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1 Introduction

Companies active in derivative trading are often faced with the problem of choosing a

computational platform that combines simplicity with an adequate representation of the

market situation. Unfortunately, the latter is often so complex that highly sophisticated

software is needed to generate, for example, forecasts of implied volatilities of option

contracts. If the main assumptions of the standard Black and Scholes (1973) model are

abandoned, namely constant (or deterministic) volatility and no jumps, closed form solu-

tions are hardly available. In financial and commodity markets, however, empirical work

has widely documented that stochastic volatility and jumps are important features of

the data. Although progress has been made in extending option pricing models to these

cases, one typically resorts to Monte Carlo simulations. In most practical situations, this

may take minutes or hours of computing time, depending on the desired accuracy, and is

clearly opposed to a basis for communication within a company. It would be desirable to

have a tool that produces results immediately, in order to communicate with traders and

be able to use a sensitivity analysis, without neglecting the important features of the mar-

ket. The computational tool that is used throughout most companies, including traders,

is typically a spreadsheet software. Thus, an ideal application would provide results in a

spreadsheet with possibilities of interactive use. The advantages of spreadsheets in quan-

titative finance have been emphasized recently by Aydınlı (2002). Certainly, there are

computational issues where spreadsheets are far from being the optimal environment, for

example in parameter estimation of complex nonlinear models. But with recent advances

in computing technology, it becomes possible to link computationally powerful environ-

ments with spreadsheets. An example is the link between Excel and XploRe, termed ReX,

as described by Aydınlı, Härdle, Kleinow, and Sofyan (2001).

Options and other derivative contracts were introduced first in financial markets, at

about the same time as the appearance of the Black and Scholes (1973) article. From eco-

nomic theory but also from empirical investigations we know that financial prices such as

exchange rates or asset prices can be well described by random walks, see Bachelier (1900)

and Chapter 2 of Campbell, Lo, MacKinlay (1997). This explains the predominant use

of the standard Black and Scholes formula for options in financial markets. Commodity

or energy markets, on the other hand, often show prices that can be assumed to be mean

reverting, that is, have some kind of stationary equilibrium level around which prices

fluctuate randomly. In some cases, such as interest rates or oil prices, it is typically very

difficult to confirm empirically the mean reversion assumption that is made in theories

such as Cox, Ingersoll, Ross (1985) for interest rates or Schwartz (1997) for commodity
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markets. In other words, there seems to be a gap between the theoretical and empirical

literature on this issue. Unit root test often have low power under general assumptions

about the data generating process, so that very long series would be required to be able

to reject the unit root hypothesis. One of the objectives of this paper is to show that,

while the statistical decision between a random walk and a mean reversion model can be

very difficult, the implication of that decision may have enormous consequences for option

prices and implied volatilities.

Furthermore, it is now well known that volatility in financial markets is not constant

but changes over time, see Schwert (1989) for an early investigation. There are however

recent empirical studies of commodity markets and in particular of energy markets show-

ing that volatilities in these markets are generally higher and have even more variation

than in financial markets, see e.g. Pindyck (2002) for the oil market and the empirical

study of Hafner and Herwartz (2002) for the oil and natural gas market.

The main purpose of this paper is to derive simple formulae that could be used, for

example, in spreadsheets to evaluate option prices and implied volatilities, under a model

that captures the stylized facts mentioned above. In order to discuss the implications

of the assumption about the drift, our basic model framework consists alternatively of

a geometric Brownian motion and a mean reversion model. For both cases, volatility

is allowed to be stochastic. The main idea to obtain suitable results is to use discrete

time approximations, that is, a random walk and an AR(1) model, respectively, with

GARCH errors. Simple solutions are available if second order approximations are used

in the spirit of Hull and White (1987). As they note, the higher order terms in the

expansion such as skewness and kurtosis are much smaller than the variance term, so that

this approximation should be reasonably close for practical purposes. However, Hull and

White only consider the random walk case. In a recent paper, Hafner and Herwartz (2001)

investigate the effects of stochastic volatility in a mean reversion framework, resorting to

Monte Carlo simulations when using discrete time models. In this paper, I use simple

approximations to avoid time-consuming simulations. The derived recursive equations

could be very useful, for example in spreadsheet implementations.

