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Abstract 

A new dual problem for convex generalized fractional programs with no duality gap is 
presented and it is shown how this dual problem can be efficiently solved using a parametric 
approach. The resulting algorithm can be seen as "'dual'" to the Dinkelbach-type algorithm for 
generalized fractional programs since it approximates the optimal objective value of the dual 
(primal) problem from below. Convergence results for this algorithm are derived and an easy 
condition to achieve superlinear convergence is also established. Moreover, under some additional 
assumptions the algorithm also recovers at the same time an optimal solution of the primal 
problem. We also consider a variant of this new algorithm, based on scaling the " 'dual" 
parametric function, The numerical results, in case of quadratic-linear ratios and linear constraints, 
show that the performance of the new algorithm and its scaled version is superior to that of the 
Dinkelbach-type algorithms. From the computational results it also appears that contrary to the 
primal approach, the " 'dual" approach is less influenced by scaling. 

Keywords: Fractional programming; Generalized fractional programming; Dinkelbach-type algorithms: Quasi- 
convexity; Karush-Kuhn-Tucker conditions: Duality 

1. Introduction 

Fractional  p rogramming ,  i.e., the min imiza t ion  of  a ratio of  two functions subject  to 

constraints,  has been studied ex tens ive ly  during the last several decades [1,8,27,28]. In 
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the 1980s the focus has shifted towards multi-ratio optimization problems. One of the 
major types is the problem of minimizing the largest of several ratios of functions. These 
so-called generalized fractional programs arise in economic equilibrium problems, in 

management applications of goal programming and multiobjective programming involv- 
ing ratios of functions, and in rational approximation in numerical analysis [10]. 

Algorithmic and computational resuhs for single-ratio fractional programs can be 

found in [17,18,28] and in the literature cited therein. Various algorithms in generalized 

fractional programming are surveyed in [9] whereas computational experience with some 
of these algorithms is reported in [5,7,14]. Meanwhile also a duality theory for 

generalized fractional programs has been developed [1,8]. 
The purpose of this paper is to introduce a new dual problem for convex generalized 

fractional programs and an algorithm to solve this problem. The main feature of this 
algorithm is that at each iteration a single-ratio fractional programming problem is 
solved and the optimal objective value of this fractional programming problem provides 
a lower bound on the optimal objective value of the original generalized fractional 

program. Following the strategy used to derive the Dinkelbach-type-2 algorithm we will 
also propose a variant of this "'dual" algorithm. 

The paper is organized in the following way. We start by presenting a short overview 
on the basic algorithms for generalized fractional programs. In Section 3 the new 
algorithm is introduced and convergence results are discussed. A variant of this 
algorithm, based on scaling of the "dual '" parametric function, is studied in Section 4. 
Finally some computational results are presented comparing the performance of the new 
algorithms with the Dinkelbach-type approaches [11.12]. 

2. Algorithms for generalized fractional programming 

Let ~ c  JR" be compact and assume that the functions f., gi: 2---) [~, i ~ I := 
{I . . . . .  m}, m > 1, are continuous where S '~ is an open set containing ,,W. Also let 
gi(x)  > 0 for every x ~ ~ and i E I. We consider the generalized fractional program 

4 ( x )  
(P) inf max - -  

, < ~  i~l gi(x)  

Since the function x ~ max ie ~ J i ( x ) / g , ( x )  is finite-valued and continuous on 27 and 
~'___ IR" is compact, the optimization problem (P) has an optimal solution. Clearly, for 
m = I problem (P) reduces to a single-ratio fractional programming problem [13]. To 
solve (P), we consider the following parametric problem: 

(P.) F ( / x ) =  inf ( m a x { f . ( x ) - t x g i ( x ) } } .  
x ~  g-g" ~, i E l  

By a similar argument as for (P), problem (P,) also has an optimal solution, and both 
optimization problems are related to each other by the following result [11]. 
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L e m m a  2.1. I f  Y is compact, m >1 1 and -oc < IX < + ~, then 
(a) F(ix)  < + % F is decreasing and continuous; 
(b) (P) and (P,) have optimal solutions; 
(c) the optimal objective value ix* of (P) is finite and F( ix* ) = 0; 

(d) F( ix)  = 0 implies ix = ix ~ ; 
(e) if  F(Ix) = 0 then (P) and (P,) have the same set of  optimaI solutions. 

By Lemma 2.1 it is clear that solving (P) can be achieved by finding a solution of the 

equation F(IX) = 0. Based on this observation, the Dinkelbach-type algorithm proposed 

in [11] solves at each step a subproblem (P,), and by doing so it creates a nonincreasing 

sequence Ixk, k ~> 1, converging from above to the optimal objective value IX~ of 
problem (P). More precisely, at the kth step of this procedure IX~+ ~ is taken as the root 
of the equation Gk(IX) = 0 with G k : N ~ N a linear (piecewise linear) upper envelope 

of the function F for m = 1 (m > 1) and G~(Ixk) = F(IXk) ~< 0. The Dinkelbach-type 
algorithm can now be summarized as follows. 

Algor i thm 2.1 (Dinkelbach-type algorithm). 

Step 0. Take x 0 e Y ,  compute IX1 := m a x i ~ l  .~(Xo)/g,(Xo) and let k : =  1; 
Step 1. Determine x~ := argminx~ ~ { m a x ~  z{f,(x) - Ixkgi(x)}}; 
Step 2. I f  F(Ixk) = 0 

Then  x k is an optimal solution of (P) with value Ixk and Stop. 
Else GoTo  Step 3; 

Step 3. Let Ixk+ l := max ie  I f i ( x k ) / g i ( x k  ); 

Let k := k + 1, and G o T o  Step 1. 

Obviously, it is only useful to apply tile above procedure if every subproblem (P,) is 
easier to solve than the original problem (P). Furthermore it is also clear that a 
single-ratio fractional program, i.e., m = 1, is easier to solve than a generalized 
fractional program, i.e., m > 1. In [3] it is shown that the above basic algorithm is a 
special case of  a cutting plane algorithm on the space ,2". 

A refinement of the Dinkelbach-type algorithm was later proposed by Crouzeix et al. 
[12] and independently by Flachs [15]. The main idea behind this variant consists in 
trying to make the parametric function concave in a neighborhood of the optimal value. 
In order to achieve this, Crouzeix et al. [ 12] propose the following reformulation of (P): 

f,( x ) l g , (  ) 
inf max 

g , ( x ) / g , ( x , )  ' 

where x .  denotes an optimal solution of (P). The associated parametric problem is 
given by 

inf [ m a x [  j)( x )  - Ixgi( x )  } 
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In practice, since an optimal solution of (P) is not known a priori, the current iteration 

point is used as an approximation of x . .  Hence, in the Dinkelbach-type-2 algorithm the 

following parametric problem is considered: 

(p~k-i~) F(~ i~(/a.)= inf { ( , f i ( x ) - I ' zg i ( x ) } }  

with x k_ ~ e ~ the last iteration point. By our conditions this problem has an optimal 

solution and so, the Dinkelbach-type-2 algorithm can be described as follows. 

Algori thm 2.2 (Dinkelbach-type-2 algorithm). 

Step 0'. Take x 0 e S ,  compute /z I := m a x ~  t f,(Xo)/gi(Xo) and let k := 1; 
Step 1'. Determine: 

Step 2'. I f  F (*- l~(/xk) = 0 

Then x k is an optimal solution of (P) with value /.,e and Stop. 
Else GoTo Step 3'; 

Step 3'. Let p.~ ~, := max,.~ 1 J)(x~)/gi(xk); 
Let k :=  k + 1, and GoTo Step 1'. 

Based on the Dinkelbach-type approaches and their geometrical interpretation, sev- 
eral interval type algorithms have been proposed. A thorough overview of  these 
algorithms can be found in the survey by Crouzeix and Ferland [9]. 

3. The dual problem and how to solve it 

In this section we propose a new dual problem for (P) with no duality gap and 
introduce at the same time an algorithm to solve simultaneously this dual and the 
corresponding primal problem. This algorithm is "dua l "  to the Dinkelbach-type ap- 

proach since it creates a nondecreasing sequence /z k, k > 1, converging from below to 

/x*. We assume that the functions .f;. : .W--+ R, i ~ I. are convex on the compact convex 
set ~-~ and g/ :  ~ - - +  JR, i e l .  are positive and concave on 72s In addition, either the 

functions f~, i e I, are nonnegative on ~ or the functions g j. i e I, are affine on ~2". 
Notice that the Dinkelbach-type algorithm proposed in [1 1] leads to convex programs as 

subproblems under the same assumptions. Observe also that these assumptions include 
the important case of generalized linear fractional programs with a bounded feasible 
region. 

