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ABSTRACT

In this paper we consider stochastic purchase timing models used in marketing for low-

involvement products and show that important characteristics of those models are easy to

compute. As such these calculations are based on an elementary probabilistic argument

and cover not only the well-known condensed negative binomial model but also stochastic

purchase timing models with other interarrival and mixing distributions.
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1 Introduction

In this paper we consider purchase timing models used within the marketing literature (cf.

[8]) and show by easy arguments how to compute some important characteristics of these

models under various assumptions on the mixing distribution and the associated \standard-

ized" purchase timing process. After introducing a general framework for these models we

discuss a purchase timing model with an Erlang-r mixing distribution and an arbitrary point

process representing this \standardized" purchase timing process. Also we consider a pur-

chase timing model with an arbitrary mixing distribution and an Erlang-s renewal process

as a \standardized" purchase timing process. For the last class of models it is relatively

easy to derive analytical formulas for the important characteristics and these formulas gen-

eralize most of the results available in the literature. At the same time we show that the

mathematics involved is quite elementary.

2 Purchase timing models

Let fXi : i � 1g denote a sequence of nonnegative random variables and consider the

associated nonexplosive univariate point process fN(t) : t � 0g given by N(t) := supfn �

0 : Tn � tg with Tn, n 2 N , denoting the sum of the random variables Xi, 1 � i � n,

and T0 := 0 (cf. [2]). Observe if the random variables Xi, i = 1; :::, are independent and

identically distributed with distribution function F (x) := PrfXi � xg satisfying F (0) = 0

the above point process represents a renewal process (cf. [11]). To model the moments of

purchase timing of a customer selected at random from a population it is assumed that the

interpurchase times of this random customer are given byXi=Y , i 2 N , with Y a nonnegative

random variable with distribution G(y) := PrfY � yg. This distribution is continuous on

(0;1) and satis�es 0 � G(0) < 1 and G(1) = 1. Moreover, the random variable Y

representing the purchase rate parameter (cf. [8]) is independent of the sequence Xi, i � 1.

Within the theory of consumer behavior the distribution G is called the mixing distribution

and this distribution enables us to aggregate over the whole population of customers. Observe

also that in most of the literature on consumer behavior the univariate point process fN(t) :

t � 0g is actually a renewal process with either an exponential or Erlang-2 interarrival

distribution. Introducing now the stochastic process fBt : t � 0g given by

Bt := the number of purchases of a random customer up to time t
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it follows by the above construction that Bt = N(Y t). A well-known model belonging to

this class is given by the Negative Binomial model (NBD) (cf. [8, 5, 9]). In this model it

is assumed that the mixing distribution is a Gamma distribution and the associated point

process is a Poisson process with arrival rate 1. From a theoretical point of view important

characteristics of the random variable Bt are its distribution, its �rst moment and generating

function. To compute the distribution of Bt we observe, since the event fN(t) � kg, k 2 N ,

coincides with the event fTk � tg, that

PrfBt � kg = PrfN(Y t) � kg = PrfTk � Y tg = PrfY � Tkt
�1
g:

Since G is continuous on (0;1) and Tk is strictly positive with probability one we obtain

that

PrfBt � kg = PrfY > Tkt
�1
g = 1 � EG(Tkt

�1) (2.1)

with E denoting the expectation. If it happens that the considered population consists

of m di�erent classes each characterized by a di�erent random purchase rate parameter

Yi; i = 1; :::;m, the mixing distribution G can be seen as a mixture of distributions. This

means that there exist positive numbers p1; :::; pm adding up to 1 with pi representing the

relative size of class i within the population and each random customer belonging to class i

has a random purchase rate parameter Yi with distribution Gi. Hence in this case the mixing

distribution G is given by

G(y) =
mX
i=1

piGi(y)

or equivalently G is the distribution of the random variable YI where I denotes a random

variable with PrfI = ig = pi, i = 1; :::;m and I is independent of the random variables

