
Ridge Regression Revisited

Paul M.C. de Boer∗ Christian M. Hafner †

Econometric Institute Report EI 2005-29

In general ridge (GR) regression p ridge parameters have to be determined,
whereas simple ridge regression requires the determination of only one param-
eter. In a recent textbook on linear regression, Jürgen Gross argues that this
constitutes a major complication. However, as we show in this paper, the de-
termination of these p parameters can fairly easily be done. Furthermore, we
introduce a generalization of the GR estimator derived by Hemmele and by
Teekens and de Boer. This estimator, which is more conservative, performs
better than the Hoerl and Kennard estimator in terms of a weighted quadratic
loss criterion.
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1 Introduction

Consider the normal linear regression model

y = Xβ + ε (1)

where y is an n×1 vector of the variable to be explained, X is an n×p matrix

of explanatory variables and ε is an n × 1 vector of disturbances, distributed

as ε ∼ N(0, σ2In). The p× 1 parameter vector β is assumed unknown and to

be estimated by the data, y and X. It is well known that the ordinary least

squares (OLS) estimator for β is given by

b = (X ′X)−1X ′y. (2)

Under the model assumptions, the OLS estimator is the best linear unbiased

estimator by the Gauss-Markov Theorem. However, comparing it with nonlin-

ear or biased estimators, the OLS estimator may perform worse in particular

situations. One of these is the case of near multicollinearity, where the ma-

trix X ′X is nearly singular. In that situation, the variance of b, given by

σ2(X ′X)−1, can be very large. A biased estimator with less dispersion may in

that case be more efficient in terms of the mean squared error criterion. This

is the basic idea of ridge and shrinkage estimators, which were introduced by

Hoerl and Kennard (1970) for the above regression model.

In a recent textbook on linear regression, Groß (2003) gives an excellent

survey of alternatives to least squares estimation such as ridge estimators (pp.

115-150) and shrinkage estimators (pp. 150-162). He gives as possible justifi-

cation that addition of the matrix κIp (where κ is a scalar) to X ′X yields a

more stable matrix X ′X + κIp and that the ridge estimator of β,

β̂ = (X ′X + κIp)
−1X ′y (3)

should have a smaller dispersion that the OLS estimator.

To discuss the properties of the ridge estimator, one usually transforms the

above linear regression model to a canonical form where the X ′X matrix is

diagonal. Let P denote the (orthogonal) matrix whose columns are the eigen-

vectors of X ′X and let Λ be the (diagonal) matrix containing the eigenvalues.
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Consider the spectral decomposition, X ′X = PΛP ′, and define α = P ′β,

X∗ = XP , and c = X∗′y. Then model (1) can be written as

y = X∗α + ε

and the OLS estimator of α as

α̂ = (X∗′X∗)−1X∗′y = (P ′X ′XP )−1c = Λ−1c

In scalar notation we have

α̂i =
ci

λi

, i = 1, . . . , p. (4)

It easily follows from (3) that the principle of ridge regression is to add a

constant κ to the denominator of (4), to obtain

α̂R
i =

ci

λi + κ

Groß advances as criticism against this approach that all eigenvalues of X ′X

are treated equally, while for the purpose of stabilization it would be reason-

able to add rather large values to small eigenvalues but small values to large

eigenvalues (Groß, 2003, p. 163). Thus, the general ridge (GR) estimator is

defined to be

α̂GR
i =

ci

λi + κi

(5)

Both types of estimators, ridge and shrinkage, are special cases of this

general ridge estimator. Groß(2003) states that the disadvantage of this ap-

proach is that instead of a single ridge parameter, the determination of p ridge

parameters, κ1, . . . , κp, is required.

The purpose of this note is twofold. First, we argue that the determination

of p ridge parameters can fairly easily be done. Second, we derive the MSE

properties of the GR estimator and show that estimators can be constructed

that outperforms the OLS estimator in a weighted MSE sense.

We will only be concerned with GR estimators whose shrinkage intensity

κi depends on the i-th component of the transformed data vector. Other

estimators, such as the one of Strawderman (1978), depend on all components

but, as noted by Lawless (1981), only provide small efficiency gains.