If f ( x )  T := ( f l (x )  . . . . .  f,,,(x)) and g ( x )  T := (gl(x) . . . . .  g,,(x)), then it follows by 
the quasiconvexity of the function q: N • JR+---> IR given by q(z):= zL/z2 that 

,,~(x) ylf(~) 
m a x - - -  max (1) 
i ~ l  g i ( x )  y e Z  yVg(x) 



A.I. Barros et al./Mathematical Programming 72 (19961 147-175 151 

for every x ~ 2 ,  and X := {y E JR": y >1 O, ~2~ ~ ~ Yi = 1}. This is a direct consequence 

of the property that a quasiconvex function attains its maximum in a vertex of a convex 

polyhedron [1]. Moreover, by the assumptions on the vector functions f and g we 

obtain that the function x ~ y T f ( x ) / y T g ( x )  is quasiconvex on ~?' for every y E F,, 

while the function y ~ yT f ( x ) / yTg(x )  is quasiconcave on Z for every x ~ -2,. Hence, 

using the compactness of  the convex sets ,~" and Z it follows from Sion's minimax 

theorem [30] that { yT, x)} { yT, x,} 
m i ~  max = m a x  rain , (2) 

y~ V yV g( x ) y~ S x~ ~" yT g(  x ) 

and so by (1) and (2) we obtain 

mix) max = max min (3) 

Let c: ~ ~ ~, be defined by 

y T f ( x )  
c ( y )  := rain 

x~ ~" yT g(  x ) 

By the compactness of  2 ,  and the continuity of the function h: 2 ,  X ~" ~ ~ given by 
h(x, y ) =  yT f (  x ) / (  yT g( x)), this implies that c is continuous on 2,' [22]. Moreover, the 

function c is semistrictly quasiconcave [1], since it is the infimum of semistrictly 

quasiconcave functions h(-,  y) indexed by x. Thus, by (3), we need to solve the 

quasiconcave optimization problem: 

(Q) m a x c ( y ) ,  
y~Z 

where a local maximum is a global maximum [1]. Notice that (Q) corresponds to a new 
"dua l "  problem of (P). In fact, while in the standard dual problem of a convex 

generalized fractional programnling problem [1,8 10,19.31] a part of the constraint set is 
"dual ized",  problem (Q) can be seen as a "partial dual" program of the generalized 

fractional program (P), since it only "dual izes"  the ratios. 
Observe, by (3), that there exists some y ,  e X  with c ( y , ) = / 2 . ' .  This does not 

mean that any optimal solution x* ~ 2" associated with the single-ratio fractional 
programming problem minx~ :(yT, f ( x ) / y T ,  g ( x )  is also an optimal solution of (P). 

However, for any optimal solution x* e • of (P) and y ,  e X of  (Q) it is easy to see, 

using 

yT, f ( x , )  f i ( x , )  
~< m a x - - - c ( y . ) ,  

y T . g ( x , )  i~t g i ( x , )  

that x .  is an optimal solution of the optimization problem associated with c (y , ) .  
Moreover, it follows immediately that c(y)  <~ tt ~ for every y E v ,  and so an iterative 

procedure solving (Q) approximates tt ~ from below. Although not necessary, as known 
from subgradient-type algorithms for convex programming [29], it would be a nice 
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feature if an algorithm solving (Q) would satisfy the descent property. Hence, with y~ 
the present nonoptimal iteration point, the next point Yk+, should belong to the strict 
upper level set 

~,~'(c(Yk)) := {Y ~ X: c ( y )  > c( y~)}. 

Introducing also 

eg,(c(yk) ) := {y~  X: c(y) > c ( y , ) } ,  

the following result motivates the choice of the next iteration point. 

L e m m a  3.1. Let F" E X ~ ~ [~ be given by 

F(y,  be):= min {yT( f (  x) - - /xg(x))} .  
x E ~  

For ~ ~ Y- we have ~?/,0(c(.9)) = {y ~ v:  F(y, e()3)) > 0} 

F(y, c())) >/0}. 

(4) 

and ~2Z,.(c( .9)) = {y ~ ~: 

Proofl We first consider the case that ?~?(c(9)) is nonempty, i.e., .9 ~ X is nonoptimal 
for (Q). Let y ~ Z/~ Then c(y)> c(9)  and from Lemma 2.1 and g(x)> 0 for 
every x E Z we see 

F ( y , c (  ~)) = rain { y S ( f ( x ) - c ( ~ ) g ( x ) ) }  
x ~  

> .rn~i5 { yT ( f ( X )  -- C(y)  g (  X))} = 0. (5)  

Conversely, if F(y, c(9))  > 0 and y ~ v ,  then using again Lemma 2.1 it follows that 
c (y)  > c(.9) which concludes the proof for the nonempty case. 

On the other hand, if ?Z~'(c(.9)) is empty, then we know that c(y) <~ c(.9) for every 
y ~ v ,  and hence by Lemma 2.1 the set {y ~ v:  F(y, c(.9)) > 0} is also empty. 

Finally the last equality can be proved in a similar way as the first part of this proof, 
and so we omit it. [] 

Let Yk be the present iteration point. The above result and Lemma 2.1 suggest that 
the " b e s t "  possible choice for the next iteration point Yk.~ is given by 

F(yk+ ,, c ( y ~ ) ) : =  m a x F ( y ,  c(yk) ). (6) 
y~V 

Observe that the above optimization problem can be seen as the parametric problem of 
(Q) with parameter c(yk). After having solved (6) we compute c(yk+ i) and continue 
with k replaced by k + 1. This yields the following algorithm. 

Algorithm 3.1 ( " D u a l "  algorithm). 
Step 0. Take Yo ~ v, compute c(y o) = minx~ - e yT f (  x)/yT g( x) and let k := 1; 
Step 1. Determine Yk := argmaxy~ ~F(y, c(y k_ i)); 
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Step 2. x f F(ya., c(yk_ ~ )) = 0 

Then  Yk- ~ is an optimal solution with value c(y k_ t) and Stop. 
Else GoTo  Step 3; 

Step 3. Compute c(yk); 

Let k : =  k + 1, and G o T o  Step 1. 

Notice that, a primal optimal solution of (P) can be found by solving the parametric 

problem (Pu) with /x = c(y k_ 1). 
By our assumptions on f and g we may apply Von Neumann 's  r a in -max  theorem 

[24], and so 

F(yk+ ,, c(yk) ) = m a x F ( y ,  c ( y ~ ) )  
y ~ V  

: m a x {  min {yT( f ( x ) - - c ( yk )g (x ) ) } }  
y e  V x ~  ~g' 

= min / m a x { y V ( f ( x ) - c ( y k ) g ( x ) ) } }  
x ~  ~ t y=~ V 

= min Imax{ f i ( x ) - c ( ya )g i ( x ) } }  
x ~ j ; ~ : ' k  g e l  " 

= F ( c ( y ~ ) ) ,  (7) 

Observe that, even in the case that the conditions of Von Neumann 's  m i n - m a x  theorem 

do not hold, F(c(yk)) is always an upper bound for F(yk+ i, c(Yk)). 
For a geometrical interpretation of this " lower  bounding" algorithm we introduce for 

each fixed y e ~; the function Fy : IR --+ R given by 

Fs( /x )  := min {yT( f ( x )  - - / * g ( x ) ) } .  (8) 
X E  2~" - 

Clearly, for every /~ ~ [~ we have that Fy( i ~) ~ F(ix) with y ~ X, while fo r / z  = c(y k) 
it was shown using Von-Neumann 's  min-max theorem that Fy,+ ( # )  = F(/~).  Moreover, 
to determine c(yk+ ~) is equivalent to finding the root of Fy~+ (/~) = 0, and so this yields 
the geometrical interpretation given in Fig. 1. 

Fig. 1. New algorithm. 
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To prove the convergence of this algorithm we need to investigate the behavior of the 
function F:,:g~--> il~. Since by (8) this function is the minimum of a set of affine 

functions, it is concave, and so by [25 Corollary' 10.1.1.] it is continuous on ~. Also. by 

[25, Theorem 23.4] the subgradient set ~1( - f~,. )(Ix) of the convex function - Fy : ~ ~ 1~ 

at the point IX is nonempty. Remember that d �9 ~ is a subgradient of  the function - F~. 

at the point IX if and only if 

F>,( IX + t) < F>.( IX) - td. (9) 

for every t �9 ~. 

