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Abstract

This paper derives results for the temporal aggregation of multivariate GARCH

processes in the general vector specification. It is shown that the class of weak mul-

tivariate GARCH processes is closed under temporal aggregation. Fourth moment

characteristics turn out to be crucial for the low frequency dynamics for both stock

and flow variables. It is shown that spurious instantaneous causality in variance

will only appear in degenerated cases, but that spurious Granger causality will be

more common. Forecasting volatility, it is generally advisable to aggregate forecasts

of the disaggregate series rather than forecasting the aggregated series directly, and

unlike for VARMA processes the advantage does not diminish for large forecast

horizons. Results are derived for the distribution of multivariate realized volatility

if the high frequency process follows multivariate GARCH. Finally, the estimation

problem is discussed. A numerical example illustrates some of the results.

Keywords: multivariate GARCH, temporal aggregation, causality in variance,

volatility forecasts, realized volatility

JEL Classification: C22

1Econometric Institute, Erasmus University Rotterdam, P.O.B. 1738, 3000 DR Rotterdam, The
Netherlands. e-mail chafner@few.eur.nl.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/18510318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Financial time series such as stock prices or exchange rates usually are available on very

high frequencies such as minute by minute. Typically, however, the econometrician uses

highly aggregated data such as daily or weekly returns. This poses the question how the

low frequency dynamics depend on the characteristics of the high frequency process. It

is an important general topic in econometrics whenever the sample frequency does not

correspond to the ‘natural’ frequency, where the natural frequency of financial time series

is so high that the series is often represented by continuous time stochastic processes.

For financial time series in discrete time, the GARCH modelling class has proved to

be successful to describe the volatility. Drost and Nijman (1993) have derived the low fre-

quency parameters if the high frequency dynamics follows univariate GARCH. However,

they also show that only a weak version of GARCH is closed under temporal aggre-

gation, that is, GARCH does not explain the conditional variance but rather the best

linear prediction in terms of lagged returns and lagged squared returns. Meddahi and

Renault (2004) extend the weak GARCH model to a class of autoregressive stochastic

volatility models that is closed under temporal aggregation. Their model is characterized

by multi-period conditional moment conditions that allow for estimation and inference

by the generalized method of moments. Also, it is less restrictive in terms of moment

conditions. However, due to their simplicity GARCH models remain the principal volatil-

ity model used in econometric practice, and its widespread implementation guarantees a

need for thorough understanding of its theoretical properties. This is even more so in the

multivariate case, since multivariate GARCH models also start to become a standard in

statistical and econometric programming packages. Other multivariate volatility models

such as multivariate stochastic volatility quickly become intractable in empirical work.

Throughout the paper I will use the so-called vec form of multivariate GARCH, as intro-

duced by Bollerslev, Engle, and Wooldridge (1988). It nests the so-called BEKK model

of Engle and Kroner (1995) that has been introduced mainly to overcome some practical

disadvantages of the vec model. It also nests the factor ARCH models introduced by

Diebold and Nerlove (1989) and Engle, Ng, and Rothschild (1990), as well as the orthog-

onal GARCH model of Alexander (2001) and its generalization by van der Weide (2002).

However, it does not nest the constant conditional correlation (CCC) model of Bollerslev

(1990) or its extension, the dynamic conditional correlation (DCC) model of Engle (2002).
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Due to their nonlinear character, it will be difficult to derive aggregation results for both

of these models. For a recent review of the various multivariate GARCH specifications,

see Bauwens, Laurent and Rombouts (2003).

This paper extends the results of Drost and Nijman (1993) to the multivariate case.

Mainly, I show that the class of weak multivariate GARCH processes is closed under

temporal aggregation and provide formulae how to to obtain the low frequency dynamics

for a given high frequency process. I make use of some well known aggregation results

of VARMA models. However, there are important differences that occur in multivari-

ate GARCH models compared to VARMA models. This is mainly due to the fact that

in GARCH models it is not the second order process, i.e. the squared returns, that is

aggregated but the returns themselves. This creates cross-products and therefore addi-

tional noise in the aggregated series. The variance and auto-covariance of this additional

noise affects the dynamics of the aggregated series. Distinguishing between stock and flow

variables, there appears a major difference between univariate and multivariate GARCH

processes: Whereas in the univariate case only the aggregated flow variable process de-

pends on the fourth moment characteristics, so does also the aggregated stock variable

process in the multivariate case.

Further to the derivation of the low frequency dynamics, I discuss some issues related

to causality in volatility. In VARMA processes, Breitung and Swanson (2002) investigate

the phenomenon of spurious instantaneous causality, that is, instantaneous causality of the

low frequency process that is solely induced by temporal aggregation without any causal

relationship at the high frequency. For multivariate GARCH processes, I show that such

misleading causality can be ruled out whenever there is a nonzero conditional correlation

between the series, or if the dimension is not larger than two. Spurious Granger causality,

i.e. uni- or bi-directional causality, is of more practical relevance, since if the parameter

matrices of the high frequency process are diagonal (i.e. no Granger causality), those of

the low frequency will in general not be diagonal. However, as measures for causality

suggest, this spurious Granger causality is typically much smaller than the instantaneous

causality. All Granger causality in volatility disappears as the series is more and more

aggregated. Moreover, the normalized series converges to a multivariate Gaussian white

noise series with increasing aggregation level.

For the prediction of volatility, it is no surprise that the method that predicts the

disaggregate process and then aggregates the forecasts has a smaller mean square predic-
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tion error than the method that directly predicts the aggregated series. In the VARMA

framework this has been demonstrated e.g. by Lütkepohl (1987). However, whereas in

VARMA models the two methods become identical when the prediction horizon increases,

this is not the case for multivariate GARCH processes. The reason is the additional noise

terms, referred to above, in the aggregated series which are absent in the aggregation of

VARMA processes.

Finally, I try to build a link to the increasing literature on so-called realized volatilities,

that is, aggregation of the high-frequency (typically intra-day) second order process to

obtain a measure rather than a model for the low frequency volatility, see e.g. Andersen

et al. (2003). Based on results of Breitung and Swanson (2002), it can be shown that if

the high frequency process follows multivariate GARCH, then the multivariate realized

volatility process for finite but large aggregations can be approximated by a VMA(1)

process.

The paper is organized as follows. Section 2 introduces the notation, some definitions

and preliminary results such as the fourth moment structure of multivariate GARCH

processes. Section 3 derives the main results of the paper, where I distinguish between

the cases of stock and flow variables. Section 4 discusses the causality in volatility and

Section 5 the prediction of volatility. Section 6 derives results for realized volatility.

Finally, Section 7 discusses the estimation problem, and Section 8 concludes. Throughout

the paper I use a numerical example to illustrate the results. Proofs of the theorems are

given in the appendix.

2 Preliminaries

To begin with, the notion of vector white noise is at the core of most multivariate stochastic

processes, but it is often defined in three alternative ways. In the context of modelling

the conditional mean the exact notion of white noise has not been of much interest and

importance. For the study of temporal aggregation of multivariate GARCH processes,

however, the distinction of these definitions will turn out to be crucial.

Definition 1 (White Noise) Let {ut, t ∈ Z} denote a stochastic vector process of di-

mension K. We say that ut is

1. strong white noise, if it is i.i.d. with E[ut] = 0 and E[utu
′
t] = Σu < ∞,
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2. semi-strong white noise, if E[ut | Ft−1] = 0 and E[utu
′
t] = Σu < ∞, where Ft =

σ(us,−∞ < s ≤ t),

3. weak white noise, if E[ut] = 0, E[utu
′
s] = 0, ∀t 6= s, and E[utu

′
t] = Σu < ∞.

A semi-strong white noise process can be characterized as a martingale difference.

Processes that build on martingale differences are not closed under temporal aggregation,

see e.g. Meddahi and Renault (2004), and it is therefore important to consider the weak

white noise process. Before turning to GARCH processes it is convenient to define three

versions of vector autoregressive moving average (VARMA) processes based on the above

white noise notions.

Definition 2 (VARMA) Let {yt, t ∈ Z} be a stochastic process given by

yt = ν +

p∑
i=1

Φiyt−i +

q∑
j=0

Θjut−j,

where ut is a white noise vector process, ν is a K dimensional parameter vector, Φi and

Θj are square parameter matrices of order K, and where we set Θ0 = IK. Then yt is

called a

1. strong VARMA(p, q) process if ut is strong white noise,

2. semi-strong VARMA(p, q) if ut is semi-strong white noise, and

3. weak VARMA(p, q) if ut is weak white noise.

VARMA processes are widely known to be closed under temporal aggregation, but in

fact this holds only for weak VARMA processes, see the monograph by Lütkepohl (1987).

Analogous to the above definitions we now consider three versions of multivariate GARCH

processes. 1

1Throughout the paper, vec denotes the operator that stacks all columns of a matrix into a vector,
and vech denotes the operator that stacks only the lower triangular part including the diagonal of a
symmetric matrix into a vector.
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Definition 3 (Multivariate GARCH) Let εt denote a stochastic vector process with K

components and E[εt | Ft−1] = 0. Now define a positive definite and symmetric matrix Ht

such that vech(Ht) = ht and where the stochastic vector process ht has the representation

ht = ω +

q∑
i=1

Aiηt−i +

p∑
j=1

Bjht−j (1)

where ω = vech(Ω), ηt = vech(εtε
′
t) and N × N parameter matrices Ω, Ai, Bj, with N =

K(K + 1)/2. Then we say that εt is a

1. strong multivariate GARCH(p, q) process, if ξt = H
−1/2
t εt is an i.i.d. process with

mean zero and variance the identity matrix,

2. semi-strong multivariate GARCH(p, q) process, if Var(εt | Ft−1) = Ht, where Ft =

σ(εs,−∞ < s ≤ t),

3. weak multivariate GARCH(p, q) process, if ht is the best linear predictor of ηt in

terms of a constant and lagged values of ηt, that is

ht = P (ηt | Ht−1) = [P (ηt,1 | Ht−1), . . . , P (ηt,N | Ht−1)]
′

where Ht = sp{1, ηt−τ,1, . . . , ηt−τ,N , τ ≥ 0} denotes the infinite dimensional Hilbert

space spanned by all linear combinations of a constant and ηt−τ,1, . . . , ηt−τ,N .