Y1; :::; Ym. By (2.1) we now obtain that

PrfBt � kg = PrfN(YI t) � kg =
mX
i=1

piPrfN(Yit) � kg =
mX
i=1

piPrfB
(i)
t � kg (2.2)

with B
(i)
t denoting the number of purchases up to time t of a customer selected at random

from class i. A special case is given by the existence of a zero and a nonzero-class within the

population and by (2.2) this implies that

PrfBt � kg = (1 � p1)PrfB
(2)
t � kg+ p1�0(k)

with �0(k) = 1 for k = 0 and zero otherwise and B
(2)
t denoting the number of purchases

up to time t of a customer selected at random from the non-zero class. From a theoretical

point of view there seems to be no preference for a speci�c mixing distribution and so
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the selection of such a distribution is purely determined by the 
exibility of the family

of distributions to which this mixing distribution belongs. Since the family of Gamma

distributions with scale parameter � > 0 and shape parameter � > 0 seems to be 
exible

enough the Gamma distribution is chosen in most of the literature (for example see [14, 3])

as a mixing distribution. If the shape parameter � is an integer r the corresponding Gamma

distribution is called an Erlang-r distribution and in this case the corresponding random

variable Y can be represented as the sum of r independent and exponentially distributed

random variables Yi, i = 1; :::; r, with the same scale parameter � or equivalently Er(y) :=

PrfY � yg = PrfY1 + � � � + Yr � yg. By taking �nite mixtures of Erlang-r distributions

with di�erent values of r and the same scale parameter it can be shown that this class

of distributions is dense in the class of all distributions on [0;1) (cf. [1]). By this result

and (2.2) it seems therefore sensible to compute for an arbitrary nonexplosive univariate

point process and Erlang-r mixing distribution the probability distribution PrfBt = kg,

k = 0; 1; :::. Observe an example of such a model is given by the Condensed Negative

Binomial model (cf. [9]) where the point process is a renewal process with an Erlang-2

interarrival time distribution. This is the simplest distribution with an increasing failure

rate and so it incorporates the intuitive idea that the probability of a new purchase will

increase with time. By relating the Erlang-r mixing distribution to the well-known Poisson

process it is easy to show the following result.

Theorem 2.1 If a purchase timing model is represented by a nonexplosive univariate point

process fN(t) : t � 0g and an Erlang-r mixing distribution with scale parameter � > 0 then

we obtain for every k � 0 that PrfBt � kg = PrfN(Y t) � kg = PrfM(Tkt
�1) � r � 1g

with fM(t) : t � 0g denoting a Poisson process with arrival rate � and Tk independent of

the Poisson process fM(t) : t � 0g. Moreover, it follows that

PrfBt � kg =
r�1X
j=0

(�t�1)j

j!
E(exp(��t�1Tk)T

j
k ):

Proof. As already observed the random purchase parameter Y can be seen as the sum of r

independent and exponentially distributed random variables Yi with scale parameter � > 0

and so we obtain that

PrfBt � kg = PrfN((Y1 + � � �+ Yr)t) � kg

= PrfTk � (Y1 + � � �+ Yr)tg

= PrfY1 + � � �+ Yr � Tkt
�1
g:
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Since the mixing Erlang-r distribution is continuous on (0;1) and Y1+� � �+Yr is independent

of Tk it follows that

PrfY1 + � � �+ Yr � Tkt
�1
g = PrfY1 + � � �+ Yr > Tkt

�1
g = PrfM(Tkt

�1) � r � 1g

with fM(t) : t � 0g denoting a Poisson process with arrival rate � and this shows the �rst

part. Since it is well-known for a Poisson process with arrival rate � > 0 that the number of

renewals in the interval (0; Tkt
�1) has a Poisson distribution with parameter �Tkt

�1 (cf. [11])

the second part follows.

Q.E.D.