The remainder of the paper is organized as follows. The following section presents the

model framework in continuous time, assuming time-varying but deterministic volatility.

Section 3 introduces stochastic volatility and explains how discrete time approximations

can be used. Section 4 applies the GARCH model to obtain predictions of the instan-

taneous volatilities, that in turn are used for predictions of implied volatilities. Finally,

Section 5 presents an empirical application to a European option on the electricity spot

price of the Scandinavian electricity market NordPool. It turns out that implied volatility
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forecasts of a random walk and an AR(1) model differ substantially, even though the esti-

mated AR(1) coefficient is close to one. Finally, Section 6 concludes and gives an outlook

to future work.

2 Two basic models

The model framework of our paper consists of two basic model types, the one being

a geometric Brownian motion (GBM) commonly used in financial markets, the other a

mean-reverting (MR) process that is more common in commodity markets. To capture

deterministic calendar effects and seasonality, we will in both cases allow for time-varying

mean and variance coefficients. Denote by Xt the spot price of the underlying process.

In this paper, we will consider the pricing of a European call option, whose payoff at the

exercise date T is given by CT = max(0, XT − K), where the strike price K is a fixed

parameter. The pricing of European put options with payoff PT = max(0, K−XT ) follows

analogously.

2.1 Geometric Brownian Motion

The geometric Brownian motion (GBM) model has a large tradition in explaining prices

at equity and foreign exchange markets, because of its link with the efficient market

hypothesis. It basically assumes that returns should be unpredictable. Let us consider a

general version of this model allowing for seasonality which can be written as

dXt = µtXtdt + σtXtdWt (1)

where Wt is a standard Wiener process and µt and σt are deterministic functions of time

and may take into account seasonal effects in the mean and variance of the process. By

Itô’s lemma, we obtain

d log Xt = (µt − 1

2
σ2

t )dt + σtdWt

and integrating both sides yields

log Xt = log X0 +

∫ t

0

(µs − 1

2
σ2

s)ds +

∫ t

0

σsdWs

We see that the conditional distribution of log Xt is normal with mean and variance given

by

E0[log Xt] = log X0 +

∫ t

0

(µs − 1

2
σ2

s)ds
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and

Var0(log Xt) =

∫ t

0

σ2
sds.

The conditional distribution of Xt is therefore lognormal1 with mean

E0[Xt] = X0e
R t
0 µsds (2)

and variance

Var0(Xt) = X2
0e

2
R t
0 µsds(e

R t
0 σ2

sds − 1). (3)

The Black and Scholes (1973) framework assumes that µt = µ and σt = σ are constant

parameters, in which case the no-arbitrage price for a European call option is given by

CBS,t(σ
2) = XtΦ(d1)−Ke−r(T−t)Φ(d2) (4)

with Φ denoting the standard normal distribution function,

d1(σ
2) =

log(Xt/K) + (r + σ2/2)(T − t)

σ
√

T − t
, (5)

where r is the constant risk-free interest rate and d2 = d1−σ
√

T − t. The main argument

of Black and Scholes (1973) in deriving this formula was that it is possible to construct

a hedge portfolio only using the underlying and bonds that eliminates the risk of the call

option.

