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An Improved Estimator For  
Black-Scholes-Merton  

Implied Volatility 
 
 

 

1. Introduction  
 

Without doubt, the European call option pricing formulas developed by Black & 

Scholes [1973] and Merton [1973] (henceforth BSM) mark a huge success in the 

history of financial modeling. Black [1975, p.64], however, was the first to observe 

volatility biases displayed by option market prices with respect to the BSM-formula. 

Out-of-the-money put options tend to be overpriced (giving rise to a high volatility 

implied by the BSM-model) and in-the-money put options tend to be underpriced (so 

the BSM-model implies a low volatility).1 This volatility “snear” or “skew” is quite 

common in equity derivatives markets, while foreign exchange derivatives exhibit 

volatility smiles in the sense that both in- and out-of-the-money options tend to have 

higher implied volatilities than at-the-money options.  

 The implied volatility smile effect is a well-documented empirical 

phenomenon.2 To uncover volatility smile patterns with respect to the BSM-model it 

is of great theoretical and practical importance to calculate volatilities implied by 

option market prices. Implied volatilities can be obtained either exactly by applying 

numerical methods3 or approximately by using approximation formulas. Two widely 

known and used examples of the latter category are the formulas derived by Brenner 

& Subrahmanyam [1988] and Corrado & Miller [1996b].4,5 The Brenner & 

                                                 
1 From Put-Call parity it follows that European out-of-the-money calls (puts) exhibit the same 
price biases as in-the-money puts (calls). The seminal paper on implied volatilities is by 
Latané & Rendleman [1976]. For extensive overviews, we refer to Mayhew [1995] and 
Corrado & Miller [1996a]. 
2 In his presidential address, Rubinstein [1994, pp.774ff] discusses the notable emergence of 
(stock index) volatility smiles after the stock market crash of October 1987. 
3 Notably the well-known Newton-Raphson procedure which has quadratic convergence, or 
Halley’s method which is more stable and has cubic convergence. See Press et al. [1992] and 
http://mathworld.wolfram.com/HalleysMethod.html. Manaster & Koehler [1982] present a 
starting value that guarantees convergence (except for the case where the option is exactly at-
the-money-forward). 
4 A summary of Corrado & Miller [1996b] appeared as Corrado & Miller [1996c]. 
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Subrahmanyam [1988] formula only applies for at-the-money-forward options and is 

a special case of the more general Corrado & Miller formula. In effect, the latter 

approximation formula is the best currently available.  

 In this paper we derive an alternative implied volatility estimator that 

compared to the conventional Corrado & Miller [1996b] estimator exhibits 

substantially higher approximation accuracy and extends over a wider region of 

moneyness. Our formula is derived from a quadratic approximation of the option 

price around the at-the-money spanning point. Since first and second derivatives of an 

at-the-money option price with respect to the strike price are (approximate) functions 

of the at-the-money option price, we can next use the Brenner & Subrahmanyam 

[1988] approximation to solve for the implied volatility. 

 The structure of the paper is as follows. In section 2 we summarize the 

Brenner & Subrahmanyam [1988] and Corrado & Miller [1996b] approximations.  

In section 3 we derive our approximation, both in raw (unadjusted) form and in 

tweaked form to further enhance approximation accuracy. We use the Corrado & 

Miller [1996b] approximation as a benchmark. Section 4 further investigates 

approximation accuracy by means of root (weighted) mean squared approximation 

errors. Section 5 concludes and provides suggestions for future research. 

 

 

2. Implied volatility estimators 
 

The Black & Scholes [1973] price of a European call option C on a non-dividend 

paying stock S with strike price K and remaining maturity of T  years is given by: 

 

(1) ( ) ( )1 2C S N d X N d= ⋅ − ⋅  

 with  ( )
1

ln /
½

S X
d T

T
σ

σ
= +  and      2 1d d Tσ= −  

 

where:  S = the current stock price,  

                                                                                                                                            
5 Other approximation formulas have been derived by Chance [1993] and Bharadia et al. 
[1996]. However, the former requires evaluation of the (inverse) cumulative normal 
distribution function and the latter is only fairly accurate for close at-the-money options.  
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 rTX Ke−≡  is the discounted strike price K, with riskfree interest rate r6, 

  σ = the volatility of the underlying stock per annum, 

and where N(⋅) is the cumulative standard normal distribution function. 

 The call option formula can be generalized as follows.7 When cash dividends 

are paid on the underlying stock, the current stock price S  is replaced by the current 

stock price less the present value of the dividends paid during the life of the option. 

