
Analytical quasi maximum likelihood inference

in multivariate volatility models

Christian M. Hafner1 Helmut Herwartz2

Econometric Institute Report EI 2003–21

July 2003

Abstract

Quasi maximum likelihood estimation and inference in multivari-

ate volatility models remains a challenging computational task if, for

example, the dimension is high. One of the reasons is that typically

numerical procedures are used to compute the score and the Hessian,

and often they are numerically unstable. We provide analytical formu-

lae for the score and the Hessian and show in a simulation study that

they clearly outperform numerical methods. As an example, we use the

popular BEKK-GARCH model, for which we derive first and second

order derivatives.
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1 Introduction

Over recent years, multivariate volatility models have become increasingly pop-

ular in research and practice. One of the reasons is certainly the improving

computing power of modern computers, but also recent research on models

that are possible to estimate even in high dimensions. A popular example

of multivariate volatility models is the GARCH model class, see Bauwens et

al. (2003) for a review. However, estimation and inference remain a difficult

problem, in particular in high dimensions. One of the difficulties stems from

the fact that most software packages available rely on numerical derivatives to

compute the score and the Hessian of the likelihood function. This is often

found to be numerically unstable, as noted by Lucchetti (2002), who provides

analytical results for the scores of a particular GARCH model. It is known

that numerical derivatives become even more unstable when they are used to

compute the Hessian.

Maximum likelihood estimation relies on an assumption about the inno-

vation distribution. Empirically one has often found that standardized resid-

uals of estimated volatility models were still fat-tailed, so the assumption of

Gaussian innovations is not innocuous and loses efficiency. Fiorentini et al.

(2003) provide a general framework for maximum likelihood estimation using

the Student-t distribution. The drawback of this approach is that, if the as-

sumption is wrong, then in general the ML estimates are not even consistent.

On the other hand, using a Gaussian likelihood, also known as quasi maxi-

mum likelihood (QML), retains consistency under misspecification. In prac-

tice, without prior information on the innovation distribution it may therefore

be preferable to use QML.

The purpose of this paper is to provide an analytic framework to implement

QML inference in multivariate volatility models. QML estimates are known to

be consistent and asymptotically normal, under regularity conditions, in mod-

els with conditional heteroskedasticity, see Bollerslev and Wooldridge (1992).

Comte and Lieberman (2003) provide a theoretical framework for multivariate
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GARCH models in a general specification. 1 We provide analytic formulae

for the score and the Hessian of a general multivariate volatility model. These

depend in general on the first and second derivatives of the volatility matrix Ht

with respect to its parameters, for which we provide results using the popular

BEKK model class.

We present two methods to estimate the expectation of the Hessian; one

method involves computation of second derivatives of the volatility matrix,

the other does not. We compare their empirical performance in a simulation

experiment, where we also include numerical derivatives as a third method.

The striking result is that numerical derivatives are clearly outperformed by

any of the analytic methods. The analytic method using second derivatives of

Ht is outperformed by the one that does not in small and medium samples,

but seems to be advantageous in large samples.

The following sections are organized as follows. Section 2 describes a gen-

eral framework for QML estimation of multivariate volatility models, leaving

Ht unspecified. Section 3 provides results for a popular example for Ht, the so-

called BEKK-GARCH model. Section 4 presents the Monte Carlo experiment,

and Section 5 concludes.

2 QML inference in multivariate volatility mod-

els

Let Ht(θ) be a positive definite (N × N) conditional covariance matrix of

some (N × 1) error vector εt, parameterized by the vector θ. Denoting the

information set available at time t by Ft, and writing Et[·] = E[· | Ft] for the

conditional expectation operator, the model can be written as

Et−1[εt] = 0

Et−1[εtε
′
t] = Ht(θ)

1Consistency was already shown by Jeantheau (1998), but for a less general specifica-

tion. For the same restricted specification, Ling and McAleer (2003) provide a theoretical

framework for QML estimation and inference.
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The conditional covariance matrix Ht(θ) can be explained by some multi-

variate GARCH model or any other multivariate volatility model as long as

Ht(θ) is measurable with respect to Ft−1, is continuous in θ and is twice con-

tinuously differentiable. We will give a popular example of Ht(θ) in the next

section.

