, we have formulated the membership problems as regular

nonlinear optimization problems. To solve these nonlinear programs, we have used the

standard constrained and unconstrained MATLAB solvers. The MATLAB functions

corresponding to these solvers are called fmincon and fminunc, respectively.

To test the approximation approach and verify our observations on performance im-

provement, we have compiled different test problems from the literature. In the sub-

sequent tables, the columns (or rows) entitled Entropy and Recursive denote the re-

sults with the entropy-type function and the recursive function, respectively. In all test

problems the parameter ε is set to 1.0e−5 and the absolute value function u → |u| is

replaced with u→ max{u,−u}.

First, we test both approximation functions when they are used in Algorithm 3.1. To do

this, a set of problems are randomly generated as suggested by Barros et. al. [Barros,

A.I., Frenk, J.B.G., Schaible, S. and S. Zhang, 1996b]. The ratios in these problems

consist of quadratic functions in the numerators, fi(x) := 1
2x

THix + aT
i x + bi and

linear functions in the denominators, gi(x) := cTi x + di. The parameters of these

functions are generated as follows:
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� The Hessians Hi are given by Hi := LiUiL
T
i where Li are unit lower trian-

gular matrices with components uniformly distributed within [−2.5, 2.5] and Ui

are positive diagonal matrices with the components uniformly distributed within

[0.1, 1.6]. In order to generate a positive definite Hessian, the first element of

the matrix is set to zero.

� The components of the vectors ai and ci are uniformly distributed within [−15, 45]

and [0, 10], respectively.

� Similarly, the increments bi and di are uniformly distributed within [−30, 0] and

[1, 5], respectively.

Moreover, the following feasible set is used for all the test problems:

X = {x ∈ R
n |

n
∑

j=1

xj ≤ 1, 0 ≤ xj ≤ 1, j = 1, · · · , n}.

Finally, the components of initial feasible point, x0 are uniformly distributed within

[0, 1
n
].

Table 1 illustrates the performance of Algorithm 3.1 with both approximation func-

tions. The third and fourth columns give the number of iterations required to solve

the problems with entropy-type function and recursive function, respectively. We have

not reported the solutions λk because with both functions all the problems are solved

successfully to optimality. We remark that the problems are randomly generated and

therefore, a fair comparison between our results and the results reported in [Barros,

A.I., Frenk, J.B.G., Schaible, S. and S. Zhang, 1996b] is not easy. In general, we can

say that our method requires less number of iterations than theirs.

When we compare the approximation functions, there is no clear evidence suggesting

that one function is better than the other one. In some problems using entropy-type

function leads to less number of iterations than the recursive function. However, in

other problems using recursive function decreases the number of iterations.
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Table 1: The comparison of the two approximation functions

Entropy Recursive

n m No of Iter. No of Iter.

5 5 2 2

10 5 9 9

15 5 5 5

20 5 6 5

5 10 4 4

10 10 4 4

15 10 5 6

20 10 4 4

5 15 8 8

10 15 9 9

15 15 8 9

20 15 7 6

5 20 5 3

10 20 11 16

15 20 14 13

20 20 13 9

Next we want to compare Algorithm 3.1 (constrained case) and Algorithm 3.2 (un-

constrained case). For this comparison, we have used the following problems given in

[Gugat, M, 1996b].

Problem 5.1

min
x∈X

max

{

4x3
1 + 11x2

16x1 + 4x2
,
4x2

1 − x1

3x1 + x2
, 0

}

(5.3)

where

X = {x ∈ R
2 : x1 + x2 ≥ 1, 2x1 + x2 ≤ 4, x1, x2 ≥ 0} (5.4)

and the initial feasible point is selected to be x0 = (1, 1)T .

Problem 5.2

min
x∈X

max

{∣

∣

∣

∣

3x1 − 2x2

4x1 + x2

∣

∣

∣

∣

,

∣

∣

∣

∣

x1

3x1 + x2

∣

∣

∣

∣

}

(5.5)

where

X = {x ∈ R
2 : x1 + x2 ≥ 1, 2x1 + x2 ≤ 4, x1, x2 ≥ 0}, (5.6)

and the initial feasible point is selected to be x0 = (1, 1)T .
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Problem 5.3

min
x∈X

max
i=0,··· ,8

∣

∣

∣

∣

83x1 + i3x2 − i3x3 − 83ix4

84x4 + 8i3x3

∣

∣

∣

∣

(5.7)

where

X = {x ∈ R
4 : −1000 ≤ x1, x2 ≤ 1000, 1 ≤

i3x3 + 83x4

83
≤ 1000, i = 0, · · · , 8},

(5.8)

and the initial feasible point is selected to be x0 = (0.5, 0, 0, 1)T .

Table 2 shows the results with Algorithm 3.1 (constrained case). The first column

denotes the example number. The third column gives the number of iterations required

to find the final value of λk reported in column four. When we analyze the figures in

the table, we see that all the problems are successfully solved with Algorithm 3.1. In

Problem 5.1, we have obtained a better value than the value reported in [Gugat, M,

1996b] at the expense of more iterations.

