
Mathematical Programming 72 (1996) 147-175

A new algorithm for generalized
fractional programs 1

A.I. Barros a, J.B.G. Frenk ~'* , S. Scha ib le c, S. Zhang b

a D.E.I.O.. FacuMade de CiOncias, Uniuersi~hule de Lisboa. Campo Grande. 1700 Lisboa. Portugal
b Econometrtc lnstttute. Erasmus Umuerstty. P.O. Box 1738. 3000 DR Rotterdam. The Netherlands

c University of Cal([ornia at Riverside. Riverside, CA 92521, USA

Received 2 February 1994

Abstract

A new dual problem for convex generalized fractional programs with no duality gap is
presented and it is shown how this dual problem can be efficiently solved using a parametric
approach. The resulting algorithm can be seen as "'dual'" to the Dinkelbach-type algorithm for
generalized fractional programs since it approximates the optimal objective value of the dual
(primal) problem from below. Convergence results for this algorithm are derived and an easy
condition to achieve superlinear convergence is also established. Moreover, under some additional
assumptions the algorithm also recovers at the same time an optimal solution of the primal
problem. We also consider a variant of this new algorithm, based on scaling the " 'dual"
parametric function, The numerical results, in case of quadratic-linear ratios and linear constraints,
show that the performance of the new algorithm and its scaled version is superior to that of the
Dinkelbach-type algorithms. From the computational results it also appears that contrary to the
primal approach, the " 'dual" approach is less influenced by scaling.

Keywords: Fractional programming; Generalized fractional programming; Dinkelbach-type algorithms: Quasi-
convexity; Karush-Kuhn-Tucker conditions: Duality

1. Introduction

Fractional p rogramming , i.e., the min imiza t ion of a ratio of two functions subject to

constraints, has been studied ex tens ive ly during the last several decades [1,8,27,28]. In

* Corresponding author.
This research was carried out at tile Econometric Institute, Erasmus University, Rotterdam, the Nether-

lands and was supported by J.N.I.C.T. (Portugal) under contract BD/707/90-RM.

0025-5610 �9 1996 - The Mathematical Programming Society, Inc. All rights reserved
SSDI 0025-56 10(95)00040-2

148 A.I. Barros et al. / Mathematical Programming 72 (1996) 147-175

the 1980s the focus has shifted towards multi-ratio optimization problems. One of the
major types is the problem of minimizing the largest of several ratios of functions. These
so-called generalized fractional programs arise in economic equilibrium problems, in

management applications of goal programming and multiobjective programming involv-
ing ratios of functions, and in rational approximation in numerical analysis [10].

Algorithmic and computational resuhs for single-ratio fractional programs can be

found in [17,18,28] and in the literature cited therein. Various algorithms in generalized

fractional programming are surveyed in [9] whereas computational experience with some
of these algorithms is reported in [5,7,14]. Meanwhile also a duality theory for

generalized fractional programs has been developed [1,8].
The purpose of this paper is to introduce a new dual problem for convex generalized

fractional programs and an algorithm to solve this problem. The main feature of this
algorithm is that at each iteration a single-ratio fractional programming problem is
solved and the optimal objective value of this fractional programming problem provides
a lower bound on the optimal objective value of the original generalized fractional

program. Following the strategy used to derive the Dinkelbach-type-2 algorithm we will
also propose a variant of this "'dual" algorithm.

The paper is organized in the following way. We start by presenting a short overview
on the basic algorithms for generalized fractional programs. In Section 3 the new
algorithm is introduced and convergence results are discussed. A variant of this
algorithm, based on scaling of the "dual '" parametric function, is studied in Section 4.
Finally some computational results are presented comparing the performance of the new
algorithms with the Dinkelbach-type approaches [11.12].

2. Algorithms for generalized fractional programming

Let ~ c JR" be compact and assume that the functions f., gi: 2---) [~, i ~ I :=
{I m}, m > 1, are continuous where S '~ is an open set containing ,,W. Also let
gi(x) > 0 for every x ~ ~ and i E I. We consider the generalized fractional program

4 (x)
(P) inf max - -

, < ~ i~l gi(x)

Since the function x ~ max ie ~ J i (x) / g , (x) is finite-valued and continuous on 27 and
~'___ IR" is compact, the optimization problem (P) has an optimal solution. Clearly, for
m = I problem (P) reduces to a single-ratio fractional programming problem [13]. To
solve (P), we consider the following parametric problem:

(P.) F (/ x) = inf (m a x { f . (x) - t x g i (x) } } .
x ~ g-g" ~, i E l

By a similar argument as for (P), problem (P,) also has an optimal solution, and both
optimization problems are related to each other by the following result [11].

A.1. Barros et al. / Mathematical Programming 72 (1996) 147-175 149

L e m m a 2.1. I f Y is compact, m >1 1 and -oc < IX < + ~, then
(a) F(ix) < + % F is decreasing and continuous;
(b) (P) and (P,) have optimal solutions;
(c) the optimal objective value ix* of (P) is finite and F(ix*) = 0;

(d) F(ix) = 0 implies ix = ix ~ ;
(e) if F(Ix) = 0 then (P) and (P,) have the same set of optimaI solutions.

By Lemma 2.1 it is clear that solving (P) can be achieved by finding a solution of the

equation F(IX) = 0. Based on this observation, the Dinkelbach-type algorithm proposed

in [11] solves at each step a subproblem (P,), and by doing so it creates a nonincreasing

sequence Ixk, k ~> 1, converging from above to the optimal objective value IX~ of
problem (P). More precisely, at the kth step of this procedure IX~+ ~ is taken as the root
of the equation Gk(IX) = 0 with G k : N ~ N a linear (piecewise linear) upper envelope

of the function F for m = 1 (m > 1) and G~(Ixk) = F(IXk) ~< 0. The Dinkelbach-type
algorithm can now be summarized as follows.

Algor i thm 2.1 (Dinkelbach-type algorithm).

Step 0. Take x 0 e Y , compute IX1 := m a x i ~ l .~(Xo)/g,(Xo) and let k : = 1;
Step 1. Determine x~ := argminx~ ~ { m a x ~ z{f,(x) - Ixkgi(x)}};
Step 2. I f F(Ixk) = 0

Then x k is an optimal solution of (P) with value Ixk and Stop.
Else GoTo Step 3;

Step 3. Let Ixk+ l := max ie I f i (x k) / g i (x k);

Let k := k + 1, and G o T o Step 1.

Obviously, it is only useful to apply tile above procedure if every subproblem (P,) is
easier to solve than the original problem (P). Furthermore it is also clear that a
single-ratio fractional program, i.e., m = 1, is easier to solve than a generalized
fractional program, i.e., m > 1. In [3] it is shown that the above basic algorithm is a
special case of a cutting plane algorithm on the space ,2".

A refinement of the Dinkelbach-type algorithm was later proposed by Crouzeix et al.
[12] and independently by Flachs [15]. The main idea behind this variant consists in
trying to make the parametric function concave in a neighborhood of the optimal value.
In order to achieve this, Crouzeix et al. [12] propose the following reformulation of (P):

f,(x) l g , ()
inf max

g , (x) / g , (x ,) '

where x . denotes an optimal solution of (P). The associated parametric problem is
given by

inf [m a x [j)(x) - Ixgi(x) }

150 A.I. Burros et al. / Mathematical Programming 72 (I 996) 147-175

In practice, since an optimal solution of (P) is not known a priori, the current iteration

point is used as an approximation of x . . Hence, in the Dinkelbach-type-2 algorithm the

following parametric problem is considered:

(p~k-i~) F(~ i~(/a.)= inf { (, f i (x) - I ' zg i (x) } }

with x k_ ~ e ~ the last iteration point. By our conditions this problem has an optimal

solution and so, the Dinkelbach-type-2 algorithm can be described as follows.

Algori thm 2.2 (Dinkelbach-type-2 algorithm).

Step 0'. Take x 0 e S , compute /z I := m a x ~ t f,(Xo)/gi(Xo) and let k := 1;
Step 1'. Determine:

Step 2'. I f F (*- l~(/xk) = 0

Then x k is an optimal solution of (P) with value /.,e and Stop.
Else GoTo Step 3';

Step 3'. Let p.~ ~, := max,.~ 1 J)(x~)/gi(xk);
Let k := k + 1, and GoTo Step 1'.

Based on the Dinkelbach-type approaches and their geometrical interpretation, sev-
eral interval type algorithms have been proposed. A thorough overview of these
algorithms can be found in the survey by Crouzeix and Ferland [9].

3. The dual problem and how to solve it

In this section we propose a new dual problem for (P) with no duality gap and
introduce at the same time an algorithm to solve simultaneously this dual and the
corresponding primal problem. This algorithm is "dua l " to the Dinkelbach-type ap-

proach since it creates a nondecreasing sequence /z k, k > 1, converging from below to

/x*. We assume that the functions .f;. : .W--+ R, i ~ I. are convex on the compact convex
set ~-~ and g/ : ~ - - + JR, i e l . are positive and concave on 72s In addition, either the

functions f~, i e I, are nonnegative on ~ or the functions g j. i e I, are affine on ~2".
Notice that the Dinkelbach-type algorithm proposed in [1 1] leads to convex programs as

subproblems under the same assumptions. Observe also that these assumptions include
the important case of generalized linear fractional programs with a bounded feasible
region.