Suppose that there is an underlying data generating process character-

ized by the unknown parameter vector θ0 which one wants to estimate using

a given sample of T observations. The quasi maximum likelihood (QML)

approach estimates θ0 by maximizing the Gaussian log likelihood function

L(θ) =
∑T

t=1 lt(θ) with

lt(θ) = −N

2
ln(2π)− 1

2
ln |Ht(θ)| − 1

2
ε′tH

−1
t (θ)εt. (1)

Under conditions listed by Comte and Lieberman (2003), the QML esti-

mates θ̂ are consistent and asymptotically normally distributed, even in the

case of non-normally distributed innovations. The asymptotic distribution is

given by √
T (θ̂ − θ0)

D−→ N
(
0,J −1IJ −1

)
,

where

I = E

[
∂lt(θ)

∂θ

∂lt(θ)

∂θ′

∣∣∣∣
θ0

]
, J = −E

[
∂2lt(θ)

∂θ∂θ′

∣∣∣∣
θ0

]

and where the expectation is taken with respect to the true process. The

matrix I is the expectation of the outer product of the score vector evaluated

at the true parameter vector θ0 and is often called the information matrix,

whereas J is the negative expectation of the Hessian evaluated at θ0. If the

error process εt is conditionally Gaussian, then I = J and the asymptotic

covariance matrix reduces to I−1, the Cramer-Rao lower bound.

For inference on the estimates θ̂ one therefore needs to calculate the score

vector and the Hessian. These are given by (see the proof of Lemma 1 of

Comte and Lieberman, 2003)

∂lt(θ)

∂θi

= Tr
[
Ḣt,iH

−1
t − εtε

′
tH

−1
t Ḣt,iH

−1
t

]
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and

∂2lt(θ)

∂θi∂θj

= Tr
[
Ḧt,i,jH

−1
t − εtε

′
tH

−1
t Ḧt,i,jH

−1
t − Ḣt,iH

−1
t Ḣt,jH

−1
t

+εtε
′
tH

−1
t Ḣt,jH

−1
t Ḣt,iH

−1
t + εtε

′
tH

−1
t Ḣt,iH

−1
t Ḣt,jH

−1
t

]
(2)

where we use the notation

Ḣt,i =
∂Ht

∂θi

, Ḧt,i,j =
∂2Ht

∂θi∂θj

and where all Ht, Ḣt,i and Ḧt,i,j are evaluated at θ.

Note that by the consistency of the QML estimate θ̂, the matrices I and

J can be consistently estimated by

Î =
1

T

T∑
t=1

∂lt(θ)

∂θ

∂lt(θ)

∂θ′

∣∣∣∣∣bθ
(3)

and

Ĵ = − 1

T

T∑
t=1

∂2lt(θ)

∂θ∂θ′

∣∣∣∣∣bθ
(4)

From the expression for the second derivatives of the likelihood in (2), the

latter involves the second derivatives of Ht with respect to θ. However, by

definition of Ht, Ht(θ0) = Et−1(εtε
′
t), so that the first two terms of (2) just

cancel under the conditional expectation operator, and

Mt,ij(θ0) := Et−1

[
∂2lt(θ)

∂θi∂θj

∣∣∣∣
θ0

]
= Tr

[
Ḣt,iH

−1
t Ḣt,jH

−1
t

]

where Ht, Ḣt,i and Ḣt,j are evaluated at θ0. By the law of iterated expectations

we have J = −E [Mt(θ0)] so that a computationally simpler estimate for J
is given by replacing the unknown true parameter vector θ0 in Mt(θ0) by the

QML estimator, i.e.

J̃ = − 1

T

T∑
t=1

Mt(θ̂)

The estimator J̃ avoids the computation of second derivatives of Ht and is

therefore easier to implement than Ĵ . Both estimators are asymptotically
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equivalent, so they are expected to perform equally well in large samples. In

small and medium samples, on the other hand, it is not clear a priori if the

computational feasibility of J̃ goes without cost when compared with Ĵ . Note

that in finite samples Ĵ has a higher variance than J̃ due to the additional

noise terms in (2). Both estimators being unbiased, J̃ should therefore be

preferred in estimating the asymptotic distribution. However, there may be

situations where Ĵ is preferable in approximating the finite sample distribu-

tion. We will investigate the empirical performance of both estimators in our

simulation study.

Of course, the derivatives of Ht depend on the particular volatility model

used, and we will give an example in the next section. One of the objectives of

our paper is to motivate the use of analytic first and second derivatives of Ht

instead of numerical ones, which can be quite unstable. We will demonstrate

this also in our simulation study.