If we consider the random variable M(Tkt
�1) mentioned in Theorem 2.1 and compute its

probability generating function P (z) := E(zM(Tkt
�1)); j z j� 1 then it is easy to verify that

P (z) = E(exp(��t�1Tk(1 � z))) and so the distribution function of M(Tkt
�1) is a so-called

Poisson mixture (cf. [10]). Moreover, if the point process fN(t) : t � 0g is actually a renewal

process then it follows that

P (z) = E(exp(��t�1Tk(1� z))) = E(exp(��t�1
kX
i=1

Xi(1 � z)))

= (E(exp(��t�1X1(1� z))))k = (E(zM(X1t
�1)))k

and this implies that the random variable M(Tkt
�1) can be seen as the sum of the indepen-

dent and identically distributed random variablesM(Xit
�1), i = 1; :::; k. By this observation

it follows by Theorem 2.1 that

PrfBt � kg = Prf
kX
i=1

M(Xit
�1) � r � 1g (2.3)

and again the distribution of the independent and identically distributed random variables

M(Xit
�1); i = 1; :::; k is a Poisson mixture.

To identify an important subclass of Poisson mixtures we introduce the following well-known

discrete distribution (cf. [6]).

De�nition 2.1 A discrete random variable N de�ned on f0; 1; :::; g has a geometric distri-

bution with parameter p (Geo(p) distribution) if PrfN = jg = (1� p)pj ; j = 0; ::: .

The next result shows that the random variable M(Xit
�1) has a geometric distribution if

and only if Xi has an exponential distribution.
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Lemma 2.1 Let fM(t) : t � 0g be a Poisson process with arrival rate � > 0 and X a non-

negative random variable independent of fM(t) j t � 0g. Then it follows that M(Xt�1) has

a geo( �t
�t+�

) distribution if and only if X has an exponential distribution with scale parameter

�.

Proof. As observed the generating function of M(Xt�1) is given by E(exp(��t�1X(1� z)))

and this yields for the random variable X exponentially distributed with parameter � that

E(exp(��t�1X(1 � z))) =
�

� + �t�1(1� z)
=

�t
�t+�

1 � �

�t+�
z
:

The above function is the generating function of the geo( �t
�t+�

) distribution and this shows

the if-implication. To prove the reverse relation we observe for every t > 0 that

E(exp(�t�1X(1� z))) =
�

�+ �t�1(1 � z)
:

Hence for every � > 0 the Laplace-Stieltjes transform E(exp(��X)) is given by �(� + �)�1

which denotes the Laplace-Stieltjes transform of the exponential distribution with parameter

�.

Q.E.D.

Since the negative binomial distribution (with parameters k and p) given by

pj :=

 
k + j � 1

j

!
(1� p)jpk; j = 0; 1; :::

can be seen (cf. [6]) as pj = PrfZ1 + � � �Zk = jg with Zi, i = 1; :::; k, a sequence of

independent and Geo(p) distributed random variables we obtain by Lemma 2.1 and relation

(2.3) the following result.

Theorem 2.2 If a purchase timing model is represented by a renewal process with Erlang-s

distributed interarrival times with scale parameter � > 0 and an Erlang-r mixing distribution

with scale parameter � > 0 then it follows for every k � 1 that

PrfBt � kg =
r�1X
j=0

 
sk + j � 1

j

!
(

�

�t+ �
)j(

�t

�t+ �
)sk:

5



Proof. Since for every i � 1 the independent and identically distributed random variables

Xi have an Erlang-s distribution it follows by relation (2.3) that

PrfBt � kg = Prf
kX
i=1

M(Xit
�1) � r � 1g

= Prf
kX
i=1

sX
j=1

M(Xijt
�1) � r � 1g

with Xij ; i = 1; :::; k; j = 1; :::; s, a sequence of independent and exponentially distributed

random variables with scale parameter � > 0. Moreover, the random variables M(Xijt
�1),

i = 1; :::; k; j = 1; :::; s, are independent and by Lemma 2.1 geo( �t
�t+�

) distributed and this

proves by the interpretation of a negative binomial distribution the desired result.

Q.E.D.