Note that a strong multivariate GARCH(p, q) process is also semi-strong, and a semi-

strong multivariate GARCH(p, q) process is also weak, which justifies the terminology.

To establish the analogy to VARMA models, consider the process

ηt = ω +

max(p,q)∑
i=1

Qiηt−i −
p∑

j=1

Bjut−j + ut, (2)

where Qi = Ai + Bi, ut = ηt − ht and where we set Aq+1 = . . . = Ap = 0 if p > q

and Bp+1 = . . . = Bq = 0 if q > p. Roughly speaking, (2) is a VARMA process if ut is

white noise with finite covariance matrix, which we assume in the following. The type

of VARMA process of ηt depends on the type of GARCH process of εt and will be made

more precise in Proposition 2.

Assumption 1 E[|εt|4+δ] ≤ b < ∞ for some δ > 0 and for all t ∈ Z, where | · | denotes

the Euclidean norm.
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Proposition 1 Under Assumption 1, the following matrices exist:

Σ = lim
T→∞

1

T

T∑
t=1

E[εtε
′
t], (3)

Ση = lim
T→∞

1

T

T∑
t=1

E[ηtη
′
t], (4)

Σh = lim
T→∞

1

T

T∑
t=1

E[hth
′
t], (5)

Σu = lim
T→∞

1

T

T∑
t=1

E[utu
′
t]. (6)

Note that Ση, Σh and Σu are positive semi-definite. To ensure that they are strictly

positive definite we make the following assumption.

Assumption 2 The matrices Σ, Ση, Σh and Σu have full rank.

If εt is semi-strong multivariate GARCH, then Σu = Ση − Σh. This follows directly by

writing out the expectations and applying the law of iterated expectations.

In semi-strong and strong GARCH(p, q) processes, Σ exists if and only if εt is covari-

ance stationary. This is the case if and only if all eigenvalues of the matrix
∑max(p,q)

i=1 Qi

have modulus smaller than one, see Engle and Kroner (1995). The unconditional covari-

ance matrix Σ = Var(εt) would then be given by

σ = vech(Σ) =


IN −

max(p,q)∑
i=1

Qi



−1

ω, (7)

where the (N × 1) vector σ contains the K unconditional variances and the K(K − 1)/2

unconditional covariances of εt.

We now have the following result.

Proposition 2 Under Assumption 1, if {εt} is

1. strong or semi-strong multivariate GARCH(p, q), then {ut} is semi-strong white

noise, which means that {ηt} in (2) follows a semi-strong VARMA(max(p, q), p)

process.
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2. weak multivariate GARCH(p, q), then {ut} is weak white noise, which means that

{ηt} in (2) follows a weak VARMA(max(p, q), p) process.

It should be emphasized that a strong multivariate GARCH process only permits a semi-

strong VARMA representation for ηt given by (2). The same holds for a semi-strong

multivariate GARCH process, whereas for a weak multivariate GARCH(p, q) process, (2)

is only weak VARMA, and Ht is not necessarily the conditional variance matrix of εt.

The next assumption will be useful for proving asymptotic normality of the aggregated

process. It restricts the type of temporal dependence of (εt).

Assumption 3 The process (εt, t ∈ Z) is α-mixing.

In the univariate context, Drost and Nijman (1993) define weak GARCH models as

ht being the projection on a constant and lagged ηt, but also on lagged εt. However, the

orthogonality of the projection error ut w.r.t. lagged εt is not a necessary requirement

to obtain a GARCH model that is closed under temporal aggregation. It is true that,

without further assumption, the weak GARCH model as defined in Definition 3 is not

closed under temporal aggregation of flow variables. As it will become clear in the next

section, what is needed is the following assumption on the structure of fourth moments

of (εt).

Assumption 4

E[vec(εtε
′
t−i)vec(εtε

′
t−j)] = 0, ∀i, j ≥ 0, i 6= j (8)

A sufficient condition for (8) to hold is that all conditional skewness and co-skewness

measures are zero, i.e., E[ηtε
′
t | Ft−1] = 0, and that there is no leverage effect, that is, the

conditional variance of εt is conditionally uncorrelated to all lagged εt, E[ηtε
′
t−i | Ft−i−1] =

0,∀i ≥ 1.

To derive the autocovariance structure of ηt it is convenient to work with the pure

vector moving average (VMA(∞)) representation of ηt. From the VARMA representation

(2) we obtain

ηt = σ +
∞∑
i=0

Φiut−i, (9)

where the N ×N matrices Φi can be determined recursively by Φ0 = IN ,

Φi = −Bi +
i∑

j=1

QjΦi−j, i = 1, 2, . . . , (10)
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see Lütkepohl (1993, pp. 220). From (9) we see directly that E[ηt] = σ and Var(ηt) =∑∞
i=0 ΦiΣuΦ

′
i, whereas the autocovariance matrix is given by

Γ(τ) = E [(ηt − σ)(ηt−τ − σ)′]

=
∞∑
i=0

Φτ+iΣuΦ
′
i. (11)

Using the notation Ση = E[ηtη
′
t] we can also write Γ(0) = Ση − σσ′ for the unconditional

variance matrix of ηt. In Section 3 we will also need the following structure of fourth

moments,

Γ̃(τ) = E[D+
Kvec(εtεt−τ )vec(εtεt−τ )

′D+,′
K ] (12)

which using Lemma 2 in the appendix is linked to Γ(τ) by

vec(Γ̃(τ)) = GKvec(Γ(τ) + σσ′), (13)

where the matrix GK is square of order N2 and given by

GK = (D+
K ⊗D+

K)(IK ⊗ CKK ⊗ IK)(DK ⊗DK), (14)

with Dm and Cmn denoting the duplication and commutation matrices, respectively, and

where D+
m = (D′

mDm)−1D′
m.

Assumption 1 implies finiteness of Σu. However, to determine Σu numerically one

has to specify further how ut is generated. For all numerical calculations in this paper

I assume that the disaggregate process is strong multivariate GARCH with innovations

ξt = H
−1/2
t εt that belong to the spherical class of distributions. This is to obtain numerical

values for Σu and is not necessary for the validity of the temporal aggregation results.

If other ways are found how to determine Σu for other distributions or even for not

strong multivariate GARCH processes, these could be used here equally well. Thus, to

calculate Σu I assume that the disaggregated process εt is strong multivariate GARCH

with innovations ξt whose distribution belongs to the class of spherical distributions with

finite fourth moments. Spherical distributions include the multinormal and multivariate

t distributions as special cases. They are characterized by the fact that the density is

a function of ξt only through ξ′tξt. See Fang, Kotz and Ng (1989) for a monograph on

spherical distributions. All moments of spherical distributions containing odd orders are

zero and the marginal distributions (which are all the same) have fourth moments E[ξ4
t,i]
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that are linked to the co-kurtosis c = E[ξ2
t,iξ

2
t,j], i 6= j by E[ξ4

t,i] = 3c. This follows by

Lemma 2. For example, for a multinormal distribution c = 1, and for a multivariate t

distribution with ν degrees of freedom c = (ν − 2)/(ν − 4) if ν > 4. It can be argued that

if the disaggregated process is sampled on a sufficiently high frequency, then it could well

approximate a diffusion process with Wiener innovations (whose distribution over discrete

time intervals is multi-normal). Another implication is that Assumption 4 is satisfied.

Proposition 3 If (εt) is strong multivariate GARCH with spherical innovations, then

(8) holds.

Since strong GARCH with spherical innovations is a quite strong assumption, we only use

it when the calculation of Σu is of interest, but the weaker Assumption 4 if the temporal

aggregation result is of interest for a given Σu.

Finiteness of fourth moments of ξt is necessary for a finite covariance matrix of ut, Σu,

but it is not sufficient. Recall that for semi-strong multivariate GARCH, Σu = Ση − Σh,

so that Σu exists if and only if Ση and Σh exist. The following simple relationship between

Ση and Σh holds under sphericity of ξt,

vec(Ση) = c(2GK + IN2)vec(Σh), (15)

where GK is given by (14) and c = E[ξ4
t,1]/3, by Theorem 1 of Hafner (2003). Thus,

it suffices to consider the condition for a finite Ση. Theorem 2 of Hafner (2003) states

that under spherical innovations, Ση is finite if and only if all eigenvalues of the matrix∑∞
i=1(Φi ⊗ Φi){2cGK + (c − 1)IN2} have modulus smaller than one. In that case, the

vectorized matrix of fourth moments of εt is given by

vec(Ση) = c(2GK + IN2)

(
IN2 −

∞∑
i=1

(Φi ⊗ Φi){2cGK + (c− 1)IN2}
)−1

vec(σσ′). (16)

Consequently, we obtain for Σu

vec(Σu) = {2cGK + (c− 1)IN2}
(

IN2 −
∞∑
i=1

(Φi ⊗ Φi){2cGK + (c− 1)IN2}
)−1

vec(σσ′).

(17)

Simpler expressions for the often used GARCH(1,1) model are readily available. It should

be emphasized that a correct understanding of the fourth moment structure will turn out

to be essential for the study of temporal aggregation.
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Example 1 To illustrate the results we will use the following bivariate example process

throughout the paper.