3 QML inference in the BEKK-GARCH model

In this section we discuss a popular example of a model for Ht, the conditional

covariance matrix, the so-called BEKK model of Engle and Kroner (1995). It

has the attractive feature that Ht is positive definite by construction. Many

other multivariate GARCH variants are special cases of the BEKK specifica-

tion, for example the factor model of Engle, Ng and Rothschild (1990), the

orthogonal GARCH model of Alexander (2001) and the GO-GARCH model

of van der Weide (2002). For details on these models we refer to Bauwens et

al. (2003).

In its general form, the BEKK(p, q, K) model can be written as

Ht = CC ′ +
K∑

k=1

q∑
i=1

A′
kiεt−iε

′
t−iAki +

K∑

k=1

p∑
i=1

B′
kiHt−iBki, (5)

where C is a lower triangular matrix and Aki and Bki are N × N parameter

matrices. For illustrative purposes, we will only consider the case p = q =

K = 1, which is also by far the most popular model order. Thus, the model
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simplifies to

Ht = CC ′ + A′εt−1ε
′
t−1A + B′Ht−1B. (6)

For this model, the parameter vector is given by θ = (vech(C)′, vec(A)′, vec(B)′)′.

In the bivariate case, this amounts to 11 parameters.

In the following we calculate the derivatives Ḣt,i and Ḧt,i,j that were re-

quired in the previous section. Rather than deriving with respect to specific

components of θ, it is more convenient to calculate the derivative of the vec-

torized Ht with respect to the vector θ. Of course, the former expression can

easily be obtained by transforming the latter expression appropriately.

For the first and second derivatives of Ht with respect to θ we use the

following notation:

HXt =
∂vec(Ht)

∂vec(X)′
, (N2 ×N2)

HXY t =
∂vec(HXt)

∂vec(Y )′
, (N4 ×N2)

If X is a lower triangular matrix, we write

H4
Xt =

∂vec(Ht)

∂vech(X)′
, (N2 ×N∗)

where N∗ = N(N + 1)/2. If X is lower triangular, but not Y ,

H4·
XY t =

∂vec(H4
Xt)

∂vec(Y )′
, (N2N∗ ×N2)

If Y is lower triangular, but not X,

H ·4
XY t =

∂vec(HXt)

∂vech(Y )′
, (N4 ×N∗)

and if both X and Y are lower triangular,

H44
XY t =

∂vec(H4
Xt)

∂vech(Y )′
, (N2N∗ ×N∗)

The dimensions are given in parentheses, where N∗ = N(N + 1)/2.
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Let us begin by considering the first derivatives of Ht. All results follow

by applying standard rules for matrix calculus, see e.g. Lütkepohl (1996).

Deriving with respect to the parameters in A,B and C we get

HAt = 2DND+
N(IN ⊗ A′εt−1ε

′
t−1) + (B ⊗B)′HAt−1 (7)

HBt = 2DND+
N(IN ⊗B′Ht−1) + (B ⊗B)′HBt−1 (8)

H4
Ct = 2DND+

N(C ⊗ IN)L′N + (B ⊗B)′H4
Ct−1 (9)

where (7) and (8) are matrices of dimension (N2×N2) and (9) is a (N2×N∗)

matrix. The matrix DN is the (N2 × N∗) duplication matrix defined by the

property DNvech(A) = vec(A) for any (N × N) matrix A, and D+
N is its

generalized inverse, i.e., D+
N = (D′

NDN)−1D′
N . These expressions can now

easily be transformed into the matrices Ḣt,i.

Turning to the second derivatives, we first define the following (N4 ×N4)

matrices.

C1 = IN ⊗KNN ⊗ IN

C2 = 2(IN2 ⊗DND+
N)

C3 = C2C1,

where KNN is the (N2×N2) commutation matrix, see e.g. Lütkepohl (1996).