The next result characterizes the subgradient set O(-  E,.)(IX). Although this result is a 

special case of a more general result given by [26, Theorem 7.2] or [16, Theorem 

VI.4.4.2] we give an elementary proof for completeness. This is possible due to the fact 

that Fly is defined on ~. However. before mentioning this result we introduce for fixed 

y �9 v the set _~?-~.(IX) of optimal solutions of  the optimization problem 
min.~ ~ ,  { y T ( f ( x )  - / . t g (  x))}, i.e., 

.9:).(#) := {x �9 :-~: y-r( f(x) - Ixg(x)) =/~,.( /.t)}. (IO) 

Clearly, this set is nonempty. Also. by the continuity of the vector-valued functions f 

and g it must be closed, and thus by the compactness of ~:" and ~.,.(p.)___.~" it is 

compact. Finally, if IX > 0 or IX �9 I~ whenever g: are positive affine functions then the 
function x ~ y T ( f ( x )  - IXg(x ) )  is convex on 2 :  due to f convex and g concave 
(affine), and this implies that .~,,(p.) _5/: '  is also convex for appropriate values of /z. 

Lemma 3.2. For eveo,.1S.red y �9 .~ aml t x ~ ~ it follou's that 

0 ( - F y ) ( / . z )  = [ inf { y r g ( x ) } ,  sup { y T g ( x ) } ] .  
x ~  ~'>.(j~) x c  2 ~ ( ~ )  

P r o o f .  Since every, convex combination of subgradients is again a subgradient, we only 
need to verify for die inclusion _ that the left and the right endpoint of  the above 

compact interval are subgradients. 
For d =  sup,= e,.(j~){yrg(x)} we obtain by the compactness of ,g~>.(ix) and die 

continuity on ~7 ~ Of the function x ~ y T g ( x )  that there exists some ~ � 9  ~2y(ix) 
satisfying d = yTg(?f).  Hence, 

- t d = y r ( f ( ~ )  - ( IX + t)g(~)) _y-r(f(~) _/.tg(~-)) 

>~ F>.( IX + t) - F>,(p.) (I I) 

and so by' (9) it follows that d is a subgradient. A similar proof holds for the left 
endpoint and so the inclusion _D is verified. 

To verify the reverse inclusion _c we first observe the following. Consider the 

sequence x , ,  t: > 1. with x,, �9 f?~,( # + I / n ) .  By the COlnpactness of ~ the sequence 

{x,,, n > 1}, has an accunmlation point x~ �9 .g" and so there exists some subsequence 
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{x,,: 1>7 1} with limt,_~x, =x~ .  Hence by the continuity of the functions / . t ~  
Fv( tx), x ~ yT f (  x ) ,  and x ~ yT g (  x )  respectively, it follows that 

( ' )  F v ( / c  ) = limFy ~ + - -  
�9 I I :e n I 

( ( ' ) )  = l i m  y V f ( x < ) -  I t + - -  y T g ( x , , , )  
ITz  #7 I 

= y r f ( x , , _ )  - t . t yrg(x:~)  (12) 

and so x~ ~ 2~.(/.t). 2 

Again, by the continuity of the function x ~ y S g ( x )  there exists for every a > 0 

some I a > 1 such that for every / >/l,s the inequality 

y V g ( x , , , ) < ~ S g ( x ~ ) + a < ~  sup {yTg(x)}+,~ 
x e ~).(**) 

holds. From this result it is clear that for any d e 0 ( -  Fy)(/ , )  and l > I a we obtain 

, (,+,) , -d>~ G ~+ -C,(~)>~---yrg(x,,,) 
nl - nl 

1( I > - - -  sup { y T g ( x ) } + 6  . (13) 

Multiplying this inequality by - n  I yields d K sup~ e W~{u){yTg(x)} 4- 3. Since 6 > 0 
can be arbitrarily chosen, we obtain that 

"~< sup { y T g ( x ) } .  
x~ Sy(l*) 

By considering a sequence x,, ~ o~y(/x - l / n )  and applying a similar proof one can 
show that d > inf~ ~ ~./ .){yTg(x)},  thus completing the inclusion G.  [] 

As already observed, we may replace inf, respectively sup, in the interval mentioned 
in Lemma 3.2 by min, respectively max. IVloreover, since g ( x )  > 0 for every x e ~-~, 

we obtain by the subgradient inequality given by (9) and Lemma 3.2 that the function 

Fy: 1~' --+ ~ is decreasing 3. Denote now by k* the number of times that the main step 
was started by the algorithm. Clearly if k* = + :c the algorithm does not stop while for 

k* finite it follows that F ( y , . ,  c ( y k . _  i)) = 0. Before mentioning the next result we 
introduce 

Ak(y)  := max{yTg( x )  x ~ ~ , . ( c (  y~))} 

2 By [2! Proposition 2.1.4] this means that for fixed y~  "~s the point-to-set mapping #x--, ~fy(/z) is upper 
semicontinuous. 

3 Observe that the same result also follows from (8). 
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y~, ,+lf(x)  } 
6~+, :=min y ~ + l g ( x )  xsolves  rain 

.t-~-;,: y~+, g ( x )  

= m i n { y ~ + , g ( x ) ' x ~ ; ~ ' , ,  , (c(y~+,))}.  (14) 

It follows by Lemma 3.2 that 

Aa(y)  ~ O ( - l : ) ( c . ( y k )  ) and ek+ , ~0 ( -F~ .  ) ( c ( y a + l )  ). 

Theorem 3.1. The sequence y~. (I <~ k < k ~, does not contain optimal solutions of (Q) 
and the corresponding Jimction values c( y+), 0 <~ k < k :~+ are increasing. Moreover, (f 
k* is finite, then c( y k.)  = #" while for k + - +~c evetw accumulation point of the 
sequence Yk, k >1 O, is an optimal solution of (Q). Finally, (fi k* = +:c and y ,  is an 
optimal solution of (Q), then 

O~<iu+"-c(Yk*~)~< i ~,71 p.+-c(y] , . ) )  (15) 

holds .for every k > O. 

Proof. Using Lemma 3.1. it follows that Yk is nonoptimal if and only if F(yk+ ,, c(Yk)) 
> 0. Moreover, by the same lemma we obtain that c(yt ~ i) > c(Yk) if Yk is nonoptimal, 
and so the first part of the theorem is proved. 

Observe for k ~ finite that F(y~-, c(yk. ~)) = 0. and again by Lemma 3.1 it follows 
that Yk" solves (Q). Hence by (3) we have c(y  k. ) = tx*. 

To verify the last part of the result, notice that c(yk), k >  O, is increasing for 
k + = +:% and since c(y~) ~< Ix+ < ~c for every k >  0, it must follow that limkl.~c(y k) 
exists and is finite-valued. Moreover. by Lemma 3.2 and (9) we obtain for every optimal 
solution y ,  of (Q)that 

f,, ( c( y ,  ) ) - Fy~(C( y , ) )  ~ - ( c (  y .  ) - c( yk)).A,,( y .  ). 

Since F y . ( c ( y . ) ) =  0 this implies that 

Fv, ,(c(y+)) = maxFy(c (yk )  ) > F v ( c (yk ) )  
- + y ~ V  - 

>~ ( c( y .  ) -- c( yk) )Ak( y .  ). (16) 

On the other hand, applying again Lemma 3.2 and (9) we obtain 

Fy,+ ,( c( yk ) ) = Fv~ ,( c( y~ ) ) - l:,. ,( c( yk + , ) ) 

.< , )  - ,. ( 1 7 )  

This implies by (16) and (17) that 

(c( Yk+ t) - c(Y~:))cS,~+t > / ( e ( y ,  ) - c( ya) )Ak( y , ) = ( p.* - c( yk) )Ak( y ,  ). 

( lS)  
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Since A~(y , )  and 6k+ z belong to the interval [6,  A] with 

3 :=  rain m i n g i ( x ) > 0  and A:=  max m a x g i ( x ) < + z c ,  
x C  ~ i E l  x ~  ~ i ~ l  

it follows by (18) and the existence of lira k ~ ~ c(yk ) that lira ~ r ~. c(y~) = c( y ,  ), and so 
every accumulation point of the sequence y~, k/> 0, solves (Q). 

