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BONE MASS ASSESSMENT TECHNIQUES IN CHilDREN 

1.1 INTRODUCTION 

It has been known for many years that early detection of osteoporosis is 

important for predicting its progression and response to therapy. Detection and 

monitoring of osteoporosis is essential because they have a major impact on 

morbidity. mortality and financial costs'. In 1994 the World Health 

Organization defined osteoporosis as "a disease characterized by low bone mass 

and a micro-architectural deterioration of bone tissue. leading to enhanced 

bone fragility and a consequent increase in fracture risk" '. Considerable 

progress in the development of new. noninvasive techniques for assessing the 

bone quantity and quality makes early detection of osteoporosis possible'. 

These new methods make possible a better understanding of the development 

of osteoporosis and therefore can give an opportunity to prevent osteoporosis. 

Some studies suggest that the best prevention of osteoporosis is to maintain the 

highest possible bone mass (peak bone mass) because it will take longer to 

reach the osteoporotic state (at which level there is a higher fracture risk. 

especially at the hip and spine),·4.5. The peak bone mass is the highest level of 

bone mass. attained as a result of normal growth. The age when peak bone 

mass is reached. especially in the proximal femur and the vertebral bodies. 

varies in different studies6
.
9

• Most authors believe that the peak bone mass 

occurs in late adolescence6
•
7
•
1O

. Given the importance of this peak bone mass. 

bone assessment techniques in children have gained substantially in interest. 

Most noninvasive bone mass assessment techniques are now widely used in the 

adult population but many of these techniques still have to be validated in 

children. 

Before discussing the techniques used to detect osteoporosis in an adult and 

pediatric population. we will discuss the modifiable and non-modifiable factors 

which influence the occurrence of osteoporosis. 

The most important non-modifiable determinants are genetic-ethnic factors and 

gender". However. only 46 to 62 percent of the biological variability in bone 

mass can be explained by those factors. The rest can be attributed to 

modifiable determinants. such as hormonal status. physical activity. weight and 

11 
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nutrition". All those determinants influence the level of peak bone mass. 

Therefore it is important to have a noninvasive technique for bone assessment 

in pediatric populations, as well as in adult populations. To be useful in 

pediatric populations a noninvasive bone assessment technique should be 

reproducible, accurate, easy to use, relatively cheap and if possible without 

radiation exposure. 

1.2 REVIEW OF THE LITERATURE 

A variety of techniques for noninvasive assessment of the skeleton are or have 

been used. All techniques are listed in Table 1 and their precision, accuracy and 

discrimination will be discussed, as will differences in their fundamental 

methodology, clinical and research utility, and general availability. 

Table 1 Bone mineral assessment techniques. 

Radiogrammetry 

Radiographic absorptiometry (RA) 

Single photon and slngle~energy X-ray absorptiometry 

Dual photon and dual-energy X-ray absorptiometry (DXA) 

Quantitative computed tomography (QCT) 

Quantitative magnetic resonance and magnetic resonance microscopy 

Quanlilative ultrasound bone assessment (QUS) 

Radiogrammetry 

Radiogrammetry is a simple X-ray technique for the assessment of osteoporosis 

using bone dimensions. Since the introduction of this method in the 1960's, a 

large number of reports in this field have been published13
.". Several 

measurements are taken, such as total bone width, cortical thickness, the ratio 

of cortical width to total bone width, and the cortical area. The measurement 

sites are tubular bones, such as the phalanges and metacarpals. Due to the 

relatively low reproducibility (errors in the order of 3%) and the inability to 

measure intracortical porosity, well-known feature of bone loss, interest in 

12 
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radiogrammetry has diminished. Recently there is a renewed interest in this 

technique from the introduction of a promising additional measurement site, 

the hip. The hip axis length is measured on conventional X-rays images of the 

hip or on images acquired by bone densitometers'6. Until now radiogrammetry 

has been used mainly in the adult population rather than in the pediatric 

population". 

Radiographic absorptiometry 
Radiographic absorptiometry (RA), also known as photodensitometry, is 

relatively inexpensive and a widely accessible technique, used to assess bone 

mass (cortical and trabecular) quantitatively on conventional radiographs. In 

RA, radiographs of the hand are taken, using a special film and film cassette 

with an aluminum wedge. The films are analyzed with a digital or video 
densitometer. The bone mineral density (BMD) is calibrated relative to that of 

an aluminum wedge and is expressed in mm AI equivalent'8.". Most 

investigators use the middle phalanges, especially of the second digit, or the 

metacarpals. Initially this technique was characterized by a high reproducibility 

error of about 9_10%24. The introduction of computer-assisted methods 

reduced the reproducibility error and further constituted a remarkably fast way 

of measuring BMD. Several RA techniques have been developed. One 

technique uses centralized analyses of the posteroanterior made hand 

radiographs and averages the BMD of the second to fourth middle phalanges'8. 

Another technique measures the diaphysis of the second metacarpal'9.20, while a 

third technique uses the diaphysis and proximal metaphysis of the second 

middle phalanx as measuring site in the posteroanterior and lateral view 
(LAT)"·25. The lateral view of the second middle phalanx is made on the same 

screen using a dedicated cassette with an aluminum reference wedge (Figure lA 

and lB). By combining the measurements of the perpendicular views at the 

same level of the second middle phalanx, a real bone density can be calculated 

and in addition a sophisticated soft-tissue correction is provided (Figure Ie) 26. 

The precision errors of the computer-assisted RA techniques are lower in both 

in vitro and in vivo measurements. The range is between 0.6 and 1.7% in vitro 
and between 0.3 and 2.4% in vivo'9.20.22.23.27.28. The precision of these RA 

techniques is similar to those obtained with other densitometric techniques29,'o, 

13 
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Fig.ID 

Fig. I An example of the X·ray 
images used in this study. 

A. Posteroanterior projection of the 
left hand (W = Aluminum 
reference wedge). 

D. Lateral projection of the left 
index finger (W = Aluminum 
reference wedge). 

C. Graphic representation of the 
principle behind phalangeal 
radiographic absorptiometry. 

A. phalanx (cross·section); S. soft tissue; C. density 
curve obtained by lateral radiograph; D. density curve 
obtained by posteroanterior radiograph; L,. width of 
the phalanx; L, height of the phalanx; d,. density of the 
left soft tissue compartment; d,. density of the right soft 
tissue compartment; d) density of medial 
posteroanterior comparliment (bone and soft tissue); 
d4 • density of the upper soft tissue compartment; ds. 
density of lower soft tissue compartment; d6 density of 
medial LAT compartiment (bone and soft tissue). 
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RA techniques, especially when computer-assisted, appear to be suitable for the 

assessment of BMD of phalanges and metacarp'als not only in the adult but also 
in the pediatric population'6,31,,,. 

Single photon and X-ray absorptiomefly 
The first commercial single photon absorptiometry (SPA) unit was introduced 
in the 1960's 34. Both this method and its recently developed successor, single
energy X-ray absorptiometry (SXA) make a quantitative assessment of the bone 
mineral content (BMC) at peripheral sites of the skeleton. A monoenergetic 
collimated photon beam, emitted from a radionuclide, low-energy, source 
(usually 1251), or a small X-ray tube is moved at a constant speed across bone 
and soft tissue measuring the radiation attenuation at the investigated site. The 
replacement of the radionuclide source by an X-ray tube has improved the 
spatial resolution and precision, and has reduced examination time"·37. A major 
disadvantage of these methods is its inability to separate trabecular and cortical 
bone because it is an area projectional technique. Moreover, SPA and SXA use 
a single-energy source and therefore cannot be used in areas in which 
neighboring tissues are inhomogeneous, such as the spine. The measuring sites 
of both SPA and SXA are mainly at the distal or ultradistal radius and calcaneus. 
The radial shaft includes more cortical bone and less trabecular bone, the latter 
being metabolically more active". The distal part of the radius consists of 95% 
cortical bone and ensures a good range of precision; while the ultradistal 
radius, which includes more trabecular bone (up to 40%), gives poorer 
preciSion due to difficulty in targeting the region of interest precisely and the 
inhomogeneity of the trabecular bone content'9.40. The more sophisticated 
rectilinear scanning devices now in use improve the precision at this site41

• As 
bone mineral measuring site, the calcaneus was controversial in the beginning 
because of the uncertain relationship between BMC at this site and body 
weight or exercise4

'. However, recent studies show that SPA and SXA have 
good predictive value for osteoporotic fractures, using either the calcaneus or 
the radius as bone mineral measuring site4

,..'. 

Especially in the adult popUlation SPA and SXA have proven to be an accurate 
method for the diagnosis of osteoporosis. Application of these techniques in 
children is low because of the lower preciSion of SPA and SXA in children, 
compared to the adult popUlation, resulting from the smaller and less dense 
bone and from motion artifacts". Another drawback of some units is the 
necessity to put the part of the skeleton under investigation in a water bath to 

15 
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obtain a reliable bone mineral measurement. The radiation exposure also 
hampers its use in children. 

Dual photon and X-ray absorptiometry 
The measurement of two photon energies, in dual photon absorptiometry 
(DPA) , instead of one (SPA/SXA) allows for the discrimination of bone mineral 
from soft tissue and air interfaces47

• Thus DPA can control for variable path 
lengths in the body and can be used to measure BMD at the hip and lumbar 
spine, two sites with high trabecular bone content and of considerable clinical 
relevance to osteoporotic fractures. DPA uses a radionuclide source, typically 
153Gd at two radiation peaks. The successor of DPA, dual-energy X-ray 
absorptiometry (DXA), was introduced commercially in the late 1980's". In 
DXA the radionuclide source is replaced by an X-ray system, giving DXA a 
shorter examination time and greater precision and accuracy due to a higher 
resolution49

• The preferred measuring sites of DXA are the lumbar spine, the 
proximal femur, and/or the total body. Sometimes a peripheral site such as the 
radial shaft is also used for scanning. Because of the precision of the 
posteroanterior DXA examination of the lumbar spine in vivo, ranges between 
0.5-1.5% with an accuracy error of 5-10%, the DXA systems are used all over 
the world,o.'6. Other reasons for this worldwide distribution of DXA systems 
are its low radiation dose (Table 2)57 and ease of use, which makes it well 
applicable for clinical trials and epidemiological studies"·60. 

Table 2 Effective dose for a pediatric scan mode using a lunar DPX-L. 

Scan Mode Patient Age Scan time ESD ED 
size (min) (pGy) (PSv) 

PA spine 6-16 cm 5 5 6.0 0.28 

PA spine 10 6.0 0.20 

Total body medium 15-25 kg 5 9 0.12 0.03 

Total body large 25-35 kg 10 12 0.1 0.02 

16 
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However. DXA systems also have some important drawbacks. First. the 

over-projection of aortic calcifications. the presence of osteophytes. 

degenerative facet hypertrophy and intervertebral disc space narrowing. 

increase the measured BMD in an artificial way: especially in elderly patients. 

Second. when the lumbar spine is only scanned in posteroanterior direction the 

measured area not only contains trabecular bone but also cortical bone. This 

reduces its ability to discriminate between osteoporotic and non-osteoporotic 

subjects6
!.64. The discrimination increases when an additional lateral scan of the 

lumbar spine is used. The lateral examination measures trabecular bone almost 

exclusively and therefore has a stronger correlation with quantitative computed 

tomography (QCT) than posteroanterior DXA and QCT65.66. A disadvantage of 

this lateral method is the over-projection of ribs at the level of L2 and the 

overlap of the iliac crest at the level of L4. Another problem is the poor 

reproducibility of the lateral measurements of the lumbar spine due to the 

greater thickness and inhomogeneity of the soft tissues in the lateral decubitus 

position6,.,o. The development of a rotating tube·detector system allows a 

lateral spine scanning in a supine position. This reduces obliquity and thereby 

improves the reproducibility of the lumbar spine measurement71.72. Several 

studies showed a stronger association between the lateral method and 

prevalent vertebral fractures than between the posteroanterior DXA method 

and such fractures. Also the aged-related bone loss is more pronounced in the 

lateral method73-". 

The third drawback of DXA is the problem of standardizing measurements. 

Variations result from differences in bone standards. edge detection algorithms 

used in different devices and regions of interest'6.77. 

A recent study shows that total body bone mineral measurements done with 

DXA are error prone due to differences in fat distribution. This impedes the 

applicability of DXA. especially in children and adults with diseases or taking 

medications that influence fat distribution77.'8. 

In addition to the general drawbacks of DXA. it has some special problems 

when used in a pediatric population. First. two types of software sets are 

needed in children: one below 30·kg weight and one above this level'9. And 

second. scanning very small children has the additional problem of a greater 

influence of the head on measurement of the total body. 

17 
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Third, standardization in children is a problem because many DXA machines 

have no good pediatric reference populations. A major drawback of DXA is its 

inability to measure the true volume density due to its projectional 

measurement technique. Especially in the growing child, where there is three

dimensional growth, this technique cannot reliable distinguish between a true 

increase in BMD or simple growth of the investigated part of the skeleton. 

Moreover, DXA values are also influenced by the unknown composition of soft 

tissues in the beam path of the region of interest. Because corrections for the 

soft tissues are based on a uniform distribution of fat around the bone, 

longitudinal DXA values in children may reflect the changes in body size and 

composition that occur with growth more than true changes in bone mineral 

content. It has been determined that inhomogeneous fat distribution in soft 

tissues, resulting in a difference of two em fat layer between soft tissue area and 

bone area, will influence DXA measurements by 10%67.80. Several studies of 

DXA in children have been published to date",86. In summary, DXA is an 

accurate and precise quantitative bone assessment technique in the mature 

skeleton, but in the growing child DXA is unable to take into account the large 

changes in body and skeletal size and therefore is of limited use in pediatric 

studies". 

Quantitative computed tomography 
In contrast to all the bone mineral assessment techniques discussed above, 

computed tomography (QCT) measures true volumetric densities of trabecular 

bone and cortical bone at the investigated site separately. Cortical bone has a 

more protective and mechanical function, while trabecular bone has a 

metabolic function. Trabecular bone has a higher bone turnover"·89. Because of 

higher bone turnover in trabecular bone (50 to 70 %), its importance for 

vertebral strength, and clinically important osteoporotic fractures are in the 

vertebrae, QCT is principally used at the lumbar spine. This technique can 

assess vertebral fracture risk, and measure and follow-up age-related bone loss 

and bone loss due to metabolic bone diseases66.90
-93. 

More than 4000 centers use this validated technique'. One of the reasons for 

the worldwide acceptance of QCT is that it can be performed on a standard 

clinical CT scanner with an external bone mineral reference phantom device. 

18 
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This device calibrates the CT number measurements to bone-equivalent values. 

The region of interest is the vertebral body of Ll-L3. The planning of the 

mid-vertebral slices and the axial tracing of the region of interest can be 

handmade. but automated tracing improves precision and decreases analyses 

time94
• A typical automatic analyses time for a vertebral body is about five 

seconds. and the total patient examination time is several minutes. 

Two methods of QCT are available: single-energy quantitative computed 

tomography (SEQCT) and dual-energy quantitative computed tomography 

(DEQCT). As well as their radiation differences. the accuracy and precision of 

bone mineral assessment differ between SEQCT and DEQCro'. 

The most important factor. which influences the accuracy of SEQCT. is the 

variable fat content in the vertebral body96. This is more of a problem for bone 

mineral assessment in the adult population. due to physiological increase of 

vertebral marrow fat content with age. than in the pediatric population9
'. 

DEQCT can solve the fat-error problem. which improves the accuracy but at 

the cost of precision in vivo and it requires a higher radiation dose9B
.
lOO

• 

Therefore DEQCT is recommended only for research studieslOo
• 
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Because of the relative high radiation dose needed for QCT (compared to the 

dose used with DXA or other bone mineral assessment techniques. see Figure 

2)" and the expensive equipment requiring costly maintenance. the use of 

QCT is low. especially in the pediatric population. Few studies with QCT have 

been performed in chiidren 1OI
•
103. 

In a growing child five QCT bone measurements can be obtained: the density 

of cancellous bone, the density of cortical bone. the size of the axial and 

peripheral skeleton and the volume of cortical bone in the appendicular bone. 

The coefficients of variation (CV) for these QCT measurements in a pediatric 

population range between 0.6 and 2%101.102. The accuracy of QCT in children is 

better than in adults due to a lower bone marrow fat content. The density of 

cancellous bone seems to be directly proportional to the bone volume fraction 

and inversely proportional to the porosity104. The relative large CV values of 

cancellous bone density are due to a considerable variation in the dimensions 

of the pores throughout the vertebral body. On the other hand, cortical bone 

mass depends on the concentration of osteoid and mineral. The non mineral 

fraction may only contribute to minor fluctuations in cortical bone 

measurement. On average, CT values for cortical bone density are eight times 

higher than those for cancellous bone density, a finding consistent with 

histomorphometric studies indicating an equivalent difference in the porosity of 

these two forms of structural organization of bone ti ssue105. The material 

density of cortical bone and cancellous bone in the appendicular skeleton 

seems to increase during puberty and reaches its peak around the time of 
cessation of longitudinal growth and epiphyseal closure,o,.,o6. The difference in 

cancellous bone density in the axial skeleton between males and females is a 

result of an early gender difference in the size of the bones rather than of a real 

difference in the density of cancellous bone1O
'. The size of a vertebral body is 

approximately 20% smaller in girls than in boys. even after accounting for 

differences in body size. In the appendicular skeleton no gender difference is 

seen in bone size. The major determinants of cortical volume of the 

appendicular skeleton are weight bearing and mechanical stresses and therefore 

correlate strongly with all anthropometric indices'o,. 

Peripheral QCT (pQCT) was developed for true volumetric density 

measurement of appendicular bone without overprojection of other tissues and 

20 
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has the ability to localize exactly the desired measurement site. In contrast to 

QCT, pQCT is easier to use. Like QCT, pQCT has the ability to assess cortical 

and trabecular bone separately and to measure BMD and BMC. The measuring 

site is the forearm. A biomechanical study found that the cortical shell 

contributes substantially to the mechanical strength of the distal radius108. 

Because cortical rim thinning at the distal radius is a feature of osteoporosis, 

measuring BMC and thickness at this location is important109
• Also other data 

suggest that pQCT measurements of cortical, rather than of trabecular, bone at 

the forearm has greater diagnostic sensitivity for fracture risk assessment'8. 

There are about 1000 pQCT systems in use, mostly in Europe'. In the United 

States those systems are primarily limited to research. Like QCT, pQCT is 

mainly used in the adult population. 

Quantitative magnetic resonance imaging 
After the introduction of magnetic resonance (MR) in medical science in the 

early 1970's, the worldwide use of MR largely depends on its capability to 

image the anatomy of the human body very accurately. In the last years other 

abilities of MR have been explored, such as quantitative magnetic resonance 

(QMR) and magnetic resonance microscopy (jJMR) used for bone mineral 

assessment and the study of trabecular bone architecture"o.
,
,,. To date QMR 

and /lMR have only been for research studies, due to their cost and 

time-consuming techniques. 

Quantitative ultrasound bone assessment 
Quantitative ultrasound (QUS) is a recently introduced bone assessment 

technique. This technique holds the prospect of a good reproducibility, ease of 

use, cost effectiveness and being radiation free. Several systems for QUS 'bone 

assessment are in production, almost exclusively used in and validated for adult 

populations"4,Il'. Until now the measuring site of the QUS systems is the 

calcaneus, both in children and in adults"6
• QUS bone assessment measurements 

at the tibia, performed using a SoundScan"'Compact (Myriad Ultrasound 

Systems Ltd., Rehovot, Israel), could also be implemented in adults as in 

children. This technique measures the speed of sound (SOS, mS-I) along the 

21 
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cortex of the tibia.1I4.117 see Figure 3. A more thorough overview of all QUS 

systems. used in children. will be outlined in Chapter 2. 

A 
A. Transducer 
B. Speed of sound 
C. Tibia 

Fig. 3 Principle of tibial quantitative uitrasonometry. 

1.3 AIMS OF THE STUDY 
The aims of the study presented in this thesis are to answer the following 

questions: 

II Can quantitative bone assessment be validated in children. aged 6-19 years. 

using the tibia ultrasound device. the SoundScan"'Compact? 

II Can we generate normal. reference values in a healthy Caucasian pediatric 

population? 

II What is the short- and long-term reproducibility of the system and which 

factors influence QUS bone assessment measurements? 

II Do SOS values obtained with the tibia ultrasound device correlate well with 

bone density values obtained by phalangeal radiographic absorptiometry 

(method Trouerbach et al.) and DXA? 

II What is the correlation between two different ultrasound devices. which 

measure at two different sites. the tibia and the calcaneus? 

" Are there clinical applications for this tibial ultrasound bone assessment 

. technique? 

22 
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1.4 OUTLINE OF THIS DISSERTATION 
In Chapter 2 we review in depth all quantitative ultrasound (QUS) bone 

assessment techniques in children, especially the coupling gel technique using 

the SoundScan®Compact at the tibia. In Chapter:1 the short- and long-term 

reproducibility of this system will be discussed, along with an overview of the 

factors which can influence tibial QUS bone assessment measurements. Normal 

values for quantitative tibial ultrasound bone assessment in a Caucasian 

pediatric population are shown in Chapter 4. Comparison of quantitative 

tibial ultrasound bone assessment with dual-energy X-ray absorptiometry 

(DXA) and radiographic absorptiometry (RA) in healthy Caucasian children are 

given in Chapter 5 and Chapter 6 respectively. In Chapter 7 there is a 

comparison between the tibia ultrasound device and a calcaneus ultrasound 

device in normal healthy children. In Chapter 8 longitudinal measurement 

results of a part of our normal, healthy children population will be presented. 

Clinical applications of tibial ultrasonometry in patients with acute 

lymphoblastic leukemia will be presented in the next two chapters: In Chapter 
9 cross-sectional results of our comparison between DXA and tibial 

ultrasonometry in long-term survivors of acute lymphoblastic leukemia in 

childhood will be presented. A longitudinal study using tibial ultrasonometry as 

a bone assessment technique in children with acute lymphoblastic leukemia will 

be presented in Chapter 10. 
Finally, a summary and conclusions of this dissertation, in both English and 

Dutch, will be presented and possibilities for future research are discussed in 

Chapter 11. 
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· CHAPTER 2 

QUANTITATIVE ULTRASONOMETRY IN CHILDREN 

2.1 INTRODUCTION 
Almost all of the non-invasive techniques discussed in Chapter 1 provide 

information about the quantity of bone density, not about quality. Several 

studies suggest that quantitative ultrasound (QUS) has the ability to investigate 

not only bone density but also bone structure'·'. This is important because 

studies have shown that bone density accounts for only 70-80% of the 

variability in the strength of a bone. The remaining variance may be due to 

other factors such as ineffective bone architecture, fatigue damage, 

measurement artifacts and state of remodeling 3.4. Therefore a non-invasive 

bone assessment technique, which can detect fragility and not just decreased 

bone mass, would be an important advance. QUS seems to be such a 

technique, as it can predict the fracture risk, using a combination of information 

on bone elasticity, structure and density 5.6. Other advantages of QUS 

equipment are its low cost, ease of use, and patient friendly and radiation free 

nature. The combination of these benefits and promising preliminary clinical 

results concerning fracture prediction, encouraged further basic investigation 

and commercial development. Currently QUS devices have been used to a 

moderate degree in Europe and Asia but not in the United States. Recently the 

U.S. Food and Drug Administration (FDA), have approved some QUS 

equipment for clinical use which will encourage more basic and clinical 

investigations in this field. 

Two ultrasound techniques for bone assessment have been developed: the 

reflection technique and the transmission technique 7.'. Currently almost all 

commercial systems use the transmission technique. This method measures 

sound transmission in the tissue between two ultrasound transducers (a 

transmitter and receiver). QUS systems measure ultrasound parameters 

primarily in trabecular bone at the calcaneus and patella and in cortical bone at 

the tibia and integral at the phalanges. 

QUS systems use a mechanical wave vibrating at a frequency range from 

20,000 wavesls (20kHz) to 100,000,000 waves/s (100 MHz). These waves 

produce vibrations in the investigated bone on a micro-scale .. 
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The physical and mechanical properties of this piece of bone change the shape. 

the intensity and the speed of the propagating mechanical wave. Therefore the 

measured QUS parameters are the ultrasound velocity and/or the frequency 

dependence of the attenuation of the ulU'asound signal. 