In the general case with deterministic functions µt and σt, prices remain log-normally

distributed and it is still possible to construct a riskless hedge portfolio only using the

underlying and bonds. Thus, the Black-Scholes formula remains valid. Since the drift

function does not enter in (4), the only change appears in the volatility. Note however

that the drift function has an influence on the estimated volatility and therefore on the

option price. Let us define the average volatility until maturity as

Vt,T =
1

T − t
Vart(log XT ) (6)

which in the GBM case is given by

Vt,T =
1

T − t

∫ T

t

σ2
sds. (7)

Thus, Vt,T is an average of instantaneous volatilities σ2
s , t ≤ s ≤ T . The no-arbitrage call

option price is then given by

Ct = CBS,t(Vt,T ). (8)

1If X ∼ N(µ, σ2), then eX is lognormal with mean eµ+σ2/2 and variance e2µ+σ2
(eσ2 − 1)
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Equation (8) says that the fair option value is obtained by plugging the value of Vt,T into

the Black and Scholes formula. Thus, Vt,T can be interpreted as the so-called implied

volatility parameter of the model, as opposed to the implied volatility parameter of the

market that, when plugged into the Black and Scholes formula returns an observed market

price. The GBM model implied volatility, Vt,T , is therefore an equally weighted average

of future instantaneous volatilities until the expiry date of the option.

Traders sometimes look at historical volatilities, i.e., standard deviations of past re-

turns over some moving window of fixed size, and compare them to implied volatilities of

traded options to see whether they are over- or undervalued. The preceding paragraph

makes clear that in general this is not the appropriate procedure, because implied volatil-

ities are averages of future instantaneous volatilities, not historic ones, and of course they

can be quite different. This is even more so if prices are mean-reverting, the case that

will be discussed next.

2.2 Mean reversion

The basic idea of the mean reversion model is that prices fluctuate around a deterministic

trend, and the higher the deviation from this trend, the stronger prices are pulled back

to the trend. This model is given by

d log Xt = κ(µt − log Xt)dt + σtdWt, (9)

where the deterministic trend, µt, is allowed to vary with time. The speed of mean

reversion is determined by the parameter κ > 0. An explicit solution can be found to be

log Xt = e−κt log X0 + κ

∫ t

0

e−κ(t−s)µsds +

∫ t

0

e−κ(t−s)σsdWs.

Again, the conditional distribution of log Xt is normal, but now with mean and variance

given by

E0[log Xt] = e−κt log X0 + κ

∫ t

0

e−κ(t−s)µsds

and

Var0(log Xt) =

∫ t

0

e−2κ(t−s)σ2
sds.

Consequently, the call option price is still given by (8) but now with

Vt,T =
1

T − t

∫ T

t

e−2κ(T−s)σ2
sds. (10)
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Thus, Vt,T is a weighted average of instantaneous volatilities σ2
s , t ≤ s ≤ T , where the

weights are exponentially declining with the time to maturity T−s. Interpreting Vt,T again

as the implied volatility, we see that the implied volatility in the MR model is dominated

by instantaneous volatilities close to the expiry date of the option. The explanation is

quite obvious: If prices are mean-reverting, initial shocks die out quickly because a large

deviation from the drift function tends to be followed by subsequent movements in the

opposite direction. Close to maturity, on the other hand, the mean reversion rate may

not be strong enough to offset large shocks until the option expires. In other words, large

instantaneous volatilities may not have much effect on the implied volatility of the option

if the time to maturity is still large and the mean reversion rate is not too small.

3 Stochastic volatility

The results of the preceding section are valid only for deterministic volatility. In many

empirical studies in financial or commodity markets, the random character of volatility has

been demonstrated. Although alternative models have been established, there is common

agreement that volatility is mean reverting or stationary. A suitable model in continuous

time could be formulated as

dσ2
t = (ωt − θσ2

t )dt + δσ2
t dZt (11)

where Zt is a standard Wiener process independent of Wt, θ and δ are constant parameters,

and ωt is a deterministic function of time that may take into account seasonality in

variance. Note that (11) is more general than the model employed by Hull and White

(1987), who set ωt = 0 which implies a less realistic non-stationary volatility process. Also,

(11) is appealing because it is the diffusion limit of the popular discrete time GARCH(1,1)

model, as shown by Nelson (1990).

Under stochastic instantaneous volatility σ2
s and given information at time t, the

average volatility over the option’s lifetime, Vt,T , is no longer deterministic but random.