For a European call option on a stock index paying a continuous dividend yield at rate 

q per annum, the current stock price S  is replaced by exp( )S qT− . For a European 

option on a foreign currency, q is replaced by the foreign riskfree interest rate rf. For a 

European commodity option, q is replaced by y, the continuous compounded net 

convenience yield per annum. For a European futures option, finally, q is replaced by 

the riskfree rate r per annum and S is replaced by the current futures price. When 

appropriate, these adjustments can be made throughout the rest of the paper. 

 For a call option that is at-the-money in the forward sense (henceforth denoted 

as ATM),  

 

(2) S X=  

 

eq.(1) reduces to: 

 

(3) ( ) ( )½ ½C S N T X N Tσ σ= ⋅ − ⋅ −  

     ( )1 2 ½S N Tσ = − ⋅ −   

 

The Maclaurin series expansion of the cumulative normal distribution function is:8 

 

(4) 31( ) ½ ( )
2

N z z z
π
 = + +Ο   

 

                                                 
6 A more general representation of the discount factor exp( )−rT  is the current price of a 
riskfree zero-coupon bond with face value 1, maturing at time T. 
7 See Hull [2003], e.g. 
8 See for example Stuart & Ord [1987, p.184].  
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Using the expansion (4) truncated after the first linear term in (3), Brenner & 

Subrahmanyam [1988] derive the following approximation to the implied BSM 

volatility of an ATM call option: 

 

(5) 2 CT
S

σ π≈  for X S=  

 

 In the same spirit, Corrado & Miller [1996b] derive a more general formula, 

which extends the range of accuracy to a wider range of option moneyness. For non-

ATM options, the application of the linear normal distribution approximation (4) in 

(1) yields a quadratic equation in Tσ . After some manipulations, the relevant root 

of this equation is: 

 

(6) 
2 2½( - ) ½( - )2 2C S X C S X S XT

S X S X S X
σ π π α− − −     ≈ + −     + + +     

 

 

with 4α = . For ATM options, (6) reduces to the Brenner & Subrahmanyam [1988] 

approximation (5). Corrado & Miller [1996b] next use the parameter α  to minimize 

the concavity of (6) with respect to the stock price for S X=  (note that α  is only 

relevant when S X≠ ). Choosing 2α = , (6) reduces to their improved quadratic 

formula:9 

 

(7) ( ) ( )222 ½( - ) ½( - )
S X

T C S X C S X
S X

πσ
π

 − ≈ − + − −
 +
 

 

 
 
 
3. An improved implied volatility estimator  
 

In this section, we derive an alternative implied volatility estimator. We start with a 

straddle, indicating the call C and the put P as explicit  functions of the discounted 

strike price X: 

                                                 
9 Tweaking this formula further cannot improve approximation accuracy. 



 6

 

(8) ( ) ( ) 2 ( )C X P X C X X S+ = ⋅ + −  

 

where the equality is implied by European Put-Call parity.10 A second order Taylor 

series approximation of the straddle around X S=  takes the form: 

 

(9) ( )[ ] ( ) [ ]2( ) ( ) 2 ( ) ( ) ( ) ½ ( ) ( )C X P X C S X S C S P S X S C S P S′ ′ ′′ ′′+ ≈ ⋅ + − + + − +  

 

where the primes indicate first and second order derivatives of the option prices with 

respect to the discounted strike price, evaluated at the argument between parentheses. 

Since 2( ) ( )C X N d′ = −  we have:   

 

(10) ( )( ) ½C S N Tσ′ = − −  

 

so we can express the ATM call price as: 

 

(11) [ ]( ) 1 2 ( )C S S C S′= + ⋅  

 

Combining this expression for the ATM call price with the Brenner & Subrahmanyam 

[1988] approximation eq.(5) yields: 

 

(12) [ ]2 1 2 ( )T C Sσ π ′≈ + ⋅  

 

Since 2( )( ) N dC X
X Tσ
′

′′ =  we have: 

 

(13) (½ )( ) N TC S
S T

σ
σ

′
′′ =  

 

                                                 
10 Using a straddle only simplifies the derivation of the approximation. A second order 
approximation of a separate call option yields exactly the same implied volatility estimator. 
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where ( )N ′ ⋅  is the standard normal density function. From (4) we have: 

 

(14) ( ) ( )21 1½ 1
2 2

N Tσ σ
π π
 ′ = +Ο ≈   

 

Hence, using (12) and (14) in (13) gives: 

 

(15) 
[ ]

1( )
2 1 2 ( )

C S
S C Sπ

′′ ≈
′+ ⋅

 

 

This simple ATM approximation holds very well for a wide range of volatilities.  