Velocity of ultrasound 
Ultrasound velocity. or speed of sound (50S). through bone is determined as 

the quotient of transmit time and body part width or length and is quoted in 

meters per second (m/s). 50S depends both on the material properties of the 

investigated medium through which the signal is propagated and on its mode 

of propagation. The greater the connectivity or complexity of the material. the 

greater will be the velocity of the ultrasound wave through this material. Thus. 

normal bone will have a higher velocity than osteoporotic bone. The relation 

between 50S and the mechanical properties of a material can be expressed by 

the equation: 

sos=~ 

E is the modulus of elasticity (a measure of resistance to deformation) and is 

correlated with bone density (p) 7.9. 

Using 50S as measuring tool introduces some problems. First. the value of 50S 

differs when using different instruments because disparate algorithms are 

employed. Second. there is confusion about the term "velocity of ultrasound". 

some manufacturers use 50S. while others use apparent velocity of ultrasound 

(AVU) or ultrasound transmission velocity (UTV). Moreover in calcaneus 

measurements three different methods of calculating velocity have been 

utilized. This results in three velocity measurements: the heel velocity 

(calcaneus plus soft tissue); bone velocity (calcaneus only); and time of flight 

velocity (between transducers positioned at a fixed distance and assuming a 

constant heel thickness)lO·lI. The three velocity calculations correlate strongly 

and have slightly different values within a range from 1400 to 1900 mls 12.13. 
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Attenuation and broadband ultrasound attenuation (OUA) 

Attenuation of ultrasound signal occurs as energy is removed from the wave by 

beam spreading (diffraction), scattering, mode conversion and absorption in 

the bone, marrow and soft tissue 14. The predominant attenuation mechanism 

in trabecular bone is scattering while absorption predominates in cortical bone 

B.". BUA is determined at the calcaneus and is a measure of the frequency 

dependence of the attenuation of ultrasound. This dependence is 

approximately linear over the range 0.1-1 MHz. The increase in attenuation as 

a function of frequency is measured by comparing the amplitude spectrum for 

a reference material with that for the measured sample. BUA is defined as the 

slope of attenuation given by linear regression of the spectral amplitude 

difference, expressed in the units of decibels per MHz. In contrast to velocity, 

which is influenced by bone density and elasticity, BUA is determined by bone 

density and bone microarchitecture. The more complex the bone structure, the 

more the ultrasound wave passing through it, will be attenuated. Therefore 

normal bone will have a higher attenuation than osteoporotic bone . 

. Recently some manufacturers of QUS equipment have introduced a newly 

calculated parameter, which is a combination of SOS and BUA. This parameter 

is named either "stiffness" (which should not be confused with the 

biomechanical term) or "quantitative ultrasound index" (QUI). This 

combination of SOS and BUA improved the precision of the QUS systems and 

simplified the interpretation of the measurements, especially for the clinicians 

working with these systems. The precision error of measurements in vivo using 

the rransmission ultrasound velocity is about of 0.3-1.5% 12.16. For BUA the 

precision error measurement is about 0.4·4.0% and for "stiffness" 0.1-2.1% ,.16.'B. 

The currently available QUS systems are: 

II Calcaneus fixed, single point transmission system employing either a 

water-bath or ultrasonic coupling gel; 

II Calcaneal transmission system using a pair of scanning focused transducers 

immersed in a water-bath at room temperature; 

II Single point QUS devices measuring at the finger phalanges using coupling 

gel. The system measures the amplitude dependent speed of sound through 

the distal metaphysis of the phalanges of four fingers; 
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II Tibial ultrasound transmission system measuring the speed of sound 

longitudinally along the middle third of the anterior tibia; 

.. Devices measuring at the patella with the transmission technique; and 

" Device measuring at the ulna using the reflection technique. 

2.2 REVIEW OF THE LITERATURE 

Clinical studies have employed QUS to assess bone mass in adult women. 

pregnant women. patients with primary hyperparathyroidism. and children 19.". 

The in vivo studies in the adult population confirm the relationship between 

the QUS parameters and bone density. Using a variety of techniques. numerous 

studies in the adult population found correlation coefficients. compared with 

DXA. ranging from 0.33 to 0.83 for the lumbar spine BMD and 0.30 to 0.87 

for the femoral neck BMD 16.19.23.24. The range of the correlation coefficient at 

site-matched comparison between BUA and BMD at the calcaneus is 0.56-0.75 

25.26. These moderate. but significant. correlation coefficients between BUA and 

BMD confirm the findings. seen in the in vitro studies. that QUS has a stronger 

relationship with bone structure and strength than can be explained solely by 

BMD 24. Because of this unexplained component. which may be related to 

bone strength or structure or to some other parameter unrelated to 

osteoporosis. the question arises whether QUS can accurately predict BMD per 
se'l7, 

Clinical studies showed that QUS is useful for discriminating between 

individuals with fractures and without ". Using the velocity parameter 

measurements at the patella. tibia. or phalanges one can identify individuals 

with prevalent vertebral fractures with the same effectiveness as conventional 

bone mass measurements at the spine. hip. or forearm 29.". Also some in vitro 
studies confirm the potential utility of QUS for bone assessment and fracture 

risk prediction 9.24.32.33. The majority of these in vitro and in vivo studies have 

been done with QUS systems at the calcaneus. Prospective studies are still 

needed to evaluate the ability of the QUS systems at the tibia and phalanges to 

predict fracture risk. A large prospective study at the calcaneus showed that 

SOS and BUA have the same power to predict the risk of hip fractures as BMD 

measured with DXA at this site 34.35. Even after adjusting BUA and SOS for neck 

BMD. both ultrasonic parameters were still significant independent predictors 
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of hip fractures. Also the combination of BUA and femoral neck BMD improves 

the detection of women at a high risk for hip fractures. 

Whether QUS is useful for monitoring treatment of osteoporosis or drug effects 

is not yet certain 36. Therefore, further longitudinal studies are required. 

Currently the majority of the clinical studies have been done in adults, only a 
few in children 37.39. 

2.3 SOUNDSCAN®COMPACT USED FOR TIBIAL ULTRASOUND 
SCANNING 

Using the transmission technique with a 250 kHz pulse, the SoundScan® 

Compact (Figure 1) measures the transit time, or speed of sound (SOS), through 

the cortical layer at the anterior mid· tibial site over a defined linear distance of 

50 mm, parallel to the tibial axis. 

Fig. 1 SoundScan·Compact (Myriad 
Ultrasound Systems Ltd., 
Rehovot, Israel). 

Due to its special design, this system eliminates the soft tissue error when the 

distance between the transducer and the bone is less than 15 mm. The distance 

between the bone and the transducer is measured by two "depth finders" 

within the transducer, using 1 MHz echo pulses. The system is highly sensitive 

to changes in this distance, and takes a reading only when these two distances 

are equal, which is the definition of alignment. The threshold value of the 

signal level is 0.5 volts and the difference in signal level between the two depth 

finders may not exceed 1.0 volts. The transducer is placed at the anterior 

mid-tibial point. This point is midway between the distal apex of the patella 
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and medial malleolus. identified by palpation with the leg in extended 

position. At this level the transducer is moved back and forth perpendicular to 

the axis drawn between the apex of the patella and the medial malleolus. The 

aim of this finely-controlled manipulation is to find the peak of bone velocity. 

At least 150 readings are necessary to obtain a good result and the SOS (m/s) is 

the average of the five highest readings attained during the whole session. The 

procedure typically takes less than five minutes. To date this technique has only 

been validated in adults 40~43. All of these studies report a good precision not 

only in vitro but also in vivo. Even using the standardized coefficient of 

variation. which corrects for measurement results with a large offset from zero 

(e.g. SOS at the tibia compared with the other ultrasound techniques at other 

sites of the body) the preciSion of the SoundScan"'Compact is better compared 

to BMD measurement techniques 44. Nonetheless this technique has also some 

drawbacks. Currently there is no consensus about the clinical use of this tibial 

ultrasound system or other ultrasound devices in diagnosis of osteoporosis. This 

is due to uncertainties in assessing accuracy of QUS and in the moderate 

correlation of densitometric and ultrasonic results 35. In some studies ~ the 

correlations of calcaneal SOS and BUA with lumbar spine and femoral neck 

BMD are better than the correlation between tibial SOS and BMD of the 

lumbar spine and femoral neck 27,44. Second. the accuracy of the tibial system is 

still not clear due to lack of long-term prospective studies. Also monitoring of 

skeletal changes due to treatment or progression of the disease affecting the 

bone is difficult due to limited data. not only with the tibial system but also 

with other ultrasound techniques. In Chapter 10 we present a longitudinal 

study in children with acute lymphoblastic leUkemia. who received high doses 

of steroids and methotrexate. Another important clinical use of QUS is fracture 

risk assessment. Several studies in adults show the similar ability of tibial 

ultrasound to distinguish between fracture patients and controls in comparison 

of calcaneus ultrasound SOS and BUA measurements and DXA. First a 

longitudinal study in normal healthy children should be done. to assess the 

influence of normal growth on the measurements. Such a study will be 

presented in Chapter 8 of this thesis. 
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EVALUATION OF SHORT-TERM PRECISION FOR TIBIAL 
UL TRASONOMETRV 

SUMMARY 
Tibial quantitative ultrasonometry is a relatively novel technique in the field of 
bone sonometry, an emerging alternative to bone densitometry. The 
implementation of this technique in a pediatric population could prove 
valuable from a clinical, as well as from a research, point of view. It is necessary 
to know the precision of this technique and the possible influence on 
measurements before implementation in clinical practice. This study presents 
the precision in a Caucasian pediatric population and the influence of 
measurement site, dexterity, brand of coupling gel, and temperature of 
coupling gel. 
To assess intra- and inter-observer variance duplicate measurements, with 
repositioning, were performed in ten children over a short period of time. The 
observers were blinded for the results of the other observer and after each 
measurement the skin markings were removed. Intra-observer variance for 
operator one (MHL) was CV 0.43%, and for observer two (SFGR) it was CV 
0.43%. The inter-observer variance was CV 0.61%. 
Left mid-tibial and right mid-tibial SOS measurements showed no significant 
differences. There were, however, significant differences in both boys and girls 
between right proximal vs. right mid-tibial, right mid-tibial vs. right distal and 
right proximal vs. right distal (for all P<O.OOI). 
One-way analysis of variance showed that neither the use of different coupling 
gels nor an increase in gel temperature had a significant influence on 
measurements. 
The results of our study show that tibial QUS is a highly reproducible technique 
in a Caucasian pediatric population. 
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3.1 INTRODUCTION 
Bone densitometry in children has gained interest due to the theory that the 

higher the attained peak bone mass the longer it will take to reach an 

osteoporotic state later in Iife'~l. Several bone densitometry techniques are 

available for an adult population, but for the implementation in a pediatric 

population several problems have to be solved. First of all, the skeleton shows 

three-dimensional growth, making interpretation of two·dimensional bone 

densitometry techniques such as single-energy X-ray absorptiometry (SXA) or 

dual-energy X-ray absorptiometry (DXA) difficult 4~6. Secondly, in a pediatric 

population, reproducibility can be a problem. This can mainly be attributed to 

motion artifacts, as younger children are usually unable to lay immobile during 

the investigation. 

The implementation of quantitative ultrasonometry (QUS) in a pediatric 

population could provide a solution to the above mentioned problems. QUS is 

radiation free, which will enhance patients acceptance, easy to use and 

therefore patient friendly, and the interactive measurements allow for doctor 

patient interaction, thus limiting motion artifacts. Before QUS would be 

implemented in a pediatric population the technique must exhibit a good 

reproducibility. 

There are several systems for bone ultrasonometry in production, almost all 

exclusively designed for, used in and validated for an adult population 7.". 
Several studies have shown a good correlation between tibial QUS, performed 

using a SoundScan"Compact (Myriad Ultrasound Systems ltd., Rehovot, 

Israel), and age related bone loss in an adult population 9.14~18. Two studies into 

the association of tibial QUS and appendicular fracture risk showed a significant 

association 9.15. These results indicate that tibial QUS could be useful tool to 

detect osteoporosis at an early stage in the adult population. 

In contrast to most QUS systems, tibial QUS by virtue of its design could easily 

be implemented in children, especially below the age of eight years in contrast 

to calcaneal ultrasonometry techniques. Two studies have previously reported 

data on tibial QUS in a pediatric population'9.,o. Both studies showed a positive 

correlation with age. In our study a linear regression of age versus mid-tibial 

speed of sound (SOS, ms") yielded r=O.69 for boys and r=O.79 for girls'9. The 

mean annual change in our Caucasian pediatric population (6-19 years) was 
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29.0 ms'! for boys and 27.9 ms'! for girls. Our study also showed an association 

of tibial QUS with Tanner stage, significant differences were for boys found 

between stages II-III and IV-V and for girls between stages I-II, III-IV and IV-V 

(all P<O.OI). These two preliminary studies show that tibial QUS could be 

implemented in a pediatric population. 

In this paper we present the precision of tibial QUS in a pediatric population 

and three important factors which, from our point of view, could influence 

measurements. The first factor influencing measurements is the site of 

measurement. According to standard operational procedures all tibial QUS 

measurements have to be performed on the right tibia at the mid-tibial point 2!. 

The second factor is dexterity, this influences the preference for leg use (eg. 

kicking in soccer or jumping) and may therefore influence bone density of the 

tibia. Third, the temperature and type of the coupling gel could influence the 

measurements. In our pediatric radiology department we commonly use 

coupling gel which is, for patient comfort, heated to body temperature. 

Throughout our department several different brands of coupling gel are used, if 

the brand of coupling gel influences the measurements caution should be taken 

when performing follow-up measurements. 

3,2 MATERIAL AND METHODS 
Study subject, 

For all study subjects informed consent was obtained explicitly by 

parental/guardian consent and where appropriate the child's consent (in the 

Netherlands this is mandatory in children aged 12 years and over). This was 

done according to the guidelines recommended by the Declaration of Helsinki 

(Hong Kong, 1989) and the guidelines as stated by the Internal Review Board 

of the University Hospital Rotterdam and Erasmus University Rotterdam, 

Faculty of Medicine and Health Sciences, the Netherlands. 

Precision was assessed according to the FDA guidelines in ten, healthy 

Caucasian, children (group A) using repeated measurements by two 

investigators (MHL and SGFR) ". The study group consisted of ten children, 

seven girls and three boys. The age range in this group was 6-19 years (mean: 

13.1 years). 
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The study group (group B) for the assessment of dexterity and measurement 

site consisted of 53, healthy Caucasian, children. Twenty-three girls mean age 

12.8 years (range 6-19 years) and 30 boys, mean age 10.7 years (range 6-17 

years). 

For the influence of the type and temperature of coupling gel on 

measurements, one investigator (MMEGF) performed measurements on the 

verification phantom (part N° ASY10029 serial N° 189) provided by Myriad 

Ultrasound Systems Ltd. For this the gel was heated in an incubator. 

Temperature was measured using a mercury thermometer placed at the core of 

the gel tube. 

Quantitative ultrasound 

Tibial QUS was performed using the SoundScan"'Compact (Myriad Ultrasound 

Systems Ltd., Rehovot, Israel, software version 1.1 e). All measurements were 

conducted by trained operators. 

In group A, duplicate measurements by two investigators (ML and SR), i.e. in 

total four measurements, of the SOS at the mid-length of the right tibia were 

performed. These measurements, which took about 5 minutes, were made in a 

blinded fashion, i.e. the investigators removed the skin marks after each 

measurement and the results of tibial QUS were not available to the other 

investigator. Between measurements (time period between measurements for 

each operator at least one hour) the children were allowed to walk around. 

Statistical analysis was performed according to the equations recommended in 

the 'Draft Guidance for Review of Bone Densitometers' by the FDA ". 

Miller et al. proposed the use of standardized CV%'s (SCV%) ". This SCV% is 

defined as the CV% divided by the percentage of the range over the mean 

Where the range is taken to be four times the population standard deviation ". 

In group B, the following four tibial QUS measurements were taken: (1). Right 

mid-tibial (RMT, i.e. the mid-point between the apex of the patella and the 

distal part of the medial malleolus; (2). Left mid-tibial (LMT); (3). Right 

proximal (RP) (2 em above the mid-tibial point) and (4). Right distal (RD) (2 

cm below the mid-tibial point). Dexterity was assessed by asking each child 

which hand was used for writing and medial tasks'4. The ipsilateral leg was 

considered to be dominant". 
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For the influence of gel type and temperature. measurements were performed 

using four different brands of coupling gel: 

1. Aquasonic 100 (Parker. Orange. NJ. USA). 

2. Ezem Rooster (Ezem Rooster. Dordrecht. the Netherlands). 

3. Aquarius 101 (Enraf Nonius. Dordrecht. the Netherlands). and 

4. Sonogel (Enraf Nonius. Dordrecht. the Netherlands). 

With each gel. triplicate measurements were performed at six different 

temperatures; 21°C (room temperature). 25°C. 29°C. 33°C. 37"C (body 

temperature). and 41°C, 

Statistical analyses 

Paired and unpaired data are compared using the paired and unpaired !-test 

respectively. For the evaluation of brands of coupling gel and gel temperature 

analysis of variance (AN OVA) was used. Correlation coefficients given are 

Pearson's. Partial correlation coefficients (rp) are calculated to account for 

common correlations with age. Analysis of variance. taking account of age. was 

performed to compare boys and girls. P=0.05 (two-sided) was considered to 

be the limit of significance. 

3.3 RESULTS 
Intra-observer variance for operator one (MHL) was 16.3 ms~l (CV 0.43%. SCV 

2.3%) and for observer two (SFGR) it was 16.4 ms~l (CV 0.43%. SCV 2.3%). 

The inter-observer variance was CV 0.61% (SCV 3.3%). 

In group B. the measurements of all 53 children were available for analyses. 

Mean values for SOS. as shown in Figure 1. for none of the measurement sites 

did the mean SOS in girls differ significantly from boys. Also ANOVA. taking 

account of age. did not show significant differences between boys and girls. 

There was. however. a significant increase in SOS from right proximal to right 

distal (P<O.OOl). LMT and RMT SOS measurements show a significant 

correlation (rboy,=0.84. r"",=0.92. both P<O.OOl. Figures 2 and 3). 
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These correlations remained highly significant when the correlations were 

determined while correcting for the mutual correlation with age (rboy,=0.65, 

rg;",=0.69, both P<O.OO1). 

Out of 30 boys seven (23 %) and out of 23 girls three (13 %) were left 

handed. Comparing the mid-tibial SOS between the dominant and 

non-dominant leg no significant differences were found (paired t-test: P=O.72). 

This applied to boys as well as girls. There were also no significant differences 

between children grouped according to their dexterity regarding RP and RD 

SOS measurements. 
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Fig. 2 Left mid-tibial versus right 
mid-tibial 50S (m/s) in girls. 
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Figure 4 shows the influence of brands of coupling gel and temperature on 50S 

measurements. ANOVA showed no significant trends with increasing 

temperature. There were also no significant differences between brands of 

coupling gels. 

3.4 DISCUSSION 
In a study performed by Greenspan et al. the precision of six different calcaneal 

bone assessment techniques were compared 26. Three of these techniques also 

measure 50S. the Achilles (Lunar Corp). the CUBA (McCue Ultrasonics Ltd.) 

and the UBA 575+ (Hologic Inc.). The intra-observer SCV% of these three 

techniques ranged from 1.94 to 3.58 % and the inter-observer SCV% from 

2.68 to 4.14%. Our 5CV% is in the same range as these techniques. showing 

that it is equally precise. Previous studies using tibial QU5 in an adult 

population showed similar results with respect to the intra-observer precision 
(range 0.42 _ 0.85%) 9.". 
It is well known that as well as all other measurements, tibial QU5 has an 

inherent variability. However. it is unknown if these differences also exist 

between measurement sites within one person. Our data show that there is no 

significant difference in 50S between LMT and RMT in a pediatric population, 
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an influence of dexterity on these measurements was not found. Similar results 

have been shown in an adult population by Howard et al. (calcaneal 

ultrasound) and Yang et al. (DXA of the hip) and in a pediatric population by 

Faulkner et al. (DXA) and Leong et al. (tibial QUS) 27-30. The higher. not 

significant. value for SOS in girls compared to boys could be explained by the 

higher mean age of the girls (12.8 versus 10.7 years). 

The strength of our study is that we used physically active. healthy. young 

children in whom a discrepancy. if there is any. between the dominant and 

non-dominant leg should easily be found. As a result of this. LMT and RMT 

measurements can be used in a pooled fashion in future studies. This makes 

studies evaluating the effect of uni-Iateral immobilisation possible. 

A second important finding is that measurements 2 cm proximal and distal 

from the mid-tibial point differ significantly from measurements at the 

mid-tibial point. It is of the utmost importance to measure the tibial length 

accurately and measure exactly on the mid-tibial point. An explanation for this 

finding may be the influence of cortical thickness. which differs from proximal 

to distal. on ultrasound measurements. Our data show a significant increase in 

SOS from proximal towards distal. This finding is supported by data presented 

by Wu et al." and Orgee et al.". A drawback of this part of the study is that 

we did not investigate measurement sites between RP. RMT and RD. 

Therefore. we cannot predict the influence of small errors in the range of 

millimetres. on tibial QUS. 

Another important factor in tibial QUS which could be of importance is the 

cortical thickness and geometry of the tibia ". Both factors were not measured 

in our population. However. if tibial QUS versus skeletal age would be used 

accordingly to normal growth curves then this factor might be of less 

importance. 

To study the influence of temperature the phantom was chosen to minimize 

differences between measurements due to different measurement sites. Using 

ANOVA we found no significant trends of SOS with increasing temperature. 

There were also no significant differences between the different brands of 

coupling gel. These results show that for patient comfort the gel may be heated 

to body temperature. this might be especially important for young children. 
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In conclusion, this study shows that tibial QUS is a precise technique for bone 

assessment In a pediatric population. Further studies into the clinical relevance, 

Including correlation with established methods, in this specific popUlation are 

needed. 
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3.6 ADDENDUM 
Evaluation of long-term precision for tibial ultrasonometry 

As mentioned in the short-term precision part of this chapter the tibial 

ultrasound device has an excellent short-term precision, also when using the 

standardized CV%'s (5CV%). Compared to other ultrasound bone mass 

assessment techniques used at the calcaneus, the tibial ultrasound device 

showed that our tibial 5CV% is in the same range as these techniques, showing 

that it is equally precise. I Previous studies using tibial QU5 in an adult 

population showed similar results with respect to the intra-observer precision 

(range 0.42 - 0.85%)"'. For longitudinal studies it is essential to know the 

long-term precision of the technique been used for bone mass assessment. If the 

long-term measurement error of the technique is to big, it Is essentially 

impossible to interpret results of longitudinal studies, especially when small 

changes are anticipated. This could be the case in longitudinal studies looking 

for changes in bone mass in subjects treated with drugs which can affect bone 

mineral status. 

Until today no long-term precision of the tibial ultrasound device has been 

published. We have long-term phantom data over a period of almost 3 years. 

In this period 253 times the tibial ultrasound system was calibrated for daily 

practice. Every time the ultrasound probe was placed on a phantom and about 

50 measurements were done. If the mean of these measurements was more 

than 25 above or below the standardized 505 of the phantom (3805 m/s) the 

measurement setup failed and the calibration procedure had to be done again 

till it passed. We did use two probes. With the first probe we did 171 phantom 

measurements with a mean 505 of 3814 mls (50 8 mis, median 3815 m/s) and 

with the second probe we did 82 phantom measurements with a mean of 

3823 mls (50 8 mis, median 3825 m/s). There is no significant Increase or 

decrease of the phantom measurements in time, looking at the probes 

separately. Looking at the total phantom measurement time we saw a little, 

but statistical significant increase of 505 of 9 mls comparing the second probe 

against the first probe (Figure 1). Figure 2 shows that this 9 mls increase in 505 

is not ciinical significant looking at the wide biological variance of the reference 

data of normal healthy children (Chapter 4) and the broad range of 505 in 

children with acute lymphoblastic leukemia (ALL) (Chapter 10). 
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Fig. 1 long·term tibial ultrasound phantom data, expressed in mean 50S m/s. Measurements are 
done with probe 1 (+ sign) and with probe 2 (x sign). 
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Fig. 2 long-term tibial ultrasound phantom data, expressed in mean 50S mis, plotted in the clinical 
relevant scale of 50S, using probe 1(+ sign) and probe 2 (x sign). 