We then obtain

HAAt = C3[vec(IN)⊗ (εt−1ε
′
t−1 ⊗ IN)KNN ] + [IN2 ⊗ (B ⊗B)′]HAAt−1

HABt = (H ′
At−1 ⊗ IN2)C1[KNN ⊗ vec(B′) + vec(B′)⊗KNN ]

+ [IN2 ⊗ (B ⊗B)′]HABt−1

H ·4
ACt = 0

For example, the result for HABt can be derived from Lütkepohl (1996, 10.5.2

(1)e). Furthermore,

HBAt = C3[vec(IN)⊗ (IN ⊗B′)HAt−1] + [IN2 ⊗ (B ⊗B)′]HBAt−1

HBBt = C3[vec(IN)⊗ {(Ht−1 ⊗ IN)KNN + (IN ⊗B′)HBt−1}]
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+ (H ′
Bt−1 ⊗ IN2)C1[KNN ⊗ vec(B′) + vec(B′)⊗KNN ]

+ [IN2 ⊗ (B ⊗B)′]HBBt−1

H ·4
BCt = C3[vec(IN)⊗ {(IN ⊗B′)HCt−1}] + [IN2 ⊗ (B ⊗B)′]H ·4

BCt−1

and

H4·
CAt = 0

H4·
CBt = (H ′

Ct−1 ⊗ IN2)C1[KNN ⊗ vec(B′) + vec(B′)⊗KNN ]

+ [IN∗ ⊗ (B ⊗B)′]H4·
CBt−1

H44
CCt = 2(LN ⊗DND+

N)C1[IN2 ⊗ vec(IN)]L′N + [IN∗ ⊗ (B ⊗B)′]H44
CCt−1.

Again, these expressions can easily be transformed into the matrices Ḧt,i,j.

Note that there are explicit formulae to compute the matrices DN and KNN

so that even in high dimensions the above expressions remain computationally

feasible. In any case, using these analytic expressions should be preferred to

using numerical derivatives. This will become obvious in the next section,

where we present a simulation experiment.

4 Monte Carlo Analysis

To illustrate the empirical properties of competing devices to evaluate the

asymptotic covariance matrix of QML-estimators we simulate bivariate GARCH-

processes of the BEKK-form (K = p = q = 1) according to the following choice

of parameter matrices:

C =

(
1.10 0.30

0 0.90

)
, A =

(
0.25 0.05

−0.05 0.25

)
, B =

(
0.9 −0.05

0.05 0.9

)
.

GARCH innovations ξt = H−1/2εt are drawn alternatively from a bivariate

Gaussian distribution or as standardized and independent innovations from a

t−distribution with 8 degrees of freedom.

Numerical derivatives are computed using the GAUSS procedures gradp

and hessp (GAUSS 3.2.29). To indicate numerical evaluation we will refer to
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the obtained estimates as Ī and J̄ . To summarize, five alternative devices are

distinguished to estimate the covariance matrix of the estimated parameter

vector:

1. Î−1: Analytical estimation of the information matrix

2. Ĵ −1ÎĴ −1: Analytical estimation of the sandwich matrix involving sec-

ond derivatives of Ht

3. J̃ −1ÎJ̃ −1: Analytical esimation of the sandwich matrix without second

derivatives of Ht

4. Ī−1: Numerical estimation of the information matrix

5. J̄ −1ĪJ̄ −1: Numerical estimation of the sandwich matrix

Two null hypotheses are tested. The first joint hypothesis concentrates on

cross sectional dynamics, H01 : a21 = 0.05, a12 = −0.05, b21 = −0.05, b12 =

0.05. The second null hypothesis involves only diagonal elements of the ARCH

parameter matrix, i.e. H02 : a11 = 0.25, a22 = 0.25. Since both null hypothe-

ses correspond to the true data generating process the empirical rejection fre-

quency should, under Gaussian innovations and when increasing the sample

size, approach the nominal level of the test, which is 5% throughout. In pres-

ence of leptokurtic innovations, however, only the QML covariance evaluation

can be expected to deliver unbiased empirical size estimates. In this case it

might be interesting to get some evaluation of the magnitude of the empirical

size distortions involved when evaluating the covariance matrix as Î−1.

We simulate 2000 replications of the multivariate GARCH processes with

alternative sample sizes T = 1000, 2000, 4000, 8000. Empirical rejection fre-

quencies obtained from competing test devices are given in Table 1.