εt = H
1/2
t ξt, ξt ∼ i.i.d.N(0, I2), (18)

vech(Ht) = ht =




1

0

1


 +




0.16 0.08 0.01

0 0.12 0.03

0 0 0.09


 ηt−1 +




0.64 0 0

0 0.72 0

0 0 0.81


 ht−1

This process is stationary with maximum eigenvalue of Q equal to 0.9. Fourth moments

are finite as the maximum eigenvalue of the matrix
∑∞

i=1(Φi ⊗Φi){2cGK + (c− 1)IN2} is

0.8262. The unconditional covariance matrix is σ = (6.25, 1.875, 10)′, so that ρ = 0.237.

The unconditional kurtosis of εt,1 is 4.17, that of εt,2 is 3.28, and the unconditional co-

kurtosis is 1.4. The normal kurtosis and co-kurtosis is 3 and 1+2ρ2 = 1.1125, respectively,

so there is excess kurtosis and excess co-kurtosis. One issue to be investigated is how

kurtosis and co-kurtosis change when the series is temporally aggregated. Note that for

this example process the conditional variance of the second component of εt is only affected

by its own squared lagged values, and therefore one can speak of absence of causality from

the first to the second component in volatility. Section 4 formalizes this and discusses the

impact of temporal aggregation on causality.

3 Temporal aggregation

In order to keep the notation simple I will only discuss temporal aggregation of multivari-

ate GARCH(1,1) models. Most empirical applications use models of this order and it is

in the tradition of Drost and Nijman (1993). Thus, in the following I consider the multi-

variate GARCH(1, 1) model, where the best linear predictor of ηt in terms of a constant

and ηt−1, ηt−2, . . ., is given by

ht = P (ηt | Ht−1) = ω + Aηt−1 + Bht−1.

Recall from (2) that ηt has the VARMA(1,1) representation

ηt = ω + Qηt−1 −But−1 + ut, (19)

where Q = A + B and ut = ηt − ht.
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We will look at two types of aggregation that are typically used in the case of stock

and flow variables. By far more relevant is the case of flow variables, e.g. when financial

returns are under study, whereas stock variables are easier to analyze. Denote the process

εt that is aggregated over m periods by {ε(m)
mt , t ∈ Z} which is then given by

ε
(m)
mt =

{
εmt, stock variables

εmt + εmt−1 + . . . + εmt−m+1, flow variables.

Since εt is a white noise process, it follows immediately that the unconditional variances of

the aggregated process ε
(m)
mt are Σ in the case of stock variables and mΣ in the case of flow

variables, where vech(Σ) is given in (7). This implies that in both cases the unconditional

correlation matrix remains unchanged under temporal aggregation.

Now denote by η
(m)
mt = vech(ε

(m)
mt ε

(m)′
mt ) the vector process that contains the squares

and cross-products of the aggregated process ε
(m)
mt . Since for arbitrary vectors a and b of

dimension K, vech(ab′) + vech(ba′) = 2D+
Kvec(ab′), we have

η
(m)
mt =

{
ηmt, stock variables

ηmt + ηmt−1 + . . . + ηmt−m+1 + w
(m)
mt , flow variables.

(20)

where, using the lag operator Lkxt = xt−k,

w
(m)
mt = 2D+

K

{
m−2∑
i=0

Livec(εmtε
′
mt−1) +

m−3∑
i=0

Livec(εmtε
′
mt−2) + · · ·+ vec(εmtε

′
mt−m+1)}

}

(21)

For example, if m = 2 then w
(2)
2t = 2D+

Kvec(ε2tε2t−1). Each term of w
(m)
mt has expectation

zero and due to Assumption 4 it is uncorrelated with every other term. Thus, it acts

as a noise term that is added to the sum of the high frequency second order process

ηt. It turns out that this noise complicates the analysis of temporal aggregation when

compared with VARMA processes where this term is missing. See however Section 6 for

the approach of realized volatility that suppresses this term and thus aims at aggregating

not the returns but rather volatility directly. For later reference and recalling equation

(12), we can calculate the variance matrix of w
(m)
mt , Σ

(m)
w say, as

Σ(m)
w = 4

m−1∑
i=1

(m− i)Γ̃(i), (22)

where Γ̃(i) is given by (13).
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The proof of Theorem 1 in the appendix shows that the aggregated process η
(m)
mt has

the following VARMA representation,

(IN −QmL)η
(m)
mt = ω(m) + v

(m)
mt , (23)

where

ω(m) =

{
(IN + Q + . . . + Qm−1)ω, for stock variables

m(IN + Q + . . . + Qm−1)ω, for flow variables
(24)

and v
(m)
mt is a vector moving average process of order one, that is, it has expectation zero,

finite covariance matrix Σ
(m)
v = E[v

(m)
mt v

(m)′
mt ], first order autocovariance matrix Γ

(m)
v =

E[v
(m)
mt v

(m)′
m(t−1)], and higher order autocovariances equal to zero. By convention, the lag

operator in (23) that operates on an aggregated process lags it on the low frequency

scale, that is, Lη
(m)
mt = η

(m)
m(t−1).

2 The coefficient matrix of the autoregressive part is

given by Qm. Assumption 1 implies that all eigenvalues of Q have modulus smaller than

one, so that Qm converges to the zero matrix exponentially fast. However, if the largest

eigenvalue of Qm is very close to unity, then it may require a large aggregation level m

for the autoregressive part to become negligible.

The moving average part is more difficult to obtain and depends on the particular

type of aggregation. For the case of stock variables it takes the form

v
(m)
mt =

m∑
i=0

Js
i umt−i (25)

where

Js
0 = IN

Js
i = Qi−1A, i = 1, . . . , m− 1

Js
m = −Qm−1B.

From (25) we obtain immediately the form of the variance and autocovariances of v
(m)
mt ,

Σ(m)
v =

m∑
i=0

Js
i ΣuJ

s′
i (26)

Γ(m)
v = Js

mΣu. (27)

2Alternatively, one could define Lη
(m)
mt = η

(m)
mt−1 and replace L in (23) by Lm.
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For the case of flow variables the moving average term takes the form

v
(m)
mt =

2m−1∑
i=0

Jf
i umt−i + w

(m)
mt −Qmw

(m)
m(t−1). (28)

The Jf
i matrices are determined as follows:

Jf
0 = IN

Jf
i = IN + A + QA + · · ·+ Qi−1A, i = 1, . . . ,m− 1

Jf
m = {IN + Q + · · ·+ Qm−2}A−Qm−1B

Jf
i = {Qi−m + Qi−m+1 + · · ·+ Qm−2}A−Qm−1B, i = m + 1, . . . , 2m− 2

Jf
2m−1 = −Qm−1B

Note that Jf
i can also be calculated recursively as Jf

i = Jf
i−1 +Qi−1A for i = 1, . . . , m−1,

and as Jf
i = Jf

i−1 −Qi−m−1A for i = m + 1, . . . , 2m− 1.

From equation (28) we obtain the variance and first order auto-covariance of v
(m)
mt as

Σ(m)
v =

2m−1∑
i=0

Jf
i ΣuJ

f ′
i + Σ(m)

w + QmΣ(m)
w (Q′)m (29)

Γ(m)
v =

m−1∑
i=0

Jf
i+mΣuJ

f ′
i −QmΣ(m)

w (30)

where Σ
(m)
w is the variance matrix of w

(m)
mt given in (22).

The following theorem summarizes the main result.

Theorem 1 Under Assumptions 1, 2 and 4, the class of weak multivariate GARCH(1,1)

processes is closed under temporal aggregation. By Definition 3, this means that for the

aggregated process ε
(m)
mt , E[ε

(m)
mt | F (m)

m(t−1)] = 0, where F (m)
mt = σ(ε

(m)
ms ,−∞ < s ≤ t).

Moreover, h
(m)
mt = P (η

(m)
mt | H(m)

m(t−1)), with H(m)
mt = sp(1, η

(m)
m(t−τ),1, . . . , η

(m)
m(t−τ),N , τ ≥ 0),

and where

h
(m)
mt = ω(m) + A(m)η

(m)
m(t−1) + B(m)h

(m)
m(t−1), (31)

where ω(m) is given by (24), B(m) is given by the solution to the system of quadratic

equations

B(m)Γ(m)
v B(m)′ + B(m)Σ(m)

v + Γ(m)
v = 0, (32)
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where the matrices Σ
(m)
v and Γ

(m)
v are given by (26) and (27) for the case of stock variables

and by (29) and (30) for the case of flow variables, A(m) is given by

A(m) = Qm −B(m), (33)

and where the projection error {u(m)
mt , t ∈ Z}, u

(m)
mt = η

(m)
mt − h

(m)
mt , is a weak white noise

vector process with covariance matrix Σ
(m)
u with

vec(Σ(m)
u ) = (IN2 + B(m) ⊗B(m))−1vec(Σ(m)

v ). (34)

Introducing the notation Q(m) = A(m) + B(m), it follows from (33) that Q(m) = Qm.

Using Proposition 2, we immediately obtain the following corollary.