55 



· -···Evaluafion··of,horf-ferm·pred,ion··· 

Therefore we think that we can use the tibial ultrasound device not only in 

cross-sectional studies, but also in longitudinal studies. looking at the very small 

change in mean phantom SOS in time, the tibial ultrasound device can be used 

not only in healthy children but also in children with diseases, which affect 

bone metabolism. The tibia ultrasound device can potentially also detect effects 

of treatment, known to affect bone metabolism. 
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NORMAL VALUES FOR TIBIAL QUANTITATIVE 
UL TRASONOMETRV IN CAUCASIAN CHILDREN AND 

ADOLESCENTS (aged 6 to 19 years) 

ABSTRACT 
Background: Bone densitometry in children is a relatively new topic of 

interest within the field of osteoporosis. Bone densitometry techniques using an 

X-ray source have the disadvantage of radiation exposure. Also on some 

systems. motion artefacts are caused by long scan times. Tibial quantitative 

ultrasonometry (QUS) is ideally suited for children as it is radiation free and the 

interactive measurement provides real-time quality control. 

In this prospective study. we present data acquired from 596 healthy children. 

309 girls. mean age 12.9 years (range 6.1-19.9 years). and 287 boys. mean age 

12.3 years (range 6.1-19.6 years) from Rotterdam. the Netherlands. For all 

subjects a short questionnaire regarding overall health was completed. To assess 

skeletal age. an X-ray of the left hand was taken and tibial QUS of the right 

tibia was performed using the SoundScan"Compact. 

A statistical significant correlation was found between age and speed of sound 

(SOS) r'.oy,=0.52 and r'"",=0.63 (both P<O.OOI) and between skeletal age and 

SOS r'.oy,=0.56 and 1"",,,=0.63 (both P<O.OOI). In boys. significant increase of 
mean SOS is seen between Tanner stage II and III and between IV and V. In 

girls there is a significant increase of mean SOS between all Tanner stages. 

except between Tanner stage II and III. 

This is the first study to present normative tibial QUS data for Caucasian 

children and adolescents. In this study. normative data relative to skeletal age 

are also provided. facilitating the implementation of this technique in children 

with growth disorders showing dissociation between calendar and skeletal age. 
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4.1 INTRODUCTION 

In recent years pediatric bone densitometry has become feasible. and with it. 

the importance of knowing the mechanism of bone. The concept of peak 

bone mass in normal growth and development has especially received 

increased attention'·'. Peak bone mass is dependent on genetic and 

environmental factors. such as nutrition and activity. These factors provide 

opportunities for interventional strategies to ensure the highest peak bone 

mass. Pediatric bone densitometry is also used increasingly for follow-up in 

children with diseases or treatment modalities (e.g. corticosteroids) influencing 

bone metabolism and growth"'. 

Bone mass assessment in children has specific technical problems. First. the 

skeleton grows in three-dimensions. making interpretation of the results 

obtained by two-dimensional (areal) bone densitometry techniques. such as 

dual-energy X-ray absorptiometry (DXA). difficult 8.9. With these techniques it 

may be hard to discern between the effect of actual bone density gain and 

changes in body or skeletal sizelO
• To alleviate this problem the use of so-called 

bone mineral apparent density (BMAD) has been propagated ". However. 

further studies into the use of this parameter in children and adolescents are 

needed. 

In recent publications Tothill et al." and Bollotin" have highlighted a second 

drawback to DXA. Detrimental effects of changes in body composition on DXA 

measurements were shown. making the applicability of DXA in a pediatric 

population uncertain"'''. It has been determined that inhomogeneous fat 

distribution in soft tissues. resulting in a difference of 2 cm fat layer between 

soft tissue area and bone area. will influence DXA measurements by 10%14. 
Therefore. longitudinal DXA values in children may reflect the changes in body 

size and composition that occur with growth more than true changes in bone 

mineral density"'''. Moreover. reproducibility of those measurements is a 

problem in children. attributed mainly to motion artefacts due to long scanning 

times. 

Theoretically. three-dimensional bone densitometry techniques such as 

quantitative computed tomography (QCT) are preferred". The use of QCT 

means a higher level of radiation exposure compared with DXA. although the 

radiation exposure is still lower than with conventional X-rays ". 
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A relatively new technique for bone mass assessment is quantitative 

ultrasonometry (QUS). Currently. several systems for QUS are in production. 

but are used almost exclusively in and validated for adult populations"·2o. 

Because of their design. some systems are not suitable for use in children or 

they need extensive modification. Tibial QUS was performed using a 

SoundScan®Compact which is a system designed to facilitate measurements in 

children aged 6 years and older. It measures the speed of sound (SOS. ms") 

along the cortex of the tibia (Figure 1)". Research has shown that the SOS 

measurements are affected by the amount of bone density as well as by the 

structural properties of bone. I.e. anisotropy. elasticity and lamellar orientation 
18,21 

A. Transducer 
B. Pathway along the cortex 

of the tibia 
C. Tibia 

Fig.! The principle of quantitative ultrasound tibial bone assessment. 

We present a study in healthy. Dutch. Caucasian children and adolescents (aged 

6-19 years) establishing normal values for tibial QUS. The SOS values are 

normalized for skeletal age. 

4.2 MATERIAL AND METHODS 
Study subjects 
Six hundred and twenty children and adolescents were recruited from two 

different popUlations by advertisement. The first group was recruited from 

employees of the University Hospital Rotterdam. the Netherlands. 
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And the second group from pupils of two high schools in Rotterdam. All 

volunteers were asked to complete a questionnaire relating to hand 

dominance, date of birth, sex and race. It also included questions pertaining to 

chronic illness, medication or a diet affecting bone growth and/or metabolism. 

A history of previous fractures and their cause was also recorded. Girls were 

asked their age at menarche and if they have had 6 or more months without 

menstruation. All children who suffered from diseases or used medications, 

known to affect bone growth and/or metabolism, were excluded from the 

study. A total of 24 children were excluded from the study because of chronic 

diseases: exostosis (1), Henoch-Schonlein (1), epilepsy (2), renal failure (1), 

prolonged immobilization (1), muscular dystrophy (1), and chronic respiratory 

disease (17). In total 309 girls, mean age 12.9 years (range 6.1-19.9 years), and 

287 boys, mean age 12.3 years (range 6.1-19.6 years), participated in this study. 

Informed consent was obtained from parents or guardians and where 

appropriate from the child (in the Netherlands, this is mandatory in children 

aged 12 years and over). This was done according to the guidelines 

recommended by the Declaration of Helsinki (Hong Kong, 1989) and the 

guidelines of the Internal Review Board of the University Hospital Rotterdam 

and Erasmus University Rotterdam, Faculty of Medicine and Health Sciences, 

the Netherlands. 

Tanner stages were evaluated through self-assessment, according to Duke et al. ". 

Subjects were shown pictures and written information illustrating breast and 

pubic hair development for girls, and genital and pubic hair development for 

boys. They were asked to select the one that closely resembled their own 

status. If there were discrepancies between variables, emphasis was placed on 

the breast development in girls and genital development in boys ". 

Height was measured, without shoes, using a wall-mounted ruler '4 and weight 

was measured, without shoes, on an electronic weight scale. Body mass index 

(BMI) as an indicator of nutritional status was calculated as the ratio of weight 

to height' (kg ·m·'). 

Radiography 
To assess skeletal age (SA) radiographs of the left hand were taken for all 

participants (Philips diagnost H, Imation GT film, a-II screen, film-focus distance 
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1.5 m, 45 kV, 16 mAs). All radiographs were evaluated and scored according to 

the Greulich and Pyle hand atlas 25. 

QuantItative ultrasonometry 
Tibial QUS was performed using the SoundScan®Compact (Myriad Ultrasound 

Systems Ltd.. Rehovot, Israel, software version Lie). Following standard 

operational procedures, all QUS bone assessments were done on the right tibia 

at the mid-tibial point, defined as the mid-point of the line between the apex 

of the medial malleolus and the distal patellar apex (see Lequin et al. 26 for a 

full-length discussion of this technique). 

Measurements were made by trained operators (MHL, RRVR, SGFR). The 

intra- and inter-observer variation had been tested previously, according to the 

Food and Drugs Administration's guidelines, and the coefficient of variation 

was less than 0.5 % 26.". These results correspond well with previously 

published results obtained in adults 18.28.". 

Statistical analyses 
Statistical analyses were performed using the Statistical Package for the Social 

Sciences (SPSS version 6.1.3, Chicago, IL. USA). Regression analysis was used to 

assess the relation between SOS and age. Ninety-five percent reference intervals 

were calculated as mean ±2 SD of residuals. Student's t-test was used to test 

for differences between boys and girls. One-way analysis of variance (AN OVA) 

with Bonferroni's correction for multiple comparisons, was used to compare 

the various Tanner stages separately for boys and girls. Multiple regression, 

taking age into account, was used to explore differences between children with 

and without a fracture history. 

4.3 RESULTS 
Cubic regression analysis showed the best fit (see results Table 1 and Figures 2 

through 5). The anthropomorphic and QUS data stratified by Tanner stage for 

boys and girls are shown in Table 2. In boys, a significant increase of mean SOS 
is seen between Tanner stages II and III and between stages IV and V. In girls, 

there is a significant increase of mean SOS among all Tanner stages, except 
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between stages II and III. A significant gender difference of mean SOS was 

found for Tanner stages IV (P<O.05) and V (P<O.05). 

Table 1. Results of cubic regressions of 50S versus calendar and skeletal age. 

Calendar age Skeletal age 

Boys Girls Boys Girls 

Constant 3113 ± 236 4042 ± 227 3243 ± 161 3820 ± 269 

A 129.97 ± 60.93 -138.13 ± 57.33 105.47 ± 45.06 -73.61 ± 71.06 

B -10.86 ± 4.97 13.22 ± 4.59 -9.42 ± 3.89 7.47 ± 5.97 

C 0.34 ± 0.13 -0.32 ± 0.12 0.32 ± 0.11 ·0.16 ± 0.16 

r' 0.52 0.63 0.56 0.63 

SO 98.6 98.2 94.8 98.3 

Data shown are coefficients ± standard error. with r 2 and SO of residuals: 

(50S = Constant + A x age + B x age' + C x age') 

Boys Girls 

0 

I I 
" " < 

l a 
~ ~ 

" " §. §. 
00 00 

0 

" " " " " " " 
Calender age (yearn) Calendar age (years) 

Fig. 2 and 3 Cubic regression and 95% reference intervals of speed of sound for boys and 
girls according to calendar age. 
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Table 2. Anthropomorphic data stratified by Tanner stage for boys and girls. 

Tanner stage 
--------------------------

Measurement Sex II III IV V 

d' 8.3 (1.6) 10.6 (2.3)' 12.8 (1.2)' 1404 (1.6)' 16.6 (1.9)' 

Age (years) 
10.8 (1.9)' 12.0 (1.0)' 14.0 (1.0)' 16.6 (1.8)' ~ 8.2 (1.5) 

Skeletal age d' 8.3 (2.0) 10.6 (204)' 13.0 (0.8)' 14.8 (104)' 17.1 (1.7)' 

(years) 
~ 804 (1.5) 10.7 (1.2)' 1204 (1.0)' 14.6 (1.5)' 16.8 (1.3)' 

d' 1.37 (0.12) 1.49 (0.12)' 1.60 (0.08)' 1.75 (0.08)' 1.83(0.05)' 

length (m) 
~ 1.38 (0.090) 1.50 (0.08)' 1.60 (0.09)' 1.67 (0.08)' 1.70(0.06)' 

d' 31.8 (8.5) 39.2 (10.2)' 48.1 (8.9)' 58.7 (8.0)' 72.3(8.6)' 

Weight (kg) 
~ 31.2 (6.5) 40.1 (704)' 44.7 (7.2)' 56.4 (7.9)' . 61.4(8.3)' 

d' 16.6 (1.9) 17.4 (2.5)' 18.6 (2.5)' 19.1 (1.8)"' 21.5(2.3) , 

BMI (kgm") 
~ 16.3 (1.9) 17.9 (2.6)' 17.3 (1.9)N' 20.2 (2.1)' 21.3(2.6) , 

Mean 50S d' 3656 (93) 3654 (108)"' 3749 (99)' 3755 (126)N' 3902(127)' 

(m,") 
~ 3637 (97) 3692 (105)' 3713 (102)N' 3845 (103)' 3945(103)' 

Number d' 100 47 37 53 49 

~ 96 41 22 63 86 

Difference between this and previous Tanner stage,' SD between brackets: 
NS == not significant. l=p<O,OS, 2=P<O,OI, 3=P<O.OOl 

These significant differences were also present when age was taken into 

account using mUltiple regression. For those girls (n= 129), who had their first 

period, menarche had occurred at 12.7 years (range 10-16 years). 

One hundred and fourteen children (63 girls and 51 boys) had a history of 

fractures (fractures which are typical for children, e.g. sports traumas and falls 

from bikes). 
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Fig. 4 and 5 Cubic regression and 95 0/0 reference intervals of speed of sound for boys 
and girls, according to skeletal age. 

All of these fractures occurred at least one year prior to our investigation. 

Neither for boys nor for girls there was a significant difference in mean SOS 

(measured by mUltiple regression, adjusting for age) between those with and 

those without fracture. There was also no significant influence of the interval of 

fracture on the SOS in children with a history of fracture. 

4.4 DISCUSSION 

This is the first paper to present normative data for tibial QUS in Caucasian 

children in the age range of 6-19 years with this specific device. The 

attractiveness of QUS. especially in children. lies in its low cost. portability. ease 

of use and lack of ionizing radiation. Several studies using calcaneal ultrasound 

have been done in children and adolescents, two of which report pooled data 

obtained from groups of children of different gender and ethnicity 'O,31. As bone 

development is influenced by both gender and ethnicity. these study results are 

hard to interpret. Both studies used a specially adapted version of commercially 

available systems. The advantage over the more widely used calcaneal QUS 

systems is the applicability of the tibial QUS in smaller and/or younger children. 

The minimum age at which children can be investigated at the mid-tibial site is 

about 6 years or. because of the relatively large transducer head. a minimal 

tibial length of approximately 20 cm. For calcaneal QUS systems the average 

age at which the device is applicable is 8 years. Furthermore, hypothetically the 
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change of the mid-tibial site location will be less than the change in the region 

of interest at the calcaneus ". 

Our data showed significant increase of the 50S value between all Tanner 

stages in girls except between Tanner stage II and III which is in contrast with 

the data reported by Mughal et a1. 30
• An explanation could be that there is a 

difference in mean age at Tanner stages II and III between our investigated 

group of girls and the group investigated by Mughal. Furthermore Mughal's 

study included fewer girls. In our study, the highest increase of 50S in girls is 

found between Tanner stages III and IV, within mean age range of 12 to 14 

years (Table 2). 

Our results show no constant increase of 50S in boys, but significant increases 

between Tanner stages il and III and stages IV and V. The highest increase of 

50S is between Tanner stage IV and V. with a mean age range of 14.4 and 16.6 

years and therefore approximately two years after the highest increase of 50S 

in girls. The significant gender differences of 50S remain when age is taken into 

account using mUltiple regression. Our results show that the 50S of boys is 

significantly lower than girls in Tanner stage IV (P<O.OOl) and V P<0.05). 

However. our data shown in Figures 2 and 3, suggest that after the age of 20 

years males may have the highest 50S. in agreement with other studies done 

with tibial QUS in adults18
• The same trends have been shown by Boot et al. 23 

who generated normal values for their DXA machine. They found no 

difference in BMD of the lumbar spine. or total body between boys and girls. 

but a lower volumetric bone mineral density (BMAD) in boys than in girls in 

Tanner stage V. They do not give a good explanation for this difference. but 

suggest that it may be due to a difference in female hormone levels in boys and 

girls in this age group. Gilsanz et al 10 using QCT of the femur, did not find a 

lower BMD in boys than in girls in the age range of Tanner stage V, therefore it 

is more likely that there is a difference in bone architecture in this age group 

between the two sexes rather than a real bone density difference. Furthermore. 

looking at the Figures 2-5. boys seem to catch up with this difference later in 

life, in their early twenties. Our findings are in agreement with the result of the 

study performed by Kaga et al. 33. 

The standard deviation. and consequently the 95% reference intervals, 

presented in Figures 2-5 show quite an extensive biological variability also 
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reported for other bone densitometry techniques such as DXA 34. It has been 

suggested that this broad variability is due partly to genetic and environmental 

factors ". As expected in this healthy population. no significant difference in 

the biological variability of the QUS measurements was seen. comparing 

skeletal age and biological age. To our knowledge. this is the first study to 

assess bone density and skeletal age simultaneously. thus facilitating the clinical 

use of this technique in pediatric patients afflicted with diseases affecting bone 

growth and/or metabolism. causing dissociation between calendar and skeletal 

age. In this group it is customary to make radiographs of the hand in order to 

assess skeletal age. Depending on the dissociation of skeletal and calendar age 

therapeutic regimen may be initiated. We therefore feel that it is imperative to 

use data normalised for skeletal age. 

Measured tibial QUS values can probably be used in the same way as actual 

growth curves in children. If it can be shown that children in general follow 

their specific percentile during their progress to adulthood. then very early in 

life children with QUS values below 5% percentile can be identified as having a 

low bone mass. and the appropriate interventions could be explored to ensure 

the highest peak bone mass possible. This however. necessitates longitudinal 

studies investigating the normal variation in bone gain in children. as well as 

exploring the usefulness of such interventions. 

In our opinion. the best bone mass assessment technique by design is QCT. not 

only in adults but also in children. But the major disadvantage. which limits its 

use. is its availability. To a lesser extent. patients discomfort due to 

claustrophobia and radiation burden plays a role. Also. the use of QCT for 

follow-up studies is hindered by the relatively high radiation dosages. which 

makes patient compliance low. 

Longitudinal studies performed using DXA could be cumbersome in childhood 

as several authors have shown that DXA is sensitive to changes in soft tissue 

composition and bone size occurring during growth. Therefore. QUS could be 

an attractive technique. The tibial site especially shows great promises in 

children. as the mid-point of long bones remains fairly constant throughout 

childhood and adolescence. At the moment we are conducting a longitudinal 

study assessing the normal variation in bone gain in children and its clinical 

applicability. 
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TIBIAL QUANTITATIVE ULTRASOUND VERSUS TOTAL 
BODY AND LUMBAR SPINE DXA IN A DUTCH 
PEDIATRIC AND ADOLESCENT POPULATION 

ABSTRACT 
Rationale and objective5: To understand normal bone development, studies in 
healthy children and adolescents are important. To assess the applicability of 
tibial quantitative ultrasound measurements (QUS) in children, we performed a 
study that compared dual-energy X-ray absorptiometry (DXA) of the lumbar 

spine and total body with tibial QUS. 
Method5: For this study we recruited 146 Dutch children and adolescents, 58 

boys (median age, 14.1 years; range 7.6 - 23.4 years) and 88 girls (median age, 
18.0 years; range 7.6 - 23.5 years). Tanner stage, weight and height were 
assessed for all participants. Bone mineral mensity (BMD; g·cm·') of the total 
body and lumbar spine (L,-L4) and bone mineral apparent density (BMAD) of 
the lumbar spine (g'cm") were assessed by using the Lunar DPXL. For tibial 
QUS, the SoundScan®Compact system was used. 
Rewlt5: Both lumbar BMD as well as total body BMD showed a strong, 

significant correlation with tibial QUS in boys and girls: r'o"'bodyboy,=0.81, 

rlota! body g!rls=O.77, rrumbar spIne boys=O.79, and r[umbar spIne glrls=O.72. Lumbar spine 
BMAD also showed significant correlations with tibial QUS: rboy,=0.63 and 

rg1d,=0.63 (for all correlations, P<O.OOl). 
Conc/u5ion5: Our study showing strong significant correlations between DXA 
and tibial QUS measurements suggests that tibial QUS is a technique that may 
be applicable in children and adolescents. 
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5.1 INTRODUCTION 

Because osteoporosis is an increasing problem worldwide, it has become the 

focus of attention of many studies. Variation in the attainment of maximal 

peak bone mass has recently been recognized as a risk factor for the 

development of osteoporosis later in life'. Because a high peak bone mass is 

important, studies in healthy children are necessary to understand normal bone 

development 2. 

Currently most studies of bone mass development in children use dual-energy 

X-ray absorptiometry (DXA). Although DXA shows excellent results in the adult 

population. its implementation in children might be hindered by the way it 

assesses bone mineral density (BMD; g·cm·2
) in a two-dimensional fashion. 

Because bone grows in three dimensions the two-dimensional approach 

measures not only true BMD gain but also growth. making the results of DXA 

difficult to interpret '. To overcome this problem, the use of bone mineral 

apparent density (BMAD; g·cm·') has been advocated "'. To calculate BMAD, 

the vertebral body is assumed to be cylindrical. By using the projected image of 

this vertebral body, the volume can be approximated, thereby yielding a 

volumetric density. For longitudinal studies in children, DXA has an additional 

drawback, in the fact that it uses different software versions in children and 

adolescents. There is a considerable difference between the BMD values 

obtained by these two software versions 6. 

Besides longitudinal growth there are also significant changes in body 

composition during childhood. Three recent publications have drawn attention 

to the negative effect of changes in fat and lean body mass on DXA 

measurements '.9. Another minor drawback is the fact that DXA uses ionizing 

radiation; although the dose is extremely low, it still is something one would 
prefer not to use in children 10. II. 

Recently, quantitative ultrasound (QUS) has emerged as a promising technique 

in the field of bone densitometry. This technique might be suitable in a 

pediatric population 12.". QUS has been validated in the adult population and it 

has been shown to be as reliable as other techniques in predicting osteoporotic 

fractures in the elderly 4.18.20. However, QUS implementation in a pediatric 

population has specific problems to overcome. Currently. there are several 
QUS systems on the market that assess at different skeletal sites. 
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By design, the tibial ultrasound system (SoundScan®Compact, Myriad 

Ultrasound Systems Ltd., Rehovot, Israel) is suited for use in children and 

adolescents. The approach used in this specific system differs from the calcaneal 

and phalangeal systems in that it measures the speed of sound (SOS) along the 

cortex of the tibia instead of the SOS and broadband attenuation through the 

calcaneus or the phalanx". The predefined distance along the tibia is short 

enough to accommodate the tibia of children aged 4 years and older. 

Moreover, because the measurement is performed at the mid-point of the tibia, 

the region of interest does not change significantly during growth, unlike in 

other systems in which the calcaneus is measured. 

To investigate the applicability of this system we previously tested its precision 

in a pediatric population and collected normative data n. ". To further assess 

the applicability in this specific population we performed a study comparing 

the results of DXA of the spine and total body with those of tibial QUS in a 

healthy, young, Dutch population. Because most clinicians consider DXA to be 

the "gold standard" in bone assessment, a strong positive correlation between 

DXA and tibial QUS might convince them to adapt tibial QUS as a diagnostic 

modality. 

5,2 MATERIAL AND METHODS 
Participants 
For this study we recruited 146 Dutch children and adolescents from the 

Rotterdam region of the Netherlands: 58 boys, with a median age of 14.1 years 

(range 7.6 - 23.4 years), and 88 girls, with a median age of 18.0 years (range 

7.6 - 23.5 years). The parents or guardians, and all children aged 12 years and 

older, signed an informed consent form according to the Helsinki agreement 

and to the guidelines stated by the Internal Review Board of the University 

Hospital Rotterdam, the Netherlands 24. 

All participants filled out a questionnaire, regarding overall health. None of the 

children suffered from any disease known to affect bone metabolism and/or 

growth. Tanner stage was assessed by using photographs depicting the five 

stages; children were asked to point out those pictures that showed the best 

resemblance with there own pubertal status. In cases of discrepancies between 

variables, emphasis was placed on breast development in girls and genital 
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development in boys ". This technique has previously been validated by Duke 

et al. and is widely used because it relieves the child from the psychological 

burden of undressing in front of an adult '6. Weight was assessed with a 

standard clinical balance and height was assessed using a fixed stadiometer. As 

an indicator of nutritional status. body mass index (BMI) was calculated as the 

ratio mass to the square of height (kg·m·'). To test for normality. standard 

deviations. defined as the (measured value minus mean value for the normal 

population) divided by the standard deviation of the normal population and 

matched for age and sex from the normal Dutch population. for both height 

and BMI were calculated. 