The analytic form of the distribution of Vt,T may not be known. Moreover, because

the stochastic differential equation for log Xt now involves a mixture of two independent

Wiener processes, the conditional distribution of log Xt is no longer Gaussian but fat-

tailed. While this is closer to empirical observations, it renders option pricing more

difficult since the BS formula cannot be used directly.

What is also needed is an assumption on the risk premium of volatility. Hull and

White (1987) show that, assuming a volatility risk premium of zero, the option price is
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given by

Ct = Et[CBS(Vt,T )]

where the expectation is taken with respect to the (unknown) distribution of Vt,T . Even

though the distribution is unknown, its lower moments may be easily calculated. There-

fore, a second order Taylor approximation is feasible and given by

Ct ≈ CBS,t(V̄t,T ) +
1

2

∂2CBS,t

∂V 2
t,T

(V̄t,T )Vart(Vt,T ) (12)

where V̄t,T = Et[Vt,T ] is the expected average volatility over the option’s lifetime. The

second derivative of the BS call price formula with respect to volatility, evaluated at V̄t,T ,

is easily calculated to be

C ′′ =
∂2CBS,t

∂V 2
t,T

(V̄t,T ) =
Xtψ(d1)(d1d2 − 1)

√
T − t

4V̄
3/2
t,T

(13)

where d1 = d1(V̄t,T ) is given in (5), d2 = d1(V̄t,T ) −
√

V̄t,T (T − t), and ψ is the standard

normal density function.

Looking closer at (13) it can be seen that ‘at-the-money’ (i.e. Xt ≈ K), the second

derivative in (13) is negative and therefore Ct < CBS,t, whereas in- or out-of-the money

it is positive, and hence Ct > CBS,t. This produces the well-known ‘smile’ in implied

volatilities, i.e., option prices are smaller at-the-money and larger in- and out-of-the-

money compared to a model with constant volatility. The smile is, however, usually

expressed in terms of the implied volatility, V I
t,T , which is implicitly defined by Ct =

CBS,t(V
I
t,T ). One can not solve for V I

t,T analytically, but simple numerical search algorithms

can be used. To get some more intuition, let us do a second order Taylor expansion for

V I
t,T , i.e.

CBS,t(V
I
t,T ) = CBS,t(V̄t,T ) + (V I

t,T − V̄t,T )C ′ +
1

2
(V I

t,T − V̄t,T )2C ′′, (14)

where C ′′ is given by (13), and

C ′ =
∂CBS,t

∂Vt,T

(V̄t,T ) =
Xtψ(d1)

√
T − t

2V̄
1/2
t,T

(15)

Note that (15) is not identical to the usually called Vega, which is the derivative with

respect to the standard deviation, not the variance. Combining (14) with (12), we obtain

the following quadratic equation for Z = V I
t,T − V̄t,T ,

1

2
C ′′Z2 + C ′Z − 1

2
C ′′Var(Vt,T ) = 0, (16)
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which for C ′′ 6= 0 gives the following solution.

V I
t,T = V̄t,T − C ′

C ′′ + sign(C ′′)

√(
C ′

C ′′

)2

+ Vart(Vt,T ). (17)

Note that the term C ′/C ′′ takes the simple expression 2V̄t,T /(d1d2−1). Now, if Vart(Vt,T )

is small, then V I
t,T ≈ V̄t,T , so the implied volatility is close to the mean of Vt,T . On the

other hand, if Vart(Vt,T ) is large, then we have to distinguish two cases: If C ′′ < 0 (at-the-

money), then V I
t,T < V̄t,T , whereas if C ′′ > 0 (in- or out-of-the-money), then V I

t,T > V̄t,T .

This is the famous smile effect, and the amplitude of the smile is determined by the

magnitude of Var(Vt,T ).

