Mathematical Programming 72 (1996) 147-175

A new algorithm for generalized
fractional programs '

AL Barros *, J.B.G. Frenk ", S. Schaible ¢, S. Zhang °

* D.E.ILO., Faculdade de Ciéncius, Universidude de Lisboa. Campo Grande, 1700 Lishoa. Portugal
® Econometric Institute. Erasmus University, P.O. Box 1738. 3000 DR Rotrerdam, The Netherlunds
¢ University of California at Riverside. Riverside, CA 92521, USA

Received 2 February 1994

Abstract

A new dual problem for convex generalized fractional programs with no duality gap is
presented and it is shown how this dual problem can be efficiently solved using a parametric
approach. The resulting algorithm can be seen as “*dual’” to the Dinkelbach-type algorithm for
generalized fractional programs since it approximates the optimal objective value of the dual
(primal) problem from below. Convergence results for this algorithm are derived and an easy
condition to achieve superlinear convergence is also established. Moreover, under some additional
assumptions the algorithm also recovers at the same time an optimal solution of the primal
problem. We also consider a variant of this new algorithm. based on scaling the "*dual”’
parametric function. The numerical results, in case of quadratic-linear ratios and linear constraints,
show that the performance of the new algorithm and its scaled version is superior to that of the
Dinkelbach-type algorithms. From the computational results it also appears that contrary to the
primal approach, the “*dual’’ approach is less influenced by scaling.

Keywords: Fractional programming; Generalized fractional programming; Dinkelbach-type algorithms; Quasi-
convexity; Karush-Kuhn-Tucker conditions; Duality

1. Introduction

Fractional programming, i.e., the minimization of a ratio of two functions subject to
constraints, has been studied extensively during the last several decades [1,8,27.28]. In

" Corresponding author.
" This research was carried out at the Econometric Institute, Erasmus University, Rotterdam, the Nether-
lands and was supported by J.N.I.C.T. (Portuga!) under contract BD /707 /90-RM.

0025-5610 © 1996 — The Mathematical Programming Society, Inc. All rights reserved
SSDI 0025-5610(95)00040-2

148 Al Barros et ul. / Mathematical Programming 72 (1996) 147175

the 1980s the focus has shifted towards multi-ratio optimization problems. One of the
major types is the problem of minimizing the largest of several ratios of functions. These
so-called generalized fractional programs arise in economic equilibrium problems, in
management applications of goal programming and multiobjective programming involv-
ing ratios of functions, and in rational approximation in numerical analysis [10].

Algorithmic and computational results for single-ratio fractional programs can be
found in [17,18,28] and in the literature cited therein. Various algorithms in generalized
fractional programming are surveyed in [9] whereas computational experience with some
of these algorithms is reported in [5,7.14]. Meanwhile also a duality theory for
generalized fractional programs has been developed [1,8].

The purpose of this paper is to introduce a new dual problem for convex generalized
fractional programs and an algorithm to solve this problem. The main feature of this
algorithm is that at each iteration a single-ratio fractional programming problem is
solved and the optimal objective value of this fractional programming problem provides
a lower bound on the optimal objective value of the original generalized fractional
program. Following the strategy used to derive the Dinkelbach-type-2 algorithm we will
also propose a variant of this “*dual’” algorithm.

The paper is organized in the following way. We start by presenting a short overview
on the basic algorithms for generalized fractional programs. In Section 3 the new
algorithm is introduced and convergence results are discussed. A variant of this
algorithm, based on scaling of the ‘*dual’” parametric function, is studied in Section 4.
Finally some computational results are presented comparing the performance of the new
algorithms with the Dinkelbach-type approaches [11.12].

2. Algorithms for generalized fractional programming

Let 22CR" be compact and assume that the functions f, g,: >R, i€l:=

{I,....m}, m> 1, are continuous where % is an open set containing 2. Also let
g{x) >0 for every x € 2 and i € I. We consider the generalized fractional program
_ fi(x)
(P) inf max

xez el glx)

Since the function x — max,_, f{x)/g(x) is finite-valued and continuous on 2 and
2 CR” is compact, the optimization problem (P) has an optimal solution. Clearly, for
m =1 problem (P) reduces to a single-ratio fractional programming problem [13]. To
solve (P), we consider the following parametric problem:

(B) F(w)= inf {max{£(x) ~ ug(x)}}.

By a similar argument as for (P), problem (P,) also has an optimal solution, and both
optimization problems are related to each other by the following result [11].

A.l Barros et al. / Mathematical Programming 72 (1996) 147-175 149

Lemma 2.1. If 2 is compact, mz 1 and —% < pu < +=, then
(a) F(u) < +2¢, F is decreasing and continuous;
(b) (P) and (P#) have optimal solutions;
(c) the optimal objective value p° of (P) is finite and F(p”")= 0,
(d) F(u) =0 implies w= ™
(e) if F(p) =0 then (P) and (P,) have the same set of optimal solutions.

By Lemma 2.1 it is clear that solving (P) can be achieved by finding a solution of the
equation F(u) = 0. Based on this observaticn, the Dinkelbach-type algorithm proposed
in [11] solves at each step a subproblem (P,). and by doing so it creates a nonincreasing
sequence p,, k> 1, converging from above to the optimal objective value u™ of
problem (P). More precisely, at the kth step of this procedure u, ., is taken as the root
of the equation G,(1) =0 with G,:R = R a linear (piecewise linear) upper envelope
of the function F for m=1 (m>1) and G,(u,) = F(u,) <0. The Dinkelbach-type
algorithm can now be summarized as follows.

Algorithm 2.1 (Dinkelbach-type algorithm).
Step 0. Take x, € 27, compute u, == max, ., fi{x,)/g{x,) and let k:= [;
Step 1. Determine x, = argmin, . ,{max, . {f(x)— u, g,(xN}}
Step 2. If F(u)=0
Then x, is an optimal solution of (P) with value u, and Stop.
Else GoTo Step 3;
Step 3. Let py, = max, o, fi(x)/8{x,);
Let k:==k + 1, and GoTo Step 1.

Obviously, it is only useful to apply the above procedure if every subproblem (P,) is
easier to solve than the original problem (P). Furthermore it is also clear that a
single-ratio fractional program, i.e., m =1, is easier to solve than a generalized
fractional program, i.e., m > 1. In [3] it is shown that the above basic algorithm is a
special case of a cutting plane algorithm on the space 2.

A refinement of the Dinkelbach-type algorithm was later proposed by Crouzeix et al.
[12] and independently by Flachs [15]. The main idea behind this variant consists in
trying to make the parametric function concave in a neighborhood of the optimal value.
In order to achieve this, Crouzeix et al. [12] propose the following reformulation of (P):

/(e
xe ¥ i€l g,»(x)/gi(x*)’

where x, denotes an optimal solution of (P). The associated parametric problem is
given by

. { {f.-(X) —ug(x) }}
inf { max{ ————).
xe# | iet gi(xy)

150 A Burros er ul. f Mathematical Programming 72 (1996) 147175

In practice, since an optimal solution of (P} is not known a priori, the current iteration
point is used as an approximation of x .. Hence, in the Dinkelbach-type-2 algorithm the
following parametric problem is considered:

(Plik—l)) FE ()= inf {max {f{(x) — g x) }}

xe# | rer g8l x,_)

with x,_ | € Z the last iteration point. By our conditions this problem has an optimal
solution and so, the Dinkelbach-type-2 algorithm can be described as follows.

Algorithm 2.2 (Dinkelbach-type-2 algorithm).
Step (. Take x,€ 2, compute w, = max,., f{x,)/g(x,) and let k:=1;
Step 1. Determine:

. { {fi(x)_/“"kgi(x)}}
xk = drgmin ¢ max

xe F\ i€l g:(xk—))
Step 2. If F* ",)=0
Then x, is an optimal solution of (P) with value u, and Stop.
Else GoTo Step 3';
Step 3. Let u,, =max,c, fi{x,)/g(x,)
Let k:=k+ 1, and GoTo Step I'.

Based on the Dinkelbach-type approaches and their geometrical interpretation, sev-
eral interval type algorithms have been proposed. A thorough overview of these
algorithms can be found in the survey by Crouzeix and Ferland [9].

3. The dual problem and how to solve it

In this section we propose a new dual problem for (P) with no duality gap and
introduce at the same time an algorithm to solve simultaneously this dual and the
corresponding primal problem. This algorithm is **dual’’ to the Dinkelbach-type ap-
proach since it creates a nondecreasing sequence u,, k > 1, converging from below to
p”. We assume that the functions f;:.%— R, i € I, are convex on the compact convex
set 27 and g,:. 5" —> R, i €1, are positive and concave on 2°. In addition, either the
functions f,, i € I, are nonnegative on 2° or the functions g,. i €/, are affine on #.
Notice that the Dinkelbach-type algorithm proposed in [11] leads to convex programs as
subproblems under the same assumptions. Observe also that these assumptions include
the important case of generalized linear fractional programs with a bounded feasible
region.

