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incorporate the decision-making context of any constrained invest-

ment portfolio into the performance evaluation process. The main

feature that distinguishes our methodology from conventional perfor-

mance evaluation methods is that it tackles the performance at the
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objective(s) as well as the prescribed investment constraints, and

then evaluate all these portfolios according to (a) selected perfor-

mance measure(s). The performance of the investment portfolio is

calculated simultaneously and then evaluated against the perfor-

mance of this complete opportunity set. Consequently, our methodo-

logy extends the conventional performance metrics with the insights

into the performance of all opportunities that existed at the time of

the investment decision.
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Mathematical Notation

N the set of natural numbers
Q the set of rational numbers
Z the set of integer numbers including zero
Z+ the set of positive integer numbers
R the set of real numbers
R+ the set of positive real numbers
C the set of complex numbers

‖x‖ the length (norm) of vector x in L2 space

∼ is distributed
E [·] the expectation operator
D [·] the dispersion operator
cov(X,Y ) the covariance of random variables X and Y

Xn
P−→ X the convergence of a random variable Xn in distribution to X

U(a, b) the uniform distribution on an open interval (a,b)
E(λ) the exponential distribution with the parameter λ
N (µ, σ) the normal distribution with mean µ and standard deviation σ

MC the Monte Carlo method
QMC the quasi-Monte Carlo method

fr(·) the frequency density function
Fr(·) the cumulative frequency density function
fr∗(·) the estimate of a frequency density function
Fr∗(·) the estimate of a cumulative frequency density function
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Chapter 1

Introduction

1.1 Domain of the Study

In this dissertation we study the performance evaluation of constrained port-
folios. Since indexes of financial markets can be viewed as portfolios, we also
address the domain of describing (the performance of) financial markets.

Since seminal papers of Treynor (1965), Sharpe (1966) and Jensen (1968),
(1969) much theoretical and empirical research on performance measurement
has been done. Performance evaluation is an assessment of the investment
returns against the return on some benchmark or target, or against returns
of (market) peers. The subsequent identification of sources of the evaluated
investment return is named performance attribution. Thus, we try to answer
questions such as: Is the activity well done?, Who is the best? and Why did
we achieve such a result?

One of the main motives for academic studies in this area is that the per-
formance of professional investors provides an excellent test for capital mar-
ket efficiency. On the other hand, professional investors regard performance
evaluation as an activity helping to value specific investment decisions and
identify the determinants of the risks and superior returns. The development
and evolution of performance measures occur together with the development
of the theory of financial markets and asset pricing: the development of the
Capital Asset Pricing Model (CAPM) calls upon several one-factor perfor-
mance measures such as Treynor’s measure (1965), Sharpe’s ratio (1966) and
(1994), Jensen’s alpha (1968) and (1969), the M2 measure by Modigliani &
Modigliani (1997). The development of the Arbitrage Pricing Theory (APT)
led to multiple-factor measures by Connor & Korajczyk (1986), Lehmann &
Modest (1987), Chen, Copeland & Mayers (1987). Recent advances in Value-

15



16 Chapter 1. Introduction

at-Risk methodology and downside risk stimulate the development of alter-
native metrics. For further information on the contemporary techniques for
performance evaluation and attribution we refer to the comprehensive book of
Amenc & Sourd (2003), which provides an excellent overview of contemporary
measures and covers the evaluation process in detail.

Despite a broad variety of performance measures the basic evaluation pro-
cedure is common for all measures: In the first stage, an appropriate bench-
mark or a model portfolio is selected. The choice often is determined by an
asset pricing model. In the second stage, we calculate the relative perfor-
mance of the managed portfolio or peer group of investments with respect to
this benchmark. On the basis of these relative values we build the ranking
and carry out performance attribution.

A financial market description reflects the most important aspects of the
underlying market performance assessing the market parameters and rela-
tions among them qualitatively or quantitatively, and then describing these
parameters and relations in a condensed, standardized form.

Financial markets can be described in different ways. A widely used ap-
proach for describing financial market dynamics is the use of indexes. For
many markets and segments of these markets, indexes are available: if we
wish to study the development of a market (or a market segment), we study
the appropriate market (or segment) index. A flourishing industry of index
providers exists, delivering standardized indexes (be it that different providers
generally use different definitions and standards). The choice of an appropri-
ate index has developed into a fine art. Also, providers develop tailor-made
indexes for individual clients.