If f (x) T := (f l (x) f,,,(x)) and g (x) T := (gl(x) g,,(x)), then it follows by
the quasiconvexity of the function q: N • JR+---> IR given by q(z):= zL/z2 that

,,~(x) ylf(~)
m a x - - - max (1)
i ~ l g i (x) y e Z yVg(x)

A.I. Barros et al./Mathematical Programming 72 (19961 147-175 151

for every x ~ 2 , and X := {y E JR": y >1 O, ~2~ ~ ~ Yi = 1}. This is a direct consequence

of the property that a quasiconvex function attains its maximum in a vertex of a convex

polyhedron [1]. Moreover, by the assumptions on the vector functions f and g we

obtain that the function x ~ y T f (x) / y T g (x) is quasiconvex on ~?' for every y E F,,

while the function y ~ yT f (x) / yTg(x) is quasiconcave on Z for every x ~ -2,. Hence,

using the compactness of the convex sets ,~" and Z it follows from Sion's minimax

theorem [30] that { yT, x)} { yT, x,}
m i ~ max = m a x rain , (2)

y~ V yV g(x) y~ S x~ ~" yT g(x)

and so by (1) and (2) we obtain

mix) max = max min (3)

Let c: ~ ~ ~, be defined by

y T f (x)
c (y) := rain

x~ ~" yT g(x)

By the compactness of 2 , and the continuity of the function h: 2 , X ~" ~ ~ given by
h(x, y) = yT f (x) / (yT g(x)), this implies that c is continuous on 2,' [22]. Moreover, the

function c is semistrictly quasiconcave [1], since it is the infimum of semistrictly

quasiconcave functions h(-, y) indexed by x. Thus, by (3), we need to solve the

quasiconcave optimization problem:

(Q) m a x c (y) ,
y~Z

where a local maximum is a global maximum [1]. Notice that (Q) corresponds to a new
"dua l " problem of (P). In fact, while in the standard dual problem of a convex

generalized fractional programnling problem [1,8 10,19.31] a part of the constraint set is
"dual ized", problem (Q) can be seen as a "partial dual" program of the generalized

fractional program (P), since it only "dual izes" the ratios.
Observe, by (3), that there exists some y , e X with c (y ,) = / 2 . ' . This does not

mean that any optimal solution x* ~ 2" associated with the single-ratio fractional
programming problem minx~ :(yT, f (x) / y T , g (x) is also an optimal solution of (P).

However, for any optimal solution x* e • of (P) and y , e X of (Q) it is easy to see,

using

yT, f (x ,) f i (x ,)
~< m a x - - - c (y .) ,

y T . g (x ,) i~t g i (x ,)

that x . is an optimal solution of the optimization problem associated with c (y ,) .
Moreover, it follows immediately that c(y) <~ tt ~ for every y E v , and so an iterative

procedure solving (Q) approximates tt ~ from below. Although not necessary, as known
from subgradient-type algorithms for convex programming [29], it would be a nice

152 A.I. Barros et al. / Mathematical Programming 72 (1996) 147-175

feature if an algorithm solving (Q) would satisfy the descent property. Hence, with y~
the present nonoptimal iteration point, the next point Yk+, should belong to the strict
upper level set

~,~'(c(Yk)) := {Y ~ X: c (y) > c(y~)}.

Introducing also

eg,(c(yk)) := {y~ X: c(y) > c (y ,) } ,

the following result motivates the choice of the next iteration point.

L e m m a 3.1. Let F" E X ~ ~ [~ be given by

F(y, be):= min {yT(f (x) - - /xg(x))} .
x E ~

For ~ ~ Y- we have ~?/,0(c(.9)) = {y ~ v: F(y, e()3)) > 0}

F(y, c())) >/0}.

(4)

and ~2Z,.(c(.9)) = {y ~ ~:

Proofl We first consider the case that ?~?(c(9)) is nonempty, i.e., .9 ~ X is nonoptimal
for (Q). Let y ~ Z/~ Then c(y)> c(9) and from Lemma 2.1 and g(x)> 0 for
every x E Z we see

F (y , c (~)) = rain { y S (f (x) - c (~) g (x)) }
x ~

> .rn~i5 { yT (f (X) -- C(y) g (X))} = 0. (5)

Conversely, if F(y, c(9)) > 0 and y ~ v , then using again Lemma 2.1 it follows that
c (y) > c(.9) which concludes the proof for the nonempty case.

On the other hand, if ?Z~'(c(.9)) is empty, then we know that c(y) <~ c(.9) for every
y ~ v , and hence by Lemma 2.1 the set {y ~ v: F(y, c(.9)) > 0} is also empty.

Finally the last equality can be proved in a similar way as the first part of this proof,
and so we omit it. []

Let Yk be the present iteration point. The above result and Lemma 2.1 suggest that
the " b e s t " possible choice for the next iteration point Yk.~ is given by

F(yk+ ,, c (y ~)) : = m a x F (y , c(yk)). (6)
y~V

Observe that the above optimization problem can be seen as the parametric problem of
(Q) with parameter c(yk). After having solved (6) we compute c(yk+ i) and continue
with k replaced by k + 1. This yields the following algorithm.

Algorithm 3.1 (" D u a l " algorithm).
Step 0. Take Yo ~ v, compute c(y o) = minx~ - e yT f (x)/yT g(x) and let k := 1;
Step 1. Determine Yk := argmaxy~ ~F(y, c(y k_ i));

A.1. B a r r o s et a l . / M a t h e m a t i c a l P r o g r a . . m g 72 (1996) 1 4 7 - 1 7 5 153

Step 2. x f F(ya., c(yk_ ~)) = 0

Then Yk- ~ is an optimal solution with value c(y k_ t) and Stop.
Else GoTo Step 3;

Step 3. Compute c(yk);

Let k : = k + 1, and G o T o Step 1.

Notice that, a primal optimal solution of (P) can be found by solving the parametric

problem (Pu) with /x = c(y k_ 1).
By our assumptions on f and g we may apply Von Neumann 's r a in -max theorem

[24], and so

F(yk+ ,, c(yk)) = m a x F (y , c (y ~))
y ~ V

: m a x { min {yT(f (x) - - c (yk)g (x)) } }
y e V x ~ ~g'

= min / m a x { y V (f (x) - c (y k) g (x)) } }
x ~ ~ t y=~ V

= min Imax{ f i (x) - c (ya)g i (x) } }
x ~ j ; ~ : ' k g e l "

= F (c (y ~)) , (7)

Observe that, even in the case that the conditions of Von Neumann 's m i n - m a x theorem

do not hold, F(c(yk)) is always an upper bound for F(yk+ i, c(Yk)).
For a geometrical interpretation of this " lower bounding" algorithm we introduce for

each fixed y e ~; the function Fy : IR --+ R given by

Fs(/x) := min {yT(f (x) - - / * g (x)) } . (8)
X E 2~" -

Clearly, for every /~ ~ [~ we have that Fy(i ~) ~ F(ix) with y ~ X, while fo r / z = c(y k)
it was shown using Von-Neumann 's min-max theorem that Fy,+ (#) = F(/~). Moreover,
to determine c(yk+ ~) is equivalent to finding the root of Fy~+ (/~) = 0, and so this yields
the geometrical interpretation given in Fig. 1.

Fig. 1. New algorithm.

154 A./. Barros et al / Mo theme fi('al Programming 72 (! 996) 147-] 75

To prove the convergence of this algorithm we need to investigate the behavior of the
function F:,:g~--> il~. Since by (8) this function is the minimum of a set of affine

functions, it is concave, and so by [25 Corollary' 10.1.1.] it is continuous on ~. Also. by

[25, Theorem 23.4] the subgradient set ~1(- f~,.)(Ix) of the convex function - Fy : ~ ~ 1~

at the point IX is nonempty. Remember that d �9 ~ is a subgradient of the function - F~.

at the point IX if and only if

F>,(IX + t) < F>.(IX) - td. (9)

for every t �9 ~.

The next result characterizes the subgradient set O(- E,.)(IX). Although this result is a

special case of a more general result given by [26, Theorem 7.2] or [16, Theorem

VI.4.4.2] we give an elementary proof for completeness. This is possible due to the fact

that Fly is defined on ~. However. before mentioning this result we introduce for fixed

y �9 v the set _~?-~.(IX) of optimal solutions of the optimization problem
min.~ ~ , { y T (f (x) - / . t g (x))}, i.e.,

.9:).(#) := {x �9 :-~: y-r(f(x) - Ixg(x)) =/~,.(/.t)}. (IO)

Clearly, this set is nonempty. Also. by the continuity of the vector-valued functions f

and g it must be closed, and thus by the compactness of ~:" and ~.,.(p.)___.~" it is

compact. Finally, if IX > 0 or IX �9 I~ whenever g: are positive affine functions then the
function x ~ y T (f (x) - IXg(x)) is convex on 2 : due to f convex and g concave
(affine), and this implies that .~,,(p.) _5/: ' is also convex for appropriate values of /z.

Lemma 3.2. For eveo,.1S.red y �9 .~ aml t x ~ ~ it follou's that

0 (- F y) (/ . z) = [inf { y r g (x) } , sup { y T g (x) }] .
x ~ ~'>.(j~) x c 2 ~ (~)

P r o o f . Since every, convex combination of subgradients is again a subgradient, we only
need to verify for die inclusion _ that the left and the right endpoint of the above

compact interval are subgradients.
For d = sup,= e,.(j~){yrg(x)} we obtain by the compactness of ,g~>.(ix) and die

continuity on ~7 ~ Of the function x ~ y T g (x) that there exists some ~ � 9 ~2y(ix)
satisfying d = yTg(?f). Hence,

- t d = y r (f (~) - (IX + t)g(~)) _y-r(f(~) _/.tg(~-))

>~ F>.(IX + t) - F>,(p.) (I I)

and so by' (9) it follows that d is a subgradient. A similar proof holds for the left
endpoint and so the inclusion _D is verified.