2



2 The explicit GR estimator

Minimizing the mean square error of the GR estimator with respect to κi, one

obtains the optimal solution

κi =
σ2

α2
i

(6)

which is not feasible as αi is unknown. However, replacing α2
i in the denom-

inator of (6) by (α̂GR
i )2 and plugging the resulting κi into equation (5), one

obtains a quadratic equation for α̂GR
i that can be solved explicitly for a subset

of the parameter space. Thus, the explicit general ridge estimator as derived

independently by Hemmerle (1975) and Teekens and de Boer (1977), is given

by

α∗i =

{
γα̂i |α̂i|/σi < 2

1
2
α̂i(1 +

√
1− 4σ2

i /α̂
2
i ) |α̂i|/σi ≥ 2

(7)

where γ is a fixed parameter and α̂i is the OLS estimator (4). If σ2 is unknown,

then one can replace σ2 in (7) by a sample estimator, σ̂2, but Teekens and de

Boer (1977) show that the MSE performance of α∗i is not affected substantially,

so that in what follows we assume σ2 to be known.

The MSE of α∗i is defined as MSE(α∗i ) = E[(α∗i − αi)
2]. Note that α̂i ∼

N(αi, σ
2
i ), with σ2

i = σ2/λi. The MSE of the OLS estimator is just given by

σ2
i . In the following we consider the relative efficiency of the ridge estimator

with respect to OLS, defined by

r =
MSE(α∗i )
MSE(α̂i)

=
MSE(α∗i )

σ2
i

We obtain r = I1 + I2 with

I1 =
1

σ3
i

√
2π

∫

|x|<2σi

(γx− αi)
2e
− 1

2
(

x−αi
σi

)2
dx (8)

I2 =
1

σ3
i

√
2π

∫

|x|>2σi

[
x

2

(
1 +

√
1− 4

σ2
i

x2

)]2

e
− 1

2
(

x−αi
σi

)2
dx (9)

Both integrals turn out to depend on αi and σi only through the ratio, which

we denote by θ = αi/σi. Hence, also r only depends on θ. The second integral

can be simplified to

I2(θ) =
1√
2π

∫

|z|>2

[z

2
(1 +

√
1− 4/z2)− θ

]2

e−
1
2
(z−θ)2dz
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which can be solved numerically. The first integral takes the form

I1(θ) =
1√
2π

∫

|z|<2−θ

{
θ2(γ − 1)2 + 2θγ(γ − 1)z + γ2z2

}
e−

1
2
z2

dz

Denoting the cdf and pdf of a standard normal distribution by Φ(·) and φ(·),
respectively, note that we can write

1√
2π

∫ b

a

e−
1
2
z2

dz = Φ(b)− Φ(a) (10)

1√
2π

∫ b

a

ze−
1
2
z2

dz = φ(a)− φ(b) (11)

1√
2π

∫ b

a

z2e−
1
2
z2

dz = φ(a)− φ(b) + Φ(b)− Φ(a) (12)

for any real numbers a, b, a ≤ b. Thus, I1 can be written as

I1(θ) = θ2(γ − 1)2A(θ) + 2θγ(γ − 1)B(θ) + γ2C(θ)

where

A(θ) = Φ(2− θ)− Φ(−2− θ) (13)

B(θ) = φ(−2− θ)− φ(2− θ) (14)

C(θ) = A(θ)− (2 + θ)φ(2 + θ)− (2− θ)φ(2− θ) (15)

Teekens and de Boer (1977) compare three alternative choices of γ, 0, 0.5

and 1, in terms of the implied relative efficiency of the ridge estimator, r(θ).

Figure 1 reproduces their results.

One can compare the MSE performance of the above described ridge esti-

mator with other types of ridge estimators where the shrinkage intensity is a

function of the OLS estimator. Hoerl and Kennard (1970, HK hereafter) have

proposed the following ridge estimator:

α∗i =
α̂i

1 + σ2
i /α̂

2
i

Figure 2 shows the relative MSE of the HK estimator compared with the GR

estimator with γ = 1.
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Figure 1: Relative efficiency of the ridge estimator with γ = 0 (solid),
γ = 0.5 (dotted) and γ = 1 (dashed).

Figure 2: Relative efficiency of the ridge estimator of Hoerl and Ken-
nard (dashed) and γ = 1 (solid).
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Moreover, one can generalize the GR estimator given in (7) for general

threshold value τ , τ ≥ 2, as

α∗i (τ, γ) =

{
γα̂i |α̂i|/σi < τ

1
2
α̂i(1 +

√
1− 4σ2

i /α̂
2
i ) |α̂i|/σi ≥ τ

(16)

where the estimator in (7) is given by α∗i (2, γ). Figure 3 shows the relative

MSE performance of α∗i (τ, γ) for τ = 2, 4, 6.