If f(x)T=(f(x),..., f,{x) and g(x)":==(g(x),..., g, (x)), then it follows by
the quasiconvexity of the function ¢g: R X R, — R given by ¢(z) =z, /2, that

fi(x) ¥ (x)
max ax ———

= Max —¢
ier g(x) y=x y'g(x)

(1)

AL Barros et al. / Mathematical Programming 72 (1996) 147175 151

forevery x€ 2 and X:={yeR™ y=0,L,.,y, = 1}. This is a direct consequence
of the property that a quasiconvex function attains its maximum in a vertex of a convex
polyhedron [1]. Moreover, by the assumptions on the vector functions f and g we
obtain that the function x — y'f(x)/y"g(x) is quasiconvex on & for every y € L,
while the function y — y'f(x)/y"g(x) is quasiconcave on X for every x € 2. Hence,
using the compactness of the convex sets 2° and 2 it follows from Sion’s minimax
theorem [30] that

mm max ———— y /(%) } = max { min () } (2)
cw | yes yig(x) ye3 \xez y'g(x)
and so by (1) and (2) we obtain
{ fi(x) _YS(x) }
min { max = max { min (3)
xeZ | iel g(x) yeX xe/yg(x)
Let ¢: 2 — R be defined by
Yf(x)
c(y) = mm
e yg(x)

By the compactness of 2° and the continuity of the function h: 2" X X — R given by
h(x, y)=y"f(x)/(y"g(x)), this implies that ¢ is continuous on X [22]. Moreover, the
function ¢ is semistrictly quasiconcave [1], since it is the infimum of semistrictly
quasiconcave functions A(-, y) indexed by x. Thus, by (3), we need to solve the
quasiconcave optimization problem:

(Q) ;neang(y)w

where a local maximum is a global maximum [1]. Notice that (Q) corresponds to a new
**dual’” problem of (P). In fact, while in the standard dual problem of a convex
generalized fractional programming problem [1,8,10,19,31] a part of the constraint set is
“‘dualized’’, problem (Q) can be seen as a “*partial dual’’ program of the generalized
fractional program (P), since it only ‘‘dualizes’’ the ratios.

Observe, by (3), that there exists some y, € 2 with c(y,)= . This does not
mean that any optimal solution x” € £ associated with the single-ratio fractional
programming problem min . , yL f(x)/y% g(x) is also an optimal solution of (P).
However, for any optimal solution x* € £ of (P) and y, € X of (Q) it is easy to see,
using

ylf(x:!‘»)< f(A)

<max ———=c{y.),
vig(xy) ~ier g(xs)

that x, is an optimal solution of the optimization problem associated with ¢(y..).
Moreover, it follows immediately that ¢(y) < p~ for every y € X, and so an iterative
procedure solving (Q) approximates u” from below. Although not necessary, as known
from subgradient-type algorithms for convex programming [29], it would be a nice

152 Al Barros er ul. / Mathematical Programming 72 (1996) 147175

feature if an algorithm solving (Q) would satisfy the descent property. Hence, with y,
the present nonoptimal iteration point, the next point y,., should belong to the strict
upper level set

#2(c(y))={yeZie(y)>c(y)}

Introducing also

#(e(3)) = (ye I e(y) > (50},

the following result motivates the choice of the next iteration point.

Lemma 3.1. Let F: XX R = R be given by
Fly, m) = min {yT(f(x) — pg(x))} (4)

For €3 we have ZX(c(3)={y€2: F(y. «($)>0} and Z(c(P)={ye3:
F(y, c($) =0}

Proof. We first consider the case that Z°(c($)) is nonempty, i.e.. € 3 is nonoptimal
for (Q). Let y € Z (c($)). Then ¢(y) > ($) and from Lemma 2.1 and g(x) > 0 for
every x € 2 we see

F(y.c(9))= Xnelig;{y'r(f(x) — () g(x))}
> min {y7(f(x) = e(y)g(x))} =0. 5)

Conversely, if F(y, c($)) >0 and y € X, then vsing again Lemma 2.1 it follows that
¢(y) > c(§) which concludes the proof for the nonempty case.
On the other hand, if #Z°(c($)) is empty, then we know that c(y) < <(§) for every
y € X, and hence by Lemma 2.1 the set {y € &: F(y, c($)) > 0} is also empty.
Finally the last equality can be proved in a similar way as the first part of this proof,
and so we omit it. O

Let y, be the present iteration point. The above result and Lemma 2.1 suggest that
the *‘best’” possible choice for the next iteration point y,, , is given by

F(yk+l’C(yk)):: T€a§F(y~ C()’k))~ (6)

Observe that the above optimization problem can be seen as the parametric problem of
(Q) with parameter c(y,). After having solved (6) we compute c(y,,) and continue
with & replaced by k + 1. This yields the following algorithm.

Algorithm 3.1 (**Dual’” algorithm).
Step 0. Take y, € X, compute c(y,) =min, . » yof(x)/y;g(x) and let k= 1;
Step 1. Determine y, = argmax , . s F(y. c(y,_)k

A.L Barros et al. / Mathematical Programming 72 (1996) 147175 153

Step 2. 1f F(y,, (y,_))=0
Then y,_, is an optimal solution with value (y,_,) and Stop.
Else GoTo Step 3;
Step 3. Compute c(y,);
Let k:==k+ 1, and GoTo Step 1.

Notice that, a primal optimal solution of (P) can be found by solving the parametric
problem (P,) with p = c(y,).

By our assumptions on f and g we may apply Von Neumann's min—max theorem
[24], and so

F(.Vk+|~ C(J’k))

Il

ryn:a§F(y~ ()

= max{ min {yT(f(x) —C()’k)g(x))}}

yeI lxe

= min {max {5 (f(x) - c(5)g(x))})

re#F \yeX

= min {rinéif{f,-(x) —¢(yk)gi(X)}}

x€ F
=F(c(3))- (7)

Observe that, even in the case that the conditions of Von Neumann’s min—-max theorem
do not hold, F(c(y,)) is always an upper bound for F(y,, ,, c(y,)).

For a geometrical interpretation of this *“lower bounding’’ algorithm we introduce for
cach fixed y € 3 the function F,: R - R given by

F(p) = xrgi;,{yT(f(x) —pg(x))}. (8)

Clearly, for every n € R we have that F,(u) < F(p) with y € X, while for u=c(y,)
it was shown using Von-Neumann’s min-max theorem that F, ()= F(). Moreover,
to determine ¢(y,, ,) is equivalent to finding the root of Fy . l(1) =0, and so this yields
the geometrical interpretation given in Fig. {.

w0 W) Wy

Fig. 1. New algorithm.

154 A Barros et al. / Marhematical Programming 72 (1996) 147175

To prove the convergence of this algorithm we need to investigate the behavior of the
function F,:R — R. Since by (8) this function is the minimum of a set of affine
functions. it is concave, and so by [25 Corollary 10.1.1.] it is continuous cn R. Also. by
[25. Theorem 23.4] the subgradient set a(— F, X) of the convex function ~F,:R — R
at the point w is nonempty. Remember that d€Risa subgradient of the function —F,
at the point w if and only if '

Flu+1) <F(u)-d. (9)

for every re R.

The next result characterizes the subgradient set o(— F,)). Although this result is a
special case of a more general result given by [26, Theorem 7.2] or [16, Theorem
V1.4.4.2] we give an elementary proof for completeness. This is possible due to the fact
that F) is defined on R. However. before mentioning this result we introduce for fixed
y€ X the set #(u) of optimal solutions of the optimization problem
min, ., {y"(f(x) — pg(x)). ie.,

Zy(p)={xeZ ¥ (flx)—pg(x))=F(u)} (10)

Clearly. this set is nonempty. Also. by the continuity of the vector-valued functions f
and g it must be closed. and thus by the compactness of 27 and Z‘,(u)gé?o it 1s
compact. Finally, if > 0 or u € R whenever g, are positive affine functions then the
function x— y'(f(x) — ug(x)) is convex on # due to f convex and g concave
(affine), and this implies that 2" (u) € 27 is also convex for appropriate values of u.

Lemma 3.2. For every fixed y € 2 and p € R it follows thar

o(—F)(p) = __inf {y'g(x)}. sup {y'g(x)}|

€ ’;’/{y() xe 2.