Widespread establishing of financial indexes started in the 1960th. In-
dexes incepted at that time are capitalization-weighted and consist of country-
specific large blue-chip companies. The boom on Asian markets in the 1980th
lead to the development of different emerging market series, e.g. MSCI Emerg-
ing Market Indexes (1987). In 1992 S&P, in cooperation with Barra, started
the Growth and Value subsets of S&P US equity indexes. The main aim
was to replicate various investment styles of active portfolio managers. The
MSCI followed with introducing in 1997 the Value&Growth indexes for major
developed and emerging countries. In the same year the Dow Jones started
its Country Style indexes, which provide coverage of the growth and value
segments of the US and different European markets. The more recent ad-
vances are the introduction of free-float factors (e.g. S&P, MSCI, Deutsche
Börse in 2002), inception of enhanced equity style indexes (e.g. 9 style in-
dexes based on the Morningstar’s style box by Morningstar in 2002; Global
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Value and Growth Index Series by MSCI in 2003), comprehensive hierarchical
coverage of (sub)-industries, industry groups, sectors, country markets, and
geographical regions (e.g. All Country Sectors by MSCI in 2002). Overall,
the major driving force is the intension to provide portfolio managers and
investors with better benchmarks tailored not only for market descriptions
but also for adequate evaluation of portfolio performance.

The attractiveness of indexing for describing financial markets dynamics
has the following reasons:

• Indexes provide the ultimate summary of markets. An index condenses
all investor sentiments toward companies traded on the market into a
single value;

• Standardization. By indexing a market we “standardize” the market
development. The comparison of different markets or market segments
is easy to perform;

• Indexes are considered to be good substitutes for the market portfolio.
With the development of quantitative methods for optimal investment
choice and asset pricing models, the concept of “market portfolio” has
gained importance. Often, a properly built index is used as a proxy for
the market portfolio.

However, the strong side of indexing is at the same time its weak site: An
index or any other average by definition summarizes the price dynamics of
individual financial assets and only shows part of the vast amount of infor-
mation available. The information which is hidden by the use of aggregate
indexes is potentially useful.

In the next section we provide the motivation and the main research issues
discussed in this thesis. Section 1.3 summarizes the original contributions of
our study and Section 1.4 outlines the structure of the thesis.

1.2 Motivation

In conventional performance evaluation methods, a portfolio performance
metric is calculated and evaluated either in absolute sense or with respect
to a benchmark or a peer group. In practice, however, there can be a discrep-
ancy between the universe used for portfolio construction, and the universe
underlying the benchmark portfolios or peer group. As a benchmark usu-
ally some market index is adopted. On the other hand, portfolio managers
are often restricted to specific asset classes and geographic regions; they may
face constraints (some of them institutionally imposed) on the amount of
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individual investments or investment classes (Henceforth we call such a man-
ager’s environment of an investment a decision-making context). Therefore,
the chosen benchmark may not match with the universe used for portfolio
construction and the evaluation will be flawed. A similar discrepancy may
exist between an evaluated portfolio and peers.1

In addition, the insight obtained by comparison to a benchmark or to a
few alternative portfolios is limited. Relative performance values obtained
by such a comparison do not reflect the full range of opportunities available
under specific investment constraints on the market and, hence, attribution
of manager’s decisions in the context of a given investment is difficult.

Finally, the definition of investment mandates and constraints will in-
fluence the investment performance. We may then be interested to know
what the impact of a no-short-selling constraint or an imposed Value-at-Risk
constraint is on the performance of the managed portfolio. However, using a
benchmark or a peer group, the effect of investment guidelines and constraints
cannot be evaluated.

These problems are well recognized across the financial community.2

In this dissertation we develop a methodology, which addresses the issues
discussed above while taking account of the decision-making context within
the performance evaluation process.

1.3 Contribution of the Study

This thesis contributes to the two areas: new theoretical ideas for modelling
investment decision-making contexts, and practical applications of these ideas
for financial market descriptions and performance evaluations.

In the first area our contributions are the following.
Firstly, in this thesis we present a conceptual framework, which allows to

incorporate the decision context of any constrained investment into the perfor-
mance evaluation process. The main feature that distinguishes our methodol-
ogy from conventional performance evaluation methods is that it tackles the
performance at the decision-making level: the portfolio weights. We consider
all possible portfolios that can be constructed given the specific investment
objective(s) as well as the prescribed investment constraints, and then eval-
uate all these portfolios according to (a) selected performance measure(s).