Finally, from (18) we obtain 

tz* - c( yk + , ) = tx ~ - c( y~ ) + c( y~. ) - c( y~ + , ) 

( A~(Y*)  ) ( I ~ - c ( y ~ ) ) .  U 
<~ 1 6~+1 

Clearly, by inequality (15) this algorithm converges at least linearly. In order to 

improve this convergence rate result we need to investigate the behavior of l - -  
A k ( y , ) / 6 k +  ~ as k ~ z c  for an arbitrary optimal solution y ,  of (Q). Let 3~:= 
lira supk r~=3k+ ~. By the definition of lim sup there exists a subsequence ~___ N such 

that 6~ = limkE .~. ~ 6 k +  ~. Moreover,  if we consider the sequence {Yk+ ~: k ~ , ~ }  c_ X 
we can also find, due to the compactness of  X, a subsequence Yz"~ _ c ~  satisfying 

limk~.i~.kr~.y~+ L = y ,  with y ,  being an accumulation point. By Theorem 3.1 this 
accumulation point y ,  is an optimal solution of (Q). Consider now the sequence 
1 - A k ( y , ) / 3 k ,  ~ for this point y , .  It is easy to verify that the point-to-set mapping 
y ~ a ( - F ~ ) ( c ( y ) )  is upper semicontinuous. Hence we obtain, due to 6k+ I 

O(- Fy~ + ,)(c(yk+ i)), limk ~ z',. ~ T : ~ +  1 = (3~ and lim k ~ .z,. k ~Yk+ i = Y, that 

6~ ~ O ( - F v , ) ( c ( y , )  ). (19) 

On the other hand, it is clear by Lemma 3.2 that Ak(y ,  ) ~ 0( -- Fy ,  )(c(yk)). Moreover, 

since the sequence c(y k) converges monotonically from below to c ( y , ) ,  it follows by 
the convexity of the function / x ~  - F , .  ( tz)  and our previous observation A k ( y , ) E  
0( - -Fy . ) (c (yk))  that Ak(y,)<~ Ak+i(y,)<~ . . .  <~a, with a ,  ~O(-Fy~. ) (c (y , ) ) .  
This implies limkT:~Ak(y , )  =: _4~(y,) exists and by the upper semicontinuity of  the 
point-to-set mapping /x ~ ~( - Fy~ )(/x) we obtain that A ( y ,  ) ~ ~( - F~  ) ( c ( y ,  )). Since 
we already observed that A ( y , )  ~< a ,  for every a ,  E O( -F~ . ) ( c (y , ) ) ,  it must follow 
by Lemma 3.2 that 

a,_( y ,  ) = min {yr, g ( x ) } .  (20) 

To conclude our analysis of  the behavior of  the sequence 1 - Ak(y , ) / 3 k +  1 as k--* zc, 
observe by (19) and (20) that 

( A k ( y , )  ) A k ( y , )  A ( y , )  
O~<limsup 1 6-~+ I = l - l i m i n f - - -  1 - - < 1 .  

kT~ kT~ ~k+l 6,. 

These observations yield the following result. 
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L e m m a  3.3. If  for every optimal solution y ,  of  (Q), the optimization problem 

y~: f (  x)  
( Q , )  rain 

has a unique optimal solution, then the t~ew a&orithm con~erges superlinearl):. 

Proof.  It follows easily, from (19), (20) and Lemma 3.2, that lira sup equals zero. [] 

In order to guarantee the condition in fl~e above lemma we need to introduce the 

following subset of quasiconvex functions [1]. 

Definition 3.1. The function q:Yg ~ ~ ~ is called strictly quasiconvex if for each 

x I, x ~  ~ '  with x ~ 4 : x  2 

for every 0 < A < i. 

Observe by [ i ,  Proposition 3.29] that min.~.~ ~ q ( x )  has a unique optimal solution if 

q : 2 ~ ~ ~F{ is strictly quasiconvex. Hence we have proved the following result. 

Corol lary  3,1. I f  j o t  every y ~ Z  the f~mcticm c l : : Y ~  given by q ( x ) =  
y T f ( x ) / y r  g( x) is strictly/quasiconce_~, then the proposed algorithm converges super- 
lip~early. 

The next ler~mm establishes sufficient conditions to achieve strict quasiconvexity. 

L e m m a  3.4. / J ' f : , ; ~ ' ~  ~'" is positive, strictly convex and g : ~ - -~  ~"~ is positive, 
concat~e or ,f : ~ ' ~  ~ "  is positive, convex and g :~"---+ [~'" is positive, strictly 
concave, then )br every y ~ v the f i o 7 c t i o n  q : 2 Z ' - +  ~ given by q( x)  = y r f (  x ) / y r  g( x)  
is strictly quasiconvex. 

Proof. Clearly for every x~, x 2 ~ 5~" with xt ~ x~ and 0 < A < 1 it follows that 

a y r f (  x I ) ~- ( I - ,~ )y l f (  x.,. ) 
q(Ax  L +(I  - ,~)x,) < 

" a y r g ( x l ) ~  ( I - -  A) . v~g{x , )  

) ~ y q f ( x , ) / ( y r g ( x , ) ) y ~ g ( x , )  ~ ( 1 -  A ) y T f ( x - _ . ) / ( y T g ( x ~ ) ) y T g ( x . _ )  
= 

A y T g ( x j ) - . ( I -  A ) y V g ( x : )  

[ Y l ~ f ( x l )  y r f ( x : : ) ]  
~< max ~ , 

\ y  g ( x l )  y l g ( x l )  J 
- max{q( x~ ~, q( x~ )}. (21 ) 

which completes the proof. [] 
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Note that if f : 2 2  ~' ~ JR" is strictly convex and g:7-~." ~ ~'" is positive and affine, 

then the function q:2~:--+ [R given by q(x)  = y q f ( x ) / y V g ( x )  is also strictly quasicon- 

vex. 

We will now discuss in more detail Step 1 of  our algorithm. At the kth iteration, we 

have to solve in Step I the optimization problem where p. := c(y k) 

(Q,,) max min { y T ( f ( x ) - - p . g ( x ) ) } .  

Unfortunately, solving this problem may take a lot of time, and this will influence the 

practical applicability of the new method. On the other hand, when applying the 

Dinkelbach-type algorithm we need to solve in each step the optimization problem (Pu) 

which seems to be easier. However,  under some reasonable assumptions it is possible to 

relate an optimal solution xk+ i of (P,.(y,) to an optimal solution y~+, of (Qc(y~)). To 

derive this relation, we assume that the nonempty compact convex set 2U is given by 

x : =  a d;rx  I =  l . . . . .  r ,  0, , j=  l . . . . .  ,},  

where d t e R", 3't e IR, I = 1 . . . . .  r.  and pj : [~" ~ [~. j = 1 . . . . .  s are convex and dif- 

ferentiable functions. 

Under our standard assumptions it is clear that problem (P~ly~) is equivalent to the 

following convex programming problem: 

(P~) rain t 

s.t. q , ( x )  - t ~ < ( ) .  V i =  1 . . . . .  m, 

&(x)~<o, V j = l  . . . . .  s ,  

di r x -  TL <~ O, V l =  1 . . . . .  r. 

with q i ( x ) : = f , ( x ) -  c(yk)&(x),  i =  1 . . . . .  m. To continue our analysis we assume, 

besides the standard assumptions on the functions s and g~, i = 1 . . . . .  m, that these 

functions m'e differentiable. 

Let xk+ L and t~+~ be an optimal solution of the above problem, and define 

I ' : = { 1  <~i~m: qi(xl~+l)=t~+l}, J ' : = { 1  <~j<~s:p./(xk+t)=O} and E : = { 1  ~<l~<r: 

d~[xk+ t = Y/}- If some constraint qualification is satisfied, [4], then the K a r u s h - K u b n -  

Tucker conditions ensure the existence of  normegative scalars u~, i ~ I ' ,  v~, j e J ' .  and 

~,  I e 12, satisfying 

E bliVqi( Xk+l ) q- E v;VP.i(xk~,) + ~ ~,d, = 0, 22) 
i c l '  j~J '  l~i" 

E ui = l ,  (23) 
i~l '  

( u r,  vj,, ~c) >~ O. (24) 

Observe, due to the special structure of tile problem (Pk), we only have to impose a 

constraint qualification over the set of constraints :Z'. Moreover.  since the above 

problem is convex, Slater 's  condition, i.e.. there exist some x 0 ~ [~" with dlrxo <~ y~, 1 
= 1 . . . . .  r,  and pj(x o) < 0 for every j =  I . . . . . .  ~, is such an example of a constraint 

qualification [16]. Additional constraint qualifications can be found in [4,6,32]. 
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Notice that the set l '  is nonempty due to the optimality of (xk+ i, t~+ ~). It is now 

possible to relate the scalars u~. i E I '  tO an optimal solution of  (Q,.(,.j). 

L e m m a  3.5. I f  some constraint qualification holds on Y ,  then an optimal solution ~ of  
(Q,!y~)) is given by 

0, ( f / r  
r I '  " . , ,  ~t ' i~ . 

where u~ soh.,es the system (22)-(24). 