Corollary 1 The aggregated process η
(m)
mt follows a weak VARMA(1,1) process that can

be written as

η
(m)
mt = ω(m) + Q(m)η

(m)
m(t−1) −B(m)u

(m)
m(t−1) + u

(m)
mt , (35)

Theorem 1 shows how the parameter matrices of the aggregated process can be ob-

tained from the high frequency process. The matrices Σ
(m)
v and Γ

(m)
v given by (26) and

(27) and by (29) and (30), respectively, are functions of the matrices A, B, and Σu and

thus can be calculated if the high frequency process is known. As for B(m), (32) is a

system of nonlinear equations that can not be solved explicitly. The analysis of existence

and uniqueness of solutions for (32) goes beyond the scope of the present paper, but is

certainly important for future research. In practice any numerical search algorithm will

work well. In all investigated situations with stationary high frequency processes, I found

that convergence to a solution is very fast if the disaggregate process is not too close to

the stationarity boundary and not too close to a white noise process. Also, the solutions

were unique under the restriction of invertibility, that is, all eigenvalues of B(m) smaller

than one in modulus. 3

Note that equation (32) can be directly compared to equation (10) of Drost and Nijman

(1993) for the univariate case. We can vectorize equation (32) and write for the case of

stock variables
[
(B(m) ⊗B(m) + IN2)(IN ⊗Qm−1B) + (IN ⊗B(m))

m∑
i=0

Js
i ⊗ Js

i

]
vec(Σu) = 0 (36)

3A computer program is available for download at http://www.few.eur.nl/few/people/chafner/.
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In the univariate case, Σu (which is linked to the fourth moment structure) is a positive

scalar so that it can be dropped from (36). A solution then just solves the term in

squared brackets being zero. In the multivariate case, however, (36) may hold even if the

term in squared brackets is not zero. The implication of this is that, in general, the low

frequency parameters depend on the fourth moment characteristics even in the case of

stock variables. This is different from the univariate case, where this dependence occurred

only for flow variables.

In the following let us look at the case of flow variables, the practically more relevant

one. One interesting aspect of the aggregated series is its fourth moment structure, in

particular the kurtosis of each marginal series. We expect these kurtosis measures to

decline eventually towards 3 as m increases. But it will turn out later that the kurtosis

can actually increase for small values of m, before it decreases. The matrix of fourth

moments of the aggregated process is given by

Σ(m)
η = E[η

(m)
mt η

(m)′
mt ] = mΣη + Σ(m)

w +
m−1∑
i=1

(m− i) {Γ(i) + Γ(i)′ + 2σσ′} (37)

The first two terms on the right hand side of (37) are the sum of the variances of each

individual term of η
(m)
mt , whereas the third term arises because of the non-zero covariance

between ηt and ηt−τ for τ 6= 0 given in (11). This allows to compute the kurtosis and

co-kurtosis of the aggregated series. The following theorem states that excess kurtosis

and co-kurtosis disappear under temporal aggregation, a fact that in the univariate case

has already been shown by Diebold (1988).

Theorem 2 Under Assumptions 1 to 4, conditional heteroskedasticity, excess kurtosis

and excess co-kurtosis of the aggregated process ε
(m)
mt = εmt+εmt−1+· · ·+εmt−m+1 disappear

asymptotically as m −→∞. Moreover,

m−1/2ε
(m)
mt

D−→ N (0, Σ)

Figure 1 shows the kurtosis and co-kurtosis of the example process (18) as a function of

the aggregation level m. Both kurtosis coefficients converge to 3, whereas the co-kurtosis

converges to 1 + 2ρ2 = 1.1125. Note however the slow rate of convergence with still

substantial excess kurtosis and excess co-kurtosis at m = 50. Moreover, it is remarkable

that both kurtosis and co-kurtosis increase for small m. Thus, a series may become even

more leptokurtic under temporal aggregation, if the aggregation level is small.
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From the weak VARMA representation (35) one obtains the weak VMA(∞) represen-

tation

η
(m)
mt = σ(m) +

∞∑
i=0

Φ
(m)
i u

(m)
m(t−i), (38)

where σ(m) =
(
IN −Q(m)

)−1
ω(m), and where the N × N matrices Φ

(m)
i are given by

Φ0 = IN and

Φ
(m)
i = (Q(m))i−1A(m), i = 1, 2, . . . , (39)

4 Causality

There is a substantial literature on the effects of temporal aggregation for causality be-

tween time series, see e.g. Marcellino (1999) for a recent overview and references. The

general difficulty in empirical work is that only data of the temporally aggregated series

is available, for which one typically observes contemporaneous correlation between the

series. The question for the investigator is whether this correlation stems from a true

causal relation of the high frequency series or whether it is a mere artefact of temporal

aggregation. We will address this issue here in the volatility context and show that, again,

there are important differences to the VARMA case.

As is common in econometrics, we use the term causality in the sense of ‘Granger

causality’, which for volatility has been defined by Granger, Robins, and Engle (1984).

However, there are at least three alternative versions of Granger causality, one based on

the entire distribution of a variable to be forecast, another on the conditional expecation,

and yet another on optimal linear forecasts. Knowing from Section 3 that temporally

aggregated multivariate GARCH processes are only weak multivariate GARCH, we have

to be careful in defining causality in variance, because notions based on conditional ex-

pectations or conditional variances become difficult to check for the aggregated series.

Rather, one has to weaken the concept and use the notion of best linear predictors, but

this stands in the tradition of, for example, Boudjellaba et al. (1992) and Comte and

Lieberman (2000). Also, I use the term ‘Granger causality’ for the case of a causal lag

greater than zero (sometimes this is also called ‘directional causality’), whereas I use

‘instantaneous causality’ for the causal lag being actually zero.

Suppose we are interested in the causality in variance between the first two elements of

εt, εt,1 and εt,2. Let us introduce the following notation. Denote the σ-algebra generated
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by εs,i, s ≤ t, i, j = 1, 3, 4, . . . , K by F (−2)
t . Moreover, denote by Ht the set of all linear

combinations of a constant and εs,iεs,j, s ≤ t, i, j = 1, . . . , K (as before in Definition 3), by

H(−2)
t the set of all linear combinations of a constant and εs,iεs,j, s ≤ t, i, j = 1, 3, 4, . . . , K,

and by H(+2)
t the set of all linear combinations of a constant, εs,iεs,j, s ≤ t, i, j = 1, . . . , K,

and εt+1,2εt+1,i, i = 2, . . . , K.

Definition 4 1. We say that εt,2 Granger causes εt,1 in variance (GCV), denoted by

εt,2
GCV→ εt,1 if, for some h ≥ 1,

Var(εt+h,1 | Ft) 6= Var(εt+h,1 | F (−2)
t ), (40)

2. There is said to be instantaneous causality in variance (ICV) between εt,2 and εt,1,

denoted by εt,1
ICV↔ εt,2 if

Var(εt+1,1 | Ft) 6= Var(εt+1,1 | Ft ∨ σ(εt+1,2)) (41)

where Ft ∨ σ(εt+1,2) denotes the augmentation of Ft−1 by the information contained

in εt,2.

3. We say that εt,2 linearly Granger causes εt,1 in variance (LGCV), denoted by εt,2
LGCV→

εt,1 if, for some h ≥ 1,

P (ε2
t+h,1 | Ht) 6= P (ε2

t+h,1 | H(−2)
t ), (42)

4. There is said to be linear instantaneous causality in variance (LICV) between εt,2

and εt,1, denoted by εt,1
LICV↔ εt,2 if

P (ε2
t+1,1 | Ht) 6= P (ε2

t+1,1 | H(+2)
t ) (43)

For weak multivariate GARCH processes it is only possible to investigate linear causal-

ity since the conditional variances are not specified or not known. On the other hand,

for semi-strong multivariate GARCH processes it is well possible to investigate causality,

but that would only be relevant for the high-frequency process. Absence of either of these

causality concepts now amounts to zero restrictions on the parameter matrices. Hafner

and Herwartz (2004) give necessary and sufficient conditions for absence of GCV and

LGCV.
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In temporally aggregated VARMA models, Breitung and Swanson (2002) have inves-

tigated the effect of so-called spurious instantaneous causality, as first investigated by

Renault and Szafarz (1991) and Renault, Sekkat and Szafarz (1998). This occurs if there

is no causality between the disaggregated time series, but instantaneous causality between

the aggregated time series. We adapt this definition to the volatility case. If there is no

causality in volatility (instantaneous or directional) between the series εt,1 and εt,2, we

denote this by εt,1
CV= εt,2, and correspondingly we write εt,1

LCV= εt,2 if there is no linear

causality in volatility (instantaneous or directional) between the series.

Definition 5 1. There is said to be spurious ICV, if εt,1
CV= εt,2, but ε

(m)
mt,1

ICV↔ ε
(m)
mt,2

for some m ≥ 2 and some t ∈ Z.

2. There is said to be spurious LICV, if εt,1
LCV= εt,2, but ε

(m)
mt,1

LICV↔ ε
(m)
mt,2 for some

m ≥ 2 and some t ∈ Z.

It has sometimes been argued that spurious instantaneous causality can be problem-

atic in empirical work, since if two aggregated time series are found to show instantaneous

causality, it may be because there is causality between the disaggregated series or because

it is induced by temporal aggregation. Breitung and Swanson (2003) give sufficient con-

ditions to exclude spurious instantaneous causality in VARMA models. In the volatility

case, the following theorem gives a necessary condition for spurious instantaneous causal-

ity.

Theorem 3 If the high frequency process follows strong multivariate GARCH with Gaus-

sian innovations, then a necessary condition for spurious LICV between (εt,1) and (εt,2)

is

ht,2 = 0 and K ≥ 3,

for all t, where ht,2 is the second component of ht, i.e. the conditional covariance of εt,1

and εt,2.

In the following let us be a bit more loose in terminology and only refer to GCV

and ICV when it could also mean LGCV or LICV. Theorem 3 implies that in empirical

work spurious ICV is of much less relevance than spurious instantaneous causality in the

conditional mean, because the two series will in most cases show some non-zero conditional

covariance, be it constant or not. Financial series such as stock returns, for example, tend
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to be positively correlated at high frequencies. So, ICV will be the rule rather than the

exception if high frequency financial series are investigated.