To verify the reverse inclusion _c we first observe the following. Consider the

sequence x , , t: > 1. with x,, �9 f?~,(# + I / n) . By the COlnpactness of ~ the sequence

{x,,, n > 1}, has an accunmlation point x~ �9 .g" and so there exists some subsequence

A.I. Barros et al. / Mathematical Programming 72 (1996) 147-175 155

{x,,: 1>7 1} with limt,_~x, =x~ . Hence by the continuity of the functions / . t ~
Fv(tx), x ~ yT f (x) , and x ~ yT g (x) respectively, it follows that

(') F v (/ c) = limFy ~ + - -
�9 I I :e n I

((')) = l i m y V f (x <) - I t + - - y T g (x , , ,)
ITz #7 I

= y r f (x , , _) - t . t yrg(x:~) (12)

and so x~ ~ 2~.(/.t). 2

Again, by the continuity of the function x ~ y S g (x) there exists for every a > 0

some I a > 1 such that for every / >/l,s the inequality

y V g (x , , ,) < ~ S g (x ~) + a < ~ sup {yTg(x)}+,~
x e ~).(**)

holds. From this result it is clear that for any d e 0 (- Fy)(/ ,) and l > I a we obtain

, (,+,) , -d>~ G ~+ -C,(~)>~---yrg(x,,,)
nl - nl

1(I > - - - sup { y T g (x) } + 6 . (13)

Multiplying this inequality by - n I yields d K sup~ e W~{u){yTg(x)} 4- 3. Since 6 > 0
can be arbitrarily chosen, we obtain that

"~< sup { y T g (x) } .
x~ Sy(l*)

By considering a sequence x,, ~ o~y(/x - l / n) and applying a similar proof one can
show that d > inf~ ~ ~./ .){yTg(x)}, thus completing the inclusion G. []

As already observed, we may replace inf, respectively sup, in the interval mentioned
in Lemma 3.2 by min, respectively max. IVloreover, since g (x) > 0 for every x e ~-~,

we obtain by the subgradient inequality given by (9) and Lemma 3.2 that the function

Fy: 1~' --+ ~ is decreasing 3. Denote now by k* the number of times that the main step
was started by the algorithm. Clearly if k* = + :c the algorithm does not stop while for

k* finite it follows that F (y , . , c (y k . _ i)) = 0. Before mentioning the next result we
introduce

Ak(y) := max{yTg(x) x ~ ~ , . (c (y~))}

2 By [2! Proposition 2.1.4] this means that for fixed y~ "~s the point-to-set mapping #x--, ~fy(/z) is upper
semicontinuous.

3 Observe that the same result also follows from (8).

156

and

A.I. Barros et ul . / Mathematical Prf~gramming 72 (1996) 147-175

y~, ,+lf(x) }
6~+, :=min y ~ + l g (x) xsolves rain

.t-~-;,: y~+, g (x)

= m i n { y ~ + , g (x) ' x ~ ; ~ ' , , , (c(y~+,))}. (14)

It follows by Lemma 3.2 that

Aa(y) ~ O (- l :) (c . (y k)) and ek+ , ~0 (-F~ .) (c (y a + l)).

Theorem 3.1. The sequence y~. (I <~ k < k ~, does not contain optimal solutions of (Q)
and the corresponding Jimction values c(y+), 0 <~ k < k :~+ are increasing. Moreover, (f
k* is finite, then c(y k.) = #" while for k + - +~c evetw accumulation point of the
sequence Yk, k >1 O, is an optimal solution of (Q). Finally, (fi k* = +:c and y , is an
optimal solution of (Q), then

O~<iu+"-c(Yk*~)~< i ~,71 p.+-c(y] , .)) (15)

holds .for every k > O.

Proof. Using Lemma 3.1. it follows that Yk is nonoptimal if and only if F(yk+ ,, c(Yk))
> 0. Moreover, by the same lemma we obtain that c(yt ~ i) > c(Yk) if Yk is nonoptimal,
and so the first part of the theorem is proved.

Observe for k ~ finite that F(y~-, c(yk. ~)) = 0. and again by Lemma 3.1 it follows
that Yk" solves (Q). Hence by (3) we have c(y k.) = tx*.

To verify the last part of the result, notice that c(yk), k > O, is increasing for
k + = +:% and since c(y~) ~< Ix+ < ~c for every k > 0, it must follow that limkl.~c(y k)
exists and is finite-valued. Moreover. by Lemma 3.2 and (9) we obtain for every optimal
solution y , of (Q)that

f,, (c(y ,)) - Fy~(C(y ,)) ~ - (c (y .) - c(yk)).A,,(y .).

Since F y . (c (y .)) = 0 this implies that

Fv, ,(c(y+)) = maxFy(c (yk)) > F v (c (yk))
- + y ~ V -

>~ (c(y .) -- c(yk))Ak(y .). (16)

On the other hand, applying again Lemma 3.2 and (9) we obtain

Fy,+ ,(c(yk)) = Fv~ ,(c(y~)) - l:,. ,(c(yk + ,))

.< ,) - ,. (1 7)

This implies by (16) and (17) that

(c(Yk+ t) - c(Y~:))cS,~+t > / (e (y ,) - c(ya))Ak(y ,) = (p.* - c(yk))Ak(y ,).

(lS)

A.1. Barros et al. / Mathematical Programnting 72 (1996) 147-175 157

Since A~(y ,) and 6k+ z belong to the interval [6, A] with

3 := rain m i n g i (x) > 0 and A:= max m a x g i (x) < + z c ,
x C ~ i E l x ~ ~ i ~ l

it follows by (18) and the existence of lira k ~ ~ c(yk) that lira ~ r ~. c(y~) = c(y ,), and so
every accumulation point of the sequence y~, k/> 0, solves (Q).

Finally, from (18) we obtain

tz* - c(yk + ,) = tx ~ - c(y~) + c(y~.) - c(y~ + ,)

(A~(Y*)) (I ~ - c (y ~)) . U
<~ 1 6~+1

Clearly, by inequality (15) this algorithm converges at least linearly. In order to

improve this convergence rate result we need to investigate the behavior of l - -
A k (y ,) / 6 k + ~ as k ~ z c for an arbitrary optimal solution y , of (Q). Let 3~:=
lira supk r~=3k+ ~. By the definition of lim sup there exists a subsequence ~___ N such

that 6~ = limkE .~. ~ 6 k + ~. Moreover, if we consider the sequence {Yk+ ~: k ~ , ~ } c_ X
we can also find, due to the compactness of X, a subsequence Yz"~ _ c ~ satisfying

limk~.i~.kr~.y~+ L = y , with y , being an accumulation point. By Theorem 3.1 this
accumulation point y , is an optimal solution of (Q). Consider now the sequence
1 - A k (y ,) / 3 k , ~ for this point y , . It is easy to verify that the point-to-set mapping
y ~ a (- F ~) (c (y)) is upper semicontinuous. Hence we obtain, due to 6k+ I

O(- Fy~ + ,)(c(yk+ i)), limk ~ z',. ~ T : ~ + 1 = (3~ and lim k ~ .z,. k ~Yk+ i = Y, that

6~ ~ O (- F v ,) (c (y ,)). (19)

On the other hand, it is clear by Lemma 3.2 that Ak(y ,) ~ 0(-- Fy ,)(c(yk)). Moreover,

since the sequence c(y k) converges monotonically from below to c (y ,) , it follows by
the convexity of the function / x ~ - F , . (tz) and our previous observation A k (y ,) E
0(- -Fy .) (c (yk)) that Ak(y,)<~ Ak+i(y,)<~ . . . <~a, with a , ~O(-Fy~.) (c (y ,)) .
This implies limkT:~Ak(y ,) =: _4~(y,) exists and by the upper semicontinuity of the
point-to-set mapping /x ~ ~(- Fy~)(/x) we obtain that A (y ,) ~ ~(- F~) (c (y ,)). Since
we already observed that A (y ,) ~< a , for every a , E O(-F~ .) (c (y ,)) , it must follow
by Lemma 3.2 that

a,_(y ,) = min {yr, g (x) } . (20)

To conclude our analysis of the behavior of the sequence 1 - Ak(y ,) / 3 k + 1 as k--* zc,
observe by (19) and (20) that

(A k (y ,)) A k (y ,) A (y ,)
O~<limsup 1 6-~+ I = l - l i m i n f - - - 1 - - < 1 .

kT~ kT~ ~k+l 6,.

These observations yield the following result.

158 A ,I. Barro,v el aL / Mcuhema~i~'ul Pro e, ramming 72 r 1996) 147-175

L e m m a 3.3. If for every optimal solution y , of (Q), the optimization problem

y~: f (x)
(Q ,) rain

has a unique optimal solution, then the t~ew a&orithm con~erges superlinearl):.

Proof. It follows easily, from (19), (20) and Lemma 3.2, that lira sup equals zero. []

In order to guarantee the condition in fl~e above lemma we need to introduce the

following subset of quasiconvex functions [1].

Definition 3.1. The function q:Yg ~ ~ ~ is called strictly quasiconvex if for each

x I, x ~ ~ ' with x ~ 4 : x 2

for every 0 < A < i.

Observe by [i , Proposition 3.29] that min.~.~ ~ q (x) has a unique optimal solution if

q : 2 ~ ~ ~F{ is strictly quasiconvex. Hence we have proved the following result.