Let us now consider the situation in practice where one has t observations in discrete

time, X1, . . . , Xt and corresponding estimates of instantaneous volatility σ2
1, . . . , σ

2
t . Based

on this information at time t, one can build forecasts of future instantaneous volatilities

σ2
t+1, . . . , σ

2
T , and we will see in the next section how this can be achieved in GARCH

models. If the frequency of observations is sufficiently high, which is usually the case when

one has, say, daily data, we can use the following simple discrete time approximation to

the diffusion models:

log Xt/Xt−1 = µt + εt (18)

and

log Xt = φ log Xt−1 + κµt + εt (19)

where φ = e−κ, and εt is an error term that, conditional on the information set at time

t − 1, has a normal distribution with mean zero and variance σ2
t . The discrete time

models in (18) and (19) are the well known random walk with drift and AR(1) model,

respectively, both having heteroskedastic error terms. These models can be estimated

using any standard statistical software, and the parameter estimates of the continuous

time models are immediately obtained.

In order to evaluate the option price in (12), we need to calculate the conditional

variance of Vt,T , given in (7) and (10), respectively. Using our discrete time approximation,

we can replace the integral contained in the expression for Vt,T by a sum to get

Vt,T =
1

T − t

T−t∑
i=1

σ2
t+i

and

Vt,T =
1

T − t

T−t∑
i=1

φ2(T−t−i)σ2
t+i
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in the GBM and MR model, respectively. As for the mean and variance of Vt,T , we obtain

V̄t,T =
1

T − t

T−t∑
i=1

Et[σ
2
t+i] (20)

Vart(Vt,T ) =
1

(T − t)2

{
T−t∑
i=1

Vart(σ
2
t+i) + 2

T−t∑
i<j

Covt(σ
2
t+i, σ

2
t+j)

}

and

V̄t,T =
1

T − t

T−t∑
i=1

φ2(T−t−i)Et[σ
2
t+i] (21)

Vart(Vt,T ) =
1

(T − t)2

{
T−t∑
i=1

φ4(T−t−i)Vart(σ
2
t+i)

+ 2
T−t∑
i<j

φ2(T−t−i)+2(T−t−j)Covt(σ
2
t+i, σ

2
t+j)

}
(22)

respectively. To calculate V̄t,T , all we need are predictions of the instantaneous volatilities,

Et[σ
2
t+i]. The variance of Vt,T depends on all variances and covariances of instantaneous

volatilities between t and T . Note that, by definition,

Vart(σ
2
t+i) = Et[σ

4
t+i]− Et[σ

2
t+i]

2 (23)

Covt(σ
2
t+i, σ

2
t+j) = Et[σ

2
t+iσ

2
t+j]− Et[σ

2
t+i]Et[σ

2
t+j],

so that one needs to calculate the conditional expectations Et[σ
4
t+i] and Et[σ

2
t+iσ

2
t+j]. As

we will see in the next section, computationally convenient recursive formulae can be

applied if one uses the popular GARCH model class.

4 Using GARCH approximations

We now look at ways to conveniently compute the mean and variance of Vt,T that is

required for the second order approximation in (12). Perhaps the most popular discrete

time volatility model is the so-called GARCH model by Bollerslev (1986) that is widely

used in practice. For a survey on theory and estimation see, e.g., Bollerslev, Engle and

Nelson (1994).

Consider the error terms εt in (18) and (19), respectively. The often used GARCH(1,1)

model then specifies Vart−1(εt) = σ2
t with

σ2
t = ω + αε2

t−1 + βσ2
t−1 (24)
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where ω, α, and β are positive parameters. One of the features of this specification is that

it allows for convenient prediction of future volatilities, because the i-step conditional

mean is given by

Et[σ
2
t+i] = ω

1− δi−1

1− δ
+ δi−1σ2

t+1,

where δ = α+β. This converges to the unconditional instantaneous volatility σ2 if δ < 1,

where σ2 is then given by

σ2 = lim
i→∞

Et[σ
2
t+i] =

ω

1− δ
.

One can now extend the standard GARCH model in (24) to allow for seasonality. A

model that corresponds to the diffusion model (11) would be

σ2
t = ωt + αε2

t−1 + βσ2
t−1 (25)

where ωt is a deterministic function of time. In this model, seasonality occurs in the level

of volatility, whereas the parameters that drive the persistence, α and β, are assumed to

remain constant.