Proof. Since every convex combination of subgradients is again a subgradient, we only
need to verify for the inclusion 2 that the left and the right endpoint of the above
compact interval are subgradients.

For d=sup, . 4,y g(x)} we obtain by the compactness of 2,(u) and the
continuity on % of the function x~—> y'g(x) that there exists some X €& L%fy(M)

satisfying « = y'g(¥). Hence,
—d=y"(f(®)—(pn+1)g(x)) -y (f(¥)—pg(x))
>F(p+1)—F(u) (1)

and so by (9) it follows that ¢ is a subgradient. A similar proof holds for the left
endpoint and so the inclusion D is verified.

To verify the reverse inclusion C we first observe the following. Consider the
sequence x,, n> 1, with x, € 27 (u + 1/n). By the compactness of 2 the sequence

{x,, n = 1}, has an accumulation point x, € # and so there exists some subsequence

A.l. Barros et al. / Mathemarical Programming 72 (1996} 147175 155

{x,: 1=1} with lim;,.x, =x,. Hence by the continuity of the functions u—
F(w), x—>y"f(x), and x> y'g(x) respectively. it follows that

1
Fy(p)=IimF | p+—
! 1
: T ! T
=lim{yf(x,)-|p+t—]|ye(x,)
1= n[
=y f(x.) - uy'g(x,) (12)

and s0 x, € Z,(u).?
Again, by the continuity of the function x — y'g(x) there exists for every 6> 0
some /5> 1 such that for every /= [; the inequality

yg(x,)<yg(x)+8< sup {yTg(x)}+8
XE ;"4""").(#)

holds. From this result it is clear that for any d € 8(— F,)) and /> [; we obtain

1 1
——dzFlp+—
n, : n

1 .
—F(u)= - :yrg(xn,)
!

1
o s (en)+e) (13)

M\ re 2z (W)

Multiplying this inequality by —n, yields d <sup,c 4,y g(x)} + 8. Since §>0
can be arbitrarily chosen, we obtain that '

d< sup {y'g(x)}.
xeZ (p)
By considering a sequence x, € # (u—1/n) and applying a similar proof one can
show that d > inf, o 5 (,{¥"g(x)}, thus completing the inclusion €. O

As already observed, we may replace inf, respectively sup, in the interval mentioned
in Lemma 3.2 by min, respectively max. Moreover, since g(x) > 0 for every x € &,
we obtain by the subgradient inequality given by (9) and Lemma 3.2 that the function
F:R —> R is decreasing ’. Denote now by k* the number of times that the main step
was started by the algorithm. Clearly if ¥* = + < the algorithm does not stop while for
k* finite it follows that F(y,., c(y,-_,)) = 0. Before mentioning the next result we
introduce

A(y) =max{yTg(x): x€ Z,(c(5)))

* By [21 Proposition 2.1.4] this means that for fixed Y € X the point-to-set mapping w — #,{ u) is upper
semicontinuous.
“ Observe that the same result also follows from (8).

156 A Barros et al. / Mathemarical Programming 72 (1996) 147175

and
r
. i S (%)
8,,,=min{ y;, x):x solves min ————
et Vi 8(x) Y ey (%)
=min{y[+1g(x):x6 ;?’iv"l(c(ykﬂ))}. (14)

It follows by Lemma 3.2 that
AA(.Y) € a(_Fy)(C(-yk)) and 6k+l Ea(_Fyh,)(C(yk+1))'

Theorem 3.1. The sequence y,. 0 < k < k", does not contain optimal solutions of (Q)
and the corresponding function values ¢(y), 0 < k < k", are increasing. Moreover, if
k™ is finite, then c(y..)= p" while for k* = +x every accumulation point of the
sequence y,, k > 0, is an optimal solution of (Q). Finallv, if k™ = += and y, is an
optimal solution of (Q), then

(¥
) (p —c(y)) (15)

O<p” —e(yey) < (1 -
holds for every k = 0.

Proof. Using Lemma 3.1. it follows that y, is nonoptimal if and only if F(y,, |, ¢(y,)
> 0. Moreover, by the same lemma we obtain that «(y,.) > c(y,) if y, is nonoptimal,
and so the first part of the theorem is proved.

Observe for £~ finite that F{y,.. c(y,-_,))=0. and again by Lemma 3.1 it follows
that y,. solves (Q). Hence by (3) we have c(y,-)= pn".

To venfy the last part of the result, notice that ¢(y,), k> 0, is increasing for
k™ = +=, and since c(y,) < p” <= for every k > 0. it must follow that lim,, c(y,)
exists and is finite-valued. Moreover, by Lemma 3.2 and (9) we obtain for every optimal
solution y, of (Q) that

Fy (c(ye)) = Fy () < —(clye) —e(y)) A ye).
Since F, (c(y.)) =0 this implies that
Fyh,(c(yk)) = rvngai\fpy(c(yk)) = F_v..(C(yk))
2 (c(ys) —e(y))A(ys). (16)

On the other hand, applying again Lemama 3.2 and {9) we obtain
Fyk,,(c(yk)) = F_yk,,(c(yk)) - F‘_}",,(C.(yk+l))
<(C(.YA-+»1)_C(YA-))5/<-+1- (17)
This implies by (16) and (17) that

(c(yie) = (¥)) 8w = (el ys) = (¥))A(yx) = (1" —c(3)) Al y5).
(18)

A.lL Barros et al. / Mathematical Programming 72 (1996) 147—175 157

Since 4,(y,) and §,,, belong to the interval [§, A] with

= min ming;(x)>0 and 4:= max maxg,(x) < +=x,
xe # i€l xeZ el

it follows by (18) and the existence of lim, , c(y,) that lim, . c(y,}=c(y,), and so
every accumulation point of the sequence y,, & > 0, solves (Q).
Finally, from (18) we obtain

pE =y =" —e(y) ey —elye)
A ys)

DA+]

I——— (" —c(x)). O

B

Clearly, by inequality (15) this algorithm converges at least linearly. In order to
improve this convergence rate result we need to investigate the behavior of |
A(y.)/8,., as k— = for an arbitrary optimal solution y, of (Q). Let &,:
lim sup, , .8, . By the definition of lim sup there exists a subsequence # C N such
that 8, =1im, ¢ ; ;16,4 . Moreover, if we consider the sequence {y,, s k€EF}IC Y
we can also find, due to the compactness of X, a subsequence %, C.% satisfying
im, e x1«¥+1 =¥« With y, being an accumulation point. By Theorem 3.1 this
accurnulation point y, is an optimal solution of (Q). Consider now the sequence
1—-4,(y.)/8,., for this point y,. It is easy to verify that the point-to-set mapping
y— o —F,Xc(y)) is upper semicontinuous. Hence we obtain, due to §,,, €
A-F,)(C(YA+|)) My e 7 g120ie) =0, and lim, ¢ 5 1Y =¥y that

5XEa(—f‘y*)(c(y*)). (.19)

On the other hand, it is clear by Lemma 3.2 that A {y,) € a(—F), « c(y,). Moreover,
since the sequence c(y,) converges monotonically from below to c(y,), it follows by
the convexity of the function w— —F, () and our previous observation 4,(y,) €
H—F, Ne(y)) that Ay)< (y)< - <a, with a, €(=F, Nc(y).
This implies lim,,, 4,(y.) = 4.(y,) exists and by the upper semicontinuity of the
point-to-set mapping u — a(—F, X ,u) we obtain that 4.(y,) €8(—F, Xc(y,)). Since

|

If

we already observed that A (y,) « forevery a, € (—F, Ny,)) it must follow
by Lemma 3.2 that
A(y)= _min {ylg(x)} (20)

xe ;%’),((c(y,,))

To conclude our analysis of the behavior of the sequence 1 — A,(y,)/8,,, as k— =,
observe by (19) and (20) that

(1——‘())=1—1iminf——‘(y)=1——() o1,
6k+l

0 < lim sup
ki 84 8,

k1=

These observations yield the following result.

158 Al Burros er al, / Mathematical Programming 72 11996) {47-175
Lemma 3.3. If for every optimal solution y,, of (Q), the optimization problem

| Y f(x)
Q) min D

has a unique optimal solution, then the new algorithm converges superlinearly.
Proof. It follows easily. from (19). (20} and Lemma 3.2. that lim sup equals zero. O

In order to guaraniee the condition in the above lemma we need to introduce the
following subset of quasiconvex functions [1].

Definition 3.1. The function ¢: 2" — R is called swicily quasiconvex if for each
X, x, €& with x, #x,

g(Ax, + (1= A)x,) <max{g(x,). g(x,)}.
for every 0 <A < 1.