Corol lary 3,1. I f j o t every y ~ Z the f~mcticm c l : : Y ~ given by q (x) =
y T f (x) / y r g(x) is strictly/quasiconce_~, then the proposed algorithm converges super-
lip~early.

The next ler~mm establishes sufficient conditions to achieve strict quasiconvexity.

L e m m a 3.4. / J ' f : , ; ~ ' ~ ~'" is positive, strictly convex and g : ~ - -~ ~"~ is positive,
concat~e or ,f : ~ ' ~ ~ " is positive, convex and g :~"---+ [~'" is positive, strictly
concave, then)br every y ~ v the f i o 7 c t i o n q : 2 Z ' - + ~ given by q(x) = y r f (x) / y r g(x)
is strictly quasiconvex.

Proof. Clearly for every x~, x 2 ~ 5~" with xt ~ x~ and 0 < A < 1 it follows that

a y r f (x I) ~- (I - ,~)y l f (x.,.)
q(Ax L +(I - ,~)x,) <

" a y r g (x l) ~ (I - - A) . v~g{x ,)

) ~ y q f (x ,) / (y r g (x ,)) y ~ g (x ,) ~ (1 - A) y T f (x - _ .) / (y T g (x ~)) y T g (x . _)
=

A y T g (x j) - . (I - A) y V g (x :)

[Y l ~ f (x l) y r f (x : :)]
~< max ~ ,

\ y g (x l) y l g (x l) J
- max{q(x~ ~, q(x~)}. (21)

which completes the proof. []

A 1 Barros et al. / Mathematical Programming 72 (1996) I47-175 159

Note that if f : 2 2 ~' ~ JR" is strictly convex and g:7-~." ~ ~'" is positive and affine,

then the function q:2~:--+ [R given by q(x) = y q f (x) / y V g (x) is also strictly quasicon-

vex.

We will now discuss in more detail Step 1 of our algorithm. At the kth iteration, we

have to solve in Step I the optimization problem where p. := c(y k)

(Q,,) max min { y T (f (x) - - p . g (x)) } .

Unfortunately, solving this problem may take a lot of time, and this will influence the

practical applicability of the new method. On the other hand, when applying the

Dinkelbach-type algorithm we need to solve in each step the optimization problem (Pu)

which seems to be easier. However, under some reasonable assumptions it is possible to

relate an optimal solution xk+ i of (P,.(y,) to an optimal solution y~+, of (Qc(y~)). To

derive this relation, we assume that the nonempty compact convex set 2U is given by

x : = a d;rx I = l r , 0, , j= l ,},

where d t e R", 3't e IR, I = 1 r. and pj : [~" ~ [~. j = 1 s are convex and dif-

ferentiable functions.

Under our standard assumptions it is clear that problem (P~ly~) is equivalent to the

following convex programming problem:

(P~) rain t

s.t. q , (x) - t ~ < () . V i = 1 m,

&(x)~<o, V j = l s ,

di r x - TL <~ O, V l = 1 r.

with q i (x) : = f , (x) - c(yk)&(x), i = 1 m. To continue our analysis we assume,

besides the standard assumptions on the functions s and g~, i = 1 m, that these

functions m'e differentiable.

Let xk+ L and t~+~ be an optimal solution of the above problem, and define

I ' : = { 1 <~i~m: qi(xl~+l)=t~+l}, J ' : = { 1 <~j<~s:p./(xk+t)=O} and E : = { 1 ~<l~<r:

d~[xk+ t = Y/}- If some constraint qualification is satisfied, [4], then the K a r u s h - K u b n -

Tucker conditions ensure the existence of normegative scalars u~, i ~ I ' , v~, j e J ' . and

~, I e 12, satisfying

E bliVqi(Xk+l) q- E v;VP.i(xk~,) + ~ ~,d, = 0, 22)
i c l ' j~J ' l~i"

E ui = l , (23)
i~l '

(u r, vj,, ~c) >~ O. (24)

Observe, due to the special structure of tile problem (Pk), we only have to impose a

constraint qualification over the set of constraints :Z'. Moreover. since the above

problem is convex, Slater 's condition, i.e.. there exist some x 0 ~ [~" with dlrxo <~ y~, 1
= 1 r, and pj(x o) < 0 for every j = I ~, is such an example of a constraint

qualification [16]. Additional constraint qualifications can be found in [4,6,32].

160 A.I. Barros et al, / Mathematic al Programming 72 (1996) 147-175

Notice that the set l ' is nonempty due to the optimality of (xk+ i, t~+ ~). It is now

possible to relate the scalars u~. i E I ' tO an optimal solution of (Q,.(,.j).

L e m m a 3.5. I f some constraint qualification holds on Y , then an optimal solution ~ of
(Q,!y~)) is given by

0, (f / r
r I ' " . , , ~t ' i~ .

where u~ soh.,es the system (22)-(24).

Proof. From (23) and (24) it follows that .9 belongs to Z. Moreover. by the definition of

l ' we obtain that ~ ie I'.?'iq,(xk~ �9 i) - t,+ i. This yields by (7) that

Y ' .) ~ q , (x k + ,) = rain m a x { f , (x) - c (y k) & (x) } = m a x F (y , c (y k)) .
i ~ l ' .r~ ~ i ~ l y ~ V

It is left to show that `9 is an optimal solution of m a x s e ~ F (y , c(yk)). Since

mince ~ `gVq(x) is a convex optimization problem, the K a m s h - K u h n - T u c k e r condi-

tions are sufficient [16]. Clearly by the definition of 9 and (22)-(24) the vector xk+ I

satisfies these conditions, and thus x ~ 1 is an optimal solution of min,.~ .e .9rq (x) .
Hence, .9 e v satisfies

m a x F (y , c () ' t)) = E) , q , (x k , - ~) = F () . c (y~)) .
y ~ V i~- l '

and so 9 solves (Q (y~l). []

Due to numerical errors the system given by (22)-(24) may appear to be " incon-

sistent". To solve this problem, observe first that this linear system can be rewritten as

follows

A u + B a v + B 2 ~ = O , u ~ v . v, ~>~0.

Letting E := [AB~B2]V[AB~B2] and w = (u, v. _~), it follows that solving this linear

system corresponds to finding a nonnegative vector w E ~ where v :=

I I'1 + I J ' l +] E l , v,'ith the smallest ellipsoidal norm w~'Tg-Ew tinder the constraint that

its first I l ' l components belong to the unit simplex, or equivalently:

rain 4wrEw (25)

u ~ v , v, ~ > 0 . (26)

Clearly, in the presence of no numerical errors the optical objective value of this

problem is zero.
In order to conclude the discussion of the " 'dual" algorithm it is important to

consider a stopping rule for Step 2. Due to Lemma 3.5 and (7) a stepping rule can be

derived similarly as for the Dinkelbach-type algorithm. In fact, from [11. Proposition

2.2] it follows that stopping the "dua l " algorithm whenever F(izk)<~ ,:g(x~.), with
~, := c (y ,) the current iteration point and x a e :~g- an optimal solution of (P~,) and

g (x) := rain, ~ ~ g,(x) , yields 0 (O) - c(yk) ~< ~:- Observe that. for the Dinkelbach-type

A,1. Barros et al. / Malhematica t Programming 72 (1996) 147-175 161

algorithm the stopping rule corresponds to F(/x~) ~< e6 with 6 := min~ e z m i n ~
g~(x). Clearly, the same rule can also be used for the " d u a l " algorithm.

It is important to mention that in the special case of generalized linear fractional
progranmaing, i.e., the functions ~ , g~ involved are linear and the set ~g' is a nonempty
polytope, Step 1 reduces to solving a linear progrumrning problem, see [2].

4. A type-2 version of the new algorithm

Following the same strategy used to derive the Dinkelbach-type-2 algorithm we will
propose a variant of the new algorithm introduced in the previous section. Before
presenting this variant we introduce for x~ ~ JW the vector-valued functions f(k~ g(~)

given by f ,~k)(x) :=J-) (x) /g i (x k) and g}~)(x):= g,(x)/gi(xk). We can now define the
optimization problem

(Q(k~) max c(k)(y) ,
y~V

with

y-r flk)(x)
c"~(y) : = r a i n xe ~" y'r g~k)(x)

Denote by y(k), an optimal solution of the optimization problem (Q(~)). By similar
arguments as used in the previous section we obtain

[yTf(~(X)
c(~)(y~ ~) = maxc(k) (y) = max ~ rain t

f
= min max = min max

= xszmin maxi~l ~ =/x~ = c (y ,) , (27)

~md so for every y ~ ~ it follows that

c(~'(y) <~ c(k)(y!: ~) = i x* "
Similar to the approach used in the previous section consider the parametric problem

associated with (Q(~I) given by

(Q~k)) max F(~'(y, /z),
yCE

with

F")(y , ~,):= min { y V (f I ~ (x) - ~ g ' k ' (x)) } .

Let also Yk be an optimal solution of (Q~k~) with p. =- c/~- 1)(y k 1), i.e.,

Yk := a r g m a x F m (Y, g) .
y E N

162 A.I. Barros el a l . / Mathemul ic~d l ' rogrammi t lg 72 (1996) 1 4 7 - 1 7 5

In order to simplify the notation we will use. whenever there is no danger of confusion,
c ' (v ,) instead of c(~)(y,) and c'(y{~)) instead of c '<* . y , .