 Finally, from Put-Call parity we have: 

 

(16) ( ) ( ) 1P S C S′ ′= +  and ( ) ( )P S C S′′ ′′=  

 

Plugging (8), (11), (15) and (16) in (9) gives: 

 

(17) ( )[ ] ( )
[ ]

2

2 ( ) 1 2 ( )
2 1 2 ( )

X S
C X X S S X C S

S C Sπ
−

′⋅ + − ≈ + + ⋅ +
′+ ⋅

 

 

Multiplying both sides with 1 2 ( )C S′+ ⋅  yields: 

 

(18) ( )[ ] ( )[ ] ( )221 2 ( ) 2 ( ) 1 2 ( ) 0
2

X S
S X C S C X X S C S

Sπ
−

′ ′+ + ⋅ − ⋅ + − + ⋅ + ≈  

 

Treating this expression as exact, (18) is a quadratic form in 1 2 ( )C S′+ ⋅ . Its largest 

root is: 

 

(19) 
( ) ( ) ( )222 ( ) - 2 ( ) - 2

1 2 ( )
2( )

X S
C X X S C X X S S X

SC S
S X

π
−

+ + + − +
′+ ⋅ =

+
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Only the largest root is consistent with (11) when S X=  (the smallest root gives zero 

in that case). Using (12), we get, with ( )C C X= : 

 

(20) ( ) ( ) ( )222 2 - 2 - 2
2( )

X S
T C X S C X S S X

S X S
πσ

π

 − = + + + − +
 +
 

 

 

Note that for ATM options, (20) reduces to the Brenner & Subrahmanyam [1988] 

approximation (5). Rewriting (20) as: 

 

(21) ( )22½( - ) ½( - )2 2
( )
X SC X S C X ST

S X S X S S X
σ π π

−+ + = + − + + + 
 

 

and comparing it to the unadjusted formula of Corrado & Miller [1996b] in eq.(6) 

with 4α = , their last term under the square root is 
2

4 S X
S X
− 

 + 
 whereas in our eq.(21) 

this term can be expressed as 
2

4
4

S X S X
S X S
− +   

   +   
, thus incorporating the extra term 

between square brackets. 

 

We first compare the accuracy of eq.(20) with the unadjusted Corrado & Miller 

[1996b] formula eq.(6), where 4α = . Since the BSM option is linearly homogeneous 

in the underlying and the (discounted) strike price, we normalize with respect to the 

current stock price.11 The discounted strike divided by the current stock price, 

/M X S≡ , indicates the moneyness of the option.  

 In Figure 1, we plot implied volatilities ( Tσ ) for moneyness ranging from 

80% to 120%. This range covers the degree of moneyness encountered in practice 

very well. We consider volatilities Tσ  over the range from 3% to 30%. A volatility 

of 30% (50%) per annum, for example, roughly translates into a volatility of 3% over 

one month (two weeks). A volatility of just over 25% per annum means a volatility of  

                                                 
11 This linear homogeneity was first noticed by Merton [1973] as a special characteristic. It 
was generalized by Hoogland & Neumann [2001a,b] who recognized it as a fundamental 
property and even termed it “the relativity principle of finance” (p.6). 
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Figure 1: Accuracy of the unadjusted implied volatility estimators. 
Panel A covers the implied volatilities 0.15,0.20,0.25,0.30Tσ =  and 
panel B shows 0.03,0.05,0.08,0.10Tσ = , according to unadjusted 
estimates of Corrado & Miller’s [1996b] formula eq.(6) and our eq.(20). 
The bold (flatter top) curves represent our estimates. 
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8% over one month. In panel A, implied volatilities 0.15,0.20,0.25,0.30Tσ =  are 
covered whereas panel B depicts 0.03,0.05,0.08,0.10Tσ = . When implied  
volatilities are not shown in the graph, the corresponding formula yields no real 

solution.12 The fat top curves, fairly straight, indicate our unadjusted approximation 

according to eq.(20) whereas the unadjusted Corrado & Miller [1996b] formula eq.(6) 

yields the more concave curves. Even without further adjustment, approximation 

accuracy of (20) is already very good. It also yields estimates over a wider range of 

moneyness. The higher the volatility, the better the approximation accuracy of (20); 

therefore, we do not show results for 0.30Tσ > . 