1We discuss these issues in Chapter 2 in detail.
2For example, in 2002-2004 Hewitt Bacon & Woodrow developed the SimIAn (Simulated

Investment Analysis), an analyzing and reporting tool for performance evaluation and risk
attribution of investment processes via random portfolios.
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Consequently, the performance of asset managers can be adjusted for their
specific investment objective(s) and constraints and, hence, the conventional
evaluation methodology can be extended with “performance-to-possibilities”
insights. Our framework is not limited to specific performance measures. On
the contrary: it is suitable for almost any performance measure or a com-
bination thereof. Moreover, we leave the choice of the relevant performance
attributes to the evaluator who may choose one or more performance measures
depending on the performance question(s) to be answered.

Secondly, we show how institutional, legal and self-imposed investment
constraints can be translated into constraints on asset weights and how we
can formalize the description of investment decision contexts and represent
them as polyhedra in the continuous asset weight space. This formalization
allows us to use the tools of geometry and linear algebra for the analysis of
investment contexts.

Thirdly, throughout this thesis we develop mathematical tools for work-
ing with various investment contexts in the continuous asset weight spaces
(i.e. continuous portfolio spaces). Obviously, the portfolios and benchmarks
we are dealing with on financial markets are discrete. On the contrary, the
continuation is the standard approach in most of the mathematical studies,
and, hence, many mathematical tools were elaborated over time for analyzing
continuous objects. Using the continuity, we provide theoretical ideas which
link investment contexts and performance evaluation. In particular, we show
that the performance evaluation via random portfolios (or via a random in-
dex) represents a special case of evaluation using decision-making contexts,
and we also provide an accuracy estimation of such a performance evaluation
et cetera.3

Applying our framework and the corresponding methodology, we con-
tribute to the following topics.

Firstly, using the methodology developed throughout this thesis, we in-
troduce a new way of describing market dynamics through the portfolio op-
portunity perspective. Instead of focusing on only one portfolio, an index,
our view provides a comprehensive perspective on the performance of the va-
riety of portfolios that can be formed given a specific opportunity set and
constraints. Thus we obtain a broad view on opportunities available on a
specific market. We can also study the dynamics of the portfolio opportunity

3The evaluation of mutual funds using random portfolios is discussed in Friend, Blume
& Crockett (1970) (Elton, Gruber, Brown & Goetzmann (2003) also discuss in Chapter 24
the results of Friend et al.). The random performance index was introduced by Cohen &
Fitch (1966).
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set over time. Observed statistics are locations of the distributions, trend,
homogeneity of performance values, the quantile in which the index plots, as
well as the stability of this quantile over time et cetera. As we illustrate in
Chapter 6, our descriptions of market dynamics have the power to provide
valuable insights for investors and portfolio managers.

Secondly, in the area of evaluating the performance of constrained in-
vestments, our methodology provides a natural way to put the absolute and
relative performance in the perspective of a specific decision context (i.e. in-
vestment mandate, market and business environment) in which the evaluated
manager operates. Evaluating performance, the consideration of decision-
making contexts extends the conventional metrics with the distributions of
performance values for all alternative portfolios with respect to a given per-
formance metric. Such frequency distribution functions can be used for the
classification of manager’s professionalism by subdividing the possible perfor-
mances into areas, calculating the percentile as well as providing the infor-
mation about general trend and dispersion of distribution widths over time,
and helping to analyze the influence of various constraints on the exposure
of portfolio opportunity set toward performance metrics. In addition, we can
evaluate the persistence of a portfolio performance not only with respect to
the underlying benchmark, but also with respect to the corresponding oppor-
tunities (e.g. looking at the relative percentile values) et cetera.

1.4 Thesis Organisation and Outline

The structure of this thesis and the interdependence of the material are shown
in Figure 1.1.

Chapter 2 discusses typical problems encountered by performance evalua-
tion of an investment using a benchmark or a peer group first. Afterwards we
present an idea how we can bypass these problems by incapsulating the invest-
ment decision context into the performance evaluation. Developing our idea,
we formulate a new qualitative framework, which extends the performance
evaluation process with investment-specific requirements and which allows to
calculate the distribution(s) of performance values for all alternative portfo-
lios. The framework and the associated methodology are illustrated with an
example. Finally, we list the advantages of our methodology.