Rather than ICV, it is far more interesting to see whether there is GCV. It turns

out that there may be absence of GCV between the disaggregate series, but presence of

GCV between the aggregated series. This might be called spurious Granger causality

in volatility. A sufficient condition for absence of GCV is that the parameter matrices

A and B of the multivariate GARCH model are diagonal. Many empirical studies have

shown that diagonal GARCH models may give good descriptions of the DGP at many

frequencies. This can be due to the fact that even though there may be GCV induced by

temporal aggregation, it is possibly much less important numerically than ICV. To see

whether this is the case for a given multivariate GARCH model, we need measures for

the alternative causalities, which we will look at in the following.

Measures for the causality in variance have been considered by Hafner (2003) based on

well known measures for causality in VARMA models introduced by Geweke (1982). For

simplicity, I only consider the bivariate case in the following, but extensions to causality

measures conditional on other variables follow in analogy to Geweke (1984). Let xt = ε2
t,1

and yt = ε2
t,2. By the results of Nijman and Sentana (1996), the marginal process εt,1

follows a weak univariate GARCH process and therefore xt has a weak ARMA(q∗, p∗)

representation such as

xt = ωx +

q∗∑
i=1

(αx
i + βx

i )xt−i −
p∗∑

j=1

βx
j wt−j + wt, (44)

where wt = xt − P (ε2
t,1 | H(−2)

t−1 ), ωx, αx
i and βx

j are parameters. Upper bounds for the

AR and MA orders are given by q∗ ≤ 3 and p∗ ≤ 3, respectively, by Corollary 4.2.2 of

Lütkepohl (1987) or Nijman and Sentana (1996). The process wt is univariate weak white

noise with variance σ2
w, say. A measure for GCV from yt to xt is given by

GCVy→x = log
σ2

w

[Σu]11

, (45)

By symmetry, one obtains a causality measure for the reverse causality direction, GCVx→y.

Summing up these unidirectional causality measures, we can define a measure for bidi-

rectional causality as

GCVy↔x = GCVy→x + GCVx→y (46)
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A measure for ICV between xt and yt is given by

ICVx↔y = log
Σu,11Σu,33

Σu,11Σu,33 − Σ2
u,13

, (47)

Finally, the measure for linear dependence between xt and yt is denoted by CVx,y. This

measure can be decomposed into the three causality measures:

CVx,y = GCVx→y + GCVy→x + ICVx↔y = GCVy↔x + ICVx↔y. (48)

Now suppose one is mainly interested in the bidirectional GCV measure, GCVy↔x,

because, for example, one wants to see how important spurious GCV can become. For

example, the hypothesis of a diagonal GARCH model amounts to testing whether this

bidirectional measure is zero. For a given multivariate GARCH process there is no obvious

way to find the unidirectional measures GCVy→x and GCVx→y, other than via determining

the univariate GARCH models for the marginal processes, which is straightforward but

tedious, see Nijman and Sentana (1996). However, there is a simple way to find the bidi-

rectional measure GCVy↔x, as we will see immediately. The measure for linear dependence

can be decomposed in the frequency domain as

CVx,y =
1

2π

∫ π

−π

log
f11(λ)f33(λ)

f11(λ)f33(λ)− |f13(λ)|2dλ,

see e.g. Geweke (1982), where f(λ) denotes the spectral density matrix of ηt = vech(εtε
′
t)

which is given by

f(λ) =

( ∞∑
j=0

Φje
ijλ

)
Σu

( ∞∑
j=0

Φje
ijλ

)′

. (49)

The bidirectional measure GCVy↔x can now easily be obtained as a residual of equation

(48), i.e., by the difference between CVx,y and ICVx↔y. The advantage of this approach

is that f(λ) and therefore the bidirectional measure can be calculated directly using

the representation of the joint process εt. The alternative way of summing up the two

unidirectional measures requires the determination of the marginal processes εt,1 and εt,2,

which is somewhat more involved, see Section 3 of Nijman and Sentana (1996).

The above causality measures can now also be obtained for the aggregated series η
(m)
mt

by replacing Σu in (49) and (47) by Σ
(m)
u given in (34) and replacing Φi in (49) by Φ

(m)
i

given in (39). This gives us a measure of bidirectional causality in volatility for the

aggregated series, defined as

GCV (m)
y↔x = CV (m)

x,y − ICV (m)
x↔y. (50)
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Since ∀i ≥ 1, Φ
(m)
i → 0 as m → ∞ , the spectral density matrix of the series m−1η

(m)
mt

converges to the limit of m−2Σ
(m)
u , U say. For example, by the results of Section 2, this

would be given by vec(U) = (cGK − IN2)vec(σσ′) under the assumption of spherical

innovations. Thus, CV (m)
x,y and ICV (m)

x↔y converge to the same limit given by

lim
m→∞

CV (m)
x,y = lim

m→∞
ICV (m)

x↔y = log
U11U33

U11U33 − U2
13

Using (50), this implies that limm→∞ GCV (m)
y↔x = 0, meaning that all directional Granger

causality in variance disappears eventually as the series is aggregated. This is of course

no surprise as it corresponds to the aggregation results in VARMA processes.

Figure 2 shows the alternative causality measures for the example process (18). Clearly,

the bidirectional GCV measure is much smaller here than the ICV measure and also dis-

sipates to zero very quickly. Note that the bidirectional GCV measure of the disaggregate

process (18) is equal to the unidirectional GCV measure from εt,2 to εt,1, since the matri-

ces A and B are upper triangular, so that there is no GCV from εt,1 to εt,2. However, the

bidirectional GCV measure of the aggregated process incorporates some causality from

εt,1 to εt,2, although smaller than from εt,2 to εt,1. But this is not shown in the figure.

Finally, the discussed causality measures could be used for testing causality for a

given empirical time series. If the errors ut of the VARMA representation of multivariate

GARCH models were Gaussian, then an estimate of the GCV measure, multiplied by

the sample size T , would be the usual likelihood ratio statistic, having an asymptotic χ2

distribution, see Geweke (1982). Now ut is not Gaussian but skewed and conditionally

heteroskedastic. Thus, T ĜCV could be called pseudo likelihood ratio statistic with a

nonstandard asymptotic distribution. To obtain valid critical values one can use the

bootstrap as in Hafner and Herwartz (2004). They find that this statistic has similar

size and power properties as the so-called CCF test of Cheung and Ng (1996). The CCF

test estimates univariate GARCH models and computes cross-correlations of standardized

residuals. It is therefore in the spirit of Lagrange Multiplier statistics. A third way to

approach the testing problem is to use Wald type statistics, for example based on QML

estimation and inference of the multivariate model. Hafner and Herwartz (2004) show

that the Wald test has more power under local alternatives than both the CCF and

the pseudo likelihood ratio test. However, their framework is a semi-strong multivariate

GARCH model and it is as yet unknown whether this carries over to weak GARCH
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models. It is related to the problem of estimating weak GARCH models, briefly discussed

in Section 7.

5 Forecasting

Suppose one is interested in the prediction of multivariate volatility of the aggregated

series h periods ahead. That is, given information at time mt one wants to predict the

volatility of ε
(m)
m(t+h). Let us only consider the flow variable case here, so that ε

(m)
m(t+h) =

εm(t+h) +εm(t+h)−1 + . . .+εm(t+h−1)+1. Prediction of the volatility of ε
(m)
m(t+h) is the same as

prediction of η
(m)
m(t+h). One can now build a forecast based on the VMA(∞) representation

of the aggregated series in (38). It is given by

η
(m)
mt (h) = σ(m) +

∞∑
i=0

Φ
(m)
h+iu

(m)
m(t−i)

The mean square error of this forecast is given by the matrix

Σa(h) =
h−1∑
i=0

Φ
(m)
i Σ(m)

u Φ
(m)′
i .

Another possibility is to predict the disaggregated series and then aggregate the forecasts.

Based on the VMA(∞) representation of the disaggregated series in (9), the optimal r-step

forecast in a mean square error sense is given by

ηt(r) = σ +
∞∑
i=0

Φr+iut−i

The forecast for η
(m)
m(t+h) is then given by ηmt(mh)+ηmt(mh−1)+ . . .+ηmt(m(h−1)+1).

The mean square error of this forecast is given by

Σd(h) = FΣdm(h)F ′,

where F = (IN , . . . , IN) is an (N ×mN) aggregation matrix, and Σdm(h) is a symmetric,

positive definite (mN ×mN) matrix given by

Σdm(h) =




∑m(h−1)
i=0 ΦiΣuΦ

′
i

∑m(h−1)
i=0 ΦiΣuΦ

′
i+1 · · · ∑m(h−1)

i=0 ΦiΣuΦ
′
i+m−1∑m(h−1)

i=0 Φi+1ΣuΦ
′
i

∑m(h−1)+1
i=0 ΦiΣuΦ

′
i · · · ∑m(h−1)+1

i=0 ΦiΣuΦ
′
i+m−2

...
...

. . .
...∑m(h−1)

i=0 Φi+m−1ΣuΦ
′
i

∑m(h−1)+1
i=0 Φi+m−2ΣuΦ

′
i · · · ∑mh−1

i=0 ΦiΣuΦ
′
i




,
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see e.g. chapter 8 of Lütkepohl (1987). There it is also shown that for VARMA models

in general Σd(h) ≤ Σa(h) in the sense that the matrix Σa(h) − Σd(h) is positive semi-

definite, and that equality only holds in special cases such as periodicity with period equal

to the aggregation level. An implication of this result is that the forecasts based on the

disaggregated series are superior to the forecasts based on the aggregated series in terms

of forecast precision. On the other hand, both forecasts become equivalent as the forecast

horizon increases, as both mean square error matrices approach the same unconditional

covariance matrix.