Dual-energy X-ray absOIptiometry 
BMD (g·cm·') of the lumbar spine (L,-L4) and total body was measured by DXA 

(Lunar DPXL. Lunar corp .• Madison. WI). BMAD (g'cm") was calculated by 

using the lumbar spine BMD and the projected dimensions of the vertebral 

body. For this measure. the equation postulated by Kroger et aI.' was used: 

BMAD= BMDx ( 4 ) 
IT X width 

For measurement of the spine. the natural lumbar lordosis was flattened by 

elevation of the knees. All measurements were performed and analyzed by one 

operator (I.M. v/d S). For this study. the precision of DXA was not assessed. 

separately. because it was considered unethical to repeat those measurements 

in children with a technique that uses ionizing radiation. However. the 

published precision for DXA in children has been reported to be 1.8% 27. 

Quantitative ultrasound 

For tibial QUS. the SoundScan"Compact system (Myriad Ultrasound Systems 

Ltd .• Rehovot. Israel) was used. By following standard operational procedures. 

all QUS bone assessments were done on the right tibia at the mid-tibial point. 

All participants underwent one single measurement for the study. The 

mid-tibial point was defined as the mid-point of the line between the apex of 
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the medial malleolus and the distal patellar apex. Along a specified length. the 

SOS (in m's") through the cortex of the tibia was measured". A single 

measurement takes less than 5 minutes to perform. Two trained operators 

(RRvR and MHL) performed all measurements. For tibial QUS the intra- and 

inter-observer variances were tested beforehand in a healthy. white. Dutch 

pediatric and adolescent population. The inter-observer variance for this 

population is 0.61%. and the intra-observer variance is 0.43% ". 

Statistical analyses 
Statistical analyses were performed with the Statistical Package for the Social 

Sciences (SPSS version 7.5.2. SPSS Inc .• Chicago. IL. USA). Multiple regression 

analysis was used for evaluation of the relation between tibial QUS. total body 

DXA. and lumbar spine BMD. Body weight. body height. BMI and Tanner 

stage were entered into the regression model to test for modification of 

relationships. 

5.3 RESULTS 
The data of all children were available for analysis. The mean and SD of height 

for boys was 0.42 (SD=1.31) and for girls 0.27 (SD=1.29). The mean and SD of 

BMI for boys was 0.88 (SD=1.01) and for girls 0.34 (SD=1.02). In the male 

group 52 children (89.7%) were white. 3 (5.2%) were black. 2 (3.4%) were 

Hispanic. and 1 (1.7%) was of mixed ethnicity. In the female group. 71 children 

(80.7%) were white. 4 (4.5%) were black. 3 (3.4%) were Asian. and 10 

(11.4%) were Hispanic. Both the lumbar spine BMD as well as the total body 

BMD showed strong. significant correlations with tibial QUS in boys and girls: 

rlotal body boys=O.81, rlotal body girl;=O. 77. rlumbar spine boys =0. 79. and rlumbar spine glrh=O. 72 
(all P<O.OO1; Table 1 and Figures 1 and 2). Introduction of additional 

parameters such as height. body weight. BMI or Tanner stage into the multiple 

regression analysis failed to reach significance. Lumbar spine BMAD also 

showed moderate but significant correlations with QUS: rboy,=0.63 and r 

,'d,=0.63 (P<O.OOl). although the correlations were weaker than those for 

BMD of the spine or total body (Table 1 and Figure 3). 
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Table T. Linear regression parameters for DXA BMD 
(g'cm") versus tibial 50S (m's·I). 

(g'cm") and DXA BMAD 

Sex Site P-value a b 

Lumbar BMD 0.79 <0.001 3318,3 468.2 

Boys Total body BMD 0.81 <0,001 2948,6 775,5 

Lumbar BMAD 0,63 <0,001 3191.9 1853,9 

Lumbar BMD 0,72 <0,001 3378.8 449,9 

Girls Total body BMD 0.77 <0,001 2963.4 834,2 

Lumbar BMAD 0,63 <0,001 3294,6 1578.3 

Regression equation: 50S = a + b x BMD or BMAD. r=regression coefficient. 
DXA: dual-energy X-ray absorptiometry: BMD: bone mineral density: 
BMAD: bone mineral apparent density; and 50S: speed of sound, 
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5.4 DISCUSSION 

To date, there are only a few published studies regarding the correlation 

between DXA and QUS in this specific age group. All of these studies have 

concentrated on the correlation between calcaneal QUS and DXA 12. ". In the 

study of Jaworski et al." containing pooled data, for both healthy and 

osteopenic children, the authors presented correlations between calcaneal QUS 

·and total body BMD (r =0.67), lumbar BMD (r =0.67) and calcaneal BMD (r =0.67) 

(P-values were not reported). For their study, Jaworski et al." measured the 

distance between the tuberosity of the fifth metatarsal and the back of the heel. 

At one third of this distance from the back of the foot, a point 1 cm above and 

perpendicular to this first point was marked. The foot was positioned in the 

Achilles ultrasound densitometer (Lunar Corp., Madison, WI, USA), by using 

one to four footpads underneath or behind the foot. Mughal et al." used a 

prototype pediatric contact ultrasound bone analyzer and compared its results 

with those from a total body DXA (Hologic QDR-1000W; Hologic, Waltham, 

MA). In that study a Significant, positive correlation was found between DXA

derived values and calcaneal SOS (r =0.74 P<O.OOl); furthermore, both total 

body BMD and calcaneal BUA were significantly correlated with age. Both 

studies used systems that were especially adapted for a pediatric popUlation, 

either by using footpads or by design. Tromp et al. 29 recently presented a study 

of an adult popUlation that compared tibial QUS and DXA. Their study yielded 

the following correlations: tibial QUS versus lumbar spine BMD r =0.54 

(P<O.OOl) and tibial QUS versus total body BMD r =0.58 (P<O.OOl). Our 

study, which used a standard, commercially available system in children and 

adolescents, shows significant correlations ranging between r =0.60 and r =0.83 

(P<O.OOl). We expected to find the most significant correlations between QUS 

and total body BMD, because the latter consists of approximately 80% cortical 

bone. In both boys and girls there was no significant difference in correlation 

between lumbar or total body BMD and tibial QUS. 

The significant correlations between DXA and QUS suggest that both 

techniques measure a component of growth as well as some change in bone 

mass and composition. Although we found a small difference in correlation 

between QUS and DXA of the spine or total body in boys and girls (in favour 

of boys), this was not significant. 
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As mentioned in the introduction, the applicability of DXA in a pediatric and 

adolescent population is still a matter of debate 3.7, However, until now, DXA 

has been considered the "gold" standard by most clinicians 4, With QUS a new 

way of assessing bone has been introduced, Although QUS has proved to be as 

reliable as DXA in predicting fractures of the hip in the elderly, what exactly is 
measured is still a matter of debate 4,19,30.32, From basic physics, it is known that 

SOS is dependent on the complexity of the material through which the 

ultrasound waves travel. 

Although bone is an anisotropic material, we may, by approximation, apply 

the following equation: 

1 SOS= -
2 

xi 
p 

where E is the modulus of elasticity and p is bone density, Therefore, the SOS 
reflects not only bone density but also the structural properties of bone 33,34, 

With respect to the effect of bone maturation and osteoporosis on ultrasound 

parameters, several authors have already stated that further fundamental 
research is necessary 33,35,36, 

Normative data gathered in more than 500 healthy, white children and 

adolescents showed a significant, positive correlation between skeletal age and 

tibial QUS in both boys and girls ", Our results showing a significant correlation 

between DXA and QUS, indicate that QUS may be an addition to the 

diagnostic tools of the physician, 
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QUANTITATIVE TIBIAL ULTRASONOMETRV VERSUS 
RADIOGRAPHIC PHALANGEAL ABSORPTIOMETRV IN A 

CAUCASIAN PEDIATRIC POPULATION 

ABSTRACT 
Inttvduction: There is a need for a reliable bone assessment technique in children. In 

this study, we compare an existing technique used in children, radiographic 

ab50rptiometry (RA), with a relatively novel technique, quantitative tibial 

ultra50nometry (QU5). 

Material and Methods: In a prospective cohort study, we enrolled 290 girls (mean 

age 12.7 years) and 273 boys (mean age 12.4 years). Radiographs of the left hand 

and the left index finger were taken with an aluminium reference wedge within the 

field of exposure. Radiographic ab50rptiometry on the second middle phalanx at the 

mid-level (BMDsoo/J and proximal quarter (BMD25'/J was performed with interactive 

software. Tibial QU5 was performed using the 50und5can®Compact. 

Results: Multiple regression analyses showed that 505 correlated Significantly with 

BMD25% for both boys (r =0.65, P<O.OOl) and girls (r =0.59, P<O.OOl), taking into 

account age and gender. The same applied for the correlation between speed of 

sound (505) and BMDso% in boys (r =0.62, P<O.OOl) and girls (r =0.67, P<O.OOl). 

Cubic regression between calendar age and BMD25% showed the best fit for both 

boys (r2 =0.60) and girls (r2 =0.60). For BMDsO<'ro a difference in regression was 

found between boys and girls. Quadratic regression gave a satisfactory fit for boys 

(r2 =0.61) while for girls a cubic relation was best (r2 =0.59). Overall, there was a 

significant correlation between BMD25% and BMDsO<'/. for boys r =0.89 and for girls 

r =0.91 (both P<O.OOl). 
Conclusion: Our data show a significant correlation between two different bone 

assessment techniques. In addition, these data suggest that both tibial ultrasonometry 

and RA are useful bone assessment techniques in children. 

Maarten H. lequin. MD.!' Rick R. van Rijn MD. PhD. I, Simon G.F. Robben MD. Ph01, Wibeke J. van 
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6.1 INTRODUCTION 
Several cross-sectional and longitudinal studies show that osteoporosis is no 

longer a disease of elderly. Not only bone loss in adult life is an important 

factor for future fracture risk due to osteoporosis. but also the height of peak 

bone mass (PBM). attained in early adulthood '. The emphasis is now more on 

prevention through maximising PBM and reducing subsequent bone loss. 

because none of the present treatments can significantly restore the amount of 

bone lost in severe osteoporosis. Therefore. it is important to increase our 

knowledge on the attainment of peak bone mass by using quantitative bone 

mineral density (BMD) assessment techniques. Other indications to measure 

BMD in a child are quantification of bone mass changes due to various diseases 

and drug therapies inducing osteopenia 2.'. 
Several non-invasive techniques for BMD assessment have been used in the 

adult popUlation. However. only a few techniques are available for a pediatric 

population due to several reasons. 

The most Widely used BMD assessment technique is dual-energy X-ray 

absorptiometry (DXA). The reasons for its frequent use include its low radiation 

dose. good availability and ease of use. The major drawback of this technique 

is it being a projectional method. which measures the radiation attenuation at 

the measured site. Therefore. DXA measures an area density. calculated as the 

quotient of the bone mineral content and the area. rather than a true 

volumetric density. For instance. DXA will measure a higher areal bone density 

in a larger vertebra of a child than in a smaller vertebra. when they have both 

the same constant volumetric bone density. Therefore this two-dimensional 

technique cannot discern between a change in true bone density and normal 

growth of the skeleton. because the skeleton of a child grows in three

dimensions. 

Second. weight changes. which normally occur during growth. have a 

tremendous impact on the DXA measurements 4.5. 

Quantitative computed tomography is a technique. which measures true 

volumetric BMD independent of surrounding soft tissue. and therefore could 

be a very accurate method for measuring BMD changes in a growing child 6. Its 

relative high level of radiation exposure hampers the implementation in 
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childhood. Furthermore. the need for a relative long immobility period of the 

child during scanning is an additional drawback. 

Radiographic absorptiometry (RA) is a technique. which combines assessment 

of skeletal age (SA). an important indicator of bone maturation. and BMD 

assessment. This method has existed for many years and it is the oldest 

quantitative bone mass assessment technique '.9. RA quantitatively assesses bone 

mass (cortical and trabecular) on conventional radiographs. mostly of the hand. 

Several studies have shown that RA is as good in predicting fracture risk in 

postmenopausal women as other densitometry techniques. like DXA and 

quantitative ultrasonometry 10.". RA appears also to be appropriate for the 

assessment of BMD of phalanges and metacarpals in the pediatric population 12-14. 

Moreover. it is relatively inexpensive and widely accessible. It is. however. not 

frequently used. One of the reasons being the necessity of dedicated 

postprocessing equipment and lack of normal reference values. 

Recently another bone assessment technique has been introduced: quantitative 

ultrasonometry (QUS). Several studies suggest that quantitative ultrasonometry 

(QUS) has the capability to investigate not only bone density but also bone 

structure 15.16. This is important because several studies have shown that bone 

density can account for only 70-80% of the variability in bone strength. The 

remaining variance in bone strength could be due to other factors such as 

ineffective bone architecture. fatigue damage. measurement artifacts and state 

of remodeling 17.". Therefore a non-invasive bone assessment technique. which 

might detect fragility and not only decreased bone mass. would be preferred. 

QUS' seems to be such a technique. using the combination of the information 

on bone elasticity. structure and density 19.20. Other advantages of QUS are its 

low cost. ease of use. patient comfort and absence of radiation. In this study. 

we use the tibial QUS. which can be performed in young children without 

problems. We choose not to use the calcaneal QUS method because difficult 

positioning and immobilisation of small feet introduce inaccurate 

measurements. In addition. the change of the measuring site at the calcaneus 

due to growth. will introduce another uncontrolled factor. In this study. we 

address the correlation between BMD measurements with QUS and RA. 

acquired in a healthy Caucasian pediatric population. aged 6-19 years. 
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6.2 MATERIAL AND METHODS 
Study subjects 
In a prospective cohort study. we enrolled 290 girls. (mean age 12.7 years; 

range 6.0-19.9 years) and 273 boys. (mean age 12.4 years; range 6.0-19.5 

years). Exclusion criteria were diseases and/or medication therapies. which 

affect bone architecture and bone metabolism. 
Informed consent was obtained explicitly from parents or guardians and where 
appropriate from the child (in the Netherlands this is mandatory in children 

aged 12 years and over). This was done according to the guidelines 

recommended by the Declaration of Helsinki (Hong Kong. 1989) and the 

guidelines of the Internal Review Board of the Erasmus Medical Centre 

(Rotterdam. the Netherlands). 

Overall health. sex. Tanner stage. calendar (CA) and skeletal (SA) were assessed 

for each participant. Tanner stages were evaluated through self-assessment; this 

technique was validated by Duke et al. ". Subjects were shown pictures. written 
information illustrating breast and pubic hair development for girls. and genital 

and pubic hair development for boys. They were asked to select the cine 'that 

had the closest resemblance to their own status. When there were discrepancies 

between variables. emphasis was placed on the breast development in girls and 

genital development in boys ". 
Height was measured. without shoes. using a wall-mounted ruler .23. Weight 

was measured. without shoes. on an electronic weight scale. Body mass index 

(BMI) as an indicator of nutritional status was calculated as the ratio of weight 
to height' (kg·m·'). 

Radiography 

A standardizedised posteroanterior (PA) radiograph of the left hand. and an 
additional lateral radiograph of the left index finger (LA T) were taken (Philips 

diagnost H. Imation GT film. a-II screen. film-focus distance 1.5 m. 45 kV. 16 
mAs). To assess skeletal age. all radiographs of the left hand were evaluated 
and scored according to the Greulich and Pyle atlas 24. 
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Radiographic absorptiometry 
The RA technique measures the diaphysis and proximal metaphysis of the 

second middle phalanx as measuring site in the posteroanterior (PA) and lateral 

view (LAT). The lateral view of the second middle phalanx is made on the 

same screen using a dedicated cassette with an identical aluminium reference 

wedge (Figure 1). 

fig.1A 

Fig.lB 

Fig. 1 An example of the X-ray 
images used in this study. 

A. Posteroanterior projection of the 
left hand (W = Aluminum 
reference wedge), 

B. Lateral projection of the left 
index finger (W = Aluminum 
reference wedge), 

Interactive software developed in-house (Departement of Experimental 

Radiology, Erasmus University, Rotterdam) was used to analyse all radiographs, 

using a 286 PC equipped with a modular frame grabber (Imaging Technology) 

in combination with a CCD camera (SWK-31, DIFA). 
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Analyses. performed by one operator (Wvl). consisted of scanning the two 

identical aluminium wedges (thickness 0-12 mm). A reference curve was 

obtained with this scanning. The regions of interest (ROI's) are automatically 

determined from the digitized X-ray. after defining the distal and proximal 

edges of the second phalanx. The software also automatically determines the 

length and the outer contours of the phalanx. The two ROI's were a 3-mm 

wide area across the mid-point of the total length of the phalanx (BMD50'~) and 

a 3-mm wide area located at the proximal quarter-point of this phalanx 

(BMD",;,). The mid-phalangeal ROI consists mainly of cortical bone (80%). the 

proximal quarter-point ROI mainly of trabecular bone (60%)"·"·26. The 

software combines the measurements at the two ROI's in the PA and LAT 

projection. to obtain a volumetric BMD relative to the aluminium wedge 

(mgAUmm'). 

Quantitative ultrasonometry (QUS) 

Tibial QUS was performed using the SoundScan"Compact (Myriad Ultrasound 

Systems ltd .. Rehovot. Israel. Software Version 1.1 e) (Figure 2). Following 

standard operational procedures. all QUS bone assessments were done on the 

right tibia at the mid-tibial point. The mid-tibial point was defined as the 

mid-point of the line between the apex of the medial malleolus and the distal 

patellar apex. 

Fig 2. Principle of tibial quantitative ultrasonometry. 
A. Transducer 
B. Speed of sound 
C. Tibia 
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Statistical analyses 
Polynomial regression was used to assess the relation between 50S and age. 

The same method was used to evaluate age-effects on BMD25% and BMDso%. 

Multiple regression analyses were performed to test the relations between 50S 

on one hand and BMD25% and BMDso% on the other hand. Correlation 

coefficients given are Pearson's. P=0.05 (two-sided) was considered the limit of 

significance. 

6.3 RESULTS 
Quadratic regression between CA and 50S showed the best fit for both boys 

(r'=0.52) and girls (r'=0.63). Cubic regression between BMD25% and CA 

showed the best fit for both boys (r'=0.60) and girls (r'=0.60). For BMDso%. a 

difference in regression was found between boys and girls: quadratic regression 

gave a satisfactory fit for boys (r'=0.61) while for girls a cubic relation was best 

(r'=0.59). 

Overall. there was a strong linear correlation between BMD25% and BMDso%. 

(for boys I' =0.89 and for girls r =0.91; both P<O.OOl). 50S correlated 

moderately with BMDso% for both boys (r =0.62. P<O.OOl. Figure 3) and for 

girls (r =0.67. P<O.OOl. Figure 4) . 

..• ,---------------, ' .• ,---------------, 

o 1.0 

~ .• 
o o .• '--_________ --1 

3200 3400 uoo 3eoo 4000 ~200 «00 

Speed of sound (mls) Speed of sound (rrJs) 

Fig 3_ BMD,o% versus SOS in Boys. Fig 4. BMD,O% versus SOS in Girls. 
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Table I. Results of multiple regression analyses of SOS (m/s). 

Factor 

Constant 

BMD,O% (mgAl/mm') 

BMD25% (mgAl/mm') 

Sex (male· female) 

Skeletal age (years) 

R' 

Regression 
coefficient 

3286 

212.8 

·75.5 

-19.7 

24.2 

0.58 

Pvalue 

(± 28.6) 

(± 53.7) <0.001 

(± 81.9) 357 

(± 8.8) 26 

(± 1.8) <0.001 

Data given are regression coefficients (± standard error) 
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Fig S. SOS versus unstandardized predicted value. 
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Analyses of BMD,o% and BMD25% in regard their predictive value of 50S. taking 

into account age and sex. showed that BMD,O% was of significant predictive 

value. while BMD25% was of no additional value (see Table 1 and Figure 5). 

This result was also found when CA was used instead of SA. Anthropomorphic 

data. 50S and BMD stratified by Tanner stage are presented in Tables 2A and 

2B. 

Table 2A. Anthropomorphic data (means) according to Tanner stage for boys. 

Tanner slage 

----------------------------
II III IV V 

Age 8.9(1.7) 11.2(2.2) 13.2(1.2) 14.8(1.6) 16.9 (1.8) 

(years) 

Skeletal age 8.3(2.0) 10.7(2.3) 13.0(0.8) 14.8(1.4) 17.0(1.7) 
(years) 

BMD25% 0.63(0.06) 0.62(0.06) 0.66(0.06) 0.79(0.09) 0.87(0.09) 

(mgAl/mm') 

BMDso% 0.94(0.09) 0.94(0.09) 0.96(0.07) 1.15(0.14) 1.31(0.14) 

(mgAllmm') 

SOS 3657.5(87.0) 3648.7(108.6) 3747.0(101.8) 3755.4(125.7) 3899.8(128.7) 

(m/sec) 

8MI 16.5(1.8) 17.4(2.5) 18.6(2.5) 19.1(1.8) 21.5(2.3) 

(kg/m') 

Number of 91 47 35 53 47 
subjects 

SO between brackets 
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Table 20. Anthropomorphic data (means) according to Tanner stage for girls. 

Tanner stage 

II III IV V 

Age 8.6(1.6) 10.9(1.4) 12.5(1.1) 14.4(1.5) 17.1(1.8) 

(years) 

Skeletal age 8.5(1.4) 10.7(1.2) 12.3(1.0) 14.6(1.5) 16.8(1.3) 

(years) 

BMD2S<'h 0.64(0.06) 0.66(0.06) 0.74(0.08) 0.83(0.09) 0.87(0.09) 

(mgAl/mm') 

BMDso% 0.98(0.09) 1.01 (0.10) 1.08(0.12) 1.24(0.16) 1.32(0.13) 

(mgAl/mm') 

SOS 3638.2(98.3) 3688.8(102.7) 3703.9(97.9) 3841.1(100.4) 3945.5(106.9) 

(mlsec) 

8MI 16.2(2.0) 18.0(2.6) 17.3(2.0) 20.1(2.1) 21.2(2.5) 

(kg/m') 

Number of 90 41 20 61 78 

subjects 

SD between brackets 

6.4 DISCUSSION 
Many studies in adults have shown significant but weak correlation between 

several different BMD techniques at a variety of measuring sites 2.".29. Relatively 

few studies have been performed in children to compare various BMD 
techniques 30.". 

Ideally, tibial Ql:JS should be compared to QCT that is considered the gold 

standard of true volumetric bone densitometry. However, several objections 

can be raised to the use of QCT as a bone mass assessment method in a large 

healthy pediatric popUlation: the high costs and the relatively high radiation 

dose compared to other radiological BMD techniques. We did not choose the 

more popular DXA technique for comparison, because this method seems to be 

unreliable in the growing child4
.'. Therefore RA was used for comparison, 
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because this technique gives a low radiation dose. is easy to perform and in 

many pediatric patients X-rays of the hand have been made to determine 

skeletal maturity and to look for disturbances in bone mineralization. 

Our data show a statistically significant correlation between SOS and BMD25% 

and SOS and BMDso%" This correlation increases significantly when calendar or 

skeletal age and gender are taking into account. Using either SA or CA. and 

gender. BMDSO% gives a good predictive value of SOS. In contrast. BMD25% has 

no additional significant influence on SOS. Therefore. BMDso% seems the most 

important parameter for predicting the SOS. In addition. this parameter was 

measured at the location where the percentage of cortical bone is the highest. 

This could explain why BMDso%. and not BMD25%' is the best predictor of SOS. 
With the assumption that RA is a true measurement of bone density. increase in 

the predicted SOS may be explained not only by the increase in bone density 

but possibly also by growth. more specifically. increase in cortical thickness or 

changes in bone architecture (see Table 1). This suggests that tibial QUS 

measures more than bone density. Several other studies have shown that QUS 

gives information not only on bone density but also on bone elasticity and 

structure 19.20. This is important because bone elasticity and structure accounts 

for 20-30% of the variability in bone strength. Lee et al. showed that tibial 

QUS measured in situ correlated with the material properties of tibial cortical 

bone nearly as strongly as did bone density 34. 