 

Next we tweak our approximant (20) to further improve approximation accuracy. We 

start rewriting it as:  

 

(22) ( ) ( ) ( )222 2 - 2 -
2( )

X S
T C X S C X S S X

S X S
πσ γ

π

 − = + + + − +
 +
 

 

  

where 2γ = . By adjusting the tweaking parameter γ  we can change the curvature of 

(22) without affecting the approximation accuracy for ATM options. Evaluating the 

approximation accuracy for a range of 0.03,...,0.30Tσ =  we find that a somewhat 

lower value of 1.85γ =  performs best. However, the implied volatility estimates 

show a tendency to overshoot for low moneyness M and undershoot for high M. This 

is also observed in Figure 1 Panel A for the unadjusted approximation in the higher 

implied volatility range. We therefore also include a moneyness correction in the 

tweaking factor to further enhance approximation accuracy:13 

 

(23) 1.85 S
X

γ =  

 

                                                 
12 The discriminant of eq.(18) becomes negative and hence its roots are imaginary. 
13 We admit that this is more art than science, but our only goal is to obtain accurate implied 
volatility estimates for a wide range of moneyness.  
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For 80%(120%)M =  we have / 0.894(1.095)S X = , so depending on the degree of 

moneyness we have a tilt of -10% to +10%. Hence, our tweaked formula finally 

becomes: 

 

(24) ( ) ( )( )222 2 - 2 - 1.85
2( )

S X X S
T C X S C X S

S X XS
πσ

π

 + − = + + + −
 +
 

 

 

Figure 2 compares Corrado & Miller’s [1996b] improved (adjusted) quadratic formula 

eq.(7) with our tweaked approximant eq.(24). We again plot implied volatilities 

against the range of moneyness. Panel A again covers implied volatilities 

0.15,0.20,0.25,0.30Tσ =  and panel B shows the estimates for the selection 

0.03,0.05,0.08,0.10Tσ = . The almost straight fat top curves indicate our tweaked 

estimator eq.(24). The improved Corrado & Miller [1996b] formula eq.(7) does a fair 

job, but it yields more concave curves and extends over a more narrow range of 

moneyness. Our approximation is outstanding over a wide range of moneyness both 

in absolute sense and when compared to the Corrado & Miller [1996b] formula. This 

not only applies to low implied volatilities Tσ  which are relevant for short maturity 

options, but also to higher implied volatilities which are relevant for longer maturity 

options. Especially for the latter options the approximation accuracy in the lower 

moneyness region is relevant. After all, for longer maturity options which are at-the-

money in the conventional sense (i.e. K S= ), we expect that X S<<  and hence 

100%M << . 
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Figure 2: Accuracy of the adjusted implied volatility estimators. 
Panel A covers the implied volatilities 0.15,0.20,0.25,0.30Tσ =  and 
panel B depicts 0.03,0.05,0.08,0.10Tσ = , according to adjusted 
estimates of Corrado & Miller’s [1996b] formula eq.(7) and our tweaked 
approximant eq.(24). The bold (flatter top) curves represent our estimates. 
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4. A closer look at approximation accuracy  
 

To gain further insight into the approximation accuracy, we compute root mean 

squared approximation errors. We consider moneyness /M X S=  over the maximum 

range of  80% to 120% in steps of 1%. Since the Corrado & Miller [1996b] 

approximation is our benchmark, we only consider the range of moneyness { }*M  for 

which their formula yields an implied volatility estimate. The number of percentage 

levels of moneyness considered is the cardinality of { }*M , indicated as *M . 

 The root mean squared error (RMSE) of an approximation is computed as: 

 

(25) ( ) ( )2
*

1 ˆ; *
* i M

RMSE T M T T
M

σ σ σ
∈

= −∑  

 

where ˆ Tσ  is the implied volatility from the corresponding approximation. This is 

the unweighted RMSE. Since vega is highest for ATM options and decreases when 

the option moves further in- or out-of-the-money, it makes sense to weigh the squared 

approximation errors with vega.14 After all, the more an option is in- or out-of-the-

money, the lower its sensitivity to changes in volatility and hence the less important 

the approximation error. The vega of a European call, normalized to the current stock 

price, /C S , is: 

 

(26) ( )1
/C S N d
Tσ

∂ ′=
∂

 

 

where 1d  is as defined in (1). Hence, for each level i of moneyness in { }*M  we 

define the weight:    

 

(27) 
( )
( )
1

1
*

i
i

j
j M

N d
w

N d
∈

′
=

′∑
  *i M∀ ∈  

                                                 
14 A weighting scheme on the basis of the options’ vegas was first applied by Latané & 
Rendleman [1976]. 
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where ( )1 iN d′  indicates ( )1N d′  evaluated at moneyness level i. We have normalized 

the weights to sum to unity for each { }*M . The root weighted-mean squared error 