The equivalence relation established in (7) can also be derived for this case due to the
convexi ty /concavi ty assumptions of the functions f~* t g(tl for all k > 0. To be more
precise, it follows by Von Neumann's ra in-max theorem that

" y ~ V k x ~ _ -r " . I

=

x ~ -Y y ~ v

= min {max { . / J k ' (x) - c ' (y ~ _ t) g : k ' (x) } }

= F ' * ' (c ' ()), (2S)
with F{a) :~ + ~ the paranaetric function used in the Dinkelbach-type-2 algorithm.
However. while in the Dinkelbach-type-2 algorithm x a. is ~m optimal solution of

(P~ f~), the vector xa. in this variant must be an optimal solution of the fractional
programming problem

y ~ i f ' ~ - * ' (x)
c ' (y~ I) : = rain

.~ .~ y ~ _ ! g (a - l ~ (x) "

Observe thai clue to Lemma 2.1 this implies that c ' (y k) is the root of the parametric
equation Fr / z) = 0.

Assuming that the " sca l ing" points x k are obtained as described this variant of the
" 'dual" algorithm requires, as already observed, solving the parametric problem (Q~))
with /z = c ~ - ~(y~_ ~) to obtain the next iteration point y~. The modified algorithm is
described by the following procedure.

Algor i thm 4.1 (" D u a l " - 2 algorithm).

Step 0'. Take Y0 ~ Z and x 0 E 2~:
Compute c ' (y 0) and let x I be an optimal solution of c'(Y0);
Let /,':= 1;

Step 1'. Determine Yk := argmax.r ~ _,FC~i(_v. c"(ya_ .,)):
Step 2'. ~ f F/k)(y~. c ' (y k_ ~)) = 0

Then Ya is an optimal solution of (Q(~)) with value c'(y~_ ~) and Stop.
Else Goto Step 3':

Step 3L Compute c'(y~) and let x~,+ ~ be an optimal solution of c'(yk);
Let k := k + I and GoTo Step 1'.

As before we denote by k~ the number of times that Step 1' of tile "dua l " -2
algorithm was started. Clearly, if /," ~ equals + :c the " d u a l " - 2 algorithm does not stop
while for k finite it follows that / : ' fa '~(y, . , c ' (y , , j)) = 0 . Before discussing the
convergence of tile sequence c ' (y k_ ~). I; > 0, we introduce as in (10) the set

A.I. Barros et al. / Mathematical Programnffn.,4 72 (1996) 147- 175 163

with F~.k)(be) := F(k)(y, IX). If ~#k " X --+ N'" is given by

(y y)T
, M y) := g , (x ~) g,~(.~------7 '

then clearly 2U~k)(be) = z~(y)(/,t) and c(~(y) = c(~#a(y)). Moreover, if O~ " -Qk ~ JR'"
with ..Qk := {y ~ [R"+: yTg(x k) > 0} is given by

~O,(y):=(y'g '(xa) Y,,, g,,,(x*:)) T
yig(xk) jTg(Xa.) '

then it is easy to show that y , is an optimal solution of (Q) if and only if y , E E and
~#k(Y,) is an optimal solution of (Q(k~). This observation implies that there exists for
any optilnal solution y(~) of (Q(k~) some optimal solution y , of (Q) satisfying
y!~ = ~#~(y,). Letting

A[.k) , (y) := max{yTg(*)(x): x ~ ~ ') (c'(Yk-,))} ,

it follows that

k~,(y! , f ')=max{,/ ,k(y.)rg(k'(x): x E :,~(k',#~(s ,(c'(y~_ ,))}

' (,)} yV.g(xk)max y ~ g (x) : x E 4~,~(~; . .)) (c(y k ,)

1
_ r J

YI~ g (x k) max{y~ g(x): x ~ ;~y~(C (y~_ ,))} , (29)

whenever y!~)= ~/,~(y,). Also, if

6if) := min{yTg(~'(x): x ~ 27ff)(c'(ya))} ,

we obtain that

~ff)= rain{ q~, (y ,) T g (x): x ~ ~ ; d y~,(c(9%(Yk)))}-

Observe now the function F (~) " ~ ~ IR, for k and v fixed, has the same propemes as - - y �9

the function Fy considered in the previous section and so as m Lemma 3.2 we obtain

a(-F;*,)(be) = [m~n {yTg(,,(,4}, m a ~

I . ~ ~ , ~ **> ~-~ ~r-~,~,(.~

Clearly, by this result we have that

aL' , (y) ~ a(-F;k')(c '(y~_,)),

,(k) , =,3(~ff~ e '3(-F_;,)(c (y,)) -F<{,.,,)(c(,f,(y,,))).

{yrg'k'(x)}]. (30)

(31)

(32)

It is now possible to prove the following result. Observe the proof of this result
resembles the proof of Theorem 3.1.

164 ,4.1. Barros et al. / Mathematical Programming 72 (1996) 147-] 75

Theorem 4.1. The sequence y~, 0 <~ k < k ~, generated by the "&r algorithm does

not contain optimal solutions of (Q) and the corresponding function values c ' (&) ,

0 ~ k < k *, are strictly increasing. Moreover. if k ~ is finite, it fol lows that c ' (y , .) =

iz ~ , while for k ~ equals + z . lim~ r~c'(y~)= Iz ~ . In particular, the inequality

) 0 ~ < / z * - c ' (y ~) ~ < 1 6~) (I - ~ * - c ' (y ~ . _ ,)) (33)

holds for every k >~ 1 with y~) an optimal sohttion o[(Q(~)).

Proofi The proof of the first part of tiffs result is similar to the first part of the proof of
Theorem 3.1 and thus it is omitted.

To verify that lira k T.~c'(ya) exists for k ~ = + ~ and that (33) holds we observe the

following. Since for k* = +~c, the sequence {c'(yk)} , > 0 is strictly increasing it follows

that lima ~:~c'(y k) . exists. Moreover. if .r is an optimal solution of (Q(k)) we obtain
due to (31) and c'(y~:~ ~) = / x " that

(y , �9 / z ') - F * ~ ' (y ' , ~', - _ ,

Using F(k)(y~k:), /x ~) = 0 this implies that

F(~)(y, , c ' (y k _ t)) = maxF(k)(Y, c ' (y k _ ,)) > F~a"(Y!~f'. e ' (y k _ l))
y r

> (t x* - c ' (y k_ l)) A ~ t (y ! ~ ') . (34)

Also, by (32) we obtain that

F(k'(yk, c'(y~_ ,)) : t:'k'(yk, c'(y~_ ,)) - F'k ' (yk, c ' (Yk))

< (c ' (y k) - c ' (y k ,))cS~ k,. (35)

Combining the above inequality with (34) yields

a ~ ' (c ' (y a .) - c ' (y k ,)) > (t x ~ - c ' (y ~ ~)) k ~ , (y ' , ~) . (36)

By this inequality it follows that lim~ r . .c ' (ya)=/ . t ~ and (33) is an easy consequence.
[]

As for the "dua l " algorithm discussed in Section 3 it is important to investigate
under which conditions flais "dua l " -2 algorithm has superlinear convergence. As we
will next show the sufficient condition established in Lemma 3.3 for the " d u a l "

algorithm yields for this variant the same convergence rate result.

Lemma 4.1. I f for eveo, optimal solution y , of (Q) the optimization problem (Q ,) has
a unique optimal solution, then the " d u a l " - 2 algorithm converges superlinearly.

--:~ := xlk) Since (y~,, x k) belongs to the compact set v • Proof. Let ,S ~ lira sup~ ~ .. v k . _,

one can find a subsequence ~ c_ b-'d such that

lim 6~ ~) ~) :=&~ , lira Yk :=Y~E~ ' , lim x k : = x ~ E y ,
k ~ , ~ . k T ~r kE3U,k T Y-- k ~ Y , k T ~

A.I. Barros et o l . / M a t h e m a t i c a l Programming 72 (1996) 147-175 1 6 5

lim
k c Z , k T

and so it follows that lim,~.~V.k~:~q~k(yk)= V.:. with p.~i:=3~i/gi(x~:) for every i =
1 m. By Theorem 4.1 we know that the sequence c'(y,)=c(~,(y~)), k>O
converges to /~* and hence ~(v_~e)-~ is an optimal solution of (Q), where e =
(1 1) v. Take now for every k > 0 the vector 4,,(v-:.). This vector solves (Q(kl) and
by (29)

1
k~k_~,(,p,(v . .)) - v :g(xk) max{ vTg(X): XE .gZ~ (C"(yk_ ,))} .

Since c'(y k_ ~) is increasing we obtain by a similar argument as used in the previous
section to derive the superlinear convergence rate of the "dua l " algorithm that as k 1" ~,

max{ u~Vg(x): x E ~r (Yk-L))}

converges to

min{ v : g (x): x ~ ~',, (p.*)}.

Due to l im,e~..**~ x k = x~ this yields by the definition of v:, that

= 1

and hence

lim A ~ I (~ , (u . ~)) =min{ufg(x): x ~ Y~(/**)}. (37)
k ~..,Tf .k T ~

Moreover, since by (32) 6~ ~ E 0(-F~,{y,))(c(q~k(y,))) , we obtain by the upper semicon-
tinuity of the mapping y ~, O(- Fy)(c(y)) that

8~ (:~' E ~ (- X,,=)(/.t*). (38)

Using now Theorem 4.1, it follows that

. * - c ' (y .) < l- -
v k

Combining the above inequality with (37) and (38) and the unicity assumption of the
optimal solution of (Q .) yields the desired result. []

Similar to the " d u a l " algorithm, the "diff icul t" problem in Step 1' can also be
solved as described in the previous section.

Finally, it is left to consider stopping rules. Since the scaled algorithms consider a
scaled parametric function the stopping rule has to be adjusted accordingly. For instance,
in the Dinkelbach-type-2 algorithm Ferland and Potvin [14] use as stopping rule
g//gik(Xk), where i k ~ I is the index where the maximum is attained in problem (Pu(~ - i))
in Step 2'. Using the approach described at the end of the previous section, a similar rule
can be derived for the "dua l " -2 algorithm.