In conclusion. our data show a significant correlation between two different 

bone assessment techniques. RA and tibial QUS. This is in agreement with other 

correlation studies with different techniques. The correlation coefficient (r) 

ranges between 0.6 and 0.8 27.28.30.31. Our data suggests that tibial QUS and RA 

are useful and complementary bone assessment techniques in children. Due to 

its limited availability and the necessity for dedicated software. RA is not a 

widely used bone assessment technique in pediatric populations. Tibial QUS 

may be a more appropriate bone assessment technique in children due to its 

lack of radiation and its mobility. The clinical application of tibial QUS should 

be investigated further in prospective studies. 
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COMPARISON BETWEEN QUANTITATIVE CALCANEAL 
AND TIBIAL ULTRASOUND IN A DUTCH CAUCASIAN 

PEDIATRIC AND ADOLESCENT POPULATION 

ABSTRACT 
Introduction: In the field of bone densitometry. attention has recently focused on the 

pediatric population. Quantitative ultrasonometry (QUS) is a bone assessment 

technique that has many advantages for children in comparison with bone assessment 

techniques that use ionizing radiation. In this pilot study. we compared the use of a 

calcaneal QUS system and tibial QUS system in a healthy Caucasian pediatric 

population. 

Material and Methods: We studied 120 healthy Caucasian Dutch children between 7 

and 19 years. 53 boys (mean age 12.5 years; range 4.5 -18 years) and 67 girls (mean age 

13.5 years; range 7.1 - 19 years). We recruited children from a large popUlation. who 

had previously participated in a bone assessment study performed at our hospital. fwo 

operators performed calcaneal QUS of the right calcaneus using the Sahara"Osteometer 

and tibial QUS of the right tibia using the SoundScan'"Compact. 

Results: The correlation between calcaneal ultrasonometry and tibia ultrasonometry was 

modest. but significant (r =0.29. P<O.Ol). Using the calcaneal device. in girls we found 

weak positive correlations between skeletal age and speed of sound (SOS) (r =0.38). 

broadband ultrasound attenuation (BUA) (r =0.57) and quantitative ultrasound index 

(QUI) (r =0.46). all with a P<0.01. For boys all parameters failed to reach significance 

(ns). Using the tibia device. we found a good correlation between skeletal age and SOS 

in girls (r =0.76) and modest correlation in boys (r =0.50) (both with a P<0.01). 

Discussion: This is one of the first studies to present a comparison between two 

quantitative ultrasonometry techniques in children. In light of the poor correlation with 

skeletal age. calcaneal ultrasound is ineffective in children. while tibia ultrasonometry 

seems to be a good bone assessment technique in children. 
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7.1 INTRODUCTION 
In the field of bone densitometry, attention has recently focused on the 

pediatric population, as attainment of a high peak bone mass seems to decrease 

the risk of osteoporosis later in life '. This is especially true in children who have 

specific disorders affecting structural bone growth with or without metabolic 

disorders of bone and who are therefore considered to be at risk for 

osteoporosis '. Screening by means of bone assessment at a young age could 

provide a basis for early intervention. For children a bone assessment technique 

preferably possesses the following characteristics: it should be patient friendly; 

it should be accurate, and have a good reproducibility; it should provide 

clinically useful parameters. Recent publications by Tothill, Svendsen and 

Bollotin showed that changes in body composition have detrimental effect on 

DXA measurements 3.'. In healthy children with normal weight for height, this 

effect will be minimal, but in sick children, receiving high dose corticosteroids 

for therapy changes in body composition could influence the DXA 

measurements. Also measuring bone density of the skeleton of a child, which 

grows in three-dimensions, a two·dimensional technique could give erroneous 

results and therefore the applicability of DXA in a pediatric population is 

uncertain. 

Quantitative computed tomography (QCT) is a technique that assesses bone 

mass in three·dimensions 8.9. As the skeleton of children grows in 

three·dimensions, QCT is to be preferred over a two-dimensional technique. 

Furthermore, QCT is capable of distinguishing between trabecular and cortical 

bone. However, with QCT, children are exposed to a high level of radiation 

and this technique also has problems with reproducibility, because of motion 

artifacts due to long scanning time 10. 

Quantitative ultrasound (QUS) might be a good alternative to the 

above-mentioned techniques. Several studies showed that QUS systems 

measure not only the amount of bone density, but also structural properties of 

bone, I.e. anisotropy, elasticity and lamellar orientation 11.". This could be of 

clinical relevance, because fracture risk later in life depends not only on bone 

density but also on bone architecture 13.'4. There are several systems available 

for QUS, measuring either the tibia, calcaneus or the phalanx 9.10. Calcaneal 

ultrasound systems are most widely used in adult subjects, internationally 9. 
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However, now there are only sparse data available on the efficacy of these 

systems in pediatric populations 15.". We chose to use a calcaneal ultrasound 

device with a dry system. A dry system makes the application in children easier 

then those requiring a water-bath. Furthermore the use of coupling-gel instead 

of a water-bath removes one of the most important factors influencing the 

variability of measurements, the variable temperature of the water-bath 17. 

The aim of this study was to compare a calcaneal QUS system with the tibial 

QUS system, we have used for several years. In addition, the correlations 

between skeletal age (SA) and speed of sound (SOS), broadband ultrasound 

attenuation (BUA) and the quantitative ultrasound index (QUI) were 

investigated. The latter is a parameter derived from both BUA and SOS, which 

is claimed superior to the standardized coefficient of variation of either SOS or 

BUA alone. 

7.2 MATERIAL AND METHODS 
Study subjects 
A group of 53 Caucasian boys (mean age 12.5 years; range 4.5-18 years), and 

67 Caucasian girls (mean age 13.5 years; range 7.1-18 years) was studied. Study 

subjects were children recruited from a larger group, who previously 

participated in bone ultrasonometry studies at our hospital 18. Informed consent 

was obtained explicitly from parents or guardians and where appropriate from 

the child (in the Netherlands this is mandatory in children aged 12 years and 

over). This was done according to the guidelines recommended by the 

Declaration of Helsinki (Hong Kong, 1989) and the gUidelines of the Internal 

Review Board of the University Hospital, Rotterdam and of the Erasmus 

University Rotterdam, Faculty of Medicine and Health Sciences, the 

Netherlands. 

All children met the following criteria: They had no recent injury of tibia or 

calcaneus and they did not suffer from any disease known to affect bone 

growth and/or metabolism. 

Data concerning sex, age, height, weight and Tanner stage were collected. 

Height was measured, without shoes, using a wall-mounted ruler 19. Weight 

was measured, without shoes, on an analog weight scale. Tanner stages were 

evaluated through self-assessment, a technique validated by Duke et al. 20. 
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Radiography 

To asses skeletal age (SA), X-rays of the left hand were taken from all 

participants (Philips Diagnost H, Imation GT film, (a II screen, film-focus 

distance 1.5 m, 45 kV, 16 mAs). All X-rays were evaluated and scored according 

to the Greulich and Pyle atlas, by one investigator (RvR) ". 

Quantitative ultrasonometry 

Calcaneal QUS was performed using the Sahara® Osteometer (Hologic Inc., 

Bedford, MA, USA). This device from Hologic is a fixed calcaneal method, 

which can be used (according to the company) in a pediatric popUlation aged 

eight years and over. This system takes less than ten seconds to perform the 

measurement without need for a water-bath. The Sahara® system measures not 

only the speed of sound (SOS in mls) and broadband ultrasound attenuation 

(BUA, in dB/MHz), it also calculates a so-called quantitative ultrasound index 

(QUI). Two operators performed all measurements (MCHWB and lUV). To 

assess intra- and inter-observer variability, each investigator measured ten 

volunteers twice. Intra- and inter-observer variances were calculated according 

to the guidelines stated by the FDA ". 

We have already validated tibial ultrasonometry in a normal pediatric 

popUlation, using the SoundScan®Compact ". This system uses a transmission 

technique with coupling gel, placed at the mid-point of the right tibia, to 

measure the speed of sound (SOS in m/s) through a fixed distance of the tibia. 

Statistical analyses 

linear regression analyses were used to assess correlations between 

measurements and age. Correlation coefficients given are Pearson's. Multiple 

regression analyses were done to investigate the predictive value of various 
characteristics regarding outcome parameters. P=O.05 (two-sided) was 

considered the limit of significance. 
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7.3 RESULTS 
Tables 1A and 1B show the results of the tibial and calcaneal ultrasound 

measurements stratified by Tanner stage for both boys and girls. 

Table lA. Ultrasound parameters obtained by tibia ultrasonometry and calcaneal 

ultrasonometry for boys. 

Tanner N (%) Tibia 50S (m/s) Calcaneus BUA QUI 

Stage 50S (m/s) (dB/MHz) 

22 42 3719 (103) 1558 (18) 59 (II) 92 (II) 

II 5 9 3768 (64) 1534 (16) 53 (II) 80 (10) 

III 5 9 3748 (82) 1560 (24) 58 (10) 92 (13) 

IV II 21 3741 (114) 1554 (25) 56 (12) 89 (10) 

V 10 19 3877 (123) 1555 (20) 67 (17) 96 (12) 

50 between brackets 

Table lB. Ultrasound parameters obtained by tibia ultrasonometry and calcaneal 

ultrasonometry for girls. 

Tanner N (%) Tibia 50S (m/') Calcaneus BUA QUI 

Stage 50S (m/s) (dB/MHz) 

12 18 3711 (100) 1550 (18) 54 (10) 86 (II) 

II 8 12 3750 (130) 1546 (15) 58 (7) 86 (8) 

III II 16 3832 (122) 1556 (32) 60 (13) 91 (17) 

IV 15 22 3913 (107) 1561 (23) 68 (12) 97 (14) 

V 21 31 3982 (88) 1567 (22) 72 (13) 101 (14) 

50 between brackets 
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In Figure 1, the correlations between the calcaneus device and tibia device are 

plotted (girls: r =0.29, P<0.05; boys: r =0.26, P>O.05). 
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Fig 1.Comparison between calcaneal speed of sound (m/s) and tibial speed of 
sound (m/s)(r =0.29. P<O.Ol). dots represent boys and squares girls. 
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Results comparing 5A versus 50S, BUA and QUI for boys and girls are shown in 

Figures 2 (A and B) through 4 (A and B). For boys all correlations with SA 

failed to reach significance. For girls these correlations were all significant (505 

r =0.38, BUA r =0.57, and QUI r =0.47; all P<O.Ol). The correlation 

coefficient for girls between SA and BUA (0.57) is significantly higher than for 

50S (0.38) or for QUI (0.47). In girls, neither length, weight or body mass 

index (BMI) added additional predictive value to SA with regard to any of 

these measurements. In girls, only Tanner stage is a significant determinant for 

50S, BUA and QUI. Using the tibia device, we found a good correlation 

between skeletal age and 50S in girls (r =0.76; P<O.01) and modest 

correlation in boys (r =0.50; P<O.01) (Figures 5 A and B respectively). 
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,keletal age (r =0.38; P<O.OI). 

GI", 

'" 
'00 

00 

¥ 
~ 

ro 

" ~ " • • , 00 , 
~ 

00 

" 
" 

• • · .. • • 
• • • 

" 

• ' .. ' •• ! 
• 

. . \ ! . . . . '. :. 

" .. .. 

Fig 3A. Calcaneal broadband ultramund 
attenuation versus skeletal age 
(r =0.57; P<O.OI). 
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Fig 2B. Calcaneal speed of sound versus 
,keletal age (r =0.26. P>0.05). 
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Fig 3B. Calcaneal broadband ultramund 
attenuation versus skeletal age 
(r =0.26. P>0.05). 
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The precIsion of inter·observer variability for 50S was 0.2%, for BUA 3.5% 

and for QUI 1.9%. The intra·observer variability of the first investigator 

(MCHWB) was 0.2% for 50S, 2.6% for BUA and 1.7% for QUI. For the 

second investigator (lUV) the precision was 0.3% for 50S, 3.7% for BUA and 

1.9% for QUI. The intra·observer precisions in our population are comparable 

to those seen in an adult population 24. 

105 



. ---·CompatiJofl-betweerfquanfftative-calcaneal-and·tibiaFultrasound 

0". ,. 

m 

'" 1 • • • • 
~ 

I. ,. .. • • • • • • • • • • • • • • • • •• • • • •• 1 

" " " " " " " 

Fig 4A. Quantitative ultrasound Index versus 
skeletal age (r =0.47; P<O.Ol). 
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Fig SA. Tibial speed of sound (SOS m/s) 
versus skeletal age (r =0.76; 
P<O.01) in girls. 
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Fig 48. Quantitative ultrasound index versus 
skeletal age (r =0.08, P:>0.05). 
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Fig 58. Tibial speed of sound (SOS m/,) 
versus skeletal age (r =0.50; 
P<O.01) in boy,. 

The precisions of inter·observer and intra·observer variabilities of the tibia 

device have already been published and are in the same range as those of the 

calcaneal device ". 
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7.7 DISCUSSION 
Our study shows a weak, but statistically significant, correlation between the 

50S measured with the tibia device and the 50S, BUA and QUI, measured with 

the calcaneal device, The main reason for this modest correlation is that this 

calcaneal device does not work as well as the tibia device in our pediatric 

population. The calcaneal ultrasound in boys, showed no significant correlation 

with SA or CA. In girls, all parameters showed significant correlations. This 

difference might be explained by the more uniform distribution of Tanner stage 

in girls compared to boys. The group of boys has a disproportional high 

percentage (51%) of Tanner stage I and II (Table lA). 

We studied a reasonable number of subjects and the correlations are low; it is 

unlikely that a larger number of subjects would show strong correlations. 

In a review article, Hans et al. made clear that it is very difficult to define the 

fundamental accuracy of QU5 26. The complex bone structure of the calcaneus 

and its inhomogeneity may result in variable transmission times. In light of the 

growth in children, this might have a stronger influence in this specific 

population. Unpublished data of our longitudinal part of the study in these 120 
healthy children measured with our tibial ultrasound technique, suggest that 

tibial growth has no significant influence in the QU5 measured parameters. It 

seems that the tibial ultrasound technique measures not growth but a real 

increase in bone strength expressed in an increase in 50S (m/s). 

In both boys and girls, the strongest correlations were found between SA and 

BUA. BUA, as opposed to 50S, has no theoretical relation to the properties of 

bone 24. However, using fractal dimensions, Rho et al. demonstrated a 

significant positive correlation between the elastic modulus and BUA ". 

In a recent review article, foot positioning was presented as an important 

factor influencing precision ". This was considered to be the most important 

source of error in BUA assessment, resulting from the inhomogeneity in spatial 

distribution of calcaneal trabecular bone. In a pediatric population reproducible 

foot positioning, especially in longitudinal studies, is difficult. In our study the 

intra- and inter-observer variance for BUA was significantly higher than for 

50S. In light of this factor, we expect BUA to show weaker correlations with 

SA than with 50S; we have no explanation for our contrasting findings. 
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Our results are in conflict with those presented by Jaworski et al.. who used an 

adapted version of the Achilles densitometer (Lunar Corp .• Madison. WI. USA) 

". They measured the distance between the tuberosity of the fifth metatarsal 

and the back of the heel: at one-third on this line (measured from the heel) a 

point was marked. The measurement point was located one cm perpendicular 

to the above-mentioned line. They narrowed the originally 2.5 cm broad beam 

to one cm by using a rubber ring. In this study of 71 children. they reported an 

increase of SOS and BUA over time. However. they do not present any 

statistical data on the correlation or significance of this increase. Furthermore. 

they pooled the data for both boys and girls. Had we done so with our data 

set. the following correlations would be found: SOS vs. SA r =0.22 (P=0.016); 

BUA vs. SA r =0.45 (P<O.OOI); and QUI vs. SA r =0.32 (P<O.OOI). However. 

we feel that pooling of data in growing children has an adverse effect on 

reliability because of differences in pubertal development in boys and girls. 

Calculation of Z-scores from these pooled data will have no clinical relevance. 

Mughal et al. also used an adapted version of a commercially available 

calcaneal system: the McCue ultrasound bone analyser 16. They however did 

not present data correlating age and BUA (SOS data were not presented in 

their publication) but only data correlating total body DXA and BUA (r =0.74. 

P<O.OOOI). In this study not only were the data of boys and girls pooled. but 

their group also consisted from children of different racial backgrounds making 

interpretation of their results problematic. 

We feel that. in contrast to the SoundScan"'Compact tibia device. the Sahara'" 

Osteometer cannot be used in a pediatric population without specific pediatric 

adaptations. Further investigation into placement of the foot (i.e. the use of 

footpads for different foot sizes) and into the spatial distribution of trabecular 

bone in the growing calcaneus are needed. The use of imaging ultrasound 

systems. which provide a graphic display of the region of interest. might 

provide a possible solution to this problem ". 
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A LONGITUDINAL STUDY USING TIBIAL 
UL TRASONOMETRY IN HEALTHY CAUCASIAN 

CHILDREN AND ADOLESCENTS 

8.1 INTRODUCTION 
In Chapter 4. reference data of children and adolescents were presented. using 

tibial ultrasonometry. These data are cross·sectional and therefore may have 

given a biased estimate of the true rate of increase of speed of sound (50S). 

measured with this tibia device. To control for this possible bias. we performed 

a longitudinal study. In this chapter. we determined the associations between 

calendar age. skeletal age and 50S as well as differences in association between 

cross-sectional and longitudinal data for both sexes. If there are no significant 

differences between the data acquired in the cross-sectional and longitudinal 

study. we can use the cross-sectional normative .data as a standard for serial 

tibial bone assessment in healthy and sick children. This is essentialfor assessing 

the clinical application of this tibia device and therefore we performed a 

longitudinal study in healthy children. using tibial ultrasonometry as bone 

assessment technique. 

8.2 MATERIAL AND METHODS 
Participants 
We recruited 120 healthy Caucasian children and young adults. 53 boys (mean 

age 12.5 years; range 4.5-18 years) and 67 girls (means age 13.5 years; range 

7.1-18 years). They all were part of a previous larger cross-sectional normative 

study. The follow-up time was about two years (mean 1.8 years. range 1.3-2.1 

years) for all participants. All participants were chosen at random by the 

computer. from our normative study database. Each participant filled out a 

questionnaire regarding overall health. None of the selected children suffered 

from any disease known to affect bone metabolism and/or growth. Each 

participant was assessed for sex. Tanner stage. calendar age (CA) and skeletal 

age (SA). Tanner stages were evaluated through self-assessment 1. The same 

procedures (described in Chapter 4) were used to measure height and weight'. 
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Body mass index (BMI) as an indicator of nutritional status was also calculated 

as the ratio of weight to height' (kg·m-'). 

Tibial ultrasonometlY 
The same tibial ultrasound device as in the previous cross-sectional study 

(Chapter 4) was used, SoundScan®Compact (Myriad Ultrasound Systems Ltd., 

Rehovot, Israel). Following standard operating procedures, all ultrasound bone 

measurements were done on the same right tibia at newly measured mid-tibial 

points. The same operators (MHL and RRvR) performed all measurements. 

Statistical analyses 
Statistical analyses were performed using the Statistical Package fOl' the Social 

Sciences (SPSS version 9.0, SPSS Inc, Chicago, IL, USA). Comparison of changes 

of Z-scores, or increases of SOS, between groups was done using the t-test. 

Correlation coefficients given are Spearman's. 

8.3 RESULTS 
We compared the calculated regression curves of the cross-sectional data study 

(Chapter 4) with all the follow-up measurements of the girls and all fit between 

the 5% and 95% interval curves, except two cases (Figure 1). In the boys, all 

measurements fit between the 5% and 95% interval curves (Figure 2). 

Considering the Z-scores of mean SOS, there is a slight, but significant, 

difference between the first measurement and the second measurement. The 

first Z-score of SOS is, as expected, about zero, the second Z-score of SOS is 0.4 

higher. The delta (second minus first measurement) Z-score of SOS is therefore 

0.4 (P<O.OOI). Tanner stage, height. weight and BMI had no additional 

influence on the delta Z-score. The correlation coefficients between the first 

and second Z-score of SOS were good, for girls 0.69 (P<O.OOI) and fOl' boys 

0.70 (P<O.OOI) (Figure 1). 

Longitudinal data show an average annual gain in SOS of 50 mls for boys and 

58 mls for girls. Between the two investigation times the mean increases in 

height and tibial length in girls were 6.5 cm and 1.8 cm, in boys 10.2 cm and 

3.0 cm. 
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Fig, 1 Long-term tibial ultrasound 
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Fig. 2 Long-term tibial ultrasound 
data, expressed in mean 505 
mls between the 5% and 95% 
interval curves for boys. 

Most longitudinal bone assessment studies in the literature have focused on 

prevention and treatment of osteoporosis in adults, especially in 

postmenopausal women'-B, Longitudinal studies in children and young adults 

are few9
-", Most of these published studies use dual-energy X-ray 

absorptiometry (DXA) for bone mass assessment. To our knowledge, this is the 

first longitudinal bone assessment study done in healthy children and 

adolescents with this tibial device, We choose this tibia ultrasound device, 

rather than the more popular calcaneal ultrasound device, for two reasons, 

First, we think that the change in bone density and/or architecture in time will 

be less in the tibia than in the calcaneus because the tibia consists mainly of 

cortical bone and the calcaneus consists mainly of trabecular bone", Second, 

the precision of the measured mid-tibial point seems better than the precision 

of localizing the same spot for the calcaneus measurement (see Chapter 7)_ 

Besides the choice of bone assessment technique, there is another important 

issue to consider, when performing follow-up studies: the longitudinal 

sensitivity of the bone mass assessment technique", There is on-going 

disagreement about the standardized method to be used for assessing 

longitudinal sensitivity of a bone assessment technique!4, Using the simple 

approach of dividing the precision error (using the long-term phantom data 

presented in the addendum of Chapter 3) by the age-related change in our 
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Fig. 3 Correlation between Z-scores at measurement time 1 and 2 

for boys (crosses) and girls (squares). 

subject group. the tibia device seems to have a good longitudinal sensitivity". 

Therefore this tibia device can be used in a clinical setting. 

Our results show no significant differences between the cross·sectional data and 

the longitudinal data. looking only at the mean SOS on measuring time one 

and two (Figure 1 and 2). lu et al. had similar results using a DXA bone 

assessment technique in 266 normal children and young adults (136 boys and 

130 girls. aged 4·27) and of those 53 (25 boys and 28 girls. aged 4·16.9) had a 

follow·up study". They also found no significant differences in the associations 

between age and bone mineral density (BMD). or between cross·sectional and 

longitudinal data of either sex. In their study they note that the peak BMDs of 

total body. lumbar spine and femoral neck are earlier in girls than in boys. 

probably due to earlier puberty. 

But using Z·scores. and therefore ruling out age and gender. we saw a slight 

increase of delta Z·score of 0.4. This means that average all measurements of 

the second Z·score are higher than the first Z·score. An explanation for this 

increase is not easily given. The change of probes can only be a part of the 

explanation. because we already stated that the increase of the phantom 

measurements with the second probe is very small (9 m/s; Chapter 3). Other 
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differences in time, like increase in Tanner stage or length are statistically no 

explanation for this increase in Z-score. 

Assuming that Tanner stage and length are representatives of growth, we find 

that this tibial ultrasound device is not measuring growth, but a real difference 

in tibial bone mass. Knowing that this tibial ultrasound device is not measuring 

growth and looking at the correlation between the first and second Z-score 

measurement (Figure 3), we can assume that if a child has a low Z-score at the 

first measured time point, the Z-score is also in the low range at the second 

measured time point. Other characteristics, such as Tanner stage and length, 

have no influence on this increase in Z-score. It seems that every child has a 

unique curve of increase of Z-score with time. Each child will have a curve in 

the higher or lower range of Z-scores not dependent of his or her Tanner stage 

or length, but probably of his or her genes. 

We did choose a follow-up period of about two years, to minimize the 

possibility of measurement errors from variation in the rates of change. A 

longer follow-up time gives a decrease in variability due to a lesser role of 

imprecision relative to true variability, but in our subject population two years 

follow-up time seemed to be sufficient14
• 

In conclusion, our longitudinal results are only slightly different from our 

cross-sectional normative data (Chapter 4). Because this difference is small, we 

think we can use our cross-sectional data for calculating Z-scores, which can be 

used for assessment of the bone mass status in sick children. The calculated 

Z-scores can also be used for monitoring treatment and evaluating disease 

course. Our longitudinal results also showed that the tibial ultrasound device 

measures not growth, but a real change in tibial bone mass. Every child follows 

his or her own curve of bone status, which is independent of growth influences 

but is more likely determined by his or her genes. 