Aiming to incorporate the investment decision context into the perfor-
mance evaluation, we need to define such contexts formally. Chapter 3 starts
with the characterization of different kinds of institutional, legal and self-
imposed constraints that we encounter in an investment context. We catego-
rize the constraints and specify how most common types of restrictions can
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Chapter 1
Introduction

Chapter 2
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Chapter 3
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Chapter 4
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Performance Distributions

Chapter 5
Numerical Estimation of

Performance Distributions

Chapter 6
Market Dynamics from the
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Chapter 7
Performance Evaluation

Using the Portfolio

Opportunity Universes

Figure 1.1: The structure of the study. The lines between chapter blocks define the
interdependence of the material.

be translated into constraints on asset weights. Based on the asset weights
constraints we formalize the description of investment contexts (we call them
opportunity sets) and specify the most common kinds formally.

Chapter 4 is devoted to the derivation of explicit analytical formulae for
each of our standard opportunity sets. For a given portfolio opportunity set
and a linear performance measure we will show how to derive the (cumu-
lative) distribution function, which calculates for any performance value its
relative frequency among feasible portfolios. Furthermore, we consider the
computational complexity of such density function calculations.

In Chapter 5 we discuss how to numerically estimate the frequency distri-
bution function in case of a very complicated set of investment constraints,
especially for non-linear constraints. We review various techniques to form
a portfolio opportunity set sample, their convergence speed and efficiency.
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Additionally, we consider how quality of estimation can be calculated.
In Chapter 6 we apply our framework for calculating frequency distribu-

tions with respect to various return and risk metrics in order to provide a
new way of looking at markets and of describing their dynamics over time.
In particular, we illustrate how our methodology can be used for providing
enhanced market descriptions of the blue-chip segment of the German stock
market as represented by the DAX index over the last 14 years.

Chapter 7 demonstrates how portfolio opportunity sets can be used for
the evaluation of professional investment managers. Firstly, we consider how
a standard evaluation procedure can be extended through the formation of
portfolio opportunity set distributions. Afterwards, we consider a very com-
mon case when a manager is restricted by a tracking error constraint. We
present several applications of how frequency distributions for such an op-
portunity set can be used to monitor portfolio managers, to calculate the
opportunity set-adjusted information ratio et cetera.

Chapter 8 summarizes the main ideas and conclusions of the previous
chapters and provides directions for future research.



Chapter 2

General Framework for
Performance Evaluation

2.1 Why a New Approach

Essentially, performance evaluation of managed portfolios of financial invest-
ments consists of two parts:

Firstly, one estimates the performance of the evaluated, e.g. managed,
portfolio with the performance that could have been obtained by investing
in alternative portfolios with similar characteristics. Reformulating this idea,
the portfolio is evaluated with respect to possible alternative portfolios, which
are in the line with the investment objective and meeting the specific invest-
ment constraints. Also the absolute performance of the evaluated portfolio
with respect to a risk-free rate is considered. Calculating these metrics, a
clear picture emerges whether the aimed investment objective is met or not.1

Secondly, one looks back at all investment decisions made prior to and
during the investment period which is evaluated. In simple cases, these are
the capital allocation among different asset classes, country and sector al-
location, asset selection and definition of an investment portfolio as well as
the reshuffling strategy. By looking back at these decisions, one would like
to evaluate the optimality of each of the decisions made and to identify the
sources of the over- or underperformance.2

The crucial observation is that conventional evaluation methods discrim-
inate between

1We can characterize the first step through the simple question: How did we do?
2In this step we are interested in answering the question: What decisions did we take,

why did we make these decisions and what were the consequences?

23
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• What portfolios are in the opportunity set, aiming at the specific invest-
ment objective and satisfying the specific constraints

and

• What portfolios could be observed and used for the measurement of
investment performance and the evaluation of the decisions made.

In other words, a strong differentiation is made between the universe used for
portfolio construction and the universe used for the performance evaluation.
Whilst by composing the portfolio the complete opportunity set of invest-
ment alternatives is considered, in the latter case a very restricted, general
representation of this opportunity set is used: a peer group or (a) benchmark
portfolio(s).