Figure 3: Relative efficiency of the ridge estimator with γ = 1 and
threshold at τ = 2 (solid), τ = 4 (dashed), and τ = 6 (dotted).

As there is no dominance among the estimators, we have to look for global

performance criteria. For example, we can take the integrated relative differ-

ence of MSE, defined as

L =

∫
r(θ)w(θ)dθ (17)

where w(θ) is a weight function that integrates to one. The value of L could be

interpreted as the average efficiency gain of using a GR estimator relative to

OLS, where the average is weighted according to w(θ). Obviously, the choice

of weight function is crucial for determining an optimal estimator. In the

following section we motivate possible choices.
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3 A Bayesian interpretation

In a Bayesian framework the parameter vector β is considered as random.

Suppose one has prior information about the distribution of β. In the normal

linear regression model, this prior distribution is usually Gaussian with mean

β̄ and covariance matrix Σ̄β. The Bayesian estimator for a quadratic loss

criterion is then the mean of the posterior distribution and is given by

¯̄β = (Σ̄−1
β + X ′X/σ2)−1[Σ̄−1

β β̄ + (X ′X/σ2)b] (18)

where b is the OLS estimator in (2), see e.g. Judge et al. (1985, pp. 286). If

the prior mean is set to zero, β̄ = 0, then ¯̄β simplifies to

¯̄β = (σ2Σ̄−1
β + X ′X)−1X ′y. (19)

On the other hand, the generalized ridge estimator (5), rewritten in terms of

the original variables, is given by

β̂GR = (PKP ′ + X ′X)−1X ′y, (20)

where K = diag(κ1, . . . , κp), and the ridge estimator (3) by

β̂R = (κIp + X ′X)−1X ′y. (21)

Comparing these estimators, it is clear that the Bayesian estimator (19) is

identical to the GR estimator (20) for the prior covariance matrix Σ̄β =

σ2(PKP ′)−1, and identical to the ridge estimator (21) if Σ̄β = (σ2/κ)Ip. Thus,

in the generalized ridge case, the prior distribution that corresponds to a par-

ticular choice of K is N(0, σ2(PKP ′)−1), where the covariance matrix is in

general not diagonal. The prior distribution that corresponds to a particular

choice of κ in the simple ridge case is N(0, (σ2/κ)Ip), with diagonal covariance

matrix. In both cases, however, any marginal distribution of the prior will be

normal with mean zero and some variance v2
i , say. In the simple ridge case,

we have v2
i = σ2/κ, and in the general case, v2

i is a function of σ2, κ1, . . . , κp,

and of the eigenvectors of X ′X.

This discussion now motivates the choice of the prior for the i-th compo-

nent, N(0, v2
i ) for the weight function w(θ) in the loss function (17). In fact, a
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Bayesian estimator with a quadratic loss criterion minimizes the expectation

of the mean squared error, where the expectation is taken with respect to the

prior distribution. The minimizer is the mean of the posterior distribution, see

e.g. Judge et al. (1985, pp. 139). Thus, considering w(θ) in (17) as the prior

for the i-th component has a natural Bayesian interpretation.

Table 1 reports the values of L in (17) when the weight function N(0, v2
i ) is

used. The variance v2
i reflects the precision of the prior information about the

parameter. If this information is extremely imprecise (vi = ∞), this could be

interpreted as a noninformative prior and we use a uniform density over the

interval (0,1). We see that the HK estimator is for each choice of vi dominated

by some (τ, γ)-estimator. If prior information is precise, then small values of γ

are preferable. If it is diffuse, then γ = 1 is best. Note that for some estimators

with γ = 1, the value of L is smaller than one for every choice of vi, which

implies that there is an efficiency gain no matter how precise or imprecise prior

information. However, the larger the value of τ , the closer the estimator will be

to OLS and the efficiency gains are rather small. Under a noninformative prior

(vi = ∞), the best choice for γ and τ is 1 and 8, respectively, in which case

L = 0.9817 and the average efficiency gain is 1.83%. One could still refine the

optimization of L with respect to τ , but it seems that τ ≈ 8 is a conservative

but good choice if prior information is diffuse.

4 Conclusions

The estimator (16) outperforms the Hoerl and Kennard (1970) estimator in

terms of the weighted quadratic loss criterion. However, the choice of (τ, γ)

has to made according to the prior information. If this information is diffuse,

then the estimator with (8, 1) is best, although efficiency gains will be small.
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