¢(x) has a unique optimal solution if
Tence we have proved the following result.

Ye #

Observe by [1. Proposition 3.29] that min
g2 — R is strictly quasiconvex. b

Corollary 3.1. If for everv y€ X the function ¢-Z - R given by g{x)=
yf(x)/y g(x) is strictly quasiconvex. then the proposed algorithm converges super-
linearly.

The next lemma establishes sufficient conditions to achieve strict quasiconvexity.

Lemma 34. [f f: 2 = R"™ is positive, strictly convex and g: 2 — R" is positive,
cancave or f:Z — R™ is posirive, convex and g2 —R" is positive, stricily
concave, then for everyy € X the function g — R given by g(x) =y f(x)/y"g(x)
is strictly quasiconvex.,

Proof. Clearly for every x;, x, € 2 with x, # x, and 0 < A <1 it follows that

A'vrf(x, YA (1 — A)_v'f(X5)

glAax, (I -Ax,)< -
‘ U AYTe(x)+ {1- 0¥ gl

AL /(T gy e+ (= TR /(3 g (x)) v g ()
ATgiay+ (- 0y glxy)

.Vrf(-"x) .Vv[f(X))
Smaxy ———— 35—
yiglix)y ygixp

=max{g(x,}, g(x,)}. (2])

which completes the proof. O

A.L Barros er al. / Mathematical Programming 72 (1996} 147175 159

Note that if f:2°— R” is strictly convex and g:% — R™ is positive and affine,
then the function g: 2 — R given by g(x) = y'f(x)/y g(x) is also strictly quasicon-
vex.

We will now discuss in more detail Step | of our algorithm. At the kth iteration, we
have to solve in Step | the optimization problem where = c(y,)

(Q.) max min {yT(f(x) = ng(x))}.

Unfortunately, solving this problem may take a lot of time, and this will influence the
practical applicability of the new method. On the other hand. when applying the
Dinkelbach-type algorithm we need to solve in each step the optimization problem (P#)
which seems to be easier. However, under some reasonable assumptions it is possible to
relate an optimal solution x,,, of (P,) to an optimal solution y,, of (Q,,). To
derive this relation, we assume that the nonempty compact convex set 27 is given by

2”==[xER":dfx<y,,/=l rop(x)<0, j= s}
where d, € R”, vy, eR, I=1.....r.and p;:R" = R. j=1...... s are convex and dif-

ferentiable functions.
Under our standard assumptions it is clear that problem (P
following convex programming problem:

(s,y) 1s equivalent to the
(P) min ¢
st. gi(x)—tr<0. Vi=1,....m,
p(x)<0. Vj=1,..5,
dix—v,<0, Vi=1,....r.

with g{x) =f(x)—clyJgx), i=1,....m. To continue our analysis we assume,
besides the standard assumptions on the functions f; and g,, i=1,...,m, that these
functions are differentiable.

Let x,,, and 7,,, be an optimal solution of the above problem, and define
r={i<i<sm glx,, D=1}V ={1<j<siplx,)=0and I'={I<i<r
d/x,., =v). If some constraint qualification is satisfied, [4], then the Karush—Kuhn-
Tucker conditions ensure the existence of nonnegative scalars v, { €1, v, JE€ J'. and
&, 1€ L, satisfying

Z uVag(x,,)+ Z Ujij(X))+ Z §d; =0, (22)
iel’ ieJ’ el

You=1, (23)
iel’

(up v, &) 20, (24)

Observe, due to the special structure of the problem (P,), we only have to impose a
constraint qualification over the set of constraints 2°. Moreover. since the above
problem is convex, Slater’s condition. i.e.. there exist some x, € R” with d/x, < 7y,. !
=1....r.and p(x,) <O for every j=1,...,. s, is such an example of a constraint
qualification [16]. Additional constraint qualifications can be found in [4.6,32].

160 A Barros et al. / Mathematical Programming 72 (1996) 147173

Notice that the set [is nonempty due to the optimality of (x,, |, #,,,). It is now
possible to relate the scalars u;. i €' to an optimal solution of (Q,(,).

Lemma 3.5. [f sonie constraint qualification holds on 2, then an optimal solution § of
(Qu(y,)) Ts given by

0. ifi&l.

u,, ifiel.

e
Il

where u; solves the svstem (22)-(24).

Proof. From (23) and (24) it follows that § belongs to 3. Moreover. by the definition of
I’ we obtain that ¥, - ;- 9,¢{x,.) = t,.,. This yields by (7) that

k|
L $ig(xe0) = minmax{f(x) = c(x,) g(x)) = maxF(y. e(n)).
ier TE e -
It is left to show that § is an optimal solution of max . <F(y, c(y)). Since
min,. , $'¢(x) is a convex optimization problem. the Karush~Kuhn-Tucker condi-
tions are sufficient [16]. Clearly by the definition of § and (22)-(24) the vector x,
satisfies these conditions, and thus x,., is an optimal solution of min, . , §'g(x).
Hence, ¥ € X satisfies

mcai‘_F(.W o(y))= L g (a0) =F(3. o Yl)-

yE - =

and 50 § solves (Q,,). O

Due to numerical errors the system given by (22)-(24) may appear to be *‘incon-
sistent”’. To solve this problem, observe first that this linear system can be rewritten as
follows

Au+Bur+B, =0, uel v £20

Letting E:=[AB,B,]'[AB B,] and w=(u, v. £). it follows that solving this linear
system corresponds to finding a nonnegative vector w € R where v =

| I'|+1J" [+ L], with the smallest ellipsoidal norm Vw'Ew under the constraint that

its first | I' | components belong to the unit simplex. or equivalently:
min 1w Ew (25)
neS. v, £20. (26)

Clearly, in the presence of no numerical errors the optical objective value of this
problem is zero.

In order to conclude the discussion of the ‘*dual’” algorithm it is important to
consider a stopping rule for Step 2. Due to Lemma 3.5 and (7) a stopping rule can be
derived similarly as for the Dinkelbach-type algorithm. In fact, from [11. Proposition
2.2] it follows that stopping the ‘*dual’ algorithm whenever F(u,) < eglx,), with
p, = c(y,) the current iteration point and x, € # an optimal solution of (P,) and
glx)=min, ., g (x) yields $(Q)— c(y,) < £. Observe that. for the Dinkelbach-type

Ad. Burros et al. / Mathematical Programming 72 (1996) 147175 161

algorithm the stopping rule corresponds to F(u,) < 8 with §:=min, . , min, .,
g{x). Clearly, the same rule can also be used for the “‘dual’’ algorithm.

It is importiant to mention that in the special case of generalized linear fractional
programming, i.e., the functions f,, g; involved are linear and the set £ is a nonempty
polytope, Step 1 reduces to solving a linear programming problem, see [2].

4. A type-2 version of the new algorithm

Following the same strategy used to derive the Dinkelbach-type-2 algorithm we will
propose a variant of the new algorithm introduced in the previous section. Before
presenting this variant we introduce for x, € 2 the vector-valued functions f*), g¢*
given by f{9(x)=f{x)/g{x,) and g*(x)=g,(x)/g(x,). We can now define the
optimization problem

Q) max ¢(y),
yel
with

ny”')(X)
)= ez ygi(x)

Denote by y(“ an optimal solution of the optimization problem (Q‘®)). By similar
arguments as used in the previous section we obtain

yFRx)
C(kl(V(M) max c”‘)(y) = max { min v}

yes | xe 2 y g (x)

. { Tf“’(x)} . { f‘“(f)}
min { max = min { max

rez | yes yg®(x) ez | ier g¥(x)
fi(x)
= min { max =y " =c , 27
foé”{iEI 5.(x) M (yx) (27)

and so for every y € 3 it follows that
O y) < cPOHP)=pt.

Similar to the approach used in the previous section consider the parametric problem
associated with (Q*?) given by

(Qif’) max F Oy, p).
yek
with
POy,)= min (37 (F9(x) - wg ().
x= Z
Let also y, be an optimal solution of (Q")) with p = c'*~D(y,), ie..

¥ = argmax F(y, w).
yeEZ

162 Al Barros et al. / Mathematical Programming 72 (1996) 147-175

In order to simplify the notation we will use. whenever there is no danger of confusion,
¢(y,) instead of ¢*)(}y,) and ¢'(y'}') instead of ¢! y!!).