Both representations, through a peer group or through a benchmark, have
several problems caused by the reduction of the original opportunity set.
Evaluating the performance with the help of a peer group, one faces the
following difficulties:

• Finding homogeneous investments is difficult : Each investor has his own
objective(s) while imposing specific investment constraints. So, finding
a sufficient number of similar investment portfolios for comparison is
problematic. As one pursues a more specific investment portfolio, e.g.
concentrated into an industry or a sector, it is often impossible to find
even a few peers;

• Peer grouping is subjective: The construction of a peer group is always a
trade-off between similarity of alternatives to the evaluated investment
portfolio and the breadth of the peer group. So, creating a peer group
is necessarily subjective;

• Lack of reliable information about peers: Even if similar investment port-
folios could be found, it is almost impossible to get the insights into these
alternative portfolios such as portfolio composition, reshuffling strategy
et cetera. So the peers can usually be used for the evaluation of relative
overall performance only;

• Survivorship bias in peer groups: Looking at the historical performance
of peers, one considers more or less successful investment portfolios only.
Poor investment portfolios drop out of the scene, so one often leaves the
poor results out of the performance analysis. To get an idea of how
substantial the bias could be, we refer to Malkiel (1995), for example.

Bailey (1992) discusses the peer group approach in detail (in his own words
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“manager universes”) and points out which problems are associated with this
approach. Consequently, he outlines the essential criteria for a good bench-
mark, which could be considered as an appropriate standard metric for per-
formance evaluation of an investment portfolio and/or of a manager.

For such a benchmark portfolio that completely or partially satisfies these
criteria, one can use either a custom-built benchmark portfolio or an appro-
priate standard index. Still, the benchmark approach faces several problems:

• It completely ignores the managerial input : For example, we may be
interested to know what the impact of a no-short-sales constraint or
an imposed Value-at-Risk constraint is on the performance of the man-
aged portfolio. Clearly, using the benchmark approach, the investment
guidelines (e.g. different types of constraints as well as their sensitivities)
cannot be evaluated;

• The insight obtained by comparison to a benchmark or to a few alterna-
tive portfolios is limited : Relative performance values obtained by such
a comparison do not reflect the full range of opportunities available un-
der specific investment constraints on the market and, hence, manager
decision freedom(s) due to an individual investment problem.

Facing these problems, one could combine, of course, both the peer group ap-
proach and the benchmark approach but most of the listed problems will not
disappear. The reason is that all problems raised by these two approaches
have essentially only one source: the substitution of the universe used for
portfolio composition through a benchmark or a peer universe. To overcome
all these problems we need to go for a source of the problems itself. Essen-
tially, the solution is to incapsulate the investment decision context into the
performance evaluation.

We developed a qualitative framework, which extends the performance
evaluation process with investment-specific requirements. It should be noted
that the framework does not replace the existing performance measures and
techniques but extends the evaluation process by incorporating information
from different elements of the design stage of the investment. For example,
it is easy to combine our framework with evaluation against a benchmark
and/or against a peer group. So we can profit from the strengths of standard
approaches. And the analysis provided by the framework helps to surpass the
problems of the standard approaches. In fact, we strongly recommend such
a combined performance evaluation method. (Consequently, definition of a
good benchmark as well as selection of an appropriate performance evaluation
metric stays essential for a reliable, high-quality performance analysis.)
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Introducing our framework, we proceed as follows. In the next section
we outline the general idea of the framework and overview its structure first.
Afterwards we provide a comprehensive description of building blocks and in-
formation processing in the framework. Section 3 contains a stylized example
of an investment mandate. We apply our framework and the corresponding
methodology to evaluate the example investment and present the performance
from the portfolio opportunity perspective. Section 4 summarizes benefits
from using our methodology.

2.2 Procedural Framework

2.2.1 Ideas behind the methodology and the general frame-
work structure

The crucial observation is that in the existing evaluation approaches the infor-
mation available on the earlier stages of the investment process (e.g. required
asset allocation among different asset classes, tolerated level of risk) is utilized
in indirect ways only, or not at all. Therefore, we propose a new procedural
framework for performance evaluation, which utilizes the following idea:

Considering all possible alternative portfolios that can be constructed
given the specific investment objective(s) and also given the prescribed
investment constraints, we evaluate all these alternative portfolios
according to (a) selected performance measure(s). Simultaneously
the performance of the investment portfolio is calculated and then
evaluated against the performance of this complete opportunity set.

In other words, instead of limiting ourselves to (a) benchmark(s) or a peer
group we propose to explore the whole set of portfolio formation opportuni-
ties. (Henceforward we call such a set the portfolio opportunity set.) Instead
of confining ourselves to evaluating the performance of the investment against
a benchmark or a peer group performance, we estimate the distribution of the
performance values (e.g. distribution of realized returns, and/or of variances,
and/or of Sharpe and information ratios etc.) of all portfolios from the rele-
vant opportunity set. (Henceforward we call such portfolios also the feasible
portfolios.)