Proof.  From (23) and (24) it follows that .9 belongs to Z. Moreover. by the definition of 

l '  we obtain that ~ ie  I'.?'iq,(xk~ �9 i) - t,+ i. This yields by (7) that 

Y ' . ) ~ q , ( x k + , ) =  rain m a x { f , ( x ) - c ( y k ) & ( x ) } = m a x F ( y , c ( y k ) ) .  
i ~ l '  .r~ ~ i ~ l  y ~ V  

It is left to show that `9 is an optimal solution of m a x s e ~ F ( y ,  c(yk)). Since 

mince  ~ `gVq(x) is a convex optimization problem, the K a m s h - K u h n - T u c k e r  condi- 

tions are sufficient [16]. Clearly by the definition of 9 and (22)-(24) the vector xk+ I 

satisfies these conditions, and thus x ~  1 is an optimal solution of min,.~ .e .9rq (x) .  
Hence, .9 e v satisfies 

m a x F ( y ,  c ( ) ' t ) ) =  E ) , q , ( x k , - ~ ) = F ( ) .  c (y~ ) ) .  
y ~  V i~- l '  

and so 9 solves (Q (y~l). [] 

Due to numerical errors the system given by (22)-(24) may appear to be " incon-  

sistent". To solve this problem, observe first that this linear system can be rewritten as 

follows 

A u + B a v + B 2 ~ = O ,  u ~  v .  v, ~>~0. 

Letting E := [AB~B2]V[AB~B2] and w =  (u, v. _~), it follows that solving this linear 

system corresponds to finding a nonnegative vector w E ~ where v := 

I I'1 + I  J ' l  + ]  E l ,  v,'ith the smallest ellipsoidal norm w~'Tg-Ew tinder the constraint that 

its first I l ' l  components belong to the unit simplex, or equivalently: 

rain 4wrEw (25) 

u ~  v ,  v, ~ > 0 .  (26) 

Clearly, in the presence of no numerical errors the optical objective value of this 

problem is zero. 
In order to conclude the discussion of the " 'dual"  algorithm it is important to 

consider a stopping rule for Step 2. Due to Lemma 3.5 and (7) a stepping rule can be 

derived similarly as for the Dinkelbach-type algorithm. In fact, from [11. Proposition 

2.2] it follows that stopping the "dua l "  algorithm whenever F(izk)<~ ,:g(x~.), with 
~,  := c (y , )  the current iteration point and x a e :~g- an optimal solution of (P~,) and 

g ( x )  := rain, ~ ~ g,(x) ,  yields 0 ( O )  - c(yk ) ~< ~:- Observe that. for the Dinkelbach-type 
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algorithm the stopping rule corresponds to F(/x~) ~< e6 with 6 := min~ e z m i n ~  
g~(x). Clearly, the same rule can also be used for the " d u a l "  algorithm. 

It is important to mention that in the special case of generalized linear fractional 
progranmaing, i.e., the functions ~ ,  g~ involved are linear and the set ~g' is a nonempty 
polytope, Step 1 reduces to solving a linear progrumrning problem, see [2]. 

4. A type-2 version of the new algorithm 

Following the same strategy used to derive the Dinkelbach-type-2 algorithm we will 
propose a variant of the new algorithm introduced in the previous section. Before 
presenting this variant we introduce for x~ ~ JW the vector-valued functions f(k~ g(~) 

given by f ,~k)(x) :=J-) (x) /g i (x  k) and g}~)(x):= g,(x)/gi(xk).  We can now define the 
optimization problem 

(Q(k~) max c(k)(y) ,  
y~V 

with 

y-r flk)( x) 
c"~(y) : =  r a i n  xe ~" y'r g~k)( x) 

Denote by y(k), an optimal solution of the optimization problem (Q(~)). By similar 
arguments as used in the previous section we obtain 

[ yTf(~(X) 
c(~)(y~ ~) = maxc(k) (y)  = max ~ rain t 

f 
= min max = min max 

= xszmin maxi~l ~ =/x~ = c ( y , ) ,  (27) 

~md so for every y ~ ~ it follows that 

c(~'( y) <~ c(k)( y!: ~) = i x* " 
Similar to the approach used in the previous section consider the parametric problem 

associated with (Q(~I) given by 

(Q~k)) max F(~'( y, /z), 
yCE 

with 

F")(y ,  ~,):= min { y V ( f I ~ ( x ) -  ~ g ' k ' ( x ) ) } .  

Let also Yk be an optimal solution of (Q~k~) with p. =- c/~- 1)(y k 1), i.e., 

Yk := a r g m a x F m (  Y, g ) .  
y E N  
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In order to simplify the notation we will use. whenever there is no danger of confusion, 
c ' ( v , )  instead of c(~)(y,) and c'(y{~ )) instead of c '<* . y ,  . 

The equivalence relation established in (7) can also be derived for this case due to the 
convexi ty /concavi ty  assumptions of the functions f~* t  g(tl  for all k > 0. To be more 
precise, it follows by Von Neumann's  ra in-max theorem that 

" y ~ V k x ~ _  -r " . I 

= 

x ~  -Y y ~  v 

= min {max { . / J k ' ( x ) -  c ' ( y ~ _ t ) g : k ' ( x ) } }  

= F ' * ' ( c ' (  )), (2S) 
with F{a ) :~  + ~ the paranaetric function used in the Dinkelbach-type-2 algorithm. 
However.  while in the Dinkelbach-type-2 algorithm x a. is ~m optimal solution of 

(P~ f~), the vector xa. in this variant must be an optimal solution of the fractional 
programming problem 

y ~  i f  ' ~ - * ' ( x )  
c ' (y~ I ) : =  rain 

.~ .~  y ~ _ ! g ( a - l ~ ( x ) "  

Observe thai clue to Lemma 2.1 this implies that c ' (y  k) is the root of the parametric 
equation Fr / z ) =  0. 

Assuming that the " sca l ing"  points x k are obtained as described this variant of the 
" 'dual"  algorithm requires, as already observed, solving the parametric problem (Q~)) 
with /z = c ~ -  ~(y~_ ~) to obtain the next iteration point y~. The modified algorithm is 
described by the following procedure. 

Algor i thm 4.1 ( " D u a l " - 2  algorithm). 

Step 0'. Take Y0 ~ Z and x 0 E 2~: 
Compute c ' ( y  0) and let x I be an optimal solution of c'(Y0); 
Let /,':= 1; 

Step 1'. Determine Yk := argmax.r ~ _,FC~i( _v. c"(ya_ .,)): 
Step 2'. ~ f  F/k)(y~. c ' (y  k_ ~)) = 0 

Then Ya is an optimal solution of (Q(~)) with value c'(y~_ ~) and Stop. 
Else Goto  Step 3': 

Step 3L Compute c'(y~) and let x~,+ ~ be an optimal solution of c'(yk); 
Let k := k + I and GoTo  Step 1'. 

As before we denote by k~ the number of times that Step 1' of tile "dua l " -2  
algorithm was started. Clearly, if /," ~ equals + :c the " d u a l " - 2  algorithm does not stop 
while for k finite it follows that / : ' fa '~(y, . ,  c ' ( y , ,  j ) ) = 0 .  Before discussing the 
convergence of tile sequence c ' (y  k_ ~). I; > 0, we introduce as in (10) the set 
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with F~.k)(be) := F(k)(y, IX). If ~#k " X --+ N'" is given by 

(y y)T 
, M y )  := g , ( x ~ )  . . . . .  g,~(.~------7 ' 

then clearly 2U~k)(be) = z~(y)(/,t) and c(~(y) = c(~#a(y)). Moreover, if O~ " -Qk ~ JR'" 
with ..Qk := {y ~ [R"+: yTg(x k) > 0} is given by 

~O,(y):=(y'g '(xa)  Y,,, g,,,( x*: ) ) T 
yig(xk)  . . . . .  jTg(  Xa. ) ' 

then it is easy to show that y ,  is an optimal solution of (Q) if and only if y ,  E E and 
~#k(Y,) is an optimal solution of (Q(k~). This observation implies that there exists for 
any optilnal solution y(~) of (Q(k~) some optimal solution y ,  of (Q) satisfying 
y!~  = ~#~(y, ). Letting 

A[.k ) , (y)  := max{yTg(*)( x): x ~ ~ ' ) (  c'( Yk-, ))} ,  

it follows that 

k~,(y! , f ' )=max{,/ ,k(y.)rg(k'(  x): x E  :,~(k',#~(s ,(c'( y~_ ,))} 

' ( , )} yV.g(xk)max y ~ g ( x ) : x E  4~,~(~; . . ) ) (c(y k ,) 

1 
_ r  J 

YI~ g ( x k )  max{y~ g( x): x ~ ;~y~(C (y~_ , ) )} ,  (29) 

whenever y!~)= ~/,~(y, ). Also, if 

6if) := min{yTg(~'( x):  x ~ 27ff)(  c'( ya ))} ,  

we obtain that 

~ff )=  rain{ q~, ( y , ) T g (  x): x ~  ~ ; d  y~,(c( 9%(Yk) ))}- 

Observe now the function F (~) " ~ ~ IR, for k and v fixed, has the same propemes as - - y  �9 

the function Fy considered in the previous section and so as m Lemma 3.2 we obtain 

a(-F;*,)(be) = [ m~n {yTg(,,(,4}, m a ~  

I . ~  ~ , ~  **> ~-~ ~r-~,~,( .~ 

Clearly, by this result we have that 

aL' , (y)  ~ a(-F;k')(c '(y~_,)),  

,(k) , =,3( ~ff~ e '3(-F_;, )(c (y,))  -F<{,.,,)(c(,f,(y,,))). 