166 A.I. Barros et al. / Mathematical Programming 72 (1996) 147-175

5. Numerical results

In order to test the efficiency of the " d u a l " method we compared it with the extension
of Dinkelbach's method to several ratios.

In the test problems considered the numerator of the ratios are quadratic functions
1 T aTx + bi, and the denominator are linear functions, gg(X) := cV~x + d i. J)(x) := 5x Hix +

The quadratic functions, j), are generated in the following way.

�9 In the linear term each element of the vector a~ is uniformly drawn from
[- 15.0, 45.0]. Similarly b i is drawn uniformly from [- 30.0, 0];

�9 The Hessian is defined by H, := L~UiLVl where L i is a unit lower triangular matrix
with components uniformly drawn from [- 2 . 5 , 2.5] and U i is a positive diagonal
matrix, with elements uniformly drawn from [0.1, 1.6]. When a positive semidefinite

Hessian is required the first component of the diagonal matrix is set to zero.
The linear functions, g~, are constructed using a similar procedure: each element of

the vector c~ is uniformly drawn from [0.0, 10.0]. Similarly di is drawn uniformly from
[1.0, 5.0]. Finally, the feasible domains considered are the following:

j = l

~ ' ~ ' 2 : = { x ~ n : E X j < ~ I , E x j ~ I , x j > ~ O , j = I n}, (39)
jcJ, J~J2

where Ji := {l < j<~ n: j is odd} and J2 := {1 ~<j< n: j is even}.
Both methods were implemented in Sun Pascal, linked to a pair of existing routines

written in Sun FORTRAN and ran on a Sun Sparc System 600 using the default double
precision (64-bit IEEE floating-point format) real numbers of Sun Pascal and FORTRAN.
Both compilers were used with the default compilation options.

For the minimization of the maximum of quadratic functions with linear constraints
we used the bundle trust method coded in FORTRAN [20]. In the " d u a l " type algorithms
Step I is solved by computing the corresponding minimal ellipsoidal norm problem, see
Section 3. The fractional programming problem that occurs in Step 0 and 3 of the
algorithm is solved by Dinkelbach's algorithm [13]. The code used to solve the above
quadratic problems is an implementation in FORTRAN of Lemke ' s algorithm [23].

In the " d u a l " - 2 algorithms we used in Step 0 yT := (1 /m 1/m). In order to

have similar starting points in both the algorithms tested we take in Step 0 of the
Dinkelbach-type algorithm:

yTof (x)
kL 1 := c(YO) = rain

x ~ y~g(x)

On the other hand, for the " d u a l " - 2 algorithm we used x~ := (0 0). As for the
Dinkelbach-type-2 algorithm we used in the initial step:

.F r ~e(O)i x)
0 J t,

~1 := cm)(Y0) = rain x ~ y~glOl(x)

A.I. Barros et al. / Mathematical Programming 72 (1996) 147-175 167

Table I
.gF~ and strictly quasiconvex ratios

Problem Dinkelbach " Dual" Stat.

T n m It %Par Sec It %Fr %Par %KS Sec %A %lmp

I 5 5 8 99.5 0.88 3 I I. 1 85.0 3.9 0.65 32.0 26.5

2 10 5 10 99.9 9.83 3 8.1 91.1 0.6 4.08 64.0 58.5

3 15 5 9 99.5 14.62 3 18.0 79.9 1.9 7.57 44.0 48.2

4 20 5 8 99.9 35.32 3 9.1 90.2 0.7 21.25 64.0 39.8

5 5 10 8 99. I 2.42 4 17.5 79.1 1.9 0.54 22.0 77.7

6 10 10 13 99.6 10.94 4 10.3 88.2 1.1 4.55 36.0 58.4

7 15 10 9 99.7 18.99 3 10.0 88.6 1.2 11.57 36.0 39.1

8 20 10 10 99.7 47.50 3 9.9 89.2 0.7 25.09 34.0 47.2

9 5 I5 8 99.3 3.40 3 9.4 90.1 0.5 1.02 13.3 70.1
10 I0 15 11 99.4 I 1.17 3 10.4 88.1 1.3 4.79 29.3 57.1

11 15 I5 9 99.6 24.45 3 9.9 88.9 0.9 14.23 28.0 41.8

12 20 I5 I1 99.7 68.96 3 9.5 89.7 0.7 28.65 34.7 58.5
13 5 20 9 97.1 1.59 4 11.0 85.8 2.3 1.01 15.0 36.7

14 10 20 1I 99.2 [3.73 4 10.4 88.2 1.2 5.49 21.0 60.0
15 15 20 I 1 99.5 34.85 4 9.0 89.7 0.9 15.0I 24.0 56.9

16 20 20 13 99.6 74.75 3 9.6 89.5 0.7 34.91 31.0 53.3

The tolerance used in Step 2 of the Dinkelbach-type and " d u a l " algorithms was

c := 5 X 10 -6 see Section 3. For the type-2 variants we considered e X gi. (xk) where

((k-17 2', i k E I is the index where the maximum is attained in problem P~) in Step see

Section 4.
In Tables 1-4 we summarize the results of our computational experience comparing

the "dual" algorithm with its "primal" counterpart, the Dinkelbach-type algorithm. We

Table 2
~'~2 and strictly quasiconvex ratios

Problem Dinkelbach - Dual" Stat.

T n m It %Par Sec It %Fr %Par %KS Sec %A %lmp

1 5 5 7 99.4 2.10 2 12.3 85.4 1.7 0.79 32.0 62.5
2 10 5 1 I 99.9 12.46 3 9.0 90.1 0.9 5.63 68.0 54.8
3 15 5 9 99.7 21.79 3 11.2 87.9 0.8 I 1.46 64.0 47.4
4 20 5 9 99.9 41.48 3 9.7 89.7 0.6 21.88 72.0 47.3
5 5 I0 I l 99.7 2.47 4 12.1 85.4 2.6 0.87 22.0 64.9
6 10 I 0 12 99.5 11.65 3 8.8 90.3 0.7 5.45 38.0 53.2

7 15 I0 12 99.8 37.65 3 8.2 91.2 0.6 16.82 52.0 55.3
8 20 I0 10 99.8 59.19 3 9.7 89.7 0.6 31.12 48.0 47.4
9 5 I5 9 96.9 1.64 3 15.6 81.3 3.2 0.77 14.7 53.4

10 10 I5 11 99.6 15.34 3 7.7 91.6 0.7 6.98 34.7 54.5
I 1 15 15 9 99.6 29.01 3 8.7 90.4 0.7 17.13 37.3 40.9
12 20 15 I0 99.7 70.48 3 9.1 90.2 0.6 35.10 40.0 50.2

13 5 20 8 98.1 1.92 4 12.9 85.4 0.9 1.14 11.0 40.6
14 10 20 I I 99.4 13.93 3 8.1 90.7 0.8 7.56 21.0 45.7

15 15 20 13 99.4 37.44 3 8.9 90.1 0.8 16.46 28.0 56.0
16 20 20 11 99.6 80.45 3 7.9 91.5 0.5 38.41 31.0 52.2

168

Table 3
~'L and semistrictly

A.l. Barros et a l . / Mathematical Programming 72 (1996) 147-175

quasiconvex ratios

Problem Dinkelbach "" Dual'" Star.

T n m It %Par Sec. It %Fr %Par %KS Sec %A %lmp

1 5 5 8 98.0 0.61 5 11.9 80.7 7.5 0.46 60.0 24.5
2 10 5 14 99.5 7.14 3 10.8 87.1 2.1 2.13 56.0 70.2
3 15 5 10 99.7 17.93 3 9.7 88.9 1.2 8.71 64.0 51.4
4 20 5 11 99.8 35.81 3 9.5 89.4 1.0 17.40 52,0 51.4
5 5 10 12 98.2 2.06 4 9.5 85.1 5.4 0.99 30.0 51.7
6 10 10 9 99.6 12.72 4 6.0 92.4 1.3 5.83 26.0 54.1
7 15 10 11 99.6 20.66 3 7. I 91.4 1.3 8.26 34.0 60.0
8 20 10 12 99.7 61.48 3 7.9 91.1 0.9 27.81 52.0 54.8
9 5 15 7 99.8 2.48 4 5.3 93.2 1.5 2.20 13.3 11.2

10 10 15 II 99.6 12.22 3 6.8 91.8 1.I 4.38 26.7 64.1
I I 15 15 I0 99.6 35.82 3 6.8 92.3 0.9 16.76 30.7 53.2
12 20 15 l l 99.6 66.91 3 8.l 9(/.8 0.9 28.56 33.3 57.3
13 5 20 II 98.1 2,03 4 13.3 81.4 2.2 0.9I 13.0 55.0
I4 10 20 I l 99.0 14.90 4 9.4 88.0 1.8 6.03 19.0 59.5
15 15 20 12 99.3 34.66 3 7.8 90.6 1.3 13.18 29.0 62.0
16 20 20 II 99.6 81.23 4 6.0 93.1 0.6 37.68 24.0 53.6

a lso p r e sen t in T a b l e s 5 and 6, fo r the s a m e test p r o b l e m s , a s u m m a r y o f the

c o m p u t a t i o n a l r e su l t s o b t a i n e d wi th the type -2 va r i an t s o f these t w o m e t h o d s . F o r each

pair (n , m) , w h e r e n is the n u m b e r o f va r i ab l e s and m the n u m b e r o f ra t ios , f ive

u n c o r r e l a t e d i n s t a n c e s o f the p r o b l e m w e r e g e n e r a t e d and so lve d by the fou r a l g o r i t h m s .