115 



~···~Longltud;na/~study~using~tibialultrasonometry .============ 

8.5 REFERENCES 
1. Boot AM. Ridder de MAJ. Pols HAP. Krenning EP. de Muinck Keizer-Schrama SMPF_ Bone 

mineral density in children and adolescents: relatiticn to puberty. calcium intake and 

physical activity. J Clin Endocrinol Metab 1997;82:57-62. 

2. McClung B. Parkins N. McClung MR. Comparison of height measurements made with a 

Harpenden stadiometer and a wall-mounted ruler on patients with vertebral compression 

fractures. J Bone Miner Res 1997;12(Suppl 1):S31. 

3. van Dae1e PLA. Burger H. de Laet CEDH. et al. Longitudinal changes in ultrasound 

parameters of the caJeaneus_ Osteoporosis Int 1997;7(3):207-12. 

4. Krieg MA. Thiebaud D. Burckhardt P_ Quantitative ultrasound of bone in institutionalized 

elderly women: a cross-sectional and longitudinal study. Osteoporosis Int 1996;6:189-95_ 

5. Storm T. Thamsborg G. Steiniche T. Genant HK. Sorensen OH. Effect of intermittent 

cyclical etinodrate therapy on bone mass and fracture rate in women with 

postmenopausal osteoporosis. New Eng J Med 1990;322:1265-71. 

6. Watts NB. Harris ST. Genant HK. et al. Intermittent cyclical etidronate treatment of 

postmenopausal osteoporosis. New Eng J Med 1990;323:73-9. 

7. Liberman UA. Weiss SR. Br611 J. et al. Effect of oral Alendronate on bone mineral density 

and the incidence of fractures in postmenopausal osteoporosis. New Eng J Med 
1995;333:1437-43. 

8. Lufkin EG. Wahner HW. O'Fallon WM. et al. Treatment of postmenopausal osteoporosis 

with transdermal estrogen. Ann Int Med 1992;117(1):1-9. 

9. Theintz G, Buchs B. Rizzoli R, et al. longitudinal monitoring of bone mass accumulation 

in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels 

of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab 

1992;75(4): 1060-5. 

10. Faulkner RA. Bailey DA. Drinkwater DT. McKay HA. Arnold C. Wilkinson AA. Bone 

densitometry in Canadian children 8-17 years of age. CalsifTissue Int 1996;59:344-51. 

11. Lu PW. Briody IN. Ogle GD. Bone mineral density of total body. spine. and femoral neck 

in children and young adults: cross-sectional and longitudinal study. J Bone Miner Res 
1994;9:1451-1458. 

12. Gilsanz V. Bone density in children: a review of the available techniques and indications. 
EJR 1998;26:177-182. 

13. Genant HK, Engelke K, Fuerst T. et al. Noninvasive assessment of bone mineral and 
structure: state of the art [review]. J Bone Miner Res 1996;11(6):707-30. 

14. GIOer Cc. Monitoring Skeletal Changes by Radiological Techniques. Bone Miner Res 

1999; 14(J 1):1952-1962. 

15. Seeman E. Wahner HW. Offord KP. Kumar R. Johnson WJ. Riggs BL. Differential effects 

of endocrine dysfunction on the axial and the appendicular skeleton. J Clin Invest 

1982;69:1302·9. 

116 



=====================~~ehapter8'~~~ 

16. Cadossi R, Cane V. Pathways of transmission of ultrasound energy through the distal 

metaphysis of the second phalanx of pigs: an in vitro study. Osteoporosis Int 

1996;6:196·206. 

117 



-~-~~-lorigif[)aihalsf[)avasihg-tilJlal-altrasonvmi'ftrJ1 ============ 

118 



BONE MINERAL ASSESSMENT WITH TIBIAL 
ULTRASONOMETRY AND DUAL-ENERGY X-RAY 

ABSORPTIOMETRY IN LONG-TERM SURVIVORS OF 
ACUTE LYMPHOBLASTIC LEUKEMIA IN CHILDHOOD 

ABSTRACT 
Introduction: Acute lymphoblastic leukemia (ALL) in childhood is a serious 

disease which can affect growth and the attainment of maximal peak bone 

mass, a risk factor for the development of osteoporosis later in life. To 

determine long-term effects of the disease itself and its treatment, we assessed 

the bone status of a group of long-term survivors of childhood ALL, all treated 

with high doses steroids and methotrexate (MTX) but without cranial 

irradiation. To study the efficacy of a tibial ultrasound device in this patient 

group results were compared with the bone mineral density measured with a 

dual·energy X-ray absorptiometry (DXA) device. 
Material and Methods: All 21 subjects enrolled in this cross-sectional study had 

diagnosis of non·high-risk precursors acute lymphoblastic leukemia (12 boys 

and 9 girls; mean age 16.5 years; range 12.2- 25.4 years). Standard deviation 

(SD) scores were calculated using a tibial ultrasound device and DXA device as 

bone assessment technique. These calculated SD scores of those two different 

bone assessment techniques were compared. 

Results: The mean SOS (speed of sound) SD score of the tibia (mean 0.11, SD 

1.02) were not significant different from our reference value of zero. There was 

no significant difference between the SOS SO scores in boys and girls. With 

DXA, no significant difference was seen between the mean BMD SD scores and 

the reference data and no significant difference in BMD between boys and girls 

was found. Spearman's correlation between mean SOS SD scores and mean 

BMD of lumbar spine was 0.49, and mean SOS SD score and mean BMD of 

total body 0.51. These correlations were significant at the 0.05 level (2-tailed). 

Spearman's correlation between SOS SD score and mean BMAD SD score was 

not significant at 0.39. 

119 



~f)Xkand~tibia/~ultrasonometryinlong4erm04l:burvivors ======== 

Conclusion: Despite high doses steroids and MTX. used for treatment of 

children with ALL. no long-term side effects on the bone mineral status of the 

subjects. measured with both DXA or tibial ultrasonometry. could be 

determined. Tibial ultrasonometry can be considered as a reliable technique for 

bone assessment in children. 
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9.1 INTRODUCTION 
The increasing number of children surviving leukemia has focussed attention on 

long-term side effects of this disease and its treatment '.4. Acute lymphoblastic 

leukemia (ALL) in childhood is a serious disease which can affect growth and 

the attainment of maximal peak bone mass, a recognized risk factor for the 

development of osteoporosis later in life'. Several studies have shown that not 

only the leukemic process itself, but also ectopic production of parathyroid 

hormone6
, paracrine secretion of lymphokines'·8 and decreased physical activity 

contribute to decreased bone mineral density (BMD)'. Another major cause of 

decreased bone mineral density in ALL is its treatment, especially chemotherapy 

with dexamethasone' and methotrexate'·9. Also, cranial irradiation (sometimes 

part of the treatment) induces growth retardation most likely by growth 

hormone deficiency 10. 

Until now, few studies investigated BMD in long-term survivors of ALL. These 

longitudinal studies showed BMD in the normal, reference range as well as in 

low range"·'4. In these studies the BMD assessment was performed with dual

energy X-ray absorptiometry (DXA). The results of those studies are difficult to 

interpret because, especially during growth, changes in body composition and 

size have confounding influence on the BMD measurements ". This could be a 

significant problem in follow-up studies of children with ALL, who commonly 

have been treated with high dose corticosteroids. Apart from avoiding cranial 

irradiation, the use of high dose dexamethasone for a long period of time 

makes this treatment protocol unique and is thought to be responsible for the 

remarkably good outcome '6. 
A bone assessment technique, in which the measurements are not significantly 

influenced by body composition or size, would be desirable in longitudinal 

studies. Quantitative computed tomography (QCT) might be such a method, 

but because of competition with normal patient care in the CT unit, the need 

for extra software and, to a lesser extend, the radiation burden, its use is 

restricted largely to academic settings. Ultrasonography seems to be a good 

alternative method. In addition to its ease to use, and its absence of radiation 

burden, another advantage would be that ultrasonometry gives information on 

bone architecture as well as bone mineral density. Another advantage is the 

shorter investigation time of ultrasound techniques compared to other bone 
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assessment techniques. Most studies. not only in adults but also in children. 

have used a calcaneal devicel?'o. But because of the unpredictable changes in 

bone mineral density and growth in the calcaneus during childhood. 

longitudinal studies with this kind of device are problematic. 

The purpose of this study was to assess the bone status of a group of long-term 

survivors of childhood ALL. all treated with a unique treatment protocol 

involving high dose steroids and methotrexate and avoiding cranial irradiation 

(ALL-6 protocol of the Dutch Childhood Leukemia Study Group. (DCLSG)). 

with the use of a tibia ultrasound device and to compare the results with 

dual-energy X-ray absorptiometry (DXA). 

9.2 MATERIAL AND METHODS 

All 21 patients enrolled in this cross-sectional study were diagnosed with 

non-high-risk acute lymphoblastic leukemia (12 boys and 9 girls; mean age 16.5 

years; range 12.2- 25.4 years). The mean follow-up period after cessation of therapy 

was 9.6 years (range 7.9-11.4 years). 

Non-high-risk ALL was defined as peripheral white blood cell count< 50"'109/1, and 

absence of both mediastinal mass and cerebromeningeal leukemia at diagnosis. All 

subjects of this homogeneous group of immunophenotypic precursor-B ALL are 

treated in our hospital. according the ALL-6 protocol of the the Dutch Childhood 

Leukemia Study Group (DCLSG); systemic chemotherapy involved dexamethasone. 

MTX. 6-mercaptopurine. asparaginase. and vincristine (Figure 1). 

ALL-6 protocol 
MD·MTX 2000 mg/m2 m MO-MTX= medium high·dose 

methotrexate 
MTX/OAF Ace. to age t t ttl OAF= prednisolone 

MTX } 
VCR= vincristine 

OAF Ace.lo ag8 + + + + # Dexa= dexamethasone 
ARA-C (8 xl L·ASP= asparaginase 
VCR 2 mg/m2 ttmt tt tt tt tt #H 6·MP= mercaptopurine 

OEXA 6 mg/m2 c:::::::,. 0 0 0 0 
#0 ARA-C = cytarabine 

L·ASP 200 V/kg 0 
6-MP 50 mg/m2 == ==# = 
MTX 30 mg/m2 11111 111/1 /11/1 /1/11# /I /II 

;~ 
01418WI2'11Bl&WnUH2aw~MMMW 112114116 

w •• ~. 

Fig. 1 Treatment scheme in children with ALL. according to ALL-6 protocol of the Dutch 
Childhood Leukemia Study Group. 
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As stated above. no cranial irradiation. but only high dose i.v. MTX and 

prolonged intrathecal triple therapy (MTX. prednisolone. and cytarabine) was 

used as central nervous system prophylaxis. A more extensive description of the 

treatment used. has been given by Veerman et al". The duration of the total 

treatment was approximately two years. 

The study protocol was approved by the ethics committee of the University 

Hospital Rotterdam. Informed consent was obtained explicitly from parents or 

guardians and where appropriate from the child (in the Netherlands this is 

mandatory for children aged 12 years and over). This was done according to 

the guidelines recommended by the Declaration of Helsinki (Hong Kong. 1989) 

and the gUidelines of the Internal Review Board of the University Hospital 

Rotterdam and Erasmus University Rotterdam. Faculty of Medicine and Health 

Sciences. the Netherlands. 

Anthropometry 

Height was measured. without shoes. using a stadiometer ". Weight was 

measured. without shoes. on an electronic weight scale. Body mass index (BMI) 

as an indicator of nutritional status was calculated as the ratio of weight to 

height' (kglm'). A questionnaire concerning overall health and history of 

fractures was also taken. 

Using an X-ray of the left hand. skeletal age was assessed in all children in 

which there was still growth. by one investigator (Ml). according to the 

Greulich and Pyle method 22. 

Tanner stages were evaluated through self-assessment. according to Duke et al ". 

Patients were shown pictures and written information illustrating breast and 

pubic hair development for girls. and genital and pubic hair development for 

boys. They were asked to select the one that had the closest resemblance to 

their own status. If there were discrepancies between variables. emphasis was 

placed on the breast development in girls and genital development in boys '4. 

Bone assessment 

Of all 21 subjects examined with DXA. 50 scores were calculated using 

reference data. generated by Boot et al". Of those 21. 17 (9 boys and 8 girls) 

were in the age range of our normative data group '6. examined with our tibial 
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ultrasound device. and therefore SO scores were only calculated for these 

subjects. 

Tibial ultrasonometry was performed using the SoundScan®Compact (Myriad 

Ultrasound Systems Ltd .. Rehovot. Israel. Software Version l.le). Following 

standard operating procedures. all bone assessments were done on the right 

tibia at the mid-tibial point. The mid-tibial point was defined as the mid-point 

.of the line between the apex of the medial malleolus and the distal patellar 

apex. This tibial ultrasound device measures the speed of sound (SOS) through 

a fixed length of five centimeters around the mid-tibial point. The results are 

compared to healthy age- and sex-matched Outch controls. expressed as SOS 

SO scores (Z-scores). 

Bone mineral densities (BMO) of lumbar spine (LS) and total body (TB) were 

assessed by dual-energy X-ray absorptiometry (OXA) (Lunar OPXL. Madison. 

WI. USA). Also apparent BMO (BMAO) of the lumbar spine was calculated as a 

"volumetric bone mass measurement" to correct for growth. a method 

validated by Kroger et al27. 

Statistical analyses 
All measurements are expressed as SO scores. Mean SO scores were compared 

with the reference value of zero. using the one-sample t-test. Mean values were 

compared between groups. using the t-test. P=O.OS (two-sided) was 

considered the limit of significance and the correlations given are Spearman's. 

9.3 RESULTS 
Tibia ultrasound 
The individual SOS SD scores are presented in Figure 2. The mean SOS SO 

scores of the tibia (mean 0.11. SO 1.02) were not significant different from 

reference value of zero. There is no significant difference between the SOS SD 

score in boys and girls. 

DXA 
The individual SD score for BMD of lumbar spine (mean 0.22. SD 1.03). total body 

(mean 0.15. SO 1.03) and BMADls (mean 0.03. SD 1.04) are presented in Figure 3. 

No significant difference was seen between the mean BMD and the reference data 

and no significant difference in BMD between boys and girls was found. 
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The correlation between mean SOS SD score and mean BMD of lumbar spine is 

0.49. and mean SOS 50 scores and mean BMD of total body 0.51. both 

significant (Figure 4 and 5). The correlation between 50S SD scores and mean 

BMAD 50 scores is not significant and 0.39 (Figure 6). 

I' 
"-
§ ., 

0 o 0 

o " 0 
0 

0 " 

o 

4 ~ 0 1 
tWK (S[k(.onIj 

0 

Fig. 4 Correlation between SO scores of 
tibial ultrasound 50S and BMD SO 
scores of lumbar spine. squares 
represent girls. circles represent boys. 
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Fig. 5 Correlation between SD scores of 
tibial ultrasound 50S and BMD SO 
scores of total body, squares 
represent girls. circles represent boys. 
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Of the 21 subjects seven had one fracture, two subjects had a history of two 

fractures. No fractures at the axial skeleton were reported, all were at the 

appendicular skeleton. Most of the fractures occurred during or shortly after 

treatment, all after trauma. 
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Fig. 6 Correlation between SO seores of tibial ultrasound SOS and 
BMAD SO seores of DXA, squares represent girls, circles 
represent boys. 

9.4 DISCUSSION 

2 

In children with ALL, the disease itself and its treatment might affect the bone 

status of the child on a short- or long-term basis. Using the tibial ultrasound 

device, we show no significant changes in mean SOS SD scores in a group of 

long-term survivors of childhood ALL compared to our reference population. 

No significant difference in SOS SD scores has been found between girls and 

boys. The results from our tibial ultrasound device were consistent with the 

results from the DXA device in this group of long-term survivors of childhood 

ALL. This could mean that not only the amount of bone mineral density 

(measured by DXA) but also the bone strength (measured by the tibial 
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ultrasound device) of long-term survivors of childhood ALL, return into 

normal ranges. This is the first study using an ultrasound device in long-term 

survivors of acute lymphoblastic leukemia in childhood. 

The correlation between DXA and tibial ultrasonometry is significant but 

moderate, in healthy children as well as in children with a cured ALL (Figure 4. 

5 and 6). The correlation between SOS SD scores and BMAD SD scores is not 

significant. As expected the correlation between SOS SO score and total body 

SD score is the greatest, because these measure both a large amount of cortical 

bone. like tibial ultrasonometry. Van der Sluis et al. already reported that the 

BMD measurements with the DXA performed in this patient group, showed no 

significant differences with the reference values ". Many studies in the literature 

show a decrease in BMD in ALL patients. but most of all in subjects treated 

with cranial irradiation 11.14,", DXA is considered the "gold-standard" bone mass 

assessment technique, but several studies show that the implementation of this 

technique in children is hampered by several factors 15,30,,,. The most important 

factor is that total body bone mineral measurements done with DXA is 

confounded by differences in fat distribution, This impedes the applicability of 

DXA, especially in children with diseases or on medications, which influence fat 

distribution. Therefore BMD measurements with DXA in children with ALL, 

treated with high dose dexamethasone. known to have great influences on the 

body fat distribution, should be interpreted cautiously. Although Van del' Sluis 

et al. mentioned that all anthropomorphic characteristics (including the fat 

distribution) of the investigated children in this study showed no significant 

difference from the normal reference population ", 

By design, the tibial ultrasound device is unaffected by body fat distribution, 

because the changes in subcutaneous fat at the anterior site of the tibia are 

minor, The tibial ultrasound device may be more practical than the more 

popular calcaneal ultrasound devices. In a review article, Hans et al. made clear 

that it is very difficult to define the fundamental accuracy of QUS ", The 

complex bone structure of the calcaneus and its inhomogeneity may result in 

variable transmission times. In light of the growth in children, this might have a 

stronger impact in this specific popUlation, 

Differences in long-term effects on the bone status of children, as published in 

the literature, depend on sample size, follow-up time, and homogeneity of 
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patient groups with regard to diagnosis and treatment 1.2,11,12,,,. Pediatric patients 

with ALL. treated with cranial irradiation. showed a significant decrease in BMD 

14.". The mechanism causing this reduced BMD after cranial irradiation is not 

totally understood. but growth hormone deficiency as a consequence of an 

injured hypothalamic-pituitary axis. may be a major factor 10. Growth 

hormone deficiency can also induce short stature and thus can partly explain 

the reduced BMD. measured with a two-dimensional technique such as DXA'4. 

We did not find a significant difference between the mean height SD scores of 

our subjects and our reference group after therapy". An explanation could be 

that cranial irradiation was replaced by intrathecal chemotherapy in the for that 

time period unique treatment protocol. Holm et al. noted "catch-up" growth 

within two years of cessation of therapy without cranial irradiation; this could 

be the reason for not finding significant difference in mean height 50 scores 

with the reference population after an average follow-up time of 10 years 35. 

In conclusion. despite high dose corticosteroids and MTX used for treatment of 

children with ALL. no long-term side effects on their bone status were noted. 

measured with either tibial ultrasonometry or DXA. All anthropometric 

characteristics were within the reference values. Given the correlation between 

tibial ultrasonometry and DXA. and specially the difference in the SD scores in 

the individual cases. it is not clear which bone assessment technique is the 

preferable technique. but looking at its lack of radiation burden and its 

accuracy in a growing child. tibial ultrasonometry might be the premier bone 

assessment technique. 
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A LONGITUDINAL STUDY USING TIBIAL 
UL TRASONOMETRY AS A BONE ASSESSMENT 

TECHNIQUE IN CHILDREN WITH ACUTE 
L VMPHOBLASTIC LEUKEMIA 

10.1 INTRODUCTION 

In Chapter 9. we discussed the possible changes in bone mass quantity and 

quality in long-term survivors of childhood acute lymphoblastic leukemia. In 

this chapter we will look at the difference in bone assessment between t=O 

(time of diagnosis) and follow-up dates t=1 (6 months). t=2 (12 months) and 

t= 3 (24 months) in children with the diagnosis and treatment of acute 

lymphoblastic leukemia (ALL). The bone assessment technique used is the tibial 

ultrasound device SoundScan"'Compact. 

As reviewed in Chapter 9. there are multiple causes of decreased bone mineral 

density in ALL. The most important causes are the leukemic process itself. and 

. the use of chemotherapy. such as high doses steroids and methotrexate (MTX) '.5. 
Also cranial irradiation may induce low bone mineral density due to growth 

hormone deficiency. but in our investigated group of children with ALL. this 

did not play a role. because cranial irradiation is not part of the treatment 

protocol 6-8. Due to the high cure rate and to its lack of major negative effects 

on the bone status in the long-term survivors of ALL. the same moderately 

intensive treatment protocol without cranial irradiation has been used in this 

new-group of children with ALL 9. 

Despite the fact that the long-term side effects of this disease and its treatment 

may have no significant long-term influence on bone mass quality or quantity. 

it is still of interest to know more about the short-term effects. This may give us 

the opportunity to intervene with dietary changes or medical substitution. like 

calcium suppletion. The final goal is to establish the highest peak bone mass 

possible. which is the best prevention for the development of osteoporosis later 

in life. 
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10.2 MATERIAL AND METHODS 

Participants 
In the period between January 1997- December 1999, 33 subjects (24 boys, 9 

girls, mean age 8.5 years, range 3.0 - 16.2 years) were included in a 

longitudinal study. Of these 33 children, 30 were assessed at the start of 

therapy (t=O), 21 at a follow-up time of 6 months (t=I), 17 at a follow-up 

time of 12 months (t=2) and four at a follow-up time of 24 months (t=3). Of 

the ten subjects, who had only one measurement, two of them had relapses of 

ALL at t=O and one at t=l, and therefore no further follow-up measurements 

were done, because they were treated according to another treatment 

protocol. One subject ceased after investigation time t=3, one entered the 

study at t=3, the rest (n=6) has not had time for follow-up. All subjects 

enrolled in this part of the study were diagnosed with either non-high-risk 

(n=24) or high-risk (n=9) acute lymphoblastic leukemia. Non-high-risk ALL was 

defined as peripheral white blood cell count < 50"109/1, absence of mediastinal 

mass and/or cerebromeningeal leukemia, at diagnosis. Systemic chemotherapy 

involved dexamethasone, MTX, 6-mercaptopurine, asparaginase, 'and 

vincristine. As stated before, no cranial irradiation has been done, but only 

moderate dose Lv. MTX and prolonged intrathecal triple therapy (MTX, 

prednisolone, and cytarabine) as central nervous system prophylaxis. 

Cumulative doses of dexamethasone and of MTX were 1370 mgt m' and 8100 

mgt m' (orally and intravenously) respectively. 

ALL 9 • protocol (NHR) MD-MTX = medium hlgh-dose 
roothotreXllte 

MD-MTX 2000 mg/m'l.v. m OAF = prednJsolone 

MTX } Ace, to age + + ++++ + + + // VCR = vlncristine DAF (13 xl Ithac. ARA-<; OEXA '" dexamethasone 
VCR 2 mglm'l.v. #tItt It It It It #'It 

l-ASP = asparaginase 
DEXA 6 mglm'p.o. c:::::::.. 0 0 0 0 #'D 
L-ASP 6000 utm'l.v. #It 

"",p = mercaptopurine 

8-MP 50 mg/m' p.o, == ==#' = ARA"" = eytal1!blne 

MTX 30 mglm' p,o. 11111 11111 11111 1I111#' 11111 
,~ 
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Fig. 1 The scheme of doses of the major chemotherapy medications as part of the used 
treatment protocol in non-high·risk (NHR) ALL at investigation time t=O until t=3. 
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Dexamethasone therapy during remission induction consisted of 6 mg/m2 daily 

divided into three doses. for 4 weeks. then tapered off to 0 mg in 10 days. 