The development of these distributions yields a picture of the variety of
portfolios that can be composed under specific investment requirements, i.e.
all possible decision alternatives available to a manager at the portfolio design
time. So we can estimate the optimality of the selected portfolio or strategy.
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The development of the dispersion of these distributions provides a picture
of the development of the “feasible” market dynamics over time. In addition,
it offers the possibility to check the persistence of the manager’s or of the
strategy selection ability.
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Figure 2.1: General Framework for the Evaluation of Individual Investment Perfor-
mance: Main Building Components

The general framework shown in Figure 2.1 embraces this general idea
into a “skeleton” model and formalizes thereby our approach to performance
evaluation using all portfolio opportunities. In the figure the rounded rectan-
gles schematically represent the main building blocks of the framework. The
thick arrows display the information flows among these blocks, defining the
sequential order of tasks.

Each evaluation process consists of seven building components subdivided
in three consecutive phases:

PHASE I: Formulation of investment requirements;

PHASE II: Determination of the portfolio opportunity set;

PHASE III: Analysis of investment performance.

We consider each of these three phases in detail in the next sections.
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2.2.2 Phase I: Formulation of investment requirements

Considering an investment process as a managed, rational activity, we start
by setting out what a specific investment should achieve and what the con-
straints are under which it must operate. At the early stage of definition
such descriptions are often conceptual and informal. For example, we specify
only the level of return we target at and level of risk(s) we could tolerate.
After the initial feasibility study, the detailed investment objective report is
produced. This document specifies precisely the investment objective(s) and
relevant (portfolio) attributes, e.g. the investment horizon, client’s constraints
on asset allocation, limits of exposure to each source of risks, regulatory body
requirements, and reporting procedure. For example, the investment portfolio
seeks to outperform the one-year LIBOR rate by 200 basis points investing in
governmental and corporate bonds with rating not lower than “A” et cetera.3

Such a comprehensive investment objective report gives a portfolio man-
ager a concrete mandate for the investment implementation. Consequently,
aiming to incorporate the managerial context into performance evaluation,
the report is the initial point we start with. In Figure 2.1 the issue of such a
mandate is reflected in the framework by the “Definition of Individual Invest-
ment Objective(s) and Constraints” block. For performance evaluation such
a comprehensive investment specification is important for two reasons.

Firstly, it defines formally and unambiguously the investment objective(s)
simultaneously by establishing performance evaluation guidelines. (The guide-
lines specify a benchmark and performance metrics along with a measurement
procedure and reporting standards.) Therefore, in our framework we reflect
the existing practices through derivation of the “Setting of Performance Cri-
teria” block from the “Definition of Individual Investment Objective(s) and
Constraints” component. Because the framework does not restrict us to any
performance metric, we consider by “Setting of Performance Criteria” block
the measures that are established in an investment specification report. Addi-
tionally, we can consider any additional performance measure(s), which can be
useful for internal portfolio management as well as for external controlling of
the manager’s activities. The latter measures are also identified and specified
in the “Setting of Performance Criteria” step. For example, the prescribed
performance measure is the realized return and we may be also interested in
the Sharpe and the information ratios for the investment. Overall, this step
consists of the usual setting of performance measures.

Secondly, an investment objective report determines the opportunity set,

3For more details on a formal, quality-based investment cycle we refer to Ho (1995), for
example.
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which is used by a portfolio manager to compose a portfolio by implementing
the investment. So if we want to follow our idea and evaluate a manager
against his complete opportunity universe, then we need to consider the same
investment input as the manager does. Therefore, in the second step of Phase
I we translate the given investment guidelines into certain types of constraints,
which formally describe the portfolio opportunity set. Such a formal descrip-
tion is represented through the “Specific Constraints” block. Essentially, the
description consists of:

• screening constraints, which select financial assets appropriate for the
specified investment;

• selection constraints, which impose a weight constraint αi ≤ wi ≤ βi

on the investment in any feasible financial asset. Additionally, we can
restrict some combinations of assets through αAs ≤∑j∈As

wj for As ⊆
i = 1, 2, . . . , n and/or

∑
j∈Bt

wj ≤ βBt for Bt ⊆ i = 1, 2, . . . , n.

(The detailed description of different constraint types and their representation
is discussed in the next chapter.)

2.2.3 Phase II: Determination of the portfolio opportunity set

The major task in Phase II is to apply the constraints from the previous step
on a financial asset universe and create a formal description of the investment
opportunity set.