For the aggregation of multivariate GARCH processes, however, the difference between

both forecasts turns out to be stronger than for VARMA processes and not dissipating

for increasing horizons. The reason is the additional noise term in the aggregated series,

w
(m)
mt . The expectation of this term is zero, but it has a positive definite covariance matrix

Σ
(m)
w given by (22). Therefore, the unconditional variance of η

(m)
mt is larger than that of

ηmt +ηmt−1 + . . .+ηm(t−1)+1, and the forecast mean square error matrices converge to two

different levels with increasing horizon. Thus, we have a strict inequality, Σd(h) < Σa(h)

for all h > 0. Asymptotically, the difference is given by

lim
h→∞

Σa(h)− Σd(h) = Σ(m)
w , (51)

where Σ
(m)
w is given by (22). As the difference between the two forecasting methods is

negligible in VARMA models for sufficiently large horizons, it turns out to be substantial

in multivariate GARCH models. Equation (51) says that in the limit this difference is

just given by the variance matrix of the noise term w
(m)
mt in (21) that was added to the

sum of the indivual ηmt in constructing the aggregate η
(m)
mt . It should be emphasized

that this noise term is missing in the aggregation of VARMA processes. The implication

of (51) is that forecasting weekly volatility, for example, by aggregating daily volatility

forecasts will always be better than forecasting the weekly series directly, no matter how

large the forecasting horizon. This is also the reason why in forecasting volatility one

should use the highest frequency for which data is available, provided that there are no

biases coming from microstructure effects, for example. Recent empirical research has

shown that predicting daily volatility of a financial time series using intra-day returns

can substantially improve the precision of forecasts using the daily series only, see e.g.

Andersen et al. (2003). See also Section 6, where this so-called realized volatility is

investigated in the context of multivariate GARCH models.
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Figure 3 shows the mean square prediction errors of the two forecasting methods for

the example process (18) with m = 2. In this example, the mean square prediction error

can be reduced by almost 50 % for all forecasting horizons by doubling the sampling

frequency and using the high frequency data for prediction.

6 Multivariate realized volatility

There is a growing literature on so-called realized volatilities, see, e.g., Andersen et al.

(2003) for an overview. Realized volatilities are estimates of low-frequency volatilities

using high frequency data. For example, the volatility of a daily return series could be

estimated by the sum of squared intra-day returns. When the sampling frequency goes to

infinity, realized volatilities converge to the actual volatility and are therefore consistent,

unbiased estimates of daily volatility. In the multivariate context, the same idea applies

to the vector of squares and cross-products, ηt = vech(εtε
′
t). The aggregation scheme is no

longer ε
(m)
mt = εmt +εmt−1 + . . .+εmt−m+1 but η̄mt = ηmt +ηmt−1 + . . .+ηmt−m+1. Thus, all

the cross-terms that appeared in our previous aggregation scheme η
(m)
mt = vech(ε

(m)
mt ε

(m)′
mt )

are absent here.

First, it is clear that for any finite m, η̄mt is an unbiased estimate of the unobservable

daily volatility. It is more efficient than the noisy η
(m)
mt = vech(ε

(m)
mt ε

(m)′
mt ) but, for every

finite m it is inefficient compared to h̄mt = hmt + hmt−1 + . . . + hmt−m+1. The practical

advantage of using η̄mt is, of course, that no parametric model of volatility needs to be

specified, but a drawback is given by the restriction that m can not be chosen arbitrarily

large. In other words, the time interval between observations can not be arbitrarily small

due to market microstructure effects. If the true volatility process follows multivariate

GARCH, we quantify below the loss of efficiency of η̄mt compared with h̄mt.

To calculate the variance of η̄mt, note that this is just the sum of the variances of the

individual terms ηmt, each one equal to Ση − σσ′, plus the sum of all covariances. This is

given by

Var(η̄mt) = m(Ση − σσ′) +
m−1∑
i=1

(m− i) (Γ(i) + Γ(i)′) .

Similarly, we obtain for the variance of h̄mt

Var(h̄mt) = m(Σh − σσ′) +
m−1∑
i=1

(m− i) (Γ(i) + Γ(i)′) , (52)
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so that the difference is given by

Var(η̄mt)− Var(h̄mt) = m(Ση − Σh), (53)

which is positive semi-definite. Note that (52) is O(m2) and (53) is O(m), so that the

relative difference between the two variances is O(m−1). In other words, the loss of effi-

ciency of realized volatilities w.r.t. the model (supposing that this is correctly specified)

is diminishing with rate O(m−1). In practice, m can not increase without bounds, so that

the relative efficiency for a given m depends on features such as the volatility persistence

and the correlation. Let us define the relative efficiency of the i-th component of real-

ized volatility w.r.t. the model as the i-th diagonal element of Var(η̄mt) divided by the

corresponding diagonal element of Var(h̄mt), that is,

REi(m) =
[Var(η̄mt)]ii[
Var(h̄mt)

]
ii

. (54)

Note that REi(m) = 1 + O(m−1) so that for m sufficiently large the efficiency loss is

negligible. However, if m can not be chosen arbitrarily large in practice, the efficiency

loss may be substantial. For our example process (18), Table 1 lists the values of REi(m)

for selected levels m. Obviously, even at m = 50 the variance of the realized volatility

estimator is still 29% higher than that of the optimal one for the first component of

η
(m)
mt . For the other two components the loss is even higher. For their exchange rate

example, Andersen et al. (2003) use a value of m = 48, having half-hourly data for a

24 hours per day market. They can not choose m much larger because of the problems

with interfering microstructure effects such as bid-ask bounces. The values of REi(m) in

Table 1 therefore appear relevant if our example process can be considered as a typical

high frequency process. In such a situation the practitioner has to weigh the risk of

mis-specifying a parametric volatility model for the high frequency process against the

efficiency loss of the nonparametric estimation using realized volatilities.

There is a second issue concerning standardized residuals using realized volatilities

which turns out to be intimately related to the relative efficiency issue. Standardized

residuals are typically obtained by H̄
−1/2
mt ε

(m)
mt , where H̄mt is the de-vectorized h̄mt, for

the given multivariate GARCH model. Alternatively, without an assumption on the

underlying process, one can define standardized residuals by Υ
−1/2
mt ε

(m)
mt , where Υmt is the

de-vectorized η̄mt. Due to the higher variance of η̄mt compared to h̄mt, the kurtosis of the
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m RE1(m) RE2(m) RE3(m)

2 3.2264 4.3470 6.8479

3 2.3839 3.0344 4.4386

4 2.0356 2.5008 3.4832

5 1.8460 2.2121 2.9713

10 1.5075 1.6985 2.0663

20 1.3632 1.4774 1.6745

30 1.3217 1.4127 1.5585

40 1.3030 1.3832 1.5056

50 1.2925 1.3668 1.4763

Table 1: Relative efficiencies according to definition (54) of realized volatilities with respect

to the optimal estimates when the high frequency process is known to be the process given

in (18). RE1 is the measure for the conditional variance of ε
(m)
mt,1, RE2 is the measure for

the conditional covariance of ε
(m)
mt,1 and ε

(m)
mt,2, and RE3 is the measure for the conditional

variance of ε
(m)
mt,2.

residuals standardized by realized volatilities η̄mt will be smaller than that of residuals

standardized by h̄mt. In particular, if the innovation distribution is Gaussian, the kurtosis

of the residuals standardized by realized volatilities is smaller than three, which is also

apparent in the empirical results of Andersen et al. (2003), Table 1. They claim that

standardized residuals are close to being Gaussian, but for their sample of ten years of daily

returns on the DM/Dollar exchange rate a value of 2.57 for the kurtosis of standardized

residuals is likely to violate the normality assumption.4 It can also be shown that, using

first order expansions, the negative bias of the kurtosis estimate is directly related to the

efficiency loss expressed by REi(m).

Recently, interest has focused on the distribution of realized volatilities. If the true

underlying DGP is multivariate GARCH and m is sufficiently large, this may be approxi-

mated by the asymptotic distribution of the centered and normalized realized volatilities,

4This can be seen by noting that for an i.i.d. Gaussian white noise, the standard error of the kurtosis
estimator is (24/n)1/2, where n is the sample size. If n = 2500, which roughly corresponds to ten years
of daily data, the standard error takes the value 0.098, so that with an estimate of 2.57 one would reject
the null hypothesis of Gaussian white noise at the 95% significance level.
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which is given in the following theorem.

Theorem 4 Under Assumptions 1 to 3, the asymptotic distribution of realized volatilities

for m →∞ is given by

m−1/2(η̄mt −mσ)
D−→ N (0, 2πf(0))

where f(λ) is the spectral density matrix of ηt at frequency λ given in (49). Moreover,

lim
m→∞

Cov(η̄mt, η̄m(t+τ)) =

{ ∑∞
j=1

(∑j
i=0 Φi

)
Σu

(∑∞
i=j+1 Φ′

i

)
, τ = 1

0, τ ≥ 2

where Σu is given in (17).

An implication of this theorem is that, for m sufficiently large, the centered and nor-

malized realized volatilities may be approximated by a multinormal distribution. However,

due to the asymmetric nature of the distribution of volatilities, typically being strongly

skewed to the right, it may require very large values of m before the normality result

of Theorem 4 applies. In fact, Andersen et al. (2003) find that for moderately large m

the distribution of foreign exchange realized volatilities can be well approximated by a

log-normal distribution. Further empirical evidence is required to assess how these results

depend on the aggregation level m. Also, one may do Monte Carlo simulations to find the

distribution of m−1/2(η̄mt−mσ) for finite m and a known high frequency process such as

(18). This is beyond the scope of this paper but interesting for future research.

The second result of Theorem 4 implies that the aggregated process η̄mt for large but

finite aggregation levels m can be approximated by a VMA(1) process. This is because

Cov(η̄mt, η̄m(t+τ)) is O(m) for τ = 0, O(1) for τ = 1 and o(1) for τ ≥ 2. That is, for m →∞
the process converges to white noise since the autocorrelations tend to zero, but for finite

m the first order autocorrelation will be much larger than higher order autocorrelations.