After complete remission was achieved. three weekly courses of i.v. MTX 

(2000 mg/m 2
) were administered. Maintenance treatment consisted of MTX 

30 mg/m2/week orally or i.v. for 5 weeks. alternated with dexamethasone in a 

dose as for induction treatment for two weeks (Figure 1). High·risk ALL patients 

received an extra intensive treatment. The choice of therapy depended on the 

initial location of the disease. Also the cumulative systemic dose of MTX is 

higher (13600 mg/m2 orally and intravenously) while the cumulative dose of 

dexamethasone was the same (1244 mg/m2
). Only when there was an initial 

eNS spread of ALL an extra triple therapy was given intrathecal with 

medication which could effect bone metabolism. (i.e. MTX. and prednisolone) 

(Figure 2). The treatment time is approximately two years and therefore only a 

few subjects received the complete treatment. 

The study protocol was approved by the ethics committee of the University 

Hospital Rotterdam. Informed consent was obtained explicitly from parents or 

guardians and where appropriate from the child (in the Netherlands this is 

mandatory in children aged 12 years and over). 

ALL·9 protocol (HR) 
H{).,\IT)( = hlgh-dosa 

HD-MTX 3000 mglm'l.v. ~ H ~ methotrexate 

MTX } Ace. to age + + HH • • # OAf = prednl.solone 
OAF (15x)lthec. ARA", VCR " vincristine 
DNR 25 mg/m'p.o. tt# t t t OEXA " dexamethasone 
VCR 2 mg/m'I.v. - t t t # ## 

6 mg/m' p.o. c:::::::::... DOD #0 l-ASP "eooD asparaginase 
DEXA 0 
L-ASP 6000 U1m'l.v, '1#1 '-MP = 6-mercaptopurine 
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ARA-C{CP liD mglm'p.o. DDDOD[] 

,~ 
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Fig. 2 The scheme of doses of the major chemotherapy medications as part of the used 
treatment protocol in high· risk (HR) ALL at investigation time t=O until t=3. 
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This was done according to the guidelines recommended by the Declaration of 

Helsinki (Hong Kong. 1989) and the guidelines of the Internal Review Board of 

the University Hospital Rotterdam and Erasmus University Rotterdam. Faculty 

of Medicine and Health Sciences. the Netherlands. 

Anthropometry 
Tanner stages were evaluated through self-assessment. according to Duke et al. 10. 

Subjects were shown pictures and written information illustrating breast and 

pubic hair development for girls. and genitalia and pubic hair development for 

boys. They were asked to select the one that had the closest resemblance to 

their own status. If there were discrepancies between variables. emphasis was 

placed on the breast development in girls and genital development in boys". 

Height was measured. without shoes. using a wall-mounted ruler". Weight was 

measured. without shoes. on an electronic weight scale. Body mass index (BMI) 

as an indicator of nutritional status was calculated as the ratio of weight to 

height' (kg·m·'). Also a questionnaire concerning overall health and history of 

fractures was taken. 

Skeletal age was assessed by one investigator (MHL). using an X-ray of the left 

hand. according to the Greulich and Pyle method 13. 

Bone assessment 
Tibial ultrasonometry was performed using the SoundScan"Compact (Myriad 

Ultrasound Systems Ltd .• Rehovot. Israel. Software Version l.le). Following 

standard operating procedures. all bone assessments were done on the right 

tibia at the mid-tibial point. except in one subject. which had broken his right 

tibia: the left tibia at the mid-tibia point was measured. The mid-tibial point 

was defined as the mid-point of the line between the apex of the medial 

malleolus and the distal patellar apex. 

The results are compared to healthy age- and sex-matched Dutch controls 

described in Chapter 4 and are expressed as SD scores (Z-scores) 14. 
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Statistical analyses 
Comparison of outcomes at different investigation times (t=O, t=l, t=2) was 

done using Wilcoxon's signed rank test. The same test was used to compare 

mean values of 5D scores with the mean reference values of zero. 

10.3 RESULTS 

The individual 50S SD scores at investigation times, t=O, t=l, t=2 and t=3 are 

given in Figure 3. The mean SOS SD scores at t=O, t=l or t=2 were not 

significantly different from the reference value of zero. No reliable statistical 

analyses can be done at investigation time t=3 because of the small number of 

subjects. The mean SOS SD scores as a group are significant lower at t=l and 

t=2 than at t=O. The biggest change was between t=O and t=1. There was no 

significant change of mean SOS SD scores between t=l and t=2. 

Two subjects had fractures in their extremities: one at the right tibia after 

minor trauma and one at a metacarpal, between investigation time t=2 and 

t=3. 
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Fig. 3 The 50S SD scores on investigation 
time t=O, t=l. t=2 and t=3. 
mean ± standard error of mean. 
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Fig. 4 Changes of differences between the 
baseline and mean height SO scores 
during t=O, t=1 and t=2. mean ± 
standard error of mean. 

The mean height SD scores at t=O, t=l or t=2 were not significantly different 

from our references value of zero, showing that the leukemic disease did retard 

growth before the time of diagnosis (t=O) (Figure 4), There is a significant 

difference of mean height SD scores between t=O and t=l, 

137 



~~"--klongitudinalstudy'using'tibial'ultrasonometry,mdAU 

and t=O and t=2 (P<0.05). but not between t=1 and t=2. No significant 

correlation has been found between the changes of mean height SD scores and 

mean SOS SD scores at t=1 or t=2 (Figure 5) . 
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Fig. 5 Changes of differences between the baseline and mean height 

SD scores and mean SOS SD scores. during t=1 (squares) and 
t=2 (dots). 

The young subjects with ALL were all in Tanner stage I at t=O. In the follow-up 

period none of them matured to Tanner stage III. in which there is a marked 

increase in SOS in girls (see Chapter 4). The older subjects were already in 

Tanner stage V at t=O. 

10.4 DISCUSSION 

As discussed in Chapter 9 the long-term effects on the bone status of ALL itself 

and its treatment are negligible. Part of the differences in outcome of those 

long-term effects published in the literature depends on the sample size. 

follow-up time. homogeneity of subject groups with regard to diagnosis and 
treatment 1.2.B.I5.16. Specifically. subjects treated with cranial irradiation showed a 

reduced bone mineral density (BMD) 7.17. As stated in Chapter 9. the mechanism 

causing this reduced BMD after cranial irradiation is uncertain. but growth 
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hormone deficiency as a consequence of an injured hypothalamic-pituitary axis, 

appears to be a major factor ". This growth hormone deficiency can result in 

short stature which can also partly explain the reduced BMD as measured with 

a two-dimensional technique like dual-energy X-ray absorptiometry 19. To our 

knowledge this is the first longitudinal study with a tibia ultrasound device, 

which looks at the short-term effects of the disease itself and its therapy. 

In our treatment protocol, cranial irradiation was not given but we still found a 

significant difference between the mean height SD scores at t=O and t=1 and 

at t=O and t=2. As shown in Figure 4, this shows a growth retardation of our 

subjects during therapy. This is no surprise, as Hokken-Koelega et al. already 

reported a temporary growth retardation during therapy of moderate dose 

MTX intravenously 20. Holm et al. noted a catch-up growth within two years 

after cessation of ALL therapy without cranial irradiation, and this could be a 

reason that we did not see a significant difference in mean height SD scores 

with the reference population after a ten years follow-up time (see Chapter 9)". 

Significantly the disease itself is not a cause of growth retardation, as at t=O all 

subjects are not significantly different from the references value of zero. 

There was a significant reduction in mean SOS SD scores in the first 6 months 

(t=l) and this significant reduction was still visible at t=2 (12 months). The 

biggest reduction is in the first 6 months of therapy. In this short period it is 

unlikely that growth retardation alone can cause this decrease of SOS. A better 

explanation could be the high dose of steroids administered during this time 

period. Halton et al. already showed that corticosteroids are the main cause of 

reduction in BMD during ALL treatment due to decreased bone formation and 

increased bone resorption 2. MTX can also contribute to this BMD reduction as 

MTX is able to cause osteopenia by suppression of osteoblast activity and 

stimulation of osteoclast recruitment, resulting in increased bone resorption 4. 

There was no significant change in mean SOS SD scores between t=1 and t=2. 

Whether there was a equilibrium between bone formation and bone 

resorption during this time period is hard to say, but a further decline of bone 

mass, expressed in a lower mean SOS SD scores, was not observed. Because of 

the small numbers of subjects at t=3 (24 months) it was impossible to look for 

further significant changes in mean SOS SD scores, but the trend seems to 

indicate that no catch-up in mean SOS SD scores occurs in this timeframe. 
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Henderson et al. even found that a follow-up time of 1 year after completion 

of chemotherapy was not enough to see a catch-up in BMD". Figure 5 shows 

that the change of mean 50S SD scores between t=O, t=1 and t=2, was not 

caused by the observed growth retardation, but by a real decrease in 50S 

through the cortex of the tibia. Whether this decrease was due to a lower bone 

mass quantity, or bone mass quality of the tibia or a combination is not 

known, but it is clear that the tibia device is not measuring growth, but a real 

change in cortical bone. Interestingly in this two year time period we found an 

increase in skeletal age, not a decrease. This is important because this, also the 

decrease in mean 50S SD scores between t=O and t=1, and t=2 is a real 

decrease in bone quantity in the tibia and not only simply growth retardation, 

expressed as a cessation of height. Whether this decrease in bone quantity of 

the tibia can be used to predict the whole bone status of the investigated 

person is a subject of a on-going study. 

The largest decrease in 50S SD scores was in the first year of treatment, 

especially the first six months, and therefore this is the best period to intervene 

with medication such as calcium suppletion (Figure 3). This could give a higher 

peak bone mass, expressed in a higher SOS later in life. 

As mentioned in Chapter 9 there seems to be a higher fracture risk during and 

shortly after discontinuation of chemotherapy due to reduced BMDI6. The 

fractures were all in the appendicular skeleton, no vertebral compression 

fractures were reported. This is unexpected, because a vertebral compression 

fracture is a classical presentation of a child with ALL. In this study one subject 

had two fractures (tibia and metatarsal) in the appendicular skeleton, and one 

subject had a fracture at his metatarsal. One cause can be the still short 

follow-up time of no more than two years and therefore missing the amount 

of fractures which do occur not only during treatment but also shortly 

thereafter. 

In conclusion, tibia ultrasonometry detects short-term changes in mean 50S SD 

scores in children with ALL. The best intervention time to avoid a transient 

decrease bone mass, expressed in a higher 50S, seems to be the first 6 months 

after starting treatment. The real gain in peak SOS will be minor, as we already 

know that the long-term effects of children with the same type of ALL treated 

according the same protocol are insignificant. 
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GENERAL DISCUSSION, CONCLUSIONS, AND 
POSSIBILITIES FOR FUTURE RESEARCH 

11.1 GENERAL DISCUSSION 
In recent years, several ultrasound systems have been developed for bone mass 

assessment because compared to existing bone assessment techniques they are 

relatively cheap, easy to use, radiation free and patient friendly. 

Ultrasonometry techniques were validated first in adults. In adults those 

techniques seem to be accurate in identifying osteoporosis, its progression and 

response to therapy, as well as in identifying subjects with a high fracture risk. It 

will be a powerful tool and a competitor to the established techniques, like 

DXA. 

Chapter 1 is an overview of all bone mineral assessment techniques, developed 

in the last decades. The advantages and disadvantages of those techniques are 

discussed. 

Chapter 2 gives an overview of the different ultrasound devices and 

techniques, which are used in daily practice. As with most of the bone mass 

assessment techniques mentioned in Chapter 1, most of the ultrasound 

techniques are first validated in adults. The tibia ultrasound device used in this 

thesis had not been validated in children and therefore this validation is one of 

the aims of this thesis. The data for this validation are presented in Chapter 3 

and later. 

To be a real competitor to other bone mass assessment techniques, tibial 

ultrasonometry should have good short- and long-term reproducibility. The 

reproducibility of this system is in the same range as other ultrasound 

equipment and can compete with bone mass measurement techniques such as 

radiographic absorptiometry and dual-energy X-ray absorptiometry (DXA). The 

short-term precision of this tibia device, influence of measurement site, 

dexterity, brand of coupling gel, and temperature of coupling gel are presented 

in Chapter 3. Intra-observer variance was CV 0.43%, the inter-observer 

variance was CV 0.61%. left mid-tibial and right mid-tibial speed of sound 

(50S) measurements showed no significant differences. There were, however, 

significant differences in both boys and girls between 50S measured in right 
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proximal versus right mid-tibial, right mid-tibial versus right distal and right 

proximal versus right distal (for all P<O.OOI). One-way analysis of variance 

showed that neither the use of different coupling gels nor an increase in gel 

temperature had a significant influence on measurements. The results of our 

study show that tibial ultrasonometry is a highly reproducible technique in a 

Caucasian pediatric population. Long-term precision of the tibia ultrasound 

device is good and is described in the addendum of Chapter 3. 

In Chapter 4, we present a prospective study acquired from 596 healthy 

children, 309 girls, mean age 12.9 years (range 6.1-19.9 years), and 287 boys, 

mean age 12.3 years (range 6.1-19.6 years). For all subjects a short 

questionnaire regarding overall health was completed. To assess skeletal age, 

an X-ray of the left hand was taken. Tanner stage was done by self assessment. 

Trained operators performed ultrasonometry of the right tibia with the 

SoundScan"'Compacl. A statistical significant correlation was found between 

age and SOS r\oy,=0.52 and r',,,,, =0.63 (both P<O.OOI) and between skeletal 

age and SOS r\OY' =0.56 and r',;", =0.63 (both P<O.OOI). In boys significant 
increase of mean SOS was seen between Tanner stages II and III, and between 

IV and V. In girls there is a significant increase of mean SOS between all Tanner 

stages, except between Tanner stage II and III. 

In the next three chapters, tibial ultrasonometry was compared to three 

different bone mass assessment technique, all in healthy Caucasian children and 

adolescents. 

In Chapter 5 we compare ultrasonometry with DXA. For this study we 

recruited 146 Caucasian children and adolescents, 58 boys (median age 14.1 

years, range 7.6 - 23.4 years) and 88 girls (median age 18.0 years, range 7.6 -

23.5 years). Tanner stage, weight and height were assessed for all participants. 

Using the Lunar DPXL, a DXA machine, bone mineral density (BMD) (g·cm·') 

of the total body and lumbar spine (L,-L4) and bone mineral apparent density 

(BMAD) of the lumbar spine (g·cm·') were assessed. Again the tibial ultrasound 

technique, the SoundScan"'Compact, was used to assess SOS of the tibial cortex. 

Both lumbar BMD as well as total body BMD showed strong significant 

correlations in boys and girls with tibial SOS: r,olo' body bOy,=0.81, r,o',' body 

glrlS=O. 77, rrumbar spine boys=O. 79, and rlumbar spIne girls=O. 72. Lumbar spine BMAD also 
showed significant correlations with tibial SOS: rboy,=0.63 and r"",=0.63 (for all 
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correlations P<O.OOl). Our study shows strong significant correlations between 

DXA and tibial SOS, suggesting that tibial SOS is· a technique, which may be 

applicable in children and adolescents. 

In Chapter 6 we presented a prospective cohort study, in which we enrolled 

290 girls (mean age 12.7 years) and 273 boys (mean age 12.4 years). 

Radiographs of the left hand and the left index finger were taken and an 

aluminum reference wedge was placed within the field of exposure. We 

performed radiographic absorptiometry (RA) on the second middle phalanx at 

the mid-level (BMD,o% ) and proximal quarter (BMD"o;.). Tibial ultrasonometry 

was performed using the SoundScan®Compact. Multiple regression analyses 

showed that SOS correlated significantly with BMD,,% for both boys (r=0.65, 

P<O.OOl) and girls (r=0.59, P<O.OOl), taking into account age and gender. 

The same applied for the correlation between SOS and BMD,O% in boys 

(r=0.62, P<O.OOl) and girls (r=0.67, P<O.OOl). Cubic regression between 

calendar age and BMD,,% showed the best fit for both boys (r'=0.60) and 

girls (r'=0.60). For BMD,o% a difference in regression was found between boys 

and girls. Quadratic regression gave a satisfactory fit for boys (r'=0.61) whilst 

for girls a cubic relation was best (r'=0.59). Overall, there was a significant 

correlation between BMD,,% and BMDso% for boys r =0.89 and for girls r 

=0.91 (both P<O.OOl). 

In conclusion, our data demonstrate a significant correlation between two 

different bone assessment techniques. Our data also show that both tibial 

ultrasonometry and RA are useful bone assessment techniques in children. 

In Chapter 7 we compare another ultrasound device, the Sahara®(Hologic 

Corp. Bedford, MA, USA), which measures at the calcaneus with the tibia 

ultrasound device. We studied 120 healthy Caucasian Dutch children between 7 

and 19 years, 53 boys (mean age 12.5 years; range 4.5 - 18 years) and 67 girls 

(mean age 13.5 years; range 7.1 - 19 years). The correlation between calcaneal 

ultrasonometry and tibia ultrasonometry is modest (r=0.33). Using the 

calcaneal device, we found in girls a weak positive correlation between skeletal 

age and SOS (r=0.61), broadband ultrasound attenuation (BUA) (r=0.57) and 

quantitative ultrasound index (QUI) (r=0.46). For boys all parameters failed to 

reach Significance. Using the tibia device, we found a good correlation between 

skeletal age and SOS in girls (r=0.76) and modest correlation in boys (r=0.50). 
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At present we feel that, in light of the poor correlation with skeletal age, 

calcaneal ultrasound has yet to prove its efficacy in children. Thus tibia 

ultrasonometry seems to be a better choice for bone assessment in children. 

Chapter 8 shows the longitudinal data from part of the study population 

presented in Chapter 4,120 healthy children and young adults, 53 boys and 67 

girls enrolled in this study. The follow-up time Is about two years of all 

participants. Using the calculated regression curves of the cross-sectional data 

study, all the follow-up measurements of the girls fit between the 5% and 95% 

interval curves, except in two cases. In the boys all measurements are between 

the calculated regression curves. There is a slight significant difference between 

the Z-scores of the first measurement and the last measurement, the delta 

Z-score is 0.4. Length, weight and body mass index (BMI) have no additional 

influence on the bone assessment measurements. Therefore this tibial device 

measures not growth, but real increase in bone mass, expressed as an increase 

in SOS SD score. The good correlation between the first and second Z-score 

means that a child follows its bone mass curve and seems independent of the 

investigated characteristics but mainly genetically determined. In conclusion, 

our longitudinal results are only slightly different from our cross-sectional 

normative data, presented in Chapter 4. The tibial ultrasound device measures 

not growth but real increase in bone mass. The increase of bone mass in time 

fits a "bone mass curve" unique for the child and mainly determined by his or 

her genes. 

In the next two chapters, the clinical applications, using the tibia ultrasound 

device, are presented. In Chapter 9 a cross-sectional study has been done in 21 

children which were cured of their acute lymphoblastic leukemia (ALL). The 

follow-up time is approximately ten years. No significant differences were 

found in mean height and BMI between the children with ALL and our 

reference group (Chapter 4). No significant change in mean SOS SD score was 

found in boys and in girls. Spearman's correlation between mean SOS SD score 

and mean BMD of lumbar spine is 0.49, and mean SOS SD score and mean 

BMD of total body is 0.51. These correlations are significant at the 0.05 level 

(2-tailed). Spearman's correlation between SOS SD score and mean BMAD SD 

score is 0.39 and not significant. No significant difference in Tanner stage was 

seen compared to the reference group, but we found a tendency towards 
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delayed puberty; but our group of pubertal patients was too small for proper 

analysis. We did find a higher fracture risk in the patient group compared to 

our reference group. 

In Chapter 10 we show data of an on-going longitudinal study in other children 

with the diagnose of ALL. We started with thirty-nine patients, but only in 29 

tibia ultrasonometry was performed. There were mUltiple investigation times, 

t=O (time of diagnosis), t=1 (6 months), t=2 (12 months) and t=3 (24 

months). We saw a significant decrease in mean 50S SD score in the patient 

group between t=O and t=l, and t=O and t=2. The biggest decrease was 

between t=O and t=1. This lower mean 50S can not be explained by growth 

retardation, but as a real decrease in bone mass. Therefore tibial 

ultrasonometry is a good method for detecting changes in bone mass, 

expressed in mean 50S SD scores, in children receiving chemotherapy for 

treatment. 

11.2 CONCLUSIONS 
After validation of the tibial ultrasound device Sound5can"'Compact, we found 

tibial ultrasonometry to be a technique with good precision and longitudinal 

sensitivity. Comparison with DXA and radiographic absorptiometry suggests 

that tibial ultrasonometry is also a good bone assessment technique. Two great 

advantages are its ease to use and its lack of radiation burden. Tibial 

ultrasonometry measures not growth, but a real increase in tibial bone mass. 

After comparison with a calcaneus ultrasound device, we found that the tibia 

ultrasound device by design is a better choice as bone assessment technique in 

children. Our longitudinal data suggest that tibial ultrasonometry can also be 

implemented in a clinical setting. Monitoring changes in bone metabolism 

caused by a disease or treatment are now possible without radiation. 
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11.3 FUTURE RESEARCH 
In vivo 
As stated in Chapter 8, tibial ultrasonometry is a bone assessment technique 

with a good longitudinal sensitivity. In Chapter 10 we saw that tibial 

ultrasonometry can also detect changes in time in the bone mass of children 

with ALL. All those children received high dose steroids and methotrexate 

(MTX). It would be of interest if we find the same results as in Chapter 10, in 

children with other diagnoses such as rheumatoid arthritis, inflammatory bowel 

disease, or in children with kidney transplantation, who also receive high dose 

steroids and sometimes MTX. Children with abnormal bone formation like 

osteogenesis imperfecta could also be an interesting study group. By design the 

tibia device is the only possible bone assessment technique to quantify the bone 

status of paraplegic children. Due to their spasticity, the use of other bone mass 

assessment techniques, such as DXA and QCT. are impossible. Also 

development of smaller probes for use in younger children and even in 

neonates would expand the use of this device. 

Defining a correlation with a bone mass assessment device which looks at bone 

sites. with a high fracture risk. like the femoral neck. would be interesting. 

In vitro 
An ultrasound technique also gives information on the quality of the bone; this 

could be of use in children with diseases which affect bone metabolism. 

Theoretically. it could be possible in a specific bone disorder, that a technique 

such as DXA measures a normal bone density and tibia ultrasound finds lower 

50S caused by less bone quality but normal bone quantity. Paget disease is such 

a disorder. in which the bone quantity is even higher than normal, but the 

bone quality is decreased. which is a good explanation for the increased 

fracture risk in patients with Paget disease. It would be of interest to know 

which part of the measured 505 with the tibial ultrasound depends on the 

tibial BMD and which part of the SOS is influenced by the elasticity and by the 

architecture of the tibia. A part could be elucidated by comparing QCT and 

ultrasonometry of tibial bone specimens. 
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SAMENVATTING, CONCLUSIES, EN TOEKOMSTIGE 
ONTWIKKEUNGEN 

11.4 SAMENVATTING 
De laatste jaren zijn er verschillende echoapparaten ontwikkeld om botmassa 

te meten, die vergeleken met de bestaande botmassa meettechnieken relatief 

goedkoop, gemakkelijk in het gebruik, stralingsvrij en patientvriendelijk zijn. 

Deze nieuwe echotechnieken moesten eerst gevalideerd worden in 

volwassenen. In volwassenen blijken deze technieken accuraat te zijn in de 

detectie van osteoporose, de progressie en res pons op therapie, als ook in de 

identificatie van personen met een verhoogd fractuurrisico. Het zijn krachtige 

methodes en een concurrent van de meer gevestigde technieken, zoals dual

energy X-ray absorptiometry (DXA). 

Hoofdstuk 1 geeft een overzicht van aile botmassa metende technieken, die de 

afgelopen jaren zijn ontwikkeld. De voor- en nadelen van deze technieken 

worden genoemd. 

Hoofdstuk 2 geeft een overzicht van de verschillende echoapparaten en 

technieken, die in de dagelijkse praktijk worden gebruikt. Net zoals de meeste 

van de in Hoofdstuk 1 genoemde botmassa meettechnieken, zijn ook de 

meeste echotechnieken eerst gevalideerd in volwassenen. De tibia (scheenbeen) 

echo-methode gebruikt in dit proefschrift was nog niet gevalideerd in kinderen. 

Daarom is deze validering een van de doelstellingen van dit proefschrift. De 

data. van deze validering worden gepresenteerd in Hoofdstuk 3 en volgende 

hoofdstukken. 