{yrg'k'( x)}]. (30) 

(31)  

(32) 

It is now possible to prove the following result. Observe the proof of this result 
resembles the proof of Theorem 3.1. 
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Theorem 4.1. The sequence y~, 0 <~ k < k ~, generated by the "&r  algorithm does 

not contain optimal solutions of  (Q) and the corresponding function values c ' (&) ,  

0 ~ k < k *, are strictly increasing. Moreover. if k ~ is finite, it fol lows that c ' (y , .  ) = 

iz ~ , while for  k ~ equals + z .  lim~ r~c'( y~ )=  Iz ~ . In particular, the inequality 

) 0 ~ < / z * - c ' ( y ~ ) ~ <  1 6~)  ( I - ~ * - c ' ( y ~ . _ , ) )  (33) 

holds for  every k >~ 1 with y~)  an optimal sohttion o[ (Q(~)). 

Proofi The proof of  the first part of tiffs result is similar to the first part of the proof of  
Theorem 3.1 and thus it is omitted. 

To verify that lira k T.~c'(ya) exists for k ~ = + ~  and that (33) holds we observe the 

following. Since for k* = +~c, the sequence {c'(yk)} , > 0 is strictly increasing it follows 

that lima ~:~c'(y k ) .  exists. Moreover. if .r is an optimal solution of (Q(k)) we obtain 
due to (31) and c'(y~:~ ~) = / x "  that 

( y ,  �9 / z ' ) - F * ~ ' ( y ' ,  ~', - _ , 

Using F(k)(y~k: ), /x ~ ) = 0 this implies that 

F(~)(y, ,  c ' ( y k _ t ) )  = maxF(k)(Y, c ' ( y k _ , ) )  > F~a"(Y!~f'. e ' ( y k _ l ) )  
y r  

> ( t  x* - c ' ( y  k_ l ) ) A ~ t ( y ! ~ ' ) .  (34) 

Also, by (32) we obtain that 

F(k'( yk, c'( y~_ , ) )  : t:'k'( yk,  c'( y~_ , )) - F'k ' (  yk, c ' (Yk))  

< ( c ' ( y k ) - c ' ( y  k ,))cS~ k,. (35) 

Combining the above inequality with (34) yields 

a ~ ' ( c ' ( y a . ) - c ' ( y  k , ) ) > ( t  x ~ - c ' ( y ~  ~ ) ) k ~ , ( y ' , ~ ) .  (36) 

By this inequality it follows that lim~ r . .c ' (ya)=/ . t  ~ and (33) is an easy consequence. 
[] 

As for the "dua l "  algorithm discussed in Section 3 it is important to investigate 
under which conditions flais "dua l " -2  algorithm has superlinear convergence. As we 
will next show the sufficient condition established in Lemma 3.3 for the " d u a l "  

algorithm yields for this variant the same convergence rate result. 

Lemma 4.1. I f  for  eveo, optimal solution y ,  of  (Q) the optimization problem ( Q , )  has 
a unique optimal solution, then the " d u a l " - 2  algorithm converges superlinearly. 

--:~ := xlk) Since (y~,, x k) belongs to the compact set v •  Proof.  Let ,S ~ lira sup~ ~ .. v k . _, 

one can find a subsequence ~ c_ b-'d such that 

lim 6~ ~) ~) :=&~ , lira Yk :=Y~E~ ' ,  lim x k : = x ~ E y ,  
k ~ , ~ . k  T ~r kE3U,k T Y-- k ~ Y , k  T ~ 
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lim 
k c Z ,  k T 

and so it follows that lim,~.~V.k~:~q~k(yk)= V.:. with p.~i:=3~i/gi(x~:) for every i =  
1 . . . . .  m. By Theorem 4.1 we know that the sequence c'(y,)=c(~,(y~)), k>O 
converges to /~* and hence ~(  v_~e)-~ is an optimal solution of (Q), where e = 
(1 . . . . .  1) v. Take now for every k > 0 the vector 4,,(v-:.). This vector solves (Q(kl) and 
by (29) 

1 
k~k_~,(,p,( v . . ) ) -  v :g(xk)  max{ vTg( X): XE .gZ~ (C"(yk_ , ) )} .  

Since c'(y k_ ~) is increasing we obtain by a similar argument as used in the previous 
section to derive the superlinear convergence rate of the "dua l "  algorithm that as k 1" ~, 

max{ u~Vg( x):  x E  ~r ( Yk-L))} 

converges to 

min{ v : g (  x):  x ~  ~',, ( p.* )}. 

Due to l im,e~..**~ x k = x~ this yields by the definition of v:, that 

= 1 

and hence 

lim A ~ I ( ~ , ( u . ~ ) )  =min{ufg(x):  x ~  Y~(  /**)}. (37) 
k ~..,Tf .k T ~ 

Moreover, since by (32) 6~ ~ E 0(-F~,{y,))(c(q~k(y,))) , we obtain by the upper semicon- 
tinuity of the mapping y ~, O(- Fy)( c( y)) that 

8~ (:~' E ~ ( -  X,,=)(/.t* ).  (38) 

Using now Theorem 4.1, it follows that 

. * -  c ' ( y . ) <  l- - 
v k 

Combining the above inequality with (37) and (38) and the unicity assumption of the 
optimal solution of ( Q . )  yields the desired result. [] 

Similar to the " d u a l "  algorithm, the "diff icul t"  problem in Step 1' can also be 
solved as described in the previous section. 

Finally, it is left to consider stopping rules. Since the scaled algorithms consider a 
scaled parametric function the stopping rule has to be adjusted accordingly. For instance, 
in the Dinkelbach-type-2 algorithm Ferland and Potvin [14] use as stopping rule 
g//gik(Xk), where i k ~ I is the index where the maximum is attained in problem (Pu(~ - i)) 
in Step 2'. Using the approach described at the end of the previous section, a similar rule 
can be derived for the "dua l " -2  algorithm. 
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5. Numerical results 

In order to test the efficiency of the " d u a l "  method we compared it with the extension 
of Dinkelbach's  method to several ratios. 

In the test problems considered the numerator of the ratios are quadratic functions 
1 T aTx + bi, and the denominator are linear functions, gg(X) := cV~x + d i. J)(x) := 5x Hix  + 

The quadratic functions, j), are generated in the following way. 

�9 In the linear term each element of the vector a~ is uniformly drawn from 
[ -  15.0, 45.0]. Similarly b i is drawn uniformly from [ -  30.0, 0]; 

�9 The Hessian is defined by H, := L~UiLVl where L i is a unit lower triangular matrix 
with components uniformly drawn from [ - 2 . 5 ,  2.5] and U i is a positive diagonal 
matrix, with elements uniformly drawn from [0.1, 1.6]. When a positive semidefinite 

Hessian is required the first component of the diagonal matrix is set to zero. 
The linear functions, g~, are constructed using a similar procedure: each element of 

the vector c~ is uniformly drawn from [0.0, 10.0]. Similarly di is drawn uniformly from 
[1.0, 5.0]. Finally, the feasible domains considered are the following: 

j = l  

~ ' ~ ' 2 : = { x ~ n :  E X j < ~ I ,  E x j ~ I ,  x j > ~ O , j = I  . . . . .  n},  (39) 
jcJ, J~J2 

where Ji := {l < j<~  n: j is odd} and J2 := {1 ~<j<  n: j is even}. 
Both methods were implemented in Sun Pascal, linked to a pair of  existing routines 

written in Sun FORTRAN and ran on a Sun Sparc System 600 using the default double 
precision (64-bit IEEE floating-point format) real numbers of Sun Pascal and FORTRAN. 
Both compilers were used with the default compilation options. 

For the minimization of the maximum of quadratic functions with linear constraints 
we used the bundle trust method coded in FORTRAN [20]. In the " d u a l "  type algorithms 
Step I is solved by computing the corresponding minimal ellipsoidal norm problem, see 
Section 3. The fractional programming problem that occurs in Step 0 and 3 of the 
algorithm is solved by Dinkelbach's algorithm [13]. The code used to solve the above 
quadratic problems is an implementation in FORTRAN of Lemke ' s  algorithm [23]. 