The “Full Coverage of the Specific Market” block represents the fast range
of financial assets available for investment on a specific market. For exam-
ple, if we consider the German market, these assets are the 399 securities of
the Prime Standard segment4 plus shares of the General Standard segment,
call/put options written on any of these shares, exchange-traded certificates,
future contracts, swaps et cetera. The infinite number of portfolios, which
could be composed from these assets, also belongs to the full set of invest-
ment alternatives available on the German market. Clearly, many financial
assets and portfolios from such a full set can be inconsistent with the in-
vestment objective and constraints. So we translate such a full set into a
“Constrained Set of all Feasible Portfolios” in two consecutive steps.

In the first step we apply the screening constraints from our formal con-
straint set. The screening constraints work on the asset level only. Conse-
quently, we select from the full set the financial assets that are appropriate
for the evaluated investment. For example, if a fund is constrained to invest
in German equities from the Prime Standard segment exclusively, then in this

4As of 15 September 2003.



30 Chapter 2. General Framework for Performance Evaluation

first step we reduce the full set of German financial assets and portfolios to
the 399 securities comprised in this segment. (Henceforward we call such a
set of assets appropriate for investment the feasible asset set.)

In the second step we apply the selection constraints from the “Specific
Constraints” set. Essentially, this is a transformation of any selection con-
straint into concrete constraints on the feasible asset set from the previous
step. For example, if an additional constraint is to limit the amount to be
invested in shares of any one issuer to 10% of the capital and short sales are
prohibited, then the formal representation of these constraints in the “Specific
Constraints” is 0 ≤ wi ≤ 0.1 for any stock i. And we translate this constraint
into the following constraints defined on the feasible asset set:

0 ≤ wi ≤ 0.1 ∀i = 1, 2, . . . , 399 and i ∈ Prime Standard (2.1)
399∑
i=1

wi = 1.0 (2.2)

Constraints (2.1) and (2.2) define the formal description of the portfolio op-
portunity set of our sample investment. Overall, such a description is the
result of Phase II. In Figure 2.1 it is represented through the “Constrained
Set of all Feasible Portfolios” block.

2.2.4 Phase III: Analysis of investment performance

Given the set of all feasible portfolios, we can actually start the performance
evaluation. Phase III is threefold.

Firstly, we calculate the actual performance of the investment portfolio
and all additional benchmarks using the performance criteria specified in the
“Setting of Performance Criteria” block. An additional input for this step is
prices and various statistics of feasible financial assets. We can use different
type of these data such as ex-post time series, forecasts for a specific time
interval, bootstrapped data etc. In general, the evaluation in this step is
not different from the standard one we see in any decent textbook about
investment.

Secondly, we estimate the distribution of performance values for every
criterion from the “Setting of Performance Criteria” block over the whole
feasible portfolio set defined in Phase II. In other words, we calculate the
performance of every possible portfolio from the portfolio opportunity set,
and then create the distribution of these performance values. We repeat such
a distribution estimation for all specified performance criteria. Clearly, the
main problem is that while the number of feasible financial assets is finite,
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the number of feasible portfolios that can be composed from these assets is
uncountable infinite. How to estimate the distribution for a feasible portfolio
opportunity set with respect to a performance measure will be discussed in
detail in the next two chapters.

Finally, we plug the performance results of our first step into the calcu-
lated distribution(s). Further analysis is very similar to the analysis on a
peer group. Of course, the crucial difference is that we evaluate the perfor-
mance of a (managed) portfolio or a strategy against its opportunity universe.

The framework and the corresponding methodology of evaluation from the
portfolio opportunity perspective were successfully applied in different finan-
cial areas. Part III of the thesis provides a variety of real-world applications
such as financial market descriptions, cross-sectional comparison of different
industries, evaluation of investments under constraints et cetera.

The next section illustrates our framework and the methodology with an
example.

2.3 Evaluation of an example investment using the
framework

2.3.1 Investment mandate and its implementation

Let us consider the following investment mandate:5

Investment Objective:

To invest in equities issued by companies incorporated in Germany
and belonging to the “Banks” industry sector as classified by the
Frankfurter Wertpapierbörse (FWB).

Investment Guidelines:

• Companies should be incorporated in Germany;

• Only shares of companies included in the Prime Standard seg-
ment of the Frankfurter Wertpapierbörse (FWB) and traded on
the FWB are eligible for investment;

• Only securities which average market capitalization is greater
than e 1 billion, are eligible for investment;

5Please note that this example is provided for the purpose of illustration only. Therefore,
the financial asset space is restricted to shares of a few companies, and the diversification
effects, e.g. cross-countries and cross-sectional, are not taken into account.