In other words, the vector of realized volatilities can be approximated by a VMA(1)

process for large but finite values of m if the underlying DGP is multivariate GARCH.

Hence, in practice one may directly specify a VMA(1) model for the realized volatilities

for finite but large aggregation level m. Alternatively, one may even use standard model

selection procedures to specify a VARMA(p, q) model for the realized volatilities.
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7 Estimation

Suppose one has a sample (εt, t = 1 . . . , T ) of observations which are sampled at a low

frequency, and that one has correctly specified a weak multivariate GARCH model. De-

note the finite dimensional parameter vector characterizing the dynamics of ht by θ ⊂ Θ,

where Θ is a compact set.

The quasi maximum likelihood estimator is defined by

θ̂QML = arg min
θ∈Θ

T∑
t=1

ln |Ht(θ)|+ ε′tHt(θ)
−1εt

conditional on some starting value for H0. The consistency of QMLE in conditionally

heteroskedastic models requires that the first two moments of the process are correctly

specified, see e.g. Bollerslev and Wooldridge (1992). For semi-strong multivariate GARCH

models, precise conditions for consistency and asymptotic normality of QMLE have been

provided by Jeantheau (1998) and Comte and Lieberman (2003), although their models

are restricted versions of the vec representation (1). However, aggregated GARCH pro-

cesses are only weak GARCH, so that the conditional second moment is not correctly

specified. There are as yet no results on the theoretical properties of QML estimators for

weak GARCH models. In the univariate case, Drost and Nijman (1993) find that the bias

is not big. On the other hand, Meddahi and Renault (2004) find it to be more important

under high persistence and large aggregation levels.

An alternative to QMLE is nonlinear least squares, which has been proved to be

consistent for weak GARCH models by Francq and Zakoian (2000). It is to be conjectured

that this carries over to the multivariate case. The nonlinear least squares estimator is

defined by

θ̂NLS = arg min
θ∈Θ

T∑
t=1

ut(θ)
′ut(θ)

where for example in the GARCH(1,1) case,

ut(θ) = ηt − ω −Qηt−1 + But−1(θ)

conditional on some starting values u0 and η0.

Supposing that QML is asymptotically biased and NLS is not, there will be a sample

size above which it will always be preferable to use NLS rather than QML, if one takes the
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mean square error criterion. However, in a simulation experiment Hafner and Rombouts

(2004) find that this ‘critical sample size’ may be much larger than sample sizes typically

encountered in practice. In most practical situations one would therefore prefer to use

QML rather than NLS. The reason is that NLS has a much higher variance, which for

moderately large sample sizes outweighs by far the advantage in terms of bias.

8 Conclusions and Outlook

The main conclusion of this paper is that the class of weak multivariate GARCH processes

is closed under temporal aggregation and that the dynamics of the aggregated process

can be obtained in a straightforward manner. Although there are many similar results

for VARMA processes and univariate GARCH processes, there are also many differences.

To recall just two examples, the aggregated process of a stock variable does not depend

on the kurtosis in the univariate case, but it depends on the fourth moment structure in

the multivariate case. Secondly, the forecasting performance of the method that directly

predicts the aggregated process does not become identical to the optimal procedure for

increasing horizons. Thus, there is a substantial difference between forecasting a VARMA

process and the volatility of a multivariate GARCH process. Concerning realized volatil-

ity, it will be important to shed more empirical light on the multivariate distribution of

realized volatilities, for which this paper derives an asymptotic result if the high frequency

process is multivariate GARCH.

Finally, it will be important to bridge the gap to continuous time processes, as was

done in the univariate case by Nelson (1990) and Drost and Werker (1996). This is also

left to future research.
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Appendix

Lemma 1 Let Γ(τ) = E [(ηt − σ)(ηt−τ − σ)′] and Γ̃(τ) = E[D+
Kvec(εtεt−τ )vec(εtεt−τ )

′D+,′
K ].

Then

vec(Γ̃(τ)) = GKvec(Γ(τ) + σσ′), (55)

where the matrix GK is square of order N2 and given by

GK = (D+
K ⊗D+

K)(IK ⊗ CKK ⊗ IK)(DK ⊗DK), (56)

with Dm and Cmn denoting the duplication and commutation matrices, respectively, and

where D+
m = (D′

mDm)−1D′
m.

Proof: Follows by making use of the following results for some square matrices A,B,C,D

of order N : vec(ABC) = (C ′⊗A)vec(B), vec(A⊗B) = (IN ⊗CNN ⊗ IN)(vecA⊗ vecB),

and (AC)⊗ (BD) = (A⊗B)(C ⊗D). Thus,

vec(Γ̃(τ)) = (D+
K ⊗D+

K) vec E
[
vec(εtε

′
t−τ )vec(εtε

′
t−τ )

′]

= (D+
K ⊗D+

K) vec E [(εt−τ ⊗ εt)(εt−τ ⊗ εt)
′]

= (D+
K ⊗D+

K) vec E
[
(εt−τε

′
t−τ )⊗ (εtε

′
t)

]

= (D+
K ⊗D+

K)(IK ⊗ CKK ⊗ IK)E
[
vec(εt−τε

′
t−τ )⊗ vec(εtε

′
t)

]

= (D+
K ⊗D+

K)(IK ⊗ CKK ⊗ IK)(DK ⊗DK)E [ηt−τ ⊗ ηt]

= GK(Γ(τ) + σσ′),

where GK = (D+
K ⊗D+

K)(IK ⊗ CKK ⊗ IK)(DK ⊗DK), which proves the lemma. ¤

Lemma 2 For any spherical distribution,

E

[
N∏

j=1

X
αj

j

]
=

{
0 if one (or more) αj is odd

Kα

∏N
j=1

αj !

(αj/2)!
if all αj are even

where α =
∑N

j=1 αj and Kα depends on α only.

Proof: see Box and Hunter (1957).

Proof of Proposition 1

First, by Jensen’s inequality, E[|εt|2] ≤ E[|εt|4]1/2 ≤
√

b < ∞. This holds for all t, so

that Σ, the limit of time averages of second moment matrices, exists. Second, Assumption
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1 implies that all fourth order moments E[ε4
t,i], i = 1, . . . , K, exist. A double application of

the Cauchy-Schwartz inequality leads to E[|εt,iεt,jεt,kεt,l|] ≤ (E[ε4
t,i]E[ε4

t,j]E[ε4
t,k]E[ε4

t,l])
1/4 ≤

b < ∞, ∀i, j, k, l = 1, . . . , K. Thus E[ηtη
′
t] exists for all t and Ση must be finite. Third, ht

is a linear combination of lagged ηt where the weights are absolutely summable as implied

by Assumption 1. Thus, E[hth
′
t] is finite if E[ηtη

′
t−i] is finite for all i. This follows again by

Cauchy-Schwartz, i.e., for j, k = 1, . . . , N , we have E[|ηt,jηt−i,k|] ≤ (E[η2
t,j]E[η2

t−i,k])
1/2 ≤

b < ∞. As this holds for all t, Σh must be finite. The same argument applies to E[utu
′
t],

writing out the expectation with ut = ηt − ht, so that Σu is finite. ¤
Proof of Proposition 2

If εt is semi-strong multivariate GARCH, then by definition E[η | Ft−1] = ht and,

thus, E[ut | Ft−1] = E[ηt − ht | Ft−1] = 0. Thus, ut is a martingale difference which finite

fourth moments by Assumption 1. This is semi-strong white noise according to Definition

1. This proves the first part of the statement.

If εt is weak multivariate GARCH, then by definition, the projection error ut is or-

thogonal to all ηt−τ , τ ≥ 1. Since ut = ηt − ht is a linear combination of current and

lagged ηt, this implies that ut is also orthogonal to all ut−τ , τ ≥ 1. This corresponds to

our definition of weak white noise in Definition 1. If ut is weak white noise, then ηt has a

weak VARMA representation according to Definition 2. This completes the proof of the

second part. ¤
Proof of Proposition 3

By the law of iterated expecations, (8) holds if ∀i ≥ 1, E[ηtε
′
t−i] = 0. As strong

GARCH models are also semi-strong GARCH, we have ht = E[ηt | Ft−1] and, thus,

E[ηtε
′
t−i] = E[htε

′
t−i]. Considering first the case i = 1 and GARCH(1,1), this can be

written as E[htε
′
t−1] = E[ωε′t−1] + AE[ηt−1ε

′
t−1] + BE[ht−1ε

′
t−1]. the first and third of

these expectations are zero due to the martingale difference property of εt. The second

expectation contains terms of the form E[εtjεtkεtl], j, k, l = 1, . . . , K. If, as assumed,

innovations ξt are i.i.d. spherical, then the conditional distribution of εt is elliptic, whose

odd-order moments are all zero, see e.g. Fang et al. (1989). Applying this argument

recursively for i ≥ 2 then proves that E[htε
′
t−i] = 0 for all i. The same argument applies

to GARCH models of higher order. ¤
Proof of Theorem 1

First, the aggregated series ε
(m)
mt is a martingale difference w.r.t the information set

F (m)
m(t−1), because F (m)

m(t−1) ⊂ Fm(t−1) and, by the law of iterated expectations, E[εmt−j |
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Fm(t−1)] = 0 for j = 1, . . . , m− 1, and therefore also E[ε
(m)
mt | Fm(t−1)] = 0.

To prove the volatility part, I will use so-called macro processes, based on the discus-

sion for VARMA models in Lütkepohl (1987, Chapter 6). The advantage of this approach

is that it allows for considering temporal and contemporaneous aggregation in a joint

framework. Recalling the notation Q = A + B, the VARMA representation in (2) can be

rewritten as the macro process

A0η̃mt = ω̃ + A1η̃m(t−1) + M0ũmt + M1ũm(t−1) (57)

with the (mN ×mN) matrices

A0 =




IN 0 0 · · · 0

−Q IN 0 · · · 0

0 −Q IN · · · 0
...