In the " d u a l " - 2  algorithms we used in Step 0 yT := (1 /m  . . . . .  1/m). In order to 

have similar starting points in both the algorithms tested we take in Step 0 of  the 
Dinkelbach-type algorithm: 

yTof ( x) 
kL 1 := c(YO) = rain 

x ~  y~g( x) 

On the other hand, for the " d u a l " - 2  algorithm we used x~ := (0 . . . . .  0). As for the 
Dinkelbach-type-2 algorithm we used in the initial step: 

.F r ~e(O)i x )  
0 J  t, 

~1 := cm)(Y0) = rain x ~  y~glOl( x)  
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Table I 
.gF~ and strictly quasiconvex ratios 

Problem Dinkelbach " Dual" Stat. 

T n m It %Par Sec It %Fr %Par %KS Sec %A %lmp 

I 5 5 8 99.5 0.88 3 I I. 1 85.0 3.9 0.65 32.0 26.5 

2 10 5 10 99.9 9.83 3 8.1 91.1 0.6 4.08 64.0 58.5 

3 15 5 9 99.5 14.62 3 18.0 79.9 1.9 7.57 44.0 48.2 

4 20 5 8 99.9 35.32 3 9.1 90.2 0.7 21.25 64.0 39.8 

5 5 10 8 99. I 2.42 4 17.5 79.1 1.9 0.54 22.0 77.7 

6 10 10 13 99.6 10.94 4 10.3 88.2 1.1 4.55 36.0 58.4 

7 15 10 9 99.7 18.99 3 10.0 88.6 1.2 11.57 36.0 39.1 

8 20 10 10 99.7 47.50 3 9.9 89.2 0.7 25.09 34.0 47.2 

9 5 I5 8 99.3 3.40 3 9.4 90.1 0.5 1.02 13.3 70.1 
10 I0 15 11 99.4 I 1.17 3 10.4 88.1 1.3 4.79 29.3 57.1 

11 15 I5 9 99.6 24.45 3 9.9 88.9 0.9 14.23 28.0 41.8 

12 20 I5 I1 99.7 68.96 3 9.5 89.7 0.7 28.65 34.7 58.5 
13 5 20 9 97.1 1.59 4 11.0 85.8 2.3 1.01 15.0 36.7 

14 10 20 1I 99.2 [3.73 4 10.4 88.2 1.2 5.49 21.0 60.0 
15 15 20 I 1 99.5 34.85 4 9.0 89.7 0.9 15.0I 24.0 56.9 

16 20 20 13 99.6 74.75 3 9.6 89.5 0.7 34.91 31.0 53.3 

The tolerance used in Step 2 of  the Dinkelbach-type and " d u a l "  algorithms was 

c :=  5 X 10 -6 see Section 3. For the type-2 variants we considered e X gi. (xk)  where 

( (k-17 2', i k E I is the index where the maximum is attained in problem P~ ) in Step see 

Section 4. 
In Tables 1-4  we summarize the results of  our computational experience comparing 

the "dual" algorithm with its "primal" counterpart, the Dinkelbach-type algorithm. We 

Table 2 
~'~2 and strictly quasiconvex ratios 

Problem Dinkelbach - Dual" Stat. 

T n m It %Par Sec It %Fr %Par %KS Sec %A %lmp 

1 5 5 7 99.4 2.10 2 12.3 85.4 1.7 0.79 32.0 62.5 
2 10 5 1 I 99.9 12.46 3 9.0 90.1 0.9 5.63 68.0 54.8 
3 15 5 9 99.7 21.79 3 11.2 87.9 0.8 I 1.46 64.0 47.4 
4 20 5 9 99.9 41.48 3 9.7 89.7 0.6 21.88 72.0 47.3 
5 5 I0 I l 99.7 2.47 4 12.1 85.4 2.6 0.87 22.0 64.9 
6 10 I 0 12 99.5 11.65 3 8.8 90.3 0.7 5.45 38.0 53.2 

7 15 I0 12 99.8 37.65 3 8.2 91.2 0.6 16.82 52.0 55.3 
8 20 I0 10 99.8 59.19 3 9.7 89.7 0.6 31.12 48.0 47.4 
9 5 I5 9 96.9 1.64 3 15.6 81.3 3.2 0.77 14.7 53.4 

10 10 I5 11 99.6 15.34 3 7.7 91.6 0.7 6.98 34.7 54.5 
I 1 15 15 9 99.6 29.01 3 8.7 90.4 0.7 17.13 37.3 40.9 
12 20 15 I0 99.7 70.48 3 9.1 90.2 0.6 35.10 40.0 50.2 

13 5 20 8 98.1 1.92 4 12.9 85.4 0.9 1.14 11.0 40.6 
14 10 20 I I 99.4 13.93 3 8.1 90.7 0.8 7.56 21.0 45.7 

15 15 20 13 99.4 37.44 3 8.9 90.1 0.8 16.46 28.0 56.0 
16 20 20 11 99.6 80.45 3 7.9 91.5 0.5 38.41 31.0 52.2 
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~'L and semistrictly 
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quasiconvex ratios 

Problem Dinkelbach "" Dual'" Star. 

T n m It %Par Sec. It %Fr %Par %KS Sec %A %lmp 

1 5 5 8 98.0 0.61 5 11.9 80.7 7.5 0.46 60.0 24.5 
2 10 5 14 99.5 7.14 3 10.8 87.1 2.1 2.13 56.0 70.2 
3 15 5 10 99.7 17.93 3 9.7 88.9 1.2 8.71 64.0 51.4 
4 20 5 11 99.8 35.81 3 9.5 89.4 1.0 17.40 52,0 51.4 
5 5 10 12 98.2 2.06 4 9.5 85.1 5.4 0.99 30.0 51.7 
6 10 10 9 99.6 12.72 4 6.0 92.4 1.3 5.83 26.0 54.1 
7 15 10 11 99.6 20.66 3 7. I 91.4 1.3 8.26 34.0 60.0 
8 20 10 12 99.7 61.48 3 7.9 91.1 0.9 27.81 52.0 54.8 
9 5 15 7 99.8 2.48 4 5.3 93.2 1.5 2.20 13.3 11.2 

10 10 15 II 99.6 12.22 3 6.8 91.8 1.I 4.38 26.7 64.1 
I I 15 15 I0 99.6 35.82 3 6.8 92.3 0.9 16.76 30.7 53.2 
12 20 15 l l 99.6 66.91 3 8.l 9(/.8 0.9 28.56 33.3 57.3 
13 5 20 II 98.1 2,03 4 13.3 81.4 2.2 0.9I 13.0 55.0 
I4 10 20 I l 99.0 14.90 4 9.4 88.0 1.8 6.03 19.0 59.5 
15 15 20 12 99.3 34.66 3 7.8 90.6 1.3 13.18 29.0 62.0 
16 20 20 II 99.6 81.23 4 6.0 93.1 0.6 37.68 24.0 53.6 

a lso  p r e sen t  in T a b l e s  5 and  6, fo r  the s a m e  test p r o b l e m s ,  a s u m m a r y  o f  the 

c o m p u t a t i o n a l  r e su l t s  o b t a i n e d  wi th  the type -2  va r i an t s  o f  these  t w o  m e t h o d s .  F o r  each  

pair  ( n ,  m) ,  w h e r e  n is the n u m b e r  o f  va r i ab l e s  and  m the n u m b e r  o f  ra t ios ,  f ive  

u n c o r r e l a t e d  i n s t a n c e s  o f  the p r o b l e m  w e r e  g e n e r a t e d  and  so lve d  by  the fou r  a l g o r i t h m s .  

Hence ,  the en t r ies  on  these  tables  are a v e r a g e s  o f  the c o r r e s p o n d i n g  va lues .  E a c h  c lass  

o f  these  test  p r o b l e m s  is ident i f ied  by  the n u m b e r  in c o l u m n  T. The  c o l u n m s  u n d e r  

Table 4 
~2  ,and semistrictly quasiconvex ratios 

Problem 

T n 

Dinkelbach "" Dual" Stat. 

rn It %Par Sec It %Fr %Par %KS Sec %A %Imp 

1 5 5 8 98.5 0.50 7 19.7 77.6 2.0 0.61 52.0 -21.8  
2 10 5 12 99.4 8.62 3 15.0 81.8 3.0 2.40 64.0 72.2 
3 15 5 9 99.9 37.11 3 7.3 92.0 0.7 21.03 72.0 43.3 
4 20 5 I 1 99.8 47.47 3 8.7 90.6 0.7 26.15 80.0 44.9 
5 5 I 0 12 99.9 2.98 5 13.6 82.0 4.2 1.07 32.0 64. I 
6 10 10 9 99.2 11.61 3 12.5 86.6 0.9 3.89 30.0 66.5 
7 15 10 11 99.6 24.42 3 9.0 89.5 1.3 12.07 42.0 50.6 
8 20 10 10 99.8 69.70 3 7.7 9I .7 0.5 38.87 58.0 44.2 
9 5 15 9 99.3 4.62 4 13.6 82.4 2.7 1.13 17.3 75.6 