With respect to evaluating the cross product of first order derivatives it

makes little difference if a numerical or an analytical approach is followed. In

this case the empirical size estimates are very close under normally as well as

leptokurtically distributed innovations. Using the QML-covariance estimate

Î−1 in case of conditional normality involves large size distortions in smaller
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samples (T = 1000, 2000). Thus, in practice QML based p-values should only

be preferred over ML based counterparts if diagnostic tests (e.g. Jarque Bera)

indicate nonnormality of ξt. Empirical size distortions of QML-tests are more

severe when testing off-diagonal coefficient estimates (H01) in comparison to a

situation in which ”pure” ARCH-dynamics are tested (H02). For instance un-

der Gaussian innovations analytical evaluations of the QML covariance matrix

deliver for the smallest sample size considered (T = 1000) empirical rejection

frequencies of 35.8% (H01) and 19.5% (H02), respectively. Analogously, size es-

timates are 64.8% (!) (H01) and 19.7% (H02), respectively, if the corresponding

covariances are determined numerically. Under leptokurtic innovations, maxi-

mum likelihood inference based on the normal distribution delivers severe size

distortions which appear to stabilize for large sample sizes (T = 4000, 8000)

around 26% (H01) and 29% (H02), respectively. In case of leptokurtic inno-

vations QML-inference on diagonal parameters yields similar empirical size

estimates if the relevant covariance matrix is numerically or analytically de-

termined. In this case (H02) analytically computed test statistics give size es-

timates that are slightly closer to the nominal test level. This picture changes

dramatically if the hypothesis of interest formalizes restrictions for off diag-

onal dynamics. When testing H02 in presence of leptokurtic innovations via

a numerically estimated covariance matrix the estimated size is at least 54%

and it appears that this distortion will not vanish in even larger samples. The

empirical size of the same test implemented with analytical derivatives is for

processes of length T = 8000 6.65% which is fairly close to the nominal level.

The latter result has important implications for practical work. Implementing

QML-based tests numerically might involve the risk of overstating the signifi-

cance of cross sectional volatility dynamics.

Evaluating the Hessian matrix without using the second order derivatives

of the covariances providing J̃ turns out to outperform the more involved

estimator Ĵ in terms of the empirical significance level. In smaller samples

(T = 1000, 2000) the size distortions under both, the normal and the condi-

tionally leptokurtic process, are drastically reduced. In case of conditionally

leptokurtic innovations and T = 1000 the empirical sizes involved with covari-
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Normal model t-model

T cov 1000 2000 4000 8000 1000 2000 4000 8000

H01 Î−1 .083 .076 .063 .064 .240 .295 .262 .264

Ĵ −1ÎĴ −1 .358 .165 .085 .072 .450 .210 .096 .067

J̃ −1ÎJ̃ −1 .120 .091 .069 .070 .124 .116 .085 .062

Ī−1 .083 .076 .063 .064 .240 .295 .262 .264

J̄ −1ĪJ̄ −1 .648 .586 .584 .596 .661 .595 .544 .550

H02 Î−1 .052 .082 .062 .046 .217 .272 .293 .294

Ĵ −1ÎĴ −1 .195 .101 .067 .054 .204 .118 .069 .054

J̃ −1ÎJ̃ −1 .087 .097 .067 .054 .090 .092 .087 .067

Ī−1 .051 .082 .062 .046 .217 .272 .293 .294

J̄ −1ĪJ̄ −1 .197 .102 .065 .046 .210 .121 .074 .046

Table 1: Empirical relative rejection frequencies at nominal level 5%

of the null hypotheses H01 (off-diagonal elements of A and B) and

H01 (diagonal elements of A and B). The estimate Ĵ involves com-

putation of second derivatives of Ht, J̃ does not. Ī and J̄ are using

numerical derivatives to calculate the score and the Hessian.

ance estimators Ĵ −1ÎĴ −1 and J̃ −1ÎJ̃ −1 are 45.0% and 12.4% (20.4% and

9.0%), respectively, when testing H01 (H02). Testing only the diagonal ARCH

parameters H02 in large samples (T = 4000, 8000) under leptokurtic innova-

tions, however, slightly better size estimates are obtained when using the more

involved covariance estimator Ĵ .

5 Conclusions and outlook

A clear conclusion of this paper and the simulation study can be drawn: Nu-

merical derivatives should be avoided when computing the score and the Hes-

sian in multivariate volatility models. Concerning the alternative analytical

ways to estimate the expected Hessian, it seems that in small and medium

samples the method that avoids calculation of second derivatives of Ht is
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preferred, whereas the method involving calculation of second derivatives is

slightly preferable in large samples.

A more elaborate method to obtain valid tests in small and medium samples

is based on the bootstrap, see e.g. Hafner and Herwartz (2000) and Hafner and

Herwartz (2002). As this is computationally challenging already in univariate

AR and in VAR type models, we refrained from applying this in a multivariate

volatility framework, but leave it to future research.
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