Moreover, if the renewal process fN(t) : t � 0g has an interarrival distribution given by a

�nite mixture of Erlang distributions with the same scale parameter � > 0 then it follows

for every i � 1 that

PrfXi � xg = Prf
NiX
j=1

Xij � xg

with Ni a discrete random variable on f1; :::; sg for some �nite s. Observe the sequences

fNi; i � 1g and fXij ; i � 1; j = 1; :::; sg are independent of each other and consist of

independent and identically distributed random variables with Ni having an arbitrary dis-

tribution on f1; :::; sg and Xij exponentially distributed with scale parameter � > 0. By a

similar argument as used in Theorem 2.2 it is easy to show that

PrfBt � kg = Prf
kX
i=1

NiX
j=1

M(Xij t
�1) � r � 1g

=
r�1X
j=0

(
�

�t+ �
)jE(

 
N1 + � � �+Nk + j � 1

j

!
(

�t

�t+ �
)N1+���Nk):

Although the above formula can be worked out for a random variable Ni with an elementary

probability generating function the resulting expression is rather complicated. Moreover,

it is also not clear from a theoretical point of view why the interarrival distribution of a

\standardized" purchase timing process should be a mixture of Erlang distributions and so

we will only consider Erlang-s distributed interarrival times.
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One might justify the use of an Erlang-s interarrival distribution by the observation that

this model captures the possibility that a customer is going through s di�erent exponential

stages before buying. Another, maybe more realistic reason is given by the observation that

every Erlang-s distribution, s � 2, has an increasing failure rate (cf. [4]) and is therefore

a theoretical more attractive distribution to model the time between purchase moments

than the exponential distribution with a constant failure rate (cf. [14]). In the remainder

of this section we therefore focus our attention to purchase incidence models with a general

mixture distribution G and a renewal process with an Erlang-s interarrival time distribution

and compute for these models the probability distribution PrfBt = kg, the �rst moment

EBt, the generating function E(z
Bt) and the conditional expectation E(Bu �Bt j B � t = k)

with u > t. By the probabilistic interpretation of an Erlang distribution the following result

follows immediately. Clearly for s = 2 and a Gamma mixing distribution we obtain the

well-known Condensed Negative Binomial model (cf. [8, 14]).

Theorem 2.3 If a purchase timing process is represented by a renewal process with Erlang-s

distributed interarrival times with scale parameter � > 0 and an arbitrary mixing distribution

G then we obtain that

PrfBt � kg = PrfN(Y t) � kg = PrfM(Y t) � skg

with fM(t) : t � 0g denoting a Poisson process with arrival rate � > 0 independent of the

random variable Y . Moreover, it follows that

PrfBt � kg =
1X

j=sk

(�t)j

j!
E(exp(�t�Y )Y j):

Proof. Since the interarrival times Xi; i � 1 are independent and Erlang-s distributed with

scale parameter � > 0 we obtain that

PrfBt � kg = PrfN(Y t) � kg

= PrfX1 + � � �+Xk � Y tg

= PrfZ1 + � � �+ Zks � Y tg

with Zi; i = 1; :::; sk, a sequence of independent and exponentially distributed random vari-

ables with scale parameter � > 0. Hence it follows that

PrfBt � kg = PrfM(Y t) � skg
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and this implies since fM(t) : t � 0g is a Poisson process that

PrfBt � kg =
1X

j=sk

(�t)j

j!
E(exp(�t�Y )Y j):

Q.E.D.

We will now compute the �rst moment EBt and the generating function E(zBt) of a purchase

timing model with a renewal process consisting of Erlang-s distributed interarrival times

with scale parameter � and a general mixing distribution. As observed by Morrison and

Schmittlein (cf. [9]) it is also important to consider the conditional expectation E(Bu �Bt j

Bt = k) with u > t and this conditional expectation will also be computed for the above

purchase timing model. To compute all these important characteristics we need the following

lemma which is well-known within the theory of fast Fourier transforms.