10 10 15 10 99.6 13.76 3 9.5 89.3 0.9 5.65 29.3 59.0 
11 15 15 12 99.7 51.50 3 6.5 92.8 0.6 22.18 33.3 56.9 
12 20 15 10 99.7 71.50 3 8.3 91.1 0.5 35.82 38.7 49.9 
13 5 20 14 98.8 4.15 4 13.6 82.3 2.9 1.13 14.0 72.9 
14 10 20 10 99.3 16.38 3 7.9 90.7 1.1 6.82 21.0 58.3 
15 15 20 11 99.6 43.66 3 6.7 92.6 0.6 20.32 29.0 53.5 
16 20 20 11 99.7 97.39 4 7.2 92.2 0.5 45.49 31.0 53,3 
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Table 5 
Strictly quasiconvex ratios 

I69 

Problem ~ j  

7" Dinkel-2 "Dual -2"  Dinkel-2 "'Dual-2" 

It Sec It Sec It Sec It Sec 

1 5 0.70 3 0.71 6 1.88 3 1.10 
2 6 7.64 3 4.66 6 11.93 3 6.45 
3 5 I 1.85 3 8.75 6 18.43 3 I 1.79 
4 5 31.66 3 20.68 5 31.94 3 20.80 
5 5 0.61 3 1.45 6 1.23 3 0.76 
6 6 6.31 3 4.34 6 6.29 3 5.78 
7 6 15.52 3 12.46 6 22.96 3 17.40 
8 5 39.92 3 31.60 5 41.42 3 31.12 
9 6 2.66 3 2.04 6 1.20 3 1.73 

10 6 17.94 3 6.61 6 10.17 3 7.47 
11 6 22.16 3 I3.84 6 29.13 3 17.12 
12 6 49.19 3 33.98 6 53.88 3 34.28 
13 5 1.25 4 1.02 5 1.55 3 1.28 
14 6 7.49 4 8.09 6 9.58 3 10.54 
15 6 23.60 4 17.74 6 23.24 3 15.05 
16 6 50.08 3 31.30 6 56.27 3 40.03 

D i n k e l b a c h  a n d  D i n k - 2  r e p o r t  the  r e s u l t s  o b t a i n e d  u s i n g  file D i n k e l b a c h - t y p e  a n d  t he  

D i n k e l b a c h - t y p e - 2  a l g o r i t h m  fo r  s e v e r a l  r a t ios .  S i m i l a r l y  the  c o l u m n s  u n d e r  " D u a l "  

a n d  " D u a l 2 "  r e p o r t  the  r e s u l t s  o b t a i n e d  u s i n g  t he  " d u a l "  a n d  the  " d u a l " - 2  a l g o r i t h m .  

In  t he  c a s e  o f  " D u a l "  t w o  e x t r a  c o l u m n s  a re  p r e s e n t e d  c o n c e r n i n g  the  m a i n  s t e p s  o f  th i s  

Table 6 
Semistrictly quasiconvex ratios 

Problem ~ t  8 2 

7' Dink-2 ' D u a l - 2 "  Dink-2 "" Dual-2" 

It Sec It Sec It Sec It Sec 

1 5 0.47 6 0.85 5 0.47 6 0.83 
2 6 3.17 3 2.39 7 5.39 3 3.86 
3 6 12.75 3 10.45 6 27.19 4 24.00 
4 5 20.15 3 13.90 6 33.61 3 23.12 
5 6 1.62 4 1.96 6 1.82 5 1.23 
6 5 8.20 3 9.71 6 12.56 3 5.89 
7 5 15.05 3 10.28 5 16.64 3 I4.13 
8 6 34.40 3 30.67 6 44.47 3 37.54 
9 6 3.84 4 2.32 6 4.92 4 1.65 

I 0 6 8.36 3 5.33 6 10.63 3 6.20 
11 6 26.45 4 19.55 6 37.02 3 21.39 
12 6 52.06 3 30.98 6 61.34 3 31.41 
13 6 1.16 4 2.00 6 1.63 4 1.49 
14 6 11.13 4 6.92 6 13.83 3 9.09 
15 6 19.40 3 15.17 6 29.43 3 22.56 
16 6 57.39 4 39.34 6 72.43 3 50.53 
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algorithm. Hence, colunm %Fr refers to the percentage of the time used to compute the 
next iteration point, i.e. c(yk), while column %KS refers to the percentage of the time 

used to solve the Karush-Kuhn-Tucker system and thus obtaining Yk+ i, see Section 3. 
Finally, colunm %Par refers to the percentage of the time used for optimizing the 

parametric function F(t-t). Moreover, the column It refers to the number of iterations 
performed by the corresponding algorithm, while colunm See refers to the average 

execution time in seconds of the Sun Sparc System 600 workstation measured by the 
available standard c l o c k  function of the Sun Pascal library. This measures the elapsed 
execution time from the start to the end of the corresponding method, excluding input 
and output operations. 

We will start by presenting and analyzing the results using the simpler versions of the 

two methods, i.e., the "dual"  and Dinkelbach-type algorithm. For these cases, the tables 
also include the colunm Stat. which contains under column %A the percentage of active 
ratios of the test problems and under colunm c,,'~Imp the percentage of improvement in 
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Fig .  2, St r ic t ly  q u a s i c o n v e x  ra t ios  and feas ible  set  ~ r  
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total execution time of the "dual"  type algorithm over the Dinkelbach-type algorithm, 
i.e. (1 - Time(Dual)/Time(Din)) • 100. 

Tables 1 and 2 contain the results obtained for test problems where tile quadratic 

functions f~ are strictly convex. In these cases the convergence rate of the "dual"  
algorithm is superlinear, see Corollary 3.1. 

Although each iteration of the "dual"  algorithm is more "expensive" in terms of 
execution time this extra effort is compensated in the total time used. However, the 

behavior of the "'dual" algorithm seems to be affected by the type of constraints in the 

feasible set. Indeed when the constraint set is more restrictive ( S , )  the performance of 
the "dual"  algorithm is slightly better. Observe that this phenomenon also occurs for 
the Dinkelbach-type algorithm. 

From the results contained in Tables I - 4  it is clear that the "dual"  algorithm has a 

better performance than the Dinkelbach-type algorithm, not only in terms of the total 
number of iterations but also in total time, see %Imp. 
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Moreover it is also important to remark that even when superlinear convergence 

cannot be guaranteed, the "dua l "  algorithm appears to have a better performance than 

the Dinkelbach-type approach, see Tables 3 and 4. 

The results obtained with the type-2 variants of these methods are contained in Tables 

5 and 6. Since the total computational time used by the "dua l " -2  algorithm appeared to 

be distributed in a similar way as for its original version these tables are presented in a 

more condensed form. 

From Tables 5 and 6 it appears that in terms of iterations the "dua l " -2  algorithm is 

better than the Dinkelbach-type-2 algorithm. This tendency is also confirmed in terms of 

total execution time. Moreover, even for the test problems with semistrictly quasiconvex 

ratios the "dua l " -2  algorithin appears to dominate the Dinkelbach-type-2 algorithm. 

In order to compare and relate the behavior of tile four algorithms we plotted, for the 

four classes of problems, the number of iterations and total execution time, see Fig. 2 -5 .  

In these figures the x-coordinates, p r o b l e m s ,  denote the problem type as designated in 
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Tables 1-4, while y-coordinates denote in the first picture the number of iterations it  

and in the second the total execution time s e c .  

As expected the Dinkelbach-type-2 algorithm dominates, both in iteration number 
and execution time, the Dinkelbach-type algorithm. On the other hand, the "dual"-2 
algorithm does not produce significant improvements on the behavior of the original 
"'dual" algorithm. This may be explained by the fact that the "dual"  algorithm is by 
itself more robust and "powerful"  than its primal counterpart. As Figs. 2-5 show, there 
are no significant differences between the "dual"  type algorithms. In fact, only for the 
feasible set ~ l  it appears that the "dual"  algorithm is slightly better in terms of 
execution time that its variant. For the case of the feasible set ~ 2  these differences are 
more attenuated. Unexpectedly, the original version of the "dual"  algorithm dominates 
the Dinkelbach-type-2 algorithm both in terms of iterations and execution time. 
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Figs.  2 - 5  also shove the n u m b e r  of  rat ios has  a dec is ive  in f luence  in the b e h a v i o r  of  

the ~  a lgor i thms ,  D i n k e l b a c h - t y p e  and D i n k e l b a c h - t y p e - 2  a lgo r i t hms  '~. This  

effect  is a lso no t i ceab le  for the " ' d u a l "  type  a l g o r i t h m s  a l though  at a sma l l e r  scale. 
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