For model (25), simple recursive formulae can be found for the optimal predictors.

Then,

Et[σ
2
t+2] = ωt+2 + δσ2

t+1

Et[σ
2
t+i] = ωt+i + δEt[σ

2
t+i−1], i ≥ 3 (26)

To determine the variance of Vt,T , we further need the conditional variances and auto-

covariances of σ2
t+i. Assuming normality of standardized errors, i.e. εt/σt ∼ N(0, 1), and

defining γ = 3α2 + β2 + 2αβ, we obtain for the fourth moment predictions,

Et[σ
4
t+2] = ω2

t+2 + γσ4
t+1 + 2δωt+2σ

2
t+1 (27)

Et[σ
4
t+i] = ω2

t+i + γEt[σ
4
t+i−1] + 2δωt+iEt[σ

2
t+i−1], i ≥ 3. (28)

Note that γ < 1 is required, otherwise fourth moments would not exist and the conditional

expectation in (28) would tend to infinity with increasing horizon i. The variance terms

are now simply given by equation (23). Likewise, it is straightforward to obtain the

covariance terms

Covt[σ
2
t+i, σ

2
t+j] = δj−iVart(σ

2
t+i), 1 ≤ i ≤ j.

These covariances are non-negative and, due to the assumed covariance-stationarity of

the model (δ < 1), they converge to zero for increasing temporal distance, j − i, between

the two instantaneous volatilities.
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5 An application to options on electricity prices

In this section I give an example of an application to the pricing of European op-

tions on the spot price of electricity in the Scandinavian market, called NordPool (see

www.nordpool.no). This market is among the most developed electricity markets in Eu-

rope and includes trading of many liquid physical and financial contracts. Options are

mostly written on futures and forwards, but for illustrative purposes I will consider a

(fictitious) European option on the spot price here. The spot market is physical where

prices are fixed every day for the 24 hours of the next day. The arithmetic average of the

hourly prices is commonly referred to as the daily spot price, which is our underlying price

process. In order to simplify the seasonality structure, I discarded the weekend prices.

Data are from January 1, 1996, to September 17, 2002, which makes a total of 1751 ob-

servations. The sample standard deviation of daily returns is 0.0911, or annualized 147

%, which is much higher than the typically observed volatilities at financial markets. It

is not only due to a few outliers.

I estimate the following simple time series model fitted to the logarithm of the spot

price, log Xt.

log Xt = c + β1 cos(
2π

P
t) + β2 sin(

2π

P
t) + φ log Xt−1 + εt, (29)

where the period P in the trigonometric terms is fixed to one year. Alternatively, I fix

the parameter φ to unity to estimate the following random walk with drift model:

log Xt/Xt−1 = c + β1 cos(
2π

P
t) + β2 sin(

2π

P
t) + εt, (30)

For both models, the errors εt have conditional variance σ2
t , which is specified as

σ2
t = ω + γ1 cos(

2π

P
t) + γ2 sin(

2π

P
t) + αε2

t−1. (31)

This can be considered as an ARCH(1) model with seasonality. Neither in the condi-

tional mean nor in the conditional variance were higher order lags found to be significant.

Maximum likelihood estimation yields the results reported in Table 1. The maximum

likelihood values are 1985.2 for the random walk model and 1995.7 for the mean reverting

value, indicating a superior fit of the latter.