The equivalence relation established in (7) can also be derived for this case due to the
convexity /concavity assumptions of the functions f'*', g!® for all k> 0. To be more
precise. it follows by Von Neumann’s min—max theorem that

FOUy ¢ (vim)) max{lnlig_{yvr(fm(x) = (y- l)g(k)(x))}>

ye X s

I

I

min {max (yT (%) = (1) 8 x))}}

xe # \Lyel
= min {max (700 = <D0
:F('“(C’(}'x;q))* (28)

with F*':R - R the parametric function used in the Dinkelbach-type-2 algorithm.
However. while in the Dinkelbach-type-2 algorithm x, is an optimal solution of
(P4 D), the vector x, in this variant must be an optimal solution of the fractional
programming problem

, Y)

)= i T
Observe that due to Lemma 2.1 this implies that ¢/(y,) is the root of the parametric
equation F*'(y,, w)=0.

Assuming that the “*scaling™ points x, are obtained as described this variant of the
“‘dual”” algorithm requires, as already observed, solving the parametric problem (QL"))
with = c*~""y,_,) to obtain the next iteration point y,. The modified algorithm is
described by the following procedure.

Algorithm 4.1 (**Dual -2 algorithm).
Step 0. Take y, € 3 and x, € 27;
Compute ¢'(y,) and let x, be an optimal solution of ¢'(y,);
Let k:=1;
Step 1. Determine y, = argmax , . « F**'(y. ¢ (y,_)k
Step 2. 1f F¥(y,. (3, =0
Then y, is an optimal solution of (Q'*?) with value ¢'(y,_,) and Stop.
Else Goto Step 3';
Step 3'. Compute ¢’(y,) and let x, _, be an optimal solution of ¢/(y,);
Let k=4 + 1 and GoTo Step I'.

As before we denote by k£~ the number of times that Step 1’ of the **dual’’-2
algorithm was started. Clearly, if &~ equals + = the “"dual’’-2 algorithm does not stop
while for & finite it follows that F'* (y,.. ¢(y, _,) = 0. Before discussing the
convergence of the sequence ¢'(y,_). k = 0. we introduce as in (10) the set

k=1

Z{()= {xe 2y (S N(x) - g () = F ().

Al Barros et al. / Mathemarical Programming 72 (1996) 147175 163

with F () = F"(y, w). If ¢, : - R™ is given by
.
yl y'”
e (y) = (.....) ,
¢ g1(%) 8n(x;)
then clearly 27" () =27, ,,(u) and ¢*'(y) = (@, (y)). Moreover, if ¢, : 2, > R"
with {2, -—{ye R”: yTg(x,)> 0} is given by

T
yl gl(xk) ymgm(xk)
yg(x) y'g(x) .

d(y) = (

then it is easy to show that y. is an optimal solution of (Q) if and oniy if y, € X and
,(y) is an optimal solution of (Q"*"). This observation implies that there exists for
any optimal solution y¥ of (Q') some optimal solution y, of (Q) satisfying

A8 = (y.). Letting

AP (y) = max{yvrg(k)(x) xe 6‘2?:"’>(c’(yk4,))},

it follows that

Il

A0, () = max{i(3.) g0 x): v € 0, (¢)

1
= mma:‘({)‘lg(l’) x e fmum))(-'(.qu))}
1
=mmax{y glx):xez, (¢ (vl\—l))} (29)

whenever y{&0 =, (y,). Also, if
8K = min{y,\T,g(“(x): x€ ﬁi‘”_ff"(c'(yA))},
we obtain that
i = min{‘Pk(y) g(x)xe Zosolel ol)’k)))}~

Observe now the function F‘f"" R — R, for k and y fixed, has the same properties as
the function F, considered in the previous section and so as in Lemma 3.2 we obtain

o(=FP)(p) = [xegggw{y”fg‘“(X)}~xc{j;_?3§(#){yTg‘k’(X)}]- (30)
Clearly, by this result we have that |

AR (p) €a(=FO) (3o)), (31)

8 € o(= FP) (¢ (3)) = (= Foyn)(e(u(30))- (32)

It is now possible to prove the following result. Observe the proof of this result
resembles the proof of Theorem 3.1.

164 A Burros et al. /f Mathematical Programming 72 (1996) 147175

Theorem 4.1. The sequence y,, 0 < k < k™, generated by the **dual’’-2 algorithm does
nor contain optimal solutions of (Q) and the corresponding function values ¢'(A798
0<k<k®, are stricily increasing. Moreover. if k™ is finite, it follows that ¢(y,.) =
u, while for k™ equals + =, /i)rzmjc"(y,\) = u". In particular, the inequaliry

3204

k)
5

(n" =< (y-) (33)

O<su” =cd(y) < (1 -
holds for every k= | with y'*' an optimal solution of (Q'®).

Proof. The proof of the first part of this result is similar to the first part of the proof of
Theorem 3.1 and thus it is omitted.
To verify that lim, .¢'(y,) exists for k° = += and that (33) holds we observe the

following. Since for k" = + 2, the sequence {¢'(y,)}, , , is strictly increasing it follows

that lim, ... ¢'(y,) exists. Moreover. if ¥} is an optimal solution of (Q*?) we obtain
k1 Vi ¥ p

due to (31) and (Y = "~ that
FO(y nm) —F“"(y‘;’, C,(yk-l)) < —(w _C,()'A-—l))ﬂik—)x(y(ﬁ))'
Using FO(yH, 1*) =0 this implies that
F(k)()’w CI(yA—l)) = maXF(k)()’- C,(yk—l)) >F(“(.V(:sf)- ("(yk—l))
ye X

> (1" = (5)) A2 (08). (34)
Also, by (32) we obtain that

F(“(yk! C,()’k~|)) :F(k)(ykv Y1) _Flk’()’w “’(Yk))

<((ye) =y)8 (35)
Combining the above inequality with (34) yields
S () =y)= (k7 =) AR (69). (36)

By this inequality it follows that lim,,..c’(y,) =" and (33) is an easy consequence.
O

As for the *‘dual’” algorithm discussed in Section 3 it is important to investigate
under which conditions this ‘*dual’’-2 algorithm has superlinear convergence. As we
will next show the sufficient condition established in Lemma 3.3 for the ‘‘dual”
algorithm yields for this variant the same convergence rate result.

Lemma 4.1. If for every oprimal solution y . of (Q) the optimization problem (Q) has
a unique optimal solution. then the **dual’’-2 algorithm converges superlinearly.

Proof. Let 8= lim sup, . 8{*. Since (y,. x,) belongs to the compact set 3 X %
one can find a subsequence Z"C N such that

lim 8% = 8, lim y, =y, €23, lim x,=x, €%,
ke k1= keF k1= ke k1=

A.L Barros et al. / Marhematical Programming 72 (1996) 147175 165

and so it follows that lim, . . (y)=w», with p =y, /g(x,) for every i=
l,...,m. By Theorem 4.1 we know that the sequence ¢'(y,)=c(¢(y,), k=0
converges to ™ and hence v{w)e)”' is an optimal solution of (Q), where e=
(1,....1)". Take now for every k > 0 the vector i, (»,). This vector solves (Q*) and

1
AR (g () = i max{ufg(x): xE :“/,,x(c’(yk_l))}.

. g(x,)

Since ¢'(y,_,) is increasing we obtain by a similar argument as used in the previous
section to derive the superlinear convergence rate of the ‘‘dual’’ algorithm that as & 7 ¢,

max{ vig(x):xe Z,(d(y._ I))}
converges to
min{ujg(x):x€Z,(p)}
Due to lim, ¢ 5,1~ X, =x, this yields by the definition of », that

lim »'g(x)=1
. g(xy)

and hence

(m AR (g () = min{slg(x): xE 2, (1), (37)

Moreover, since by (32) (" € (—F, , (¢, (y,)), we obtain by the upper semicon-
tinuity of the mapping y — d(—F,Xc(y)) that

8 €d(—F,) n). (38)
Using now Theorem 4.1, it follows that

AL ((2))

50

%

:U?_C’(yk)<(1— (u" =< (n-))

Combining the above inequality with (37) and (38) and the unicity assumption of the
optimal solution of (Q ,) yields the desired result. O

Similar to the *‘dual’’ algorithm, the *‘difficult”” problem in Step I' can also be
solved as described in the previous section.

Finally, it is left to consider stopping rules. Since the scaled algorithms consider a
scaled parametric function the stopping rule has to be adjusted accordingly. For instance,
in the Dinkelbach-type-2 algorithm Ferland and Potvin [14] use as stopping rule
&/8,;(x,), where i; €1 is the index where the maximum is attained in problem (P{*~")
in Step 2'. Using the approach described at the end of the previous section, a similar rule
can be derived for the ‘‘dual’’-2 algorithm.

166 A.L Barros et al. / Mathematical Programming 72 (1996) 147175
5. Numerical results

In order to test the efficiency of the ‘*dual’” method we compared it with the extension
of Dinkelbach’s method to several ratios.