Lemma 2.2 For any real number x and integer s = 1; 2; ::: it follows for any integer m

satisfying 1 � m � s that

1X
k=1

xks�m

(ks�m)!
=

1

s

s�1X
j=0

�jm exp(x�j)

with � := exp(2�i
s
) and i the imaginary unit.

Proof.

By the Taylor expansion for exp(x�j); j = 0; :::; s� 1 we obtain that

1

s

s�1X
j=0

�jm exp(x�j) =
1

s

s�1X
j=0

�jm
1X
n=0

xn�nj

n!
=

1

s

1X
n=0

xn

n!

s�1X
j=0

(�m+n)j :

If m+ n � 1 is a multiple of s, i.e. m+ n = ks for some k 2 N , then clearly �m+n = 1 and

hence
s�1X
j=0

(�m+n)j = s:

Moreover, if m+ n is not a multiple of s, then �m+1 6= 1 and this yields by the formula for

a geometric serie that
s�1X
j=0

(�m+n)j =
1 � �s(m+n)

1 � �m+n
= 0:
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Substituting this into the above double series yields the desired result.

Q.E.D.

It is now possible to compute the expectation EBt of a purchase timing model with a renewal

process consisting of Erlang-s interarrival times with scale parameter � > 0 and a general

mixing distribution.

Theorem 2.4 If Y denotes the purchase rate parameter with distribution G and fN(t) :

t � 0g is a renewal process independent of Y with Erlang-s interarrival times with scale

parameter � then we obtain with � = exp(2�i
s
) that

EBt =
�t

s
EY +

1 � s

2s
�

1

s

s�1X
j=1

�j

1� �j
E(exp(��t(1� �j)Y )):

Proof. It is well-known that

EBt =
1X
k=1

PrfBt � kg =
1X
k=1

PrfN(Y t) � tg =
1X
k=1

PrfTk � Y tg:

Since the interarrival times Xi, i = 1; 2; :::, are independent and Erlang-s distributed with

scale parameter � > 0 it follows that Tk = Z1 + � � � + Zks with Zi, i = 1; :::; ks, a sequence

of independent and exponentially distributed random variables with scale parameter � and

so Tk is Erlang-ks distributed. This implies by Lemma 2.2 that

EBt =
1X
k=1

E(
Z Y t

0
� exp(��x)

(�x)ks�1

(ks� 1)!
dx)

= E(
Z Y t

0
� exp(��x)

1X
k=1

(�x)ks�1

(ks� 1)!
dx)

=
1

s

s�1X
j=0

��jE(
Z Y t

0
exp(��x(1 � �j))dx)

=
�t

s
EY +

1

s

s�1X
j=1

�j

1 � �j
(1� E(exp(��t(1� �j)Y ))):

Finally by the key renewal theorem (cf. [4]) it follows that

lim
t"1

EBt �
�t

s
EY �

1

2
(1 � s)s�1 = 0
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and so the desired result is veri�ed.

Q.E.D.

If we consider the condensed negative binomial model for which by de�nition the independent

and identically distributed interarrival times have an Erlang-2 distribution it follows by

Theorem 2.4 (take s = 2) that

EBt = E(N(Y t)) =
1

2
E(Y )�t�

1

4
(1 � E(exp(�2�tY )))

and this expression is still elementary. Using Lemma 2.2 one can also compute the gener-

ating function E(zBt) of a purchase timing model with an Erlang-s interarrival time and an

arbitrary mixing distribution. This will be shown in the next result.

Theorem 2.5 If Y denotes the purchase rate parameter with distribution G and fN(t) :

t � 0g is a renewal process independent of Y with Erlang-s interarrival times with scale

parameter � > 0 then we obtain with � = exp(2�i
s
) that

E(zBt) =
1

s
(1� z)z�1

s�1X
j=0

(z1=s�j)(1 � z1=s�j)�1E(exp(��t(1� z1=s�j)Y ))

for every j z j< 1.