Hence , the en t r ies on these tables are a v e r a g e s o f the c o r r e s p o n d i n g va lues . E a c h c lass

o f these test p r o b l e m s is ident i f ied by the n u m b e r in c o l u m n T. The c o l u n m s u n d e r

Table 4
~2 ,and semistrictly quasiconvex ratios

Problem

T n

Dinkelbach "" Dual" Stat.

rn It %Par Sec It %Fr %Par %KS Sec %A %Imp

1 5 5 8 98.5 0.50 7 19.7 77.6 2.0 0.61 52.0 -21.8
2 10 5 12 99.4 8.62 3 15.0 81.8 3.0 2.40 64.0 72.2
3 15 5 9 99.9 37.11 3 7.3 92.0 0.7 21.03 72.0 43.3
4 20 5 I 1 99.8 47.47 3 8.7 90.6 0.7 26.15 80.0 44.9
5 5 I 0 12 99.9 2.98 5 13.6 82.0 4.2 1.07 32.0 64. I
6 10 10 9 99.2 11.61 3 12.5 86.6 0.9 3.89 30.0 66.5
7 15 10 11 99.6 24.42 3 9.0 89.5 1.3 12.07 42.0 50.6
8 20 10 10 99.8 69.70 3 7.7 9I .7 0.5 38.87 58.0 44.2
9 5 15 9 99.3 4.62 4 13.6 82.4 2.7 1.13 17.3 75.6

10 10 15 10 99.6 13.76 3 9.5 89.3 0.9 5.65 29.3 59.0
11 15 15 12 99.7 51.50 3 6.5 92.8 0.6 22.18 33.3 56.9
12 20 15 10 99.7 71.50 3 8.3 91.1 0.5 35.82 38.7 49.9
13 5 20 14 98.8 4.15 4 13.6 82.3 2.9 1.13 14.0 72.9
14 10 20 10 99.3 16.38 3 7.9 90.7 1.1 6.82 21.0 58.3
15 15 20 11 99.6 43.66 3 6.7 92.6 0.6 20.32 29.0 53.5
16 20 20 11 99.7 97.39 4 7.2 92.2 0.5 45.49 31.0 53,3

A.I. Barros et al. / Mathematical Programming 72 (1996) 147-175

Table 5
Strictly quasiconvex ratios

I69

Problem ~ j

7" Dinkel-2 "Dual -2" Dinkel-2 "'Dual-2"

It Sec It Sec It Sec It Sec

1 5 0.70 3 0.71 6 1.88 3 1.10
2 6 7.64 3 4.66 6 11.93 3 6.45
3 5 I 1.85 3 8.75 6 18.43 3 I 1.79
4 5 31.66 3 20.68 5 31.94 3 20.80
5 5 0.61 3 1.45 6 1.23 3 0.76
6 6 6.31 3 4.34 6 6.29 3 5.78
7 6 15.52 3 12.46 6 22.96 3 17.40
8 5 39.92 3 31.60 5 41.42 3 31.12
9 6 2.66 3 2.04 6 1.20 3 1.73

10 6 17.94 3 6.61 6 10.17 3 7.47
11 6 22.16 3 I3.84 6 29.13 3 17.12
12 6 49.19 3 33.98 6 53.88 3 34.28
13 5 1.25 4 1.02 5 1.55 3 1.28
14 6 7.49 4 8.09 6 9.58 3 10.54
15 6 23.60 4 17.74 6 23.24 3 15.05
16 6 50.08 3 31.30 6 56.27 3 40.03

D i n k e l b a c h a n d D i n k - 2 r e p o r t the r e s u l t s o b t a i n e d u s i n g file D i n k e l b a c h - t y p e a n d t he

D i n k e l b a c h - t y p e - 2 a l g o r i t h m fo r s e v e r a l r a t ios . S i m i l a r l y the c o l u m n s u n d e r " D u a l "

a n d " D u a l 2 " r e p o r t the r e s u l t s o b t a i n e d u s i n g t he " d u a l " a n d the " d u a l " - 2 a l g o r i t h m .

In t he c a s e o f " D u a l " t w o e x t r a c o l u m n s a re p r e s e n t e d c o n c e r n i n g the m a i n s t e p s o f th i s

Table 6
Semistrictly quasiconvex ratios

Problem ~ t 8 2

7' Dink-2 ' D u a l - 2 " Dink-2 "" Dual-2"

It Sec It Sec It Sec It Sec

1 5 0.47 6 0.85 5 0.47 6 0.83
2 6 3.17 3 2.39 7 5.39 3 3.86
3 6 12.75 3 10.45 6 27.19 4 24.00
4 5 20.15 3 13.90 6 33.61 3 23.12
5 6 1.62 4 1.96 6 1.82 5 1.23
6 5 8.20 3 9.71 6 12.56 3 5.89
7 5 15.05 3 10.28 5 16.64 3 I4.13
8 6 34.40 3 30.67 6 44.47 3 37.54
9 6 3.84 4 2.32 6 4.92 4 1.65

I 0 6 8.36 3 5.33 6 10.63 3 6.20
11 6 26.45 4 19.55 6 37.02 3 21.39
12 6 52.06 3 30.98 6 61.34 3 31.41
13 6 1.16 4 2.00 6 1.63 4 1.49
14 6 11.13 4 6.92 6 13.83 3 9.09
15 6 19.40 3 15.17 6 29.43 3 22.56
16 6 57.39 4 39.34 6 72.43 3 50.53

170 .4.I. Barros el al. / Mathematical Programming 72 (1996) 147-175

algorithm. Hence, colunm %Fr refers to the percentage of the time used to compute the
next iteration point, i.e. c(yk), while column %KS refers to the percentage of the time

used to solve the Karush-Kuhn-Tucker system and thus obtaining Yk+ i, see Section 3.
Finally, colunm %Par refers to the percentage of the time used for optimizing the

parametric function F(t-t). Moreover, the column It refers to the number of iterations
performed by the corresponding algorithm, while colunm See refers to the average

execution time in seconds of the Sun Sparc System 600 workstation measured by the
available standard c l o c k function of the Sun Pascal library. This measures the elapsed
execution time from the start to the end of the corresponding method, excluding input
and output operations.

We will start by presenting and analyzing the results using the simpler versions of the

two methods, i.e., the "dual" and Dinkelbach-type algorithm. For these cases, the tables
also include the colunm Stat. which contains under column %A the percentage of active
ratios of the test problems and under colunm c,,'~Imp the percentage of improvement in

it Dinkl r Dink2 [] Duall �9 Dual2 x
14

I2-

10- o
�9

6- []

4 (_ [] []
i ~ I lit

') i i r
2 3 4

�9 0 0 0
0

�9 0 O
o o

O ~ 0 ~ 0 0 D O
[] [] []
o o I ~ I

i l l l t i
5 6 7 8 9 10 lrl 1~2 lJ3 1~4 15 16

problems

sec Dinkl ~ Dink2 ~ Duall ~ Dual2 -x---
80-

70-

60-

50-

40-

80-

20-

10-

01
1 2 3 4 ..'5 6 7 8 9 I0 11 12 13 14 I5 i6

problems

Fig . 2, St r ic t ly q u a s i c o n v e x ra t ios and feas ible set ~ r

A.I. Barros et al. / Mathematical Programmi,zfi 72 (1996) 147-175 171

total execution time of the "dual" type algorithm over the Dinkelbach-type algorithm,
i.e. (1 - Time(Dual)/Time(Din)) • 100.

Tables 1 and 2 contain the results obtained for test problems where tile quadratic

functions f~ are strictly convex. In these cases the convergence rate of the "dual"
algorithm is superlinear, see Corollary 3.1.

Although each iteration of the "dual" algorithm is more "expensive" in terms of
execution time this extra effort is compensated in the total time used. However, the

behavior of the "'dual" algorithm seems to be affected by the type of constraints in the

feasible set. Indeed when the constraint set is more restrictive (S ,) the performance of
the "dual" algorithm is slightly better. Observe that this phenomenon also occurs for
the Dinkelbach-type algorithm.

From the results contained in Tables I - 4 it is clear that the "dual" algorithm has a

better performance than the Dinkelbach-type algorithm, not only in terms of the total
number of iterations but also in total time, see %Imp.

it Dinkl o Dink2 [] DuM1 �9 Dual2 x
14

12-

10-

8-

64

4-

2

0 0
0 0 9'

0
0 0 0 0

O [] [] []

0

e

x

i l ~ 5 6

I I

i

3

r

o

r

[] 0 0 0 0 O 0

0 []

8 9 I'0 l ' l 1'2 i'3 14 i'5 16
problems

sec Dinkl -e-- Dink2 ~ Dual l ~ Dual2 +e---
90

80-

70-

60-

50-

40-

30-

20-

I0-

0 ~
2 3 4 5 6 7 8

i i

lO ii 12 13 14 15 16
problems

Fig . 3. St r ic t ly q u a s i c o n v c x ra t ios and feas ib le set -.~

172 A.I, Barros et al. / Mathematical Programming 72 (1996) 147-175

Moreover it is also important to remark that even when superlinear convergence

cannot be guaranteed, the "dua l " algorithm appears to have a better performance than

the Dinkelbach-type approach, see Tables 3 and 4.

The results obtained with the type-2 variants of these methods are contained in Tables

5 and 6. Since the total computational time used by the "dua l " -2 algorithm appeared to

be distributed in a similar way as for its original version these tables are presented in a

more condensed form.