Om een volwaardige concurrent te zijn van de andere botmassa 

meettechnieken, moet de tibia echografie een goede korte en lange termijn 

reproduceerbaarheid hebben. De reproduceerbaarheid van dit systeem valt in 

dezelfde orde als van andere echoapparaten en kan concurreren met botmassa 

meettechnieken zoals radiografische absorptiometrie en DXA. De korte termijn 

precisie van dit tibia echoapparaat, de invloed van de plaats van meting, 

rechtshandigheid, merk echogel, en de temperatuur van de echogel worden 

gepresenteerd in Hoofdstuk 3. De intra-observer variabiliteit was CV 0.43%, 

de inter-observer variabiliteit was CV 0.61%. 
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De linker mid-tibia en rechter mid-tibia speed of sound (SOS) metingen lieten 

geen significant verschil zien. Er was wei een significant verschil bij zowel 

jongens als meisjes tussen de rechter proxima Ie versus de rechter mid-tibia. de 

rechter mid-tibia versus de rechter distale en de rechter proximale versus 

rechter distale metingen. One-way analysis of variance laat zien dat noch het 

gebruik van verschillende echogels noch een toename in echogel temperatuur 

een significante invloed hebben op de metingen. De resultaten van onze studie 

laten zien dat de tibia echografie een goed reproduceerbare techniek is in 

Kaukasische kinderen. Lange termijn precisie van het tibia echoapparaat is 

goed. en is beschreven in het addendum van Hoofdstuk 3. In een prospectieve 

studie presenteren we data die we hebben verkregen bij 596 gezonde 

kinderen. 309 meisjes. gemiddelde leeftijd 12.9 jaar (6.1-19.9 jaar). en 287 

jongens. gemiddelde leeftijd 12.3 jaar (6.1-19.6 jaar). Bij aile onderzochte 

kinderen werd een enquete betreffende de gezondheid afgenomen. Om de 

skeletleeftijd te bepalen werd er een rontgenfoto van de linkerhand gemaakt. 

Het puberteitsstadium (Tanner) wordt bepaald door het individueel vergelijken 

van de eigen beharing en uitwendige genitalien met die van de gepresenteerde 

referentiefoto·s. Getrainde onderzoekers verrichtten de echografie van de 

rechter tibia met de SoundScan®Compact. Een statistisch significante correia tie 

wordt gevonden tussen leeftijd en SOS jongens (r' =0.52) en meisjes (r' 

=0.63) (P<O.OOI) en tussen skeletleeftijd en SOS jongens (r> =0.56) ~en meisjes 

(r' =0.63) (P<O.OO1). In jongens is de toename van de gemiddelde SOS 

significant tussen Tanner stadium II en III en tussen IV en V. Bij meisjes is de 

toename van de gemiddelde SOS significant tussen aile Tanner stadia. behalve 

tussen Tanner stadium II en III. 

In de volgende drie hoofdstukken wordt de tibia echografie vergeleken met 

drie verschillende botmassa meettechnieken. allemaal in gezonde Kaukasische 

kinderen en jong volwassenen. 

In Hoofdstuk 5 is er een vergelijking met de DXA. Voor deze studie hebben we 

146 Kaukasische kinderen en jong volwassenen onderzocht. 58 jongens met 

een mediaan leeftijd van 14.1 jaar (7.6 - 23.4 jaar) en 88 meisjes met een 

mediaan leeftijd van 18 jaar (7.6 - 23.5 jaar). Tanner stadium. gewicht en 

lengte werden bij allen bepaald. Gebruikmakend van de lunar DPXL. een DXA 

machine. werd de botdichtheid (BMD) (g·cm·') van het totale skelet en de 
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lumbale wervelkolom (L,-l.,) en de bone mineral apparent density (BMAD) van 
de lumbale wervelkolom (g·cm") bepaald. Opnieuw werd het tibia 

echoapparaat de SoundScan"Compact gebruikt om de SOS van de tibia cortex 

te bepalen. Zowel de lumbale wervelkolom (Iwk) BMD als ook het totale 

skelet (ts) BMD laten een sterk significante correlatie zien in jongens en in 

meisjes met de tibia SOS: r" 100"", =0.81. r" m'''I'' =0.77. r'wk 100"", =0.79. en rlwk m'''I'' 
=0.72. De lumbale wervelkolom BMAD laat ook een significante correlatie 

zien met de tibia SOS: rloo,,", =0.63 en rm"'I" =0.63 (aile correlaties P<O.OOl). 

Onze studie laat sterk significante correia ties zien tussen DXA en tibia SOS. en 

bewijst dat tibia SOS een techniek is die kan worden toegepast in kinderen en 

jong volwassenen. 

In Hoofdstuk 6 presenteren we een prospectieve cohort studie. waarin we 290 

meisjes. gemiddelde leeftijd 12.7 jaar en 273 jongens. gemiddelde leeftijd 12.4 

jaar hebben onderzocht. Rontgenfoto's van de linkerhand en Iinkerwijsvinger 

werden gemaakt en een aluminium referentie wig werd in het belichtingsveld 

geplaatst. Radiografische absorptiometrie (RA) van het middelste kootje van de 

wijsvinger op het mid-deel (BMD50%) en het proxima Ie kwart (BMD25,;,l 
werden uitgevoerd. Tibia echografie werd gedaan met de 

SoundScan"Compact. Multiple regressie analyse laat zien dat SOS significant 

correleert met BMD,,% bij jongens (r =0.65. P<O.OOl) en meisjes (r =0.59. 

P<O.OOl). leeftijd en geslacht hierin betrekkend. Hetzelfde geldt voor de 

correlatie tussen SOS en BMD50% in jongens (r =0.62. P<O.OOl) en meisjes (r =0.67. 

P<O.OOl). Kubische regressie tussen kalenderleeftijd en BMD25% laat de beste 

correlatie zien bij jongens (r' =0.60) en meisjes (r' =0.60). Bij BMD50% is er 

een verschil in regressie gevonden tussen jongens en meisjes. Kwadratische 

regressie was een bevredigende vorm bij de jongens (r' =0.61) terwijl voor de 

meisjes de kubische relatie het beste was (r' =0.59). Over het geheel was er 

een significante correlatie tussen BMD25% en BMD50% bij de jongens r =0.89 en 

bij de meisJes r =0.91 (beide P<O.OOl). 

Concluderend laten onze data zien dat er een significante correlatie is tussen 

twee verschillende botmassa meettechnieken. Onze dala bewljzen dat zowel 

tibia echografie als RA bruikbare botmassa meettechnieken zijn in kinderen. 

In Hoofdstuk 7 is er een vergelijking met een ander echoapparaat. de Sahara" 

(Hologic Inc. Bedford. MA .• USA). dat meet ter hoogle van de hiel (calcaneus). 
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We onderzochten 120 gezonde Kaukasische kinderen tussen 7 en 19 jaar, 53 

jongens (gemiddelde leeftijd 12.5 jaar; 4.5 - 18 jaar) en 67 meisjes (gemiddelde 

leeftijd 13.5 jaar; 7.1 - 19 jaar). De correlatie tussen de calcaneus echografie en 

de tibia echografie is matig (r =0.33). We vonden, gebruikmakend van het 

calcaneus apparaat, in meisjes een zwak positieve correlatie tussen skeletleeftijd en 

50S (r =0.61), broadband ultrasound attenuation (BUA) (r =0.57) en quantitative 

ultrasound index (QUI) (r =0.46). Bij de jongens was geen van de parameters 

significant. We vonden wei een goede correlatie tussen skeletleeftijd en 50S bij 

meisjes (r =0.76) wanneer we gebruik maakten van het tibia apparaat, en 

een matige correlatie bij jongens (r =0.50). Wij zijn van mening dat, in het 

licht van de slechte correlatie met de skeletleeftijd, de calcaneus echografie zijn 

bruikbaarheid in kinderen nog moet bewijzen. Tibia echografie blijkt wei een 

goede keuze te zijn als bot meettechniek in kinderen. 

Hoofdstuk 8 laat de longitudinale data zien van een deel van de studie 

populatie die gepresenteerd is in Hoofdstuk 4. 120 Gezonde kinderen en jong 

volwassenen, 53 jongens en 67 meisjes namen deel aan dit onderdeel van de 

studie. De follow-up tijd van de deelnemers is gemiddeld bijna 2 jaar. Aile 

follow-up metingen van de meisjes vallen tussen de 5% en 95% interval curve, 

behalve in twee gevallen, wanneer gebruik gemaakt wordt van de berekende 

regressie curven van de cross-sectionele data studie. Bij de jongens vallen aile 

metingen binnen de berekende regressie curven. Er is een gering, maar 

significant verschil tussen de Z-scores van de eerste meting en de laatste meting, 

de delta Z-score is 0.4. lengte, gewicht en body mass index (BMI) hebben geen 

additionele invloed op de botmassa metingen. Daarom meet dit tibia 

echoapparaat geen groei, maar een werkelijke toename in botmassa, uitgedrukt 

in een toename van 50S SD score (Z-score). De goede correlatie tussen de 

eerste en de tweede Z-score betekent dat een kind zijn of haar eigen "botmassa 

curve" voigt en dat deze niet afhankelijk is van de onderzochte varia belen, 

maar hoofdzakelijk van zijn of haar genen. Concluderend, onze longitudinale 

resultaten zijn gering maar significant verschillend van onze cross-sectionele 

normaalwaarden, zoals gepresenteerd in Hoofdstuk 4. Het tibia echoapparaat 

meet geen groei maar een werkelijke toename van botmassa. 
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De toename van de botmassa in tijd verloopt volgens een "botmassa curve", 
uniek voor het kind en hoofdzakelijk bepaald door zijn of haar genen. In de 

volgende twee hoofdstukken worden de klinische toepassingen van het tibia 

echoapparaat gepresenteerd. In Hoofdstuk 9 is er een cross-sectionele studie 

gedaan in 21 kinderen, die zijn genezen van acute Iymfoblastisch leukemie 

(All). De follow-up tijd is ongeveer 10 jaar. Geen significante verschillen 

werden gevonden in gemiddelde lengte en BMI tussen de kinderen met All en 

onze referentiegroep (Hoofdstuk 4). Er werd geen significant verschil in 

gemiddelde SOS SD score gevonden bij de jongens dan wei bij de meisjes. 

Spearman's correlatie tussen de gemiddelde SOS SD score en de gemiddelde 

BMD van de lumbale wervelkolom is 0.49 en de gemiddelde SOS SD score en 

gemiddelde BMD van het totale skelet is 0.51. Deze correlaties zijn significant 

op het 0.05 niveau (2-tailed). Spearman's correlatie tussen SOS SD score en de 

gemiddelde BMAD 50 score is 0.39 en niet significant. Er was geen significant 

verschil in Tanner stadium gezien, vergeleken met de referentiegroep, maar we 

vonden wei een neiging tot vertraagde puberteit, al was onze groep van 

patienten in de puberteit te klein voor een gedegen analyse. We von den een 

verhoogd fractuurrisico in de patientengroep, vergeleken met de 

referentiegroep. 

Hoofdstuk 10 laat data zien van een nog lopende, longitudinale studie in 

kinderen met de diagnose All. We startten met 39 patienten, waarvan slechts 

29 een tibia echografie ondergingen. Er zijn meerdere onderzoekstijden, t=O 

(tijdstip van diagnosis), t=l (6 maanden), t=2 (12 maanden) en t=3 (24 

maanden). We zagen een significante daling in gemiddelde SOS SD score in de 

groep patienten tussen t=O en t=l, en t=O en t=2. De grootste daling is tussen 

t=O en t=1. Deze gemiddeld lagere SOS kan niet verklaard worden door groei 

retardatie, maar berust op een werkelijke afname in botmassa. Daarom blijkt 

tibia echografie een goede methode te zijn om veranderingen in botmassa te 

detecteren, uitgedrukt in gemiddelde SOS SD score, in kinderen die 

chemotherapie ondergaan. 
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~~Samenvatting,condusies~en~toekomstigeontwikkelingen 

11.5 CONCLUSIES 

Na validering van het tibia echoapparaat de SoundScan"'Compact. blijkt tibia 

echografie een techniek met een goede precisie en longitudinale sensitiviteit. De 

vergelijking met DXA en radiografische absorptiometrie suggereert dat de tibia 

echografie ook een goede botmassa meettechniek is. Twee grate voordelen 

zijn gebruiksgemak en afwezigheid van r6ntgenstraling. Tibia echografie meet 

geen graei maar een werkelijke toename van de botmassa van de tibia. Na 

vergelijking met een calcaneus apparaat. denken we dat het tibia echo

apparaat. gezien het ontwerp. een betere keuze is als bot meettechniek in 

kinderen. Onze longitudinale data suggereren dat de tibia echografie ook in 

een klinische setting kan worden toegepast. Vastleggen van veranderingen in 

bot metabolisme. veraorzaakt door ziekte of behandeling. blijkt ook mogelijk. 

11.6 TOEKOMSTIGE ONTWIKKELINGEN 

In vivo 
Zoals genoemd in Hoofdstuk 8 blijkt de tibia echografie als bot meettechniek 

een goede longitudinale sensitiviteit te hebben. In Hoofdstuk 10 zagen we dat 

de tibia echografie ook veranderingen in tijd ten aanzien van de botmassa van 

kinderen met ALL kan detecteren. AI deze kinderen kregen hoge doses 

steroi'den en methotrexaat (MTX). Het lOU interessant kunnen zijn of we 

dezelfde resultaten lOuden vinden lOals beschreven in Hoofdstuk 10. in 

kinderen die hoge doses steroi'den en soms MTX krijgen met een andere 

diagnose lOals reumato'ide artritis. ontstekingen van de darmen. dan wei na 

niertransplantaties. Ook kinderen met een abnormale botformatie lOals 

osteogenesis imperfecta kunnen een interessante studiegroep zijn. Door het 

on twerp lOU het tibia echoapparaat de enige bot meettechniek kunnen zijn die 

de botstatus van paraplegische kinderen kan kwantificeren. Ais gevolg van hun 

spasticiteit is het gebruik van andere botmassa meettechnieken als DXA en 

quantitative computed tomography (QCT) niet altijd mogelijk. Ook de 

ontwikkeling van kleinere transducers. te gebruiken in kleine kinderen en zelfs 

in neonaten. zou het onderlOeksveld van dit apparaat sterk kunnen vergroten. 

Een correlatie met een ander botmassa meetapparaat dat plaatsen bekijkt waar 

een hoog fractuurrisico is. lOals de femurnek. lOU interessant kunnen zijn. 
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In vitro 

Een echotechniek geeft tevens informatie over de kwaliteit van het bot; dit kan 

van belang zijn bij kinderen met een ziekte die het botmetabolisme bei'nvloedt. 

Theoretisch is het mogelijk dat bij een specifieke botstoornis een techniek zoals 

de DXA, een norma Ie bot densiteit meet en de tibia echografie een lagere SOS 

vindt, veroorzaakt door een verminderde bot kwaliteit, maar met een normale 

bot kwant/teit. De ziekte van Paget is zo'n botziekte waarbij de bot kwantiteit 
zelfs hoger is dan normaal, maar de bot kwaliteit lager. Dit is een goede 

verklaring voor het verhoogde fractuurrisico bij patienten met de ziekte van 

Paget. Het zou interessant zijn te bepalen welk deel van de gemeten tibia SOS 

bepaald wordt door de BMD en welk deel door de elasticiteit en de 

architectuur van de tibia. Een dee I zou verduidelijkt kunnen worden wanneer 

QCT en ultrasonometrie van tibia kadavers verge Ie ken worden. 
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~~~~~:Samenvatting;~conclusiesen~toekomstigeontwikkelingen~ ~~~~~~~-
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Lieve Gaby, ik weet dat menig mannelijke collega jaloers was op mijn 

vrijheden die ik thuis kreeg om mijn medische carriere op te bouwen. 

Meerdere congressen met aantrekkelijke locaties heb je moeten missen. Ook 

ten aanzien van dit proefschrift ben ik op mooie plekjes geweest. Ik sta bij je in 

het krijt. Ik hoop dat onze San Francisco tijd al iets heeft goed gemaakt. 

Lieve Celine, Yorick en Florian, ik hoop dat de zin "je moet zeker weer naar 

het ziekenhuis" of "je kan ons zeker. niet naar school toe brengen" in de 

toekomst minder vaak te horen is. Beloven kan ik het niet. 

Morteza Meradji: beste Morteza, ik weet nog goed dat je tijdens mijn 

sollicitatie gesprek zei dat je hoopte dat ik een wetenschappelijke carriere zou 

maken. Het liefst in de kinderneuroradiologie want daar was grote behoefte 

aan, niet aileen op onze afdeling, maar ook landelijk. Helaas Morteza, hierin 

heb ik je met dit proefschrift teleurgesteld, het onderwerp heeft niets met dit 

superspecialisme van doen, maar met echografie en kinderen zoals je weet. Ik 

hoop dat je toch tevreden bent over mijn keuze voor dit onderwerp. 

Kees van KUijk: beste Kees, een betere co-promotor kon ik me niet wensen. 

Ondanks dat je voor een groot gedeelte van de tijd in San Francisco zat, had je 

nog altijd de regie in handen. Deels door goed voorbereidend werk voor je 

vertrek naar de States, deels door continue aanwezigheid via mod erne media 

als e-mail, fax of gewoon de telefoon. Je deed je naam als co-promotor eer 

aan. Ais ik het even niet zag zitten omdat er weer geen medewerking was uit 

Israel, stuwde je me, na een echte "peptalk" met vernieuwde energie weer 

vooruit. Sinds het laatste jaar, na je terugkeer naar ons polderlandje, waardeer 

ik ook je "Iijfelijke gesprekken". Je hebt mij altijd doen geloven dat uit dit 

onderwerp zeker een proefschrift moest voortkomen en inderdaad het is ons 

gelukt. 

Simon Robben: beste Simon, zoals je al suggereerde in jouw proefschrift, mijn 

tijd zou nog komen. Ik ziet het overigens niet als zoete wraak, ik vind het 

eerder leuk dat we waarschijnlijk de enige subspecialisatie in de radiologie in 

Rotterdam zijn waar aile stafleden gepromoveerd ziJn. 
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~~ .. _Dankwoord~ ... ~. ~~_ .. _ .. _ .. _. _ ... _ .... _ .. _._ ... _ .. _ ... _. _ ... _._ .... _ .. _. _ .. _ .... _._ .... _~ .. _ ... _______ == 

Wat een wetenschappelijke output met zo weinig tijd voor wetenschap. Als we 

ons maar niet in de eigen vingers snijden met dit gegeven. Dat lOU gevaarlijk 

zijn, want teveel "doctoren" aan een ziekbed kan fataal zijn. Helaas hoef ik hier 

niet bang meer voor te zijn, omdat je de euvele moed had om naar Maastricht 

te vertrekken . 

. Rick van Rijn: beste Rick, we hebben vee I samen gedaan. Ik weet niet wat jij 

ervan vond, maar ik vond en vind het gezellig. Dit proefschrift heeft jou ook 

geen windeieren gelegd. We hebben samen een paar mooie trips gemaakt. 

Jammer dat Eilat niet meer door ging. Je was een onmisbare vervanger op de 

momenten dat ik afwezig was, met name in de tijd dat ik een half jaar in de 

States was. Ik bewonder je inzet en ook je snelheid van artikelen schrijven. Een 

ding moet me nog wei van het hart en dat is dat je mij altijd verweet dat het 

een chaos was, niet aileen op mijn kamer maar ook in mijn database. Dat 

laatste klopt wei maar dat eerste? Enige inside information brengt mij tot de 

conclusie: de pot verwijt de ketel. 

Inge van de Sluis: beste Inge, zelfs een chaotisch iemand krijgt het voor elkaar. 

Voor jou dus een 'makkie'. Het is en was prettig om met je samen te werken. 

Alhoewel niet iedereen achter onze onderzoekslijn stond, hebben we er tot nu 

toe toch iets moois van gemaakt. 

Gabriel Krestin: beste Gabriel, mijn dank voor je support aan dit proefschrift. Ik 

weet dat het onderwerp je niet na aan het hart lag, maar daarom des temeer 

respect voor jou dat je mij geholpen hebt om me verder te ontplooien en dit 

proefschrift te verwezenlijken. 

Aile laboranten, maar met name Esther, Ingrid en Mieneke. Heel vee I dank 

voor het invallen op onverwachte en op onmogelijke tijden om met veel 

energie die lOgenaamd makkelijke tibia ultrasound metingen te doen. Zonder 

jullie was ik nog jaren langer aan het ploeteren om mijn proefschrift te 

voltooien. Ook vee I dank aan de andere laboranten, die met tomeloze energie 

weer een handfoto moesten maken volgens Myriad of toch niet? Soms was het 

niet even duidelijk. Mijn excuses hiervoor. 
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============. = .. = ... = .. =~= ....... =====~==_==~ ... Dankwoord 

Wiebeke van Leeuwen: beste Wiebeke. lOals ziet zijn niet vee I van je 

inspanningen in dit proefschrift gekomen. Maar we hebben al een geaccepteerd 

artikel met jouw radiografische absorptiemetrie metingen. Ais het aan mij ligt 

komen er nog meer artikelen uit. 

De laboranten van het opleidingsinstituut in Haarlem en Eindhoven. Zonder 

jullie inzet. in het kader van jullie afstudeerproject. was mijn project nooit 

afgerond. Ik hoop dat jullie de onderzoeken leuk von den en mijn begeleiding 

dan wei die van Rick hebben kunnen waarderen. 

Miles Brennan: dear Miles. thank you for all your grammar and spelling advice. 

And so quick and accurate. The only explanation I can think of is your excellent 

scientific background. Reading the manuscripts. I hope I did not bore you too 

much with this thesis. 

Esther van de Vosse: beste Esther jij was in de laatste fase van het proefschrift 

de "fax-dame" van over de plas. die het mogelijk maakte dat ik in een kort 

tijdbestek de Engelse en Nederlandse correcties kon doorvoeren. Hiervoor veel 

dank. 

Andries Zwamborn en Teun Rijsdijk: beste Andries en Teun. wie op de afdeling 

kan nog lOnder het gouden koppel? Andries. nogmaals bedankt voor je 

gastvrijheid in Chicago lOdat ik daar een presentatie van een onderdeel van 
het proefschrift kon geven. Van je "snurken" heb ik in elk geval niets gemerkt. 

Dat zal wei de invloed zijn geweest van je overheerlijke fles whiskey. 

Cees Entius: beste Cees. de momenten van het afzagen van een aantal 

onderbenen bij jouw op de afdeling brachten bij mij weer herinneringen naar 

boven aan mijn snijzaal practicum. Die geur aileen al. heerlijk. Ik hoop dat je 

nog even geduld hebt. Laat de vrieskist nog niet ontdooien. Ik durf het haast 

niet meer tegen je te zeggen maar misschien gaan we er toch nog wat mee 

doen. 
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·~Dankwoord·-----~~--~~~============ 

Wim Hop: beste Wim, net als bij Simon ging er voor mij een nieuwe, 

statistische wereld open. Jouw sessies duurde inderdaad altijd langer dan 

gepland. Een half uurtje werd vaak anderhalf uur. Je bakje koffie was op die 

momenten een noodzaak, om nog te kunnen volgen wat je aliemaal aan het 

doen was. Het mooiste dat me bij zal blijven is de discussie die we hadden 

over de introductie van een standaard CV in plaats van een norma Ie CV door 

Miller et al. Je vond het een prachtige vondst, zeker voor een niet "biomedisch 

statisticus". 

De Belgenclub: Jonathan Verbeke, met dit schrijven ben je al weer een jaar 

weg. Toch wil ik je ook, net als Simon, bedanken voor je tomeloze inzet op 

de afdeling waardoor ook ik wat tijd voor wetenschap kon vrij maken. Annick 

Devos, het zonnetje in huis, bezorgt mij in elk geval extra werkvreugde. Ik 

hoop dat dit gevoel blijft. 

Kees Ouwerkerk en de leerlingen van het Erasmiaans Gymnasium als ook de 

heer J.G. Radstake en de leerlingen van het Marnix Gymnasium te Rotterdam. 

Zonder jullie vrijwiliige medewerking was dit proefschrift niet tot stand 

gekomen. 

Ook de volgende insteliingen wiT ik bedanken voor de financiele steun die ik 

heb gekregen voor de verwezenlijking van mijn proefschrift: Schering, A TL, 

Nycomed, GE, Procter & Gamble, Acuson, Nutricia en de Stichting Anna Fonds 

te leiden. 
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