In the test problems considered the numerator of the ratios are quadratic functions
f(x)=3x"H,x + alx + b;, and the denominator are linear functions, g,(x) = ¢fx + d,.
The quadratic functions, f,, are generated in the following way.

e In the linear term each element of the vector a, is uniformly drawn from
[—15.0, 45.0]. Similarly b, is drawn uniformly from [— 30.0, O];

e The Hessian is defined by H,:= L,U,L! where L, is a unit lower triangular matrix
with components uniformly drawn from [~2.5.2.5]) and U, is a positive diagonal
matrix. with elements uniformly drawn from [0.1, 1.6]. When a positive semidefinite
Hessian is required the first component of the diagonal maitrix is set to zero.

The linear functions, g;, are constructed using a similar procedure: each element of
the vector ¢, is uniformly drawn from [0.0. 10.0]. Similarly &, is drawn uniformly from
[1.0, 5.0]. Finally, the feasible domains considered are the following:

n
Z, :={xER": ij< 1, x>0,j=1,...,n},

J
i=1

Z, = {xe R™: Y x; <1, Yy <l x>0,)= l,...,n}, (39)
j€J, jed,
where J, = {1 <j< n jisodd} and J,:= {1 <j< n:jis even}.

Both methods were implemented in Sun Pascal, linked to a pair of existing routines
written in Sun FORTRAN and ran on a Sun Sparc System 600 using the default double
precision (64-bit IEEE floating-point format) real numbers of Sun Pascal and FORTRAN.
Both compilers were used with the default compilation options.

For the minimization of the maximum of quadratic functions with linear constraints
we used the bundle trust method coded in FORTRAN [20]. In the ‘‘dual’’ type algorithms
Step 1 is solved by computing the corresponding minimal ellipsoidal norm problem, see
Section 3. The fractional programming problem that occurs in Step 0 and 3 of the
algorithm is solved by Dinkelbach’s algorithm [13]. The code used to solve the above
quadratic problems is an implementation in FORTRAN of Lemke’s algorithm [23].

In the **dual’’-2 algorithms we used in Step O y;:=(1/m,...,1/m). In order to
have similar starting points in both the algorithms tested we take in Step O of the
Dinkelbach-type algorithm:

sy =c(y,) = min M.
: O ez ylg(x)
On the other hand, for the ‘‘dual”’-2 algorithm we used xj:=1(0,...,0). As for the
Dinkelbach-type-2 algorithm we used in the initial step:

T £(0)
yofV(x)
= O I
= cV(yp) = min :
O ez yig@(x)

A.L Barros et al. / Mathematical Programming 72 (1996) 147175 167

Table 1

&, and strictly quasiconvex ratios

Problem Dinkelbach “"Dual”’ Stat.

T n m It Y%Par See It %Fr %Par BKS Sec YDA %lmp
1 5 5 8 99.5 0.88 3 11.1 85.0 39 0.65 320 26.5
2 10 5 10 999 9.83 3 8.1 91.1 0.6 408 640 58.5
3 15 5 9 995 14.62 3 18.0 79.9 1.9 7.57 440 48.2
4 20 5 8 99.9 35.32 3 9.1 90.2 0.7 2125 640 39.8
5 5 10 8 99.1 242 4 17.5 79.1 1.9 054 220 777
6 10 10 13 99.6 10594 4 10.3 88.2 1.1 4.55 36.0 58.4
7 15 10 9 997 18.99 3 10.0 88.6 1.2 11.57 360 39.1
8 20 10 10 99.7 47.50 3 9.9 89.2 0.7 2509 340 47.2
9 5 15 8 99.3 3.40 3 9.4 90.1 0.5 1.02 13.3 70.1

10 10 15 11 99.4 11.17 3 10.4 88.1 1.3 479 293 57.1

11 15 15 9 996 24.45 3 2.9 889 0.9 14.23 280 418

1220 15 11 99.7 68.96 3 9.5 89.7 0.7 28.65 34.7 58.5

13 5 20 9 971 1.59 4 11.0 85.8 2.3 1.01 150 367

14 10 20 11 99.2 13.73 4 10.4 88.2 1.2 5.49 21.0 60.0

15 15 20 11 99.5 3485 4 9.0 897 09 15.01 240 569

16 20 20 13 99.6 74.75 3 9.6 89.5 0.7 3491 31.0 533

The tolerance used in Step 2 of the Dinkelbach-type and ‘‘dual’’ algorithms was
£:=5x% 1079, see Section 3. For the type-2 variants we considered & X g;, (x;) where
iy €1 is the index where the maximum is attained in problem (P{*~") in Step 2, see
Section 4.

In Tables 1-4 we summarize the results of our computational experience comparing
the ““dual’’ algorithm with its ““primal’’ counterpart, the Dinkelbach-type algorithm. We

Table 2

#, and strictly quasiconvex ratios

Problem Dinkelbach **Dual”’ Stat.

T n m It YoPar Sec It %Fr % Par %KS Sec %A %olmp
1 5 5 7 99.4 2.10 2 12.3 85.4 1.7 0.79 32.0 62.5
2 10 5 11 99.9 12.46 3 9.0 90.1 0.9 5.63 68.0 54.8
3 15 5 9 99.7 21.79 3 11.2 87.9 0.8 11.46 64.0 47.4
4 20 5 9 99.9 41.48 3 9.7 89.7 0.6 21.88 720 47.3
5 5 10 8 99.7 2.47 4 12.1 85.4 2.6 0.87 22.0 64.9
6 10 10 12 99.5 11.65 3 8.8 90.3 0.7 5.45 38.0 53.2
7 15 10 12 99.8 37.65 3 8.2 91.2 0.6 16.82 52.0 55.3
8 20 10 10 99.8 59.19 3 9.7 89.7 0.6 31.12 48.0 47.4
9 5 15 9 96.9 1.64 3 15.6 81.3 3.2 0.77 14.7 53.4

10 10 15 11 99.6 15.34 3 7.7 91.6 0.7 6.98 34.7 54.5

11 15 15 9 99.6 29.01 3 8.7 90.4 0.7 17.13 373 40.9

12 20 15 10 99.7 70.48 3 9.1 90.2 0.6 35.10 40.0 50.2

13 5 20 8 98.1 1.92 4 12.9 85.4 0.9 1.14 11.0 40.6

14 10 20 Il 99.4 13.93 3 8.1 90.7 0.8 7.56 21.0 457

15 15 20 13 99.4 37.44 3 8.9 90.1 0.8 16.46 28.0 56.0

16 20 20 11 99.6 80.45 3 7.9 91.5 0.5 38.41 31.0 52.2

168

Al Barros et al. / Mathematicel Programming

2(1996) 147175

Table 3

#°, and semistrictly quasiconvex ratios

Problem Dinkelbach “"Dual™ Stat.

T n m It %Par Sec. It %Fr Y%Par %KS Sec G A %Imp
| 5 5 8 98.0 0.61 5 11.9 80.7 7.5 046 60.0 245
2 10 5 14 995 7.14 3 10.8 87.1 2.1 2.13 560 702
3 15 5 10 997 17.93 3 9.7 88.9 1.2 8.71 64.0 51.4
4 20 5 I 99.8 3581 3 9.5 89.4 1.0 17.40 520 514
5 5 10 12 982 2.06 4 9.5 85.1 5.4 0.99 30.0 517
6 10 10 9 996 12.72 4 6.0 924 1.3 5.83 260 541
7 15 10 11 99.6 20.66 3 7.1 91.4 1.3 8.26 340 60.0
8 20 10 12997 61.48 3 7.9 91.1 0.9 27.81 52.0 54.8
9 5 15 7 99.8 2.48 4 53 93.2 1.5 2.20 133 11.2

10 10 15 Il 99.6 12.22 3 6.8 91.8 1.1 4.38 267 64.1

I 15 15 10 95.6 35.82 3 6.8 923 0.9 16.76. 30.7 53.2

1220 15 1 99.6 66.91 3 8.1 90.8 0.9 2856 333 57.3

13 5 20 11 98.1 2.03 4 13.3 81.4 2.2 091 13.0 55.0

14 10 20 11 99.0 1490 4 9.4 38.0 1.8 6.03 19.0 59.5

15 15 20 12 99.3 34.66 3 7.8 90.6 1.3 13.18 29.0 620

16 20 20 11 99.6 81.23 4 6.0 93.1 0.6 37.68 240 536

also present in Tables 5 and 6, for the same test problems, a summary of the
computational results obtained with the type-2 variants of these two methods. For each
pair (n, m), where n is the number of variables and m the number of ratios, five
uncorrelated instances of the problem were generated and solved by the four algorithms.
Hence, the entries on these tables are averages of the corresponding values. Each class
of these test problems is identified by the number in column 7. The columns under

Table 4

&, and semistrictly quasiconvex ratios

Problem Dinkelbach **Dual™”’ Stat.