...
...

. . .
...

0 0 0 · · · IN




A1 =




0 0 · · · Q

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0




,

M0 =




IN 0 0 · · · 0

−B IN 0 · · · 0

0 −B IN · · · 0
...

...
...

. . .
...

0 0 0 · · · IN




M1 =




0 0 · · · −B

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0




,

and with the (mN × 1) vectors

ω̃ =




ω
...

ω


 , η̃mt =




ηm(t−1)+1

ηm(t−1)+2

...

ηmt




, ũmt =




um(t−1)+1

um(t−1)+2

...

umt




.

After multiplying both sides of (57) from the left by the inverse of A0 one obtains

A(L)η̃mt = A−1
0 ω̃ + M(L)ũmt (58)

with

A(L) =




IN 0 · · · −QL

0 IN · · · −Q2L
...

...
. . .

...

0 0 · · · IN −QmL
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M(L) =




IN 0 · · · −BL

A IN · · · −QBL

QA A · · · −Q2BL
...

...
. . .

...

Qm−2A Qm−3A · · · IN −Qm−1BL




,

Now, denoting the block-adjoint of A(L) by A(L)∗, which is given by

A(L)∗ =




IN −QmL 0 · · · QL

0 IN −QmL · · · Q2L
...

...
. . .

...

0 0 · · · IN




,

we can write

A(L)∗A(L) = diag(IN −QmL),

where diag(X) denotes a block diagonal matrix with matrices X on the diagonal. Multi-

plying both sides of (58) from the left by A(L)∗, we obtain

diag(IN −QmL)η̃mt = A(L)∗A−1
0 ω̃ + Z(L)ũmt, (59)

with Z(L) = A(L)∗M(L). First, note that the constant is given by

A(L)∗A−1
0 ω̃ =




(IN + Q + . . . + Qm−1)ω
...

(IN + Q + . . . + Qm−1)ω


 .

Next, the matrix Z(L) determines the moving average term and is given by

Z(L) =




IN −Qm−1BL Qm−2AL Qm−3AL · · · AL

A IN −Qm−1BL Qm−2AL · · · QAL

QA A IN −Qm−1BL · · · Q2AL
...

...
...

. . .
...

Qm−2A Qm−3A Qm−4A · · · IN −Qm−1BL




.

(60)

The matrices on the block diagonal of Z(L) are all IN − Qm−1BL. The matrices on

the j-th sub-diagonal are all Qj−1A, and the matrices on the j-th super-diagonal are all

Qm−j−1AL, j = 1, . . . ,m− 1.
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The idea is now to represent temporal aggregation of the process εt as a linear trans-

formation of the macro process η̃t. Let us define the (N ×mN) transformation matrix F

by

F =

{
(0, 0, · · · , IN), for stock variables

(IN , IN , · · · , IN), for flow variables
(61)

Then, by definition of η
(m)
mt in (20), η

(m)
mt = F η̃t for stock variables and η

(m)
mt = F η̃t + w

(m)
mt

for flow variables. Now, multiplying both sides of (59) from the left by F we obtain the

following VARMA representation for the aggregated process,

(IN −QmL)η
(m)
mt = ω(m) + v

(m)
mt , (62)

where

ω(m) =

{
(IN + Q + . . . + Qm−1)ω, for stock variables

m(IN + Q + . . . + Qm−1)ω, for flow variables

and

v
(m)
mt =

{
FZ(L)ũmt, for stock variables

FZ(L)ũmt + (IN −QmL)w
(m)
mt , for flow variables

(63)

First, from (62) the coefficient matrix of the autoregressive part is given by Qm. To see

what the moving average part is, one has to determine the matrix FZ(L). In the case of

stock variables this is just the last block-row of Z(L), whereas for flow variables one needs

to construct the column-wise sums of Z(L). From the structure of Z(L) given in (60) one

easily finds the expressions given in (25) and (28), respectively. From these expressions it

follows that on the low frequency time scale v
(m)
mt has a VMA(1) representation since the

first order autocorrelation is different from zero whereas all higher order autocorrelations

are zero. Thus, we can write

v
(m)
mt = −B(m)u

(m)
m(t−1) + u

(m)
mt

where u
(m)
mt is a weak white noise vector process with variance matrix Σ

(m)
u , say. The

variance and autocovariance matrices of the VMA(1) process v
(m)
mt are given by

Σ(m)
v = Σ(m)

u + B(m)Σ(m)
u B(m)′ (64)

Γ(m)
v = −B(m)Σ(m)

u (65)

which can be reduced to B(m)Γ
(m)
v B(m)′ + B(m)Σ

(m)
v + Γ

(m)
v = 0, which proves (32). The

equation for A(m) in (33) follows by noting that the coefficient matrix of the autoregressive
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part, A(m) + B(m), in the representation (35) has to be equal to the corresponding matrix

of the representation (62), Qm. Finally, (34) follows directly by vectorizing (64). This

completes the proof. ¤

Proof of Theorem 2

For all k > 0, limm→∞ Jm+k = 0, and therefore limm→∞ Γ
(m)
v = 0, so that the system

of equations (32) reduces asymptotically to B(∞)Σ
(∞)
v = 0, where B(∞) = limm→∞ B(m)

and Σ
(∞)
v = limm→∞ Σ

(m)
v . Since Σ

(∞)
v is positive definite, this can only hold if B(∞) = 0.

It follows that A(∞) = limm→∞ A(m) = 0. This shows that asymptotically, conditional

heteroskedasticity disappears.

Vectorizing (37) and using (13),

m−2vec
(
Σ(m)

η

)
= m−1vec(Ση)+2

m−1∑
i=1

m− i

m2
{[2GK + DK ]vec(Γ(i)) + (2GK + IN2)vec(σσ′)}

Notice that the term (2GK + DK)
∑m−1

i=1
m−i
m2 vec(Γ(i)) is O(m−1) and

∑m−1
i=1

m−i
m2 = 1/2 +

O(m−1). Thus, m−2vec
(
Σ

(m)
η

)
= (2GK + IN2)vec(σσ′) + O(m−1). Now the structure of

GK is such that kii(ε̄mt) = 3 + O(m−1) and kij(ε̄mt) = 1 + 2ρ2
ij + O(m−1), see also Hafner

(2003). Thus, asymptotically the kurtosis and co-kurtosis are given by 3 and 1+2ρ2
ij, the

values of a normal distribution with correlation ρij.

Because εt is a martingale difference sequence, we invoke a central limit theorem for

square integrable martingale difference sequences. In the multivariate case this is given

e.g. by Theorem 10.1 of Pötscher and Prucha (1997). Their first condition is that εt is

L0-approximable by some α-mixing process. This holds trivially as εt is itself α-mixing

by Assumption 3. Their second condition supT T−1
∑T

t=1 E[|εt|2+δ] < ∞ for some δ > 0

is fulfilled by noting that for every t, E[|εt|2+δ] ≤
√

b < ∞ by Assumption 1. This proves

asymptotic normality of the aggregated process. ¤
Proof of Theorem 3:

First, εt,1
LICV= εt,2 is equivalent to [Σu]13 = 0, by Proposition 2.3 of Lütkepohl (1993,

p.40). Now [Σu]13 = E[ε2
t,1ε

2
t,2]−E[ht,1ht,3]. Under the assumption of conditional normality,

the first term is given by E[ε2
t,1ε

2
t,2] = E[ht,1ht,3 + 2h2

t,2] by Theorem 1 of Hafner (2003).

Thus, [Σu]13 = 0 is equivalent to ht,2 = 0. But if ht,2 = 0, εt,1
GCV= εt,2, and K = 2, then

the diagonality of the matrices A, B, and Σu implies also diagonality of the matrices Σ
(m)
v

and Γ
(m)
v , and therefore A(m), B(m), and Σ

(m)
u . Thus, if εt,1

LCV= εt,2 and K = 2, then we
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also have ε
(m)
mt,1

LCV= ε
(m)
mt,2. Hence, spurious LICV can only appear if ht,2 = 0 and K ≥ 3.

¤
Proof of Theorem 4:

The aggregated process η̄mt has a weak finite order VARMA representation that is

stationary and invertible. Thus, it also has a linear VMA(∞) representation, for which

Breitung and Swanson (2003) have shown the asymptotic results for m−1Var(η̄mt) and

Cov(η̄mt, η̄m(t+τ)), τ ≥ 1. The asymptotic normality follows similar to Proposition 3.3 of

Lütkepohl (1993). The formulae for f(λ) and for Σu have been derived by Hafner (2003).

¤
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Figure 1: Kurtosis and co-kurtosis of the example process (18) as a function

of the aggregation level m. Solid line: kurtosis of ε
(m)
mt,1, dashed line: kurtosis

of ε
(m)
mt,2, dotted line: co-kurtosis of ε

(m)
mt,1 and ε

(m)
mt,2.
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Figure 2: Causality measures for the example process (18) as a function

of the aggregation level m. Dashed line: the instantaneous causality measure

ICV (m)
y↔x, dotted line: the linear dependence measure CV (m)

y↔x, solid line: the bi-

directional Granger causality measure GCV (m)
y↔x, where x = ε

(m)
mt,1 and y = ε

(m)
mt,2
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Figure 3: Mean square prediction error of forecasting the volatility of ε
(m)
mt,1

for the example process (18) with m = 2 as a function of the forecast horizon

h. Solid line: Prediction using the disaggregated process and then aggregating

the forecasts. Dashed line: Prediction of the aggregated process. The values

are scaled by the factor m−2.
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