Table 2: The results for problems 5.1, 5.2 and 5.3 with Algorithm 3.1

No of Iter. λk

Pr. 1 Entropy 24 0.4325

Recursive 24 0.4325

Pr. 2 Entropy 6 0.1961

Recursive 7 0.1961

Pr. 3 Entropy 33 0.0742

Recursive 32 0.0742

Table 3 gives the results with Algorithm 3.2 (unconstrained case). The layout of the

table is same as in Table 2. The figures in the last column show that the precision of

the results with Algorithm 3.2 is worse than the results with Algorithm 3.1. Partic-

ularly for Problem 5.3, both entropy-type function and the recursive function do not

converge to the optimal value. As the number of constraints increase, the resulting

auxiliary problems in the unconstrained case become more difficult. Nonetheless, it is

interesting to note that in Problem 5.1, the number of iterations with the entropy-type

functions has increased.
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Table 3: The results for problems 5.1, 5.2 and 5.3 with Algorithm 3.2

No of Iter. λk

Pr. 5.1 Entropy 62 0.4325

Recursive 5 0.4665

Pr. 5.2 Entropy 6 0.1962

Recursive 7 0.1962

Pr. 5.3 Entropy 37 0.3283

Recursive 9 0.1930

The numerical results up to this point have shown that both entropy-type function and

recursive function perform very well, however the results found with Algorithm 3.2 are

inferior to the results found with Algorithm 3.1. Therefore, we will use only Algorithm

3.1 with both approximation functions in the remaining experiments.

Before we proceed to verify some of our observations for performance improvement,

we want to test the approximation functions on a large size problem. In general, the

problems in numerical analysis include many fractions. Therefore, we select the fol-

lowing problem given in [Gugat, M, 1998].

Problem 5.4 Let

B = {(i/100, j/100) : i, j ∈ {0, · · · , 100}}.

For x ∈ R
6, t ∈ B, define

V (x, t) = x1 + x2t1 + x3t2 + x4t1t2,

W (x, t) = x6 + x5t1.

Define

X = {x ∈ R
6 : 1 ≤W (x, t) ≤ 105, for all t ∈ B}

and

F : B → R, F (t) = t2 exp(−100t1).

Consider the problem

min
x∈X

max
t∈B

∣

∣

∣

∣

F (t) − V (x, t)

W (x, t)

∣

∣

∣

∣

.

Let the initial feasible point be x0 = (1, 0, 0, 0, 0, 1)T .

The figures in Table 4 show that the problem is solved within a few iterations by using

both approximation functions. Moreover, the number of iterations and the optimal

value are much better than the results reported by Gugat [Gugat, M, 1998].
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Table 4: The results for Problem 5.4

No of Iter. λk

Entropy 6 0.0018

Recursive 5 0.0018

Recall that the results reported in Table 2 have shown that all problems can be solved

by using both approximation functions. However, solving the problems with approx-

imation functions require more iterations than the methods suggested in the literature

[Gugat, M, 1996b]. Therefore, we have decided to use the same set of problems in

order to validate our observations for performance improvement.

Table 5 gives the results with Algorithm 3.1 after we implement several performance

improvement observations. The first and second columns give the problem numbers

and approximation functions, respectively. The acronym “Reg.” in the third column

stands for regular and the solutions in the corresponding row are found by Algorithm

3.1 without implementing any performance improvement observations. These solu-

tions are same as in Table 2. The acronym “Weak.” denotes that in the corresponding

row the figures are found by implementing the observation about a weaker stopping

condition as discussed in Section 4. In this case, the parameter δ is set to 1.0e − 2.

Similarly, the results in the row “Norm.” are found by implementing the normaliza-

tion observation Algorithm 4.1. The fourth columns shows the number of iterations

required to find λk given in the last column. The fifth column shows the value of φε
after the algorithm terminates.

When we analyze the figures in Table 5, we see that using a weaker stopping condition

decreases the number of iterations. Moreover, the accuracy of the results are slightly

affected by this modification. On the other hand, implementing the observation about

normalization decreases the number of iterations drastically and, as expected, without

sacrificing too much of the quality of the solutions.
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Table 5: The results for problems 5.1, 5.2 and 5.3 with Algorithm 3.1 after performance

improvements

No of Iter. φε(λk, xk) λk

Pr. 5.1 Entropy Reg. 24 0.0000 0.4325

Weak. 11 -0.0006 0.4341

Norm. 3 0.0000 0.4325

Recursive Reg. 24 0.0000 0.4325

Weak. 12 -0.0007 0.4345

Norm. 3 0.0000 0.4325

Pr. 5.2 Entropy Reg 6 0.0000 0.1962

Weak. 3 -0.0005 0.1978

Norm. 3 0.0000 0.1962

Recursive Reg. 7 0.0000 0.1962

Weak. 3 -0.0004 0.1973

Norm. 3 0.0000 0.1962

Pr. 5.3 Entropy Reg. 33 0.0000 0.0742

Weak. 18 -0.0008 0.0742

Norm. 8 0.0000 0.0742

Recursive Reg. 32 0.0000 0.0742

Weak. 14 -0.0007 0.0742

Norm. 7 0.0000 0.0742

6 Conclusion

We have shown that GFP problems can be solved efficiently by applying a smoothing

approximation approach within typical Dinkelbach-type methods. Moreover, we have

discussed several observations that can be used for improving the performance of the

algorithms. The approximation approach yields near-optimal solutions, but fortunately

the closeness of the solution to the actual optimal solution can be controlled by a

predetermined parameter. In this respect, through decision makers’ interaction the

analyst can cope with the tradeoff between efficiency and precision. Our numerical

results have also supported that the proposed approach is indeed effective for solving

GFP problems.

Though, we strive for solving various problems from the literature, there exist many

real-life problems that have to be tackled with efficient methods. Moreover, we did

not test some of our performance improvement observations, neither did we consider
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possible combinations of these observations. These issues remain in our agenda as a

possible further research direction.
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