Proof. Since we consider a purchase timing model with an Erlang-s renewal process and a

general mixing distribution we obtain for j z j< 1 that
1X
k=0

PrfBt � kgzk = 1 +
1X
k=1

PrfBt � kgzk

= 1 +
1X
k=1

PrfN(Y t) � kgzk

= 1 +
1X
k=1

PrfTk � Y tgzk

with Tk denoting the sum of k independent and Erlang-s distributed random variables with

parameter �. Hence the distribution of Tk is an Erlang-ks distribution with scale parameter

� and this implies
1X
k=0

PrfBt � kgzk = 1 +
1X
k=1

E(
Z Y t

0
� exp(��x)

(�x)ks�1

(ks� 1)!
dx)zk

= 1 + z1=sE(
Z Y t

0
� exp(��x)

1X
k=1

(�xz1=s)ks�1

(ks� 1)!
dx):
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Applying now Lemma 2.2 yields

1X
k=0

PrfBt � kgzk = 1 +
�

s
z1=s

s�1X
j=0

�jE(
Z Y t

0
exp(��x) exp(�xz1=s�j)dx)

= 1 +
�

s
z1=s

s�1X
j=0

�jE(
Z Y t

0
exp(��x(1 � z1=s�j))dx)

= 1 +
z1=s

s

s�1X
j=0

�j(1� z1=s�j)�1(1� E(exp(��t(1 � z1=s�j)Y ))):

Since for every j z j< 1 it follows that

lim
t!1

E(exp(��t(1� z1=s�j)Y ) = 0

for every j = 0; :::; s� 1 we obtain by the previous equality and using Bt !1 that

1

1 � z
= lim

t!1

1X
k=0

PrfBt � kgzk

= 1 +
z1=s

s

s�1X
j=0

�j(1� z1=s�j)�1:

This implies

1X
k=0

PrfBt � kgzk =
1

1� z
�
z1=s

s

s�1X
j=0

�j(1� z1=s�j)�1E(exp(��t(1 � z1=s�j)Y )):

Finally, since

1X
k=0

PrfBt � kgzk =
1X
k=0

1X
j=k

PrfBt = jgzk =
1X
j=0

jX
k=0

zkPrfBt = jg =
1� zE(zBt)

1 � z

the desired result follows.

Q.E.D.

Using the above generating function it is in principle possible to compute the �rst and

second moment of Bt if the purchase timing model has a Erlang-r renewal process with

scale parameter � > 0 and the Laplace-Stieltjes transform E(exp(��Y )) of the random

purchase rate parameter Y has an elementary form. Suppose now we consider a renewal

process fN(t) : t � 0g with an interarrival distribution having a �nite second moment and

an increasing failure rate and this interarrival distribution does not belong to the class of
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Erlang distributions. In this case the associated renewal function U(t) = E(N(t)) does not

have an elementary expression and so it seems worthwhile at least for large values of t to

approximate the renewal function U(t) by its asymptotic limit E(X1)
�1t+ 1

2
E(X2

1 )E(X1)
�2�1

(cf. [4]). If this is a reasonable approximation then we may approximate E(N(Y t)) by

tE(Y )E(X1) +
1
2
E(X2

1 )E(X1)
�2 � 1. Similarly one can show (cf. [7]) by classical renewal

theoretic arguments that the asymptotic limit of the second moment E(N2(t)) is given by

the expression

t2

(E(X1))2
+ (

2E(X2
1 )

(E(X1))2
�

3

E(X1)
)t+

3(E(X2
1 ))

2

2(E(X1))4
�

2E(X3
1 )

3(E(X1))3
�

3E(X2
1 )

2(E(X1))2
+ 1

and so EN(Y t) can be approximated by

E(Y 2)t2

E(X1))2
+ (

2E(X2
1 )

(E(X1))2
�

3

E(X1)
)E(Y )t+

3(E(X2
1 ))

2

2(E(X1))4
�

2E(X3
1 )

3(E(X1))3
�

3E(X2
1 )

2(E(X1))2
+ 1:

Finally we will consider for a purchase timing model with an Erlang-s renewal process and

a general mixing distribution the expectation E(Bu � Bt j Bt = k). Using the well-known

memoryless property of the exponential distribution it is easy to show the following result.