T n m It %Par Sec It %Fr YPar %KS Sec ToA %Imp
1 S 5 8 98.5 0.50 7 197 776 2.0 0.61 52.0 —21.8
2 10 5 12 994 8.62 3 15.0 81.8 3.0 240 640 72.2
3 15 5 9 999 37.11 3 7.3 92.0 0.7 21.03 720 433
4 20 5 11 99.8 47.47 3 87 906 0.7 26.15 80.0 449
5 5 10 12999 2.98) 13.6 820 4.2 1.07 320 64.1
6 10 10 9 992 11.61 3 12.5 86.6 0.9 389 300 66.5
7 15 10 11 99.6 24.42 3 9.0 8935 1.3 1207 420 50.6
8 20 10 10 99.8 69.70 3 7.7 91.7 0.5 38.87 580 442
9 5 15 9 993 4.62 4 136 824 2.7 1.13 17.3 75.6

10 10 15 10 99.6 13.76 3 9.5 89.3 0.9 565 293 59.0

11 15 15 12 997 51.50 3 6.5 92.8 0.6 22.18 333 56.9

12 20 15 10 99.7 71.50 3 8.3 91.1 0.5 3582 387 49.9

13 5 20 14 988 4.15 4 136 823 2.9 1.13 14.0 729

14 10 20 10 993 16.38 3 79 907 1.1 6.82 210 58.3

15 15 20 11 99.6 43.66 3 6.7 926 0.6 2032 290 535

16 20 20 11 99.7 97.39 4 7.2 92.2 0.5 4549 310 533

AJ. Barros et al. / Mathematical Programming 72 (1996) 147175 169

Table 5
Strictly quasiconvex ratios
Problem ES #
T Dinkel-2 **Dual-2" Dinkel-2 “*Dual-2"
It Sec It Sec It Sec It Sec
1 5 0.70 3 0.71 6 1.88 3 1.10
2 6 7.64 3 4.66 6 11.93 3 6.45
3 5 11.85 3 8.75 6 18.43 3 11.79
4 5 31.66 3 20.68 5 31.94 3 20.80
5 5 0.61 3 1.45 6 1.23 3 0.76
6 6 6.31 3 4.34 6 6.29 3 5.78
7 6 15.52 3 12.46 6 22.96 3 17.40
8 5 39.92 3 31.60 5 41.42 3 3112
9 6 2.66 3 2.04 6 1.20 3 1.73
10 6 17.94 3 6.61 6 10.17 3 7.47
11 6 2216 3 13.84 6 29.13 3 17.12
12 6 49.19 3 33.98 6 53.88 3 34.28
13 5 1.25 4 1.02 5 1.35 3 1.28
14 6 7.49 4 8.09 6 9.58 3 10.54
15 6 23.60 4 17.74 6 23.24 3 15.05
16 6 50.08 3 31.30 6 56.27 3 40.03

Dinkelbach and Dink-2 report the results obtained using the Dinkelbach-type and the
Dinkelbach-type-2 algorithm for several ratios. Similarly the columns under ‘*Dual™
and *‘Dual2’’ report the results obtained using the ‘*dual’’ and the *‘dual’’-2 algorithm.
In the case of “*Dual’’ two extra columns are presented concerning the main steps of this

Table 6
Semistrictly quasiconvex ratios
Problem #, s
T Dink-2 “Dual-2"" Dink-2 **Dual-2""
It Sec It Sec It Sec It Sec
1 5 0.47 6 0.85 N 0.47 6 0.83
2 6 3.17 3 2.39 7 5.39 3 3.86
3 6 12.75 3 10.45 6 27.19 4 24.00
4 5 20.15 3 13.90 6 33.61 3 23.12
5 6 1.62 4 1.96 6 1.82 5 1.23
6 5 8.20 3 9.71 6 12.56 3 5.89
7 5 15.05 3 10.28 5 16.64 3 14.13
8 6 34.40 3 30.67 6 44.47 3 37.54
9 6 3.84 4 2.32 6 4.92 4 1.65
10 6 8.36 3 533 6 10.63 3 6.20
11 6 26.45 4 19.55 6 37.02 3 21.39
12 6 52.06 3 30.98 6 61.34 3 31.41
13 6 116 4 2.00 6 1.63 4 1.49
14 6 11.13 4 6.92 6 13.83 3 9.09
15 6 19.40 3 15.17 6 29.43 3 22.56
16 6 57.39 4 39.34 6 72.43 3 50.53

170 Al Barros et al. / Mathematical Programming 72 (1996) 147175

algorithm. Hence. column %Fr refers to the percentage of the time used to compute the
next iteration point, i.e. ¢(y,), while column %KS refers to the percentage of the time
used to solve the Karush—Kuhn-Tucker system and thus obtaining y, . . see Section 3.
Finally, column %Par refers to the percentage of the time used for optimizing the
parametric function F(). Moreover, the column It refers to the number of iterations
performed by the corresponding algorithm. while column Sec refers to the average
execution time in seconds of the Sun Sparc System 600 workstation measured by the
available standard clock function of the Sun Pascal library. This measures the elapsed
execution time from the start to the end of the corresponding method, excluding input
and output operations.

We will start by presenting and analyzing the results using the simpler versions of the
two methods, i.e., the *‘dual’” and Dinkelbach-type algorithm. For these cases, the tables
also include the column Stat. which contains under column %A the percentage of active
ratios of the test problems and under column %Imp the percentage of improvement in

it Dinkl ¢ Dink2 O Duall Dual2 x
14
<&
124
> fod o 0
164 © <
o el) o
iR o0 [
64 O o O Jd 0O g o O o o
] O o o [m] a
44 ¢ o x X X
aow X oM X X W W o® ¥ W X K
2 T T T T T T T T T T T T T

T
1 2 3 4 5 6 7 % ¢ 10 11 12 13 14 15 16
problems

sec Dinkl ©— Dink2 8— Duall +— Dual2 »—
80

704

problems

Fig. 2. Strictly quasiconvex ratios and teasible set 2.

AL Barros et al. / Mathematical Programming 72 (1996) 147175 171

total execution time of the “*dual’” type algorithm over the Dinkelbach-type algorithm,
i.e. (1 — Time(Dual)/Time(Din)) X 100.

Tables 1 and 2 contain the results obtained for test problems where the quadratic
functions f; are strictly convex. In these cases the convergence rate of the ‘*dual”
algorithm is superlinear, see Corollary 3.1.

Although each iteration of the “*dual’’ algorithm is more ‘‘expensive’ in terms of
execution time this extra effort is compensated in the total time used. However, the
behavior of the "*dual’ algorithm seems to be affected by the type of constraints in the
feasible set. Indeed when the constraint set is more restrictive (2,) the performance of
the **dual’’ algorithm is slightly better. Observe that this phenomenon also occurs for
the Dinkelbach-type algorithm.

From the results contained in Tables 1-4 it is clear that the ‘“dual’’ algorithm has a
better performance than the Dinkelbach-type algorithm. not only in terms of the total
number of iterations but also in total time, see %Imp.

it Dinkl © Dink2 O Duail o Dual2 X
141*
(o
12+ [
Lo < < led
10) o
[e B e] (o <o
8~ o
G‘Eb o a 0o o a a o o g a o 1
[m} a O
4 ° .
X X W X WoOoE X W oM M oW X WM XK
2 T T T T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
problems

sec Dinkl 9— Dink2 &— Duall +— Dual2 %—

80

70

60

404

30

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
problems

Fig. 3. Strictly quasiconvex ratios and feasible set 2

172 Ad. Burros et al. / Mathematical Programming 72 (1996) 147175

Moreover it is also important to remark that even when superlinear convergence
cannot be guaranteed, the ‘‘dual’” algorithm appears to have a betier performance than
the Dinkelbach-type approach, see Tables 3 and 4.

The results obtained with the type-2 variants of these methods are contained in Tables
5 and 6. Since the total computational time used by the “*dual’’-2 algorithm appeared to
be distributed in a similar way as for its original version these tables are presented in a
more condensed form.

From Tables 5 and 6 it appears that in terms of iterations the **dual’’-2 algorithm is
better than the Dinkelbach-type-2 algorithm. This tendency is also confirmed in terms of
total execution time. Moreover, even for the test problems with semistrictly quasiconvex
ratios the “*dual’’-2 algorithm appears to dominate the Dinkelbach-type-2 algorithm.