From Tables 5 and 6 it appears that in terms of iterations the "dua l " -2 algorithm is

better than the Dinkelbach-type-2 algorithm. This tendency is also confirmed in terms of

total execution time. Moreover, even for the test problems with semistrictly quasiconvex

ratios the "dua l " -2 algorithin appears to dominate the Dinkelbach-type-2 algorithm.

In order to compare and relate the behavior of tile four algorithms we plotted, for the

four classes of problems, the number of iterations and total execution time, see Fig. 2 -5 .

In these figures the x-coordinates, p r o b l e m s , denote the problem type as designated in

it
14

12-

10-

8-

6"

2

sec

90

80-

70-

60-

50-

40-

30-

20-

10-

O~

Dinkl o Dink2 D DualI �9 Dual2 x
o

�9 0

�9 0 O 0 0

0

0

o

D D 0 D D D D O O O D

D D D

~ e I X K ~

I I I X I I I O I I

l l I l l l i
2 3 4 5 6 7 8 9 l'0 I'1 {2 ii3 114 I~5 16

problems

Dinkl .o-- Dink2 ~ Duall ~ DuM2

i i i i i i i i i i i

2 3 4 5 6 7 8 g 10 11 12
p r o b l e m s

13 14 15 16

Fig. 4. Semistrictly quasiconvex ratios and feasible set L~' t.

A.I. Barros e ta I / Mathen a tica I Programming 72 (1996) 147- 175 173

Tables 1-4, while y-coordinates denote in the first picture the number of iterations it

and in the second the total execution time s e c .

As expected the Dinkelbach-type-2 algorithm dominates, both in iteration number
and execution time, the Dinkelbach-type algorithm. On the other hand, the "dual"-2
algorithm does not produce significant improvements on the behavior of the original
"'dual" algorithm. This may be explained by the fact that the "dual" algorithm is by
itself more robust and "powerful" than its primal counterpart. As Figs. 2-5 show, there
are no significant differences between the "dual" type algorithms. In fact, only for the
feasible set ~ l it appears that the "dual" algorithm is slightly better in terms of
execution time that its variant. For the case of the feasible set ~ 2 these differences are
more attenuated. Unexpectedly, the original version of the "dual" algorithm dominates
the Dinkelbach-type-2 algorithm both in terms of iterations and execution time.

i t
14

12-

10-

8-~
J

6-

2

Dinkl 0 Dink2 [] Dua, ll �9 Dual2 x
o

0 0 O
0 0 0

0 0 0 0
0 0 0

0 0 D D D 0 0 0 D 0 O 0

O

�89 ; ; ; ; + 8 ; 1'0 1'1 lt2 1'3 14 1'5 16
problems

sec Dink l -o-- Dink2 ~ Dual1 ~ Dual2 -k'--
100-

90-

80-

70-

60-

50-

40-

30-

20-

10-

0!
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

pr,oblems

Fig . 5. Semis t r i c t l y q u a s i c o n v e x ra t ios and f eas ib le s e t / ~ z .

174 Ad. Barros et al./ Mathematical Programmine 72 (1996) 147-175

Figs. 2 - 5 also shove the n u m b e r of rat ios has a dec is ive in f luence in the b e h a v i o r of

the ~ a lgor i thms , D i n k e l b a c h - t y p e and D i n k e l b a c h - t y p e - 2 a lgo r i t hms '~. This

effect is a lso no t i ceab le for the " ' d u a l " type a l g o r i t h m s a l though at a sma l l e r scale.

A c k n o w l e d g e m e n t s

The au thors like to thank J. Outra ta , H. S c h r a n n n and J. Z o w e for m a k i n g the bundle

thrust code avai lable , J. G r o m i c h o for his r emarks and sugges t ions on an ear l ie r vers ion

of this pape r and the a n o n y m o u s referee w h o sugges t ed the scaled ve r s ion o f the " ' d u a l "

a lgor i thm.

References

[1] M. Avriel, W.E. Diewert, S. Schaible and I. Zang. Generalized ConcaL, ity, Mathematical Concepts ,and
Methods in Science and Engineering. Vol. 36 (Plenum. New York, 1988).

[2] A.I. Barros, Discrete and Fractional Programmbzg Techniques./?~r Location Models, Tinbergen Institute
Research Series, Vol. 89 (Thesis Publishers. Amstcrdam. 1995).

[3] A.I. Barros and JB.G. Frenk. "'Generalized fractional programming and cutting plane algorithms."
Journal oj Optimization Theory and Applications 87 ({ 995) 103-120.

[4] M.S. Bazaraa, H.D_ Sherali and C.M. Shetty. Nr Programming: Theory and Alg~rithms (Wiley,
New York. 2nd ed., I993).

[5] Y. Benadada, "'Approches de rdsolution du probl~me de programmation fractionnaire gdnrralisre,'" Ph.D.
Thesis (Drpartment d'Informatique et de Recherche Oprrationelle, Universit6 de Montrr.al, 1989).

[6] A. Ben-Israel, A. Ben-Tal and S. Zlobec, Optimality in NoJdinear Programming (A Feasible Directions
Approach) (Wiley, New York, 1981).

[7] J.C. Bernard ,and J.A. Ferland, "'Convergence of interval-type algorithms for generalized fractional
programming," Mathematical Programming 43 (1989) 349-364.

[8] B.D. Craven, Fractional Programming (Heldermann, Berlin, 1988).
[9] J.P. Crouzeix and J.A. Ferland, "Algorithms for generalized fractional programming," Mathematical

Programming 52 (1991) 191-207.
[10] J.P. Crouzeix, J.A. Ferland and S. Schaible, "'Duality in generalized linear fractional programming,"

Mathematical Programming 27 (1983) 342 354.
[11] J.P. Crouzeix, J.A. Ferland and S. Schaible, "'An algorithm for generalized fractional programs,"

Journal of Optb~tizatian Theory and Appficati~ms 47 (19S5) 35-49.
[12] J.P. Crouzeix. J.A. Ferland and S. Scbaible, ' A note on an algorithm for generalized tractional

programs." Journal c~[Optm~izatio~t Theot2v and Applications 50 (1986) 183-187.
[13] W. Dinkelbach, "'On nonlinear fractional programming," Management Science 13 (1967) 492-498.
[14] J.A. Ferland and J.Y. Potvin. "Generalized fractional programming: Algorithms and numerical experi-

mentation," European Journal of Operational Research 20 (1985) 92-101.
[15] J. Flachs, "'Generalized Cheney-Loeb--Dinkelbach-type algorithms," Mathematics ~f Operations Re-

search 10 (1985) 674-687.
[I6] J.B. Hiriart-Urruty and C. Lemardchal, Convex Analysis and Minimization Algorithms I: Fundamentals,

Vol. I (Springer. Berlin, 1993).
[17] T. lbaraki, "'Parametric approaches to fractional programs," Mathematical Programming 26 (1983)

345-362.

4 Recalt that the problem types are ordered in the x-axis by the number of ratios.

A.I. Barros et al. / Mathematical Programming 72 (I 996) 147-175 175

[18] T. Ibaraki, H. Ishii, J. lwase, T. Hasegawa and H. Mine, "Algorithms for quadratic fractional
programming problems," Journal of the Operations Research Society of Japan 19 (1976) 174-191.

[19] R. Jagannathan and S. Schaible, "Duality in generalized fractional programming via Farkas' lemma,'"
Journal of Optimization 77~eory and Application 41 (1983) 417-424.

[20] J. Outrata, H. Schramm and J. Zowe, "Bundle trust methods: Fortran codes for nondifferentiable
optimization, User's guide," Technical Report 269 (Mathematiscbes lnstitut, Universit,it Bayreuth, 1991).

[21] E. Polak, "On the mathematical foundations of nondifferentiable optimization in engineering design,"
SIAM Review 29 (1987) 21-89.

[22] B.N. Pschemchnyi, Necessary Conditions./'or an Extremum (Marcel Dekker, New York, 1971).
[23] A. Ravindran, "A computer routine for quadratic and linear programming problems," Communications

o]'the ACM 15 (1972) 818.
[24] A.W. Roberts and D.E. Varberg, Convex Functions (Academic Press, New York, 1973).
[25] R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, N J, 1970).
[26] R.T. Rockafellar, "Generalized subgradients in mathematical programming," in: A. Bachem, M.

Gr~3tschel and B. Korte, eds., Mathematical Programming. The State of the Art (Springer, Berlin, 1983)
ch. 2. pp. 368-390.

[27] S. Sehaible, "'Fractional programming," Zeitschrift jSJr Operations Research 27 (1983) 39-54.
[28] S. Schaible and T. Ibaraki, -Fractional programming," (Invited Review), European Journal o.kOpera-

tional Research 12 (1983) 325-338.
[29] N.Z. Shor, Minimization Methods j.or Non-difJerentiable Functions, Computational Mathematics, VoL 3

(Springer, Berlim 1985).
[30] M. Sion, "On general minimax theorems," Pacific Journal of Mathematics 8 (1958) 171 - 176.
[31] J. Werner, "'Duality in generalized fractional programming," in: K.H. Hoffman, J.B. Hiriart-Urruty, C.

Lemar~chal and J. Zowe, eds., Trends in Mathematical Optimization, International Series of Numerical
Mathematics (Birkh~iuser, Basel, 1988) pp. 197-232.

[32] Z. Zhou, F.S. Mokhtarian and S. Zlobec, "A simple constraint qualification in convex programming,"
Mathematical Programming 61 (1993)385-397.