Theorem 2.6 If Y denotes the purchase rate parameter with distribution G and fN(t) :

t � 0g is a renewal process independent of Y with Erlang-s interarrival times with scale

parameter � > 0 then we obtain that

E(Bu �Bt j Bt = k) =
�

s
EY (u� t) +

1

s

s�1X
j=1

�j

1� �j
(1 � E(exp(��(u� t)(1� �j)Y )))vj

with vj, j = 1; :::; s� 1 given by

vj = E(�jM(Y t)
j sk �M(Y t) � (k + 1)s � 1g

and fM(t) : t � 0g is a Poisson process with arrival rate � > 0 independent of Y .

Proof. Since the interarrival times are Erlang-s distributed with scale parameter � > 0 the

event fBt = kg is given by the union of the disjoint events fM(Y t) = sk+mg, m = 0; :::; s�1

with M(t) denoting a Poisson process with arrival rate � > 0 and so we obtain that

E((Bu �Bt)1fBt=kg) =
s�1X
m=0

E((N(Y u)�N(Y t))1fM(Y t)=sk+mg):

12



By the probabilistic interpretation of an Erlang-s distribution and the memoryless property

of the exponential distribution it follows that

s�1X
m=0

E((N(Y u)�N(Y t))1fM(Y t)=sk+mg) =
s�1X
m=0

E(N (m)(Y (u� t)))PrfM(Y t) = sk +mg

with N (m)(t) a delayed Erlang-s renewal process (cf. [11])) with delay distribution given by

an Erlang-(s �m) distribution with parameter � > 0. Applying now Lemma 2.2 it follows

for each m = 0; :::; s� 1 that

EN (m)(Y (u� t)) =
1X
k=1

E(
Z Y (u�t)

0
� exp(��x)

(�x)ks�m�1

(ks�m� 1)!
dx)

= E(
Z Y (u�t)

0
� exp(��x)

1X
k=1

(�x)ks�m�1

(ks�m� 1)!
dx)

=
�

s
EY (u� t) +

1

s

s�1X
j=1

�j(m+1)

1� �j
(1 � E(exp(��(u� t)(1� �j)Y ))):

Combining the above expressions we �nally obtain that

E(Bu �Bt j Bt = k) =
�

s
EY (u� t) +

1

s

s�1X
j=1

�j

1� �j
(1 � E(exp(��(u� t)(1� �j)Y )))vj

with vj, j = 1; :::; s� 1 given by

vj =
s�1X
m=0

�jmPrfM(Y t) = sk +m j ks �M(Y t) � (k + 1)s � 1g

= E(�j(M(Y t)�sk)
j sk �M(Y t) � (k + 1)s� 1g

= E(�jM(Y t)
j sk �M(Y t) � (k + 1)s� 1g

and so we have veri�ed the desired result.

Q.E.D.

Although the above expression seems complicated it is not di�cult to compute its value

for any arbitrary s and so we can use the above formula as a before-and-after tool (cf. [9,

12]). This concludes our discussion of random purchase timing models. Observe we did not

consider the relation of purchase timing models with the more general purchase timing/brand

choice models (cf. [8]). However, it will be shown in a subsequent paper that there exists

a unifying framework covering almost all stationary purchase timing/brand choice models

13



considered in the marketing literature and that the main characteristics of these more general

models reduce to the main characteristics of the above \single product" models. Finally

we like to observe that by a simple probabilistic argument and an easy to prove equality

between an in�nite series and a �nite serie we can compute without an extensive amount

of calculations important characteristics of purchase timing models which are much more

general than the models considered so far in the literature. This should be seen in contrast

with the direct computation type of approach for some special subcases used in the marketing

literature on this topic.
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