(RWMSE) is then computed as: 

 

(28) ( ) ( )2
*

ˆ; * i
i M

RWMSE T M w T Tσ σ σ
∈

= −∑  

 

 

Table 1: Approximation accuracy, as measured by RMSE (unweighted, see eq.(25)) 
and RWMSE (vega-weighted, see eq.(28)). Comparison is between the 
improved Corrado & Miller [1996b] (C&M) formula eq.(7) and our tweaked 
approximation eq.(24). The R(W)MSEs are expressed in percentage terms. 
Below the R(W)MSE of our approximation is the R(W)MSE of our 
approximation expressed as a percentage of the corresponding C&M’s 
R(W)MSE. 
 

  

moneyness
M  in % C&M our eq.(24) C&M our eq.(24)

3% 97-103 0.1368 0.0189 0.1179 0.0188
14% 16%

5% 95-105 0.1936 0.0341 0.1654 0.0331
18% 20%

8% 92-109 0.4179 0.0620 0.3537 0.0579
15% 16%

10% 90-111 0.4304 0.0700 0.3649 0.0661
16% 18%

15% 85-117 0.7208 0.1089 0.6005 0.0983
15% 16%

20% 81-120 0.6247 0.1120 0.5178 0.1007
18% 19%

25% 80-120 0.3408 0.0786 0.3006 0.0765
23% 25%

30% 80-120 0.2618 0.0712 0.2450 0.0719
27% 29%

RMSE RWMSE
Tσ

 
 

Table 1 shows the weighted and unweighted RMSEs. Almost without exception, 

RWMSE is lower than RMSE: although approximation accuracy decreases when 

moving to lower and higher levels of moneyness, also the corresponding vega-weight 
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decreases. Also, R(W)MSEs seem to be highest in the 15% to 20% volatility range. 

Corrado & Miller’s [1996b] unweighted RMSE ranges from 14 to 72 basis points 

(bps), as compared to only 2 to 11 bps for our approximant (in relative terms this is 14 

to 27%). Switching to the weighted case, the RWMSE of our approximation is 16 to 

29% of Corrado & Miller’s [1996b] RWMSE, ranging from 2 to 10 bps. So in all 

cases where Corrado & Miller’s [1996b] approximant yields an implied volatility 

estimate, our estimator is expected to reduce approximation error with at least 70%. 

 

Since the range of moneyness M* is truncated at the points where the Corrado & 

Miller [1996b] estimator fails to deliver an implied volatility estimate, we also 

evaluated the approximation accuracy of our estimator over its own relevant range of 

moneyness. Table 2 shows the details. Comparing with Table 1, the RMSE and 

RWMSE is substantially lower than for the Corrado & Miller [1996b] estimator for 

all levels of volatility considered. For the unweighted case, approximation error 

ranges from 2 to 40 bps, and for the weighted case from 2 to 32 bps. This signifies an 

important improvement over the Corrado & Miller [1996b] estimator. 

 

Table 2: Approximation accuracy of our tweaked approximation eq.(24), as measured 
by RMSE (unweighted, see eq.(25)) and RWMSE (vega-weighted, see 
eq.(28)), over the whole relevant range of moneyness. The R(W)MSEs are 
expressed in percentage terms. 
 

 

moneyness
M  in % RMSE RWMSE

3% 97-103 0.0189 0.0188
5% 95-106 0.0797 0.0668
8% 91-110 0.1809 0.1469

10% 89-113 0.2936 0.2366
15% 84-120 0.3957 0.3226
20% 80-120 0.1717 0.1406
25% 80-120 0.0786 0.0765
30% 80-120 0.0712 0.0719

Tσ
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5. Summary and conclusions 
 
In this paper, we derived an alternative estimator for implied volatility in the standard 

Black-Scholes-Merton framework. This estimator provides accurate implied volatility 

estimates over a wide range of moneyness and significantly improves on the familiar 

Corrado & Miller [1996b] approximation formula. Especially in spread sheet 

applications where closed-form approximants are favored, the higher approximation 

accuracy paired with the wider range of moneyness are very welcome features of our 

proposed estimator. Whereas the Corrado & Miller [1996b] formula signified an 

important step forward in closed-form implied volatility estimations, our results imply 

that further improvements can be achieved. We therefore would like to encourage 

further research in this area. 
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