For both estimated models, I calculate the prices of at-the-money European call op-

tions for alternative times to maturity using the information at the end of the sample,

September 17, 2002, and using equation (12). Then, implied volatilities are obtained by

equation (17) (numerical search algorithms yield very close results). Figure 1 shows the
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MR Random Walk (φ = 1)

c 0.105838 ( 4.01 ) 0.001780 (1.03)

β1 0.004785 ( 1.48 ) 0.001852 (0.93)

β2 -0.005131 ( -2.13) -0.004947 (-1.90)

φ 0.979299 ( 186.8 )

ω 0.004697 ( 4.27 ) 0.004707 (59.09)

γ1 0.000710 ( 0.58 ) 0.000793 (7.44)

γ2 0.002337 ( 2.41 ) 0.002080 (15.55)

α 0.443185 ( 4.04 ) 0.446952 (13.47)

Table 1: Parameter estimates of the models in (29), (30) and (31), applied to the loga-

rithm of the spot price of the Scandinavian electricity market, NordPool, January 1996

to September 2002. T-statistics based on heteroskedasticity–consistent standard errors are

reported in parentheses.

implied volatilities for both models as a function of the time to maturity. It becomes

obvious that, even though the statistical difference between both models does not seem

big, there is a large difference of implied volatilities in particular for increasing maturities.

Additional to the implied volatilities, the figure shows the forecast of the instantaneous

volatility for the MR model, Et[σ
2
t+i] as given by equation (26). The corresponding fore-

cast of the random walk model is very similar, so it is not shown. Note that the mean of

instantaneous volatility predictions over one year is close to the empirical mean of 147%,

as expected.

The interpretation of the implied volatilities of the random walk model as equally

weighted averages of instantaneous volatilities becomes obvious from the graph. On the

other hand, the implied volatilities of the mean reversion model decline with time to

maturity. This reflects the different weighting scheme, as can be best seen in the equations

for V̄t,T in (20) and (21). It is remarkable that even an estimate of φ so close to one has

such an enormous effect for the implied volatility predictions.

The effect of stochastic volatility in this example is found to be important only for

short maturity options. The reason is that the value of Vart(Vt,T ) in equation (17) is 13%

of the value of (C ′/C ′′)2 for one day to maturity, 5% for two days, 2% for three days, and

then decreases further, so that for long maturity options the implied volatility is close to

the mean of Vt,T . This is certainly due to the fact that there is only an ARCH model of

order one in our model. If higher order terms were found to be significant in a general
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Figure 1: Predictions of implied volatilities under the random walk model (long dashed

line) and the mean reversion model (solid line) as a function of the trading days to ma-

turity. The short dashed line is the prediction of instantaneous volatility (using the mean

reversion model, but very similar under the random walk model). The considered deriva-

tive is a European call option on the spot price of the Scandinavian electricity market,

NordPool. The current date of the option is chosen to be the end of the sample, i.e.,

September 17, 2002.
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GARCH(p, q) model, then stochastic volatility would have a stronger effect on implied

volatilities with long maturities.

6 Conclusions and Outlook

In this paper, I motivate the use of spreadsheets as a convenient platform to evaluate

derivatives, even under complicated situations such as stochastic volatility. Suitable ap-

proximations can be found that have the advantage of immediate availability of results.

Formulae are provided for a random walk and a mean reversion model with time-varying

drift and volatility. For the stochastic volatility case, I suggest to use GARCH approxi-

mations that are frequently used in practice. The formulae provided in this paper could

be easily extended to more general GARCH models such as threshold GARCH models,

to take into account asymmetry of the progation of noise in the volatility equation.

For the application to options on electricity prices, it appeared that stochastic volatil-

ity is important. However, it mattered even more for predictions of implied volatilities

whether a mean reversion or random walk model was specified, although the estimated

AR(1) parameter was close to one. This result should be a warning against an uncritical

use of a random walk model when there is some evidence of mean reversion. A conse-

quence of a false random walk assumption could be a strong overvaluation of implied

volatilities, as shown in the example. Of course, the statistical decision between the two

models is often difficult and unit root tests are not always giving reliable answers. Es-

pecially in commodity and energy markets, there are often more economic arguments for

mean reversion in prices than there is for random walk, as opposed to financial markets.

Further empirical evidence on derivatives in commodity markets may help to clarify how

practitioners evaluate implied volatilities.

References

Aydınlı, G. (2002), Net based spreadsheets in quantitative finance, in: Applied Quanti-

tative Finance.
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