In order to compare and relate the behavior of the four algorithms we plotted, for the
four classes of problems, the number of iterations and total execution time, see Fig. 2-5.
In these figures the x-coordinates, problems. denote the problem type as designated in

it Dinkl © Dink2 O Duall e Dual2 x
14
12 [s] < °
< el o] [e)
10 < o
<
8-
o
6 0O O a O o oo oo oaoann
a O D
4 x e x x X) ¢
x N X X X x e L3 x
2 T T T T T T T T T T T T T 1
1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16
problems

se¢ Dinkl ©— Dink2 88— Duall -»— Dual2 %—
90

709

604

50

40

30

204

T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12
problems

| T T
13 14 15 16

Fig. 4. Semistrictly quasiconvex ratios and feasible set #|.

A.d. Barros et al. / Mathemarical Programming 72 (1996) 147175 173

Tables 1-4, while y-coordinates denote in the first picture the number of iterations it
and in the second the total execution time sec.

As expected the Dinkelbach-type-2 algorithm dominates, both in iteration number
and execution time, the Dinkelbach-type algorithm. On the other hand, the *‘dual’’-2
algorithm does not produce significant improvements on the behavior of the original
“‘dual’’ algorithm. This may be explained by the fact that the **dual’’ algorithm is by
itself more robust and ‘*powerful”’ than its primal counterpart. As Figs. 2-5 show, there
are no significant differences between the ‘‘dual’’ type algorithms. In fact, only for the
feasible set 27, it appears that the “‘dual’’ algorithm is slightly better in terms of
execution time that its variant. For the case of the feasible set 27, these differences are
more attenuated. Unexpectedly, the original version of the ‘‘dual’’ algorithm dominates
the Dinkelbach-type-2 algorithm both in terms of iterations and execution time.

it Dinkl © Dink2 O Duall e Dual2 X
14
12 <] <
o] < <&
10 o < <& e
(v < (o}
84
3 a
6 0O o g o OO0 o o0oaoaoaooag
EF ¢ a
4+ X .8) 3
x o X n o » X x X X x
2 T T T T T 7 T T T T T T T
1 2 3 4 5 6 7 9 10 11 12 13 14 15 16

problems

se¢c Dinkl 6— Dink2 &— Duall +— Dual2 »—
100

90+
804
70+
60

T T T T T T 4 T 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
problems

Fig. 5. Semistrictly quasiconvex ratios and feasible set #,.

174 A.L Barros et al. / Mathematical Programming 72 (1996) 147175

Figs. 2-5 also show the number of ratios has a decisive influence in the behavior of
the “*primal” algorithms, Dinkelbach-type and Dinkelbach-type-2 algorithms *. This
effect is also noticeable for the **dual’’ type algorithms although at a smaller scale.

Acknowledgements

The authors like to thank J. Outrata, H. Schramm and J. Zowe for making the bundle
thrust code available, J. Gromicho for his remarks and suggestions on an earlier version
of this paper and the anonymous referee who suggested the scaled version of the “*dual’’
algorithm.

References

[1] M. Avricl, W.E. Diewert, S. Schaible and 1. Zang, Generalized Concaviry, Mathematical Concepts and
Methods in Science and Engineering. Vol. 36 (Plenum. New York, 1938).
[2] A.L Barros, Discrete and Fractional Programming Techniques for Location Models, Tinbergen Institute
Research Series, Vol. 89 (Thesis Publishers. Amsterdam, 1995).
[3] A.LL Barros and J.B.G. Frenk. “"Generalized fractional programming and cutting plane algorithms,”
Jowrnal of Optimizarion Theory and Applications 87 (1993) 103-120.
[4] M.S. Bazaraa. H.D. Sherali and C.M. Shetty. Nowlincar Programming: Theory and Algorithms (Wiley,
New York. 2nd ed., 1993).
(5] Y. Benadada, ** Approches de résolution du probléme de programmation fractionnaire généralisée,” Ph.D.
Thesis (Départment d’Informatique et de Recherche Opérationelle, Université de Montréal, 1989).
[6] A. Ben-Israel, A. Ben-Tal and S. Zlobec, Optimuliry in Nonlinear Programming (A Feasible Directions
Approach) (Wiley, New York, 1981).
[7] J.C. Bemard and J.A. Ferland, **Convergence of interval-type algorithms for generalized fractional
programming,”’ Mathematical Programming 43 (1989) 349-364.
[8] B.D. Craven, Fractional Programming (Heldermann, Berlin, 1988).
[9] J.P. Crouzeix and J.A. Ferland, ‘" Algorithms for generalized fractional programming,’” Marhematical
Programming 52 (1991) 191-207.
[10] 1.P. Crouzeix. J.A. Ferland and S. Schaible, *Duality in generalized linear fractional programming,
Muthematical Programming 27 (1983) 342-354.
[11] IP. Crouzeix, J1.A. Ferland and S. Schaible, “An algorithm for generalized fractional programs,”
Journal of Optimization Theory and Applications 47 {1985) 35-49.
[12] J.P. Crouzeix. J.A. Ferland and S. Schaible. ""A note on an algorithm for generalized fractional
programs.”” Jowrnal of Oprimization Theory and Applications 50 {(1986) 183-187.
[13] W. Dinkelbach, ~On nonlinear fractional programming,” Managemenr Science 13 (1967) 492-498.
[14] J.A. Ferland and J.Y. Potvin, ‘Generalized fractional programming: Algorithms and numerical experi-
mentation,”” European Journal of Operational Research 20 (1985) 92-101.
[15] J. Flachs, “*Generalized Cheney-Loeb-Dinkelbach-type algorithms,”” Marhematics of Operations Re-
search 10 (1985) 674-687.
[16] 1.B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I: Fundamentals,
Vol. 1 (Springer, Berlin, 1993).
[17] T. Ibaraki, ~Parametric approaches to fractional programs,”” Mathematical Programming 26 (1983)
345-362.

.

* Recall that the problem types are ordered in the x-axis by the number of ratios.

A Barros et al. / Mathematical Programming 72 (1996) 147-175 175

[18] T. Ibaraki, H. Ishii, J. Twase, T. Hasegawa and H. Mine, “"Algorithms for quadratic fractional
programming problems,” Journai of the Operations Research Society of Japan 19 (1976) 174-191.

[19] R. Jagannathan and S. Schaible, *~Duality in generalized fractional programming via Farkas® lemma,”
Journal of Optimization Theory and Application 41 (1983) 417-424.

[20] J. Outrata, H. Schramm and J. Zowe, “*Bundle trust methods: Fortran codes for nondifferentiable
optimization, User’s guide,”” Technical Report 269 (Mathematisches Institut, Universitat Bayreuth, 1991).

[21] E. Polak, “*On the mathematical foundaiions of nondifferentiable optimization in engineering design.”™
SIAM Review 29 (1987) 21-89.

[22] B.N. Pschenichnyi, Necessary Conditions for an Extremum (Marcel Dekker, New York, 1971).

[23] A. Ravindran, "*A computer routine for quadratic and linear programming problems,”’ Communications
of the ACM 15 (1972) 818.

[24] A.W. Roberts and D.E. Varberg, Convex Functions (Academic Press, New York, 1973).

[25] R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, NJ, 1970).

[26] R.T. Rockafellar, **Generalized subgradients in mathematical programming,” in: A. Bachem, M.
Grotschel and B. Korte, eds., Mathematical Programming. The State of the Art (Springer, Berlin, 1983)
ch. 2, pp. 368-390.

[27] S. Schaible, **Fractional programming,”” Zeitschrift fur Operations Research 27 (1983) 39-54.

[28] S. Schaible and T. Ibaraki, "*Fractional programming,”” (Invited Review), European Journal of Opera-
tional Research 12 (1983) 325-338.

[29] N.Z. Shor, Minimization Methods for Non-differentiuble Functions, Computational Mathematics, Vol. 3
(Springer, Berlin, 1985).

[30] M. Sion, **On general minimax theorems,”” Pacific Journal of Mathematics 8 (1958) 171-176.

[31] J. Wemer, “*Duality in generalized fractional programming,’” in: K.H. Hoffman, J.B. Hiriart-Urruty, C.
Lemaréchal and J. Zowe, eds., Trends in Mathematical Optimization, International Series of Numerical
Mathematics (Birkhiuser, Basel, 1988) pp. 197-232.

[32) Z. Zhou, F.S. Mokhtarian and S. Zlobec, A simple constraint qualification in convex programming,’’
Muathematical Programming 61 (1993) 385-397.