32 Chapter 2. General Framework for Performance Evaluation

• Companies should have at least 20% of share capital in a free
float;

• 100% of the capital should be invested in stocks;

• Short sales are precluded.

The performance of the investment portfolio should be reported
monthly. The reported statistics are:

• Portfolio structure;

• Absolute performance over the month (in %);

• Sharpe ratio (risk-free rate is LIBOR 1M).

Given this concrete investment mandate, we assume a portfolio manager de-
ciding to use a simple passive strategy investing into feasible assets according
to their market capitalization. We will illustrate how our framework is used
to evaluate the manager’s performance under the defined mandate during a
sample period of one month, being December 2003.

2.3.2 Phase I: Formulation of investment requirements

Definition of Individual Investment Objective(s) and Constraints

Our sample mandate is a concrete implementation of the “Definition of Indi-
vidual Investment Objective(s) and Constraints” block. So the mandate text
is a starting point for the evaluation. It should be noted that we do not need
to perform any steps in this block in our sample. In practice, however, we
process at this stage a vaste range of different documents and guidelines (e.g.
legal, tax-related, company-specific) in order to compile a description similar
to one given in 2.3.1.

Setting of Performance Criteria

The major task in this block is to identify the required performance metrics.
Clearly, these are:

• Absolute performance over December 2003 (in %);

• Sharpe ratio with respect to LIBOR 1M at the end of December 2003.

The information about the portfolio structure is used to report the specific
portfolio implemented by the manager. We will use this metric at a later
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stage.

Specific Constraints

By the implementation of this block we translate the restrictions given in the
investment mandate into constraints, which formally describe the manager’s
opportunity set (i.e. alternatives available to the manager for investment un-
der our mandate). In our case the imposed investment constraints are:

Screening constraints

1. Companies should be incorporated in Germany;

2. Only stocks, common and preferred, are eligible for investment;

3. Only shares of companies included in the Prime Standard segment of
the Frankfurter Wertpapierbörse (FWB) and traded on the FWB are
eligible for investment;

4. Only stocks classified by FWB as belonging to the “Banks” industry
sector are eligible for investment;

5. Only securities which average market capitalization is greater than e 1
billion, are eligible for investment;

6. Companies should have at least 20% of share capital in a free float;

Selection constraints

7. 0 ≤ wi ≤ 1 where wi is the capital invested in any company i feasible
under constraints 1–6.

Using these constraints we will derive a formal description of the opportunity
set for our sample mandate in the next phase.

2.3.3 Phase II: Determination of the portfolio opportunity set

The major task in Phase II is to impose the formal constraints from the
previous step on a financial asset universe and to create a formal description
of the investment opportunity set under the concrete mandate.

Full Coverage of the Specific Market

The “Full Coverage of the Specific Market” block in our case represents about
70 thousands financial instruments traded on German exchanges at the end
of November 2003. This vast range includes 4,817 domestic and 6,208 foreign
ordinary shares or shares with restricted transferability for equities; 16,912
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domestic and 1,147 foreign bonds, indices, warrants on equities, options and
futures. In addition, the market offers 5,151 domestic and 989 foreign bonds,
a few thousands of mutual funds and ETFs plus a huge number of diverse
derivative instruments.6

Constrained Set of all Feasible Portfolios

Firstly, we apply the screening constraints 1–6 from our constraint set.
Applying constraint#1 to the full financial instrument set, we reduce the

set to the 4,817 domestic stocks, subscription rights and stocks-featured se-
curities plus 16,912 domestic warrants, 5,151 domestic bonds et cetera. The
screening constraint#2 excludes all equity-based instruments, derivative in-
struments and funds but stocks. There were exactly 929 stocks traded in
different market segments at 1 December 2003. Constraint#3 restricts our
stock set to the 354 shares of the Prime Standard segment of the FWB. From
the remaining 354 shares only 5 stocks are classified as “Banks” (as specified
by constraint#4):

Code Share ISIN Free-float Market cap.

(in %) (in Mio e )

ARL AAREAL BANK AG DE0005408116 59.25% 525.28
HVM BAY.HYPO-VEREINSBANK AG DE0008022005 69.28% 8,390.84
CBK COMMERZBANK AG DE0008032004 74.20% 6,593.87
DBK DEUTSCHE BANK AG DE0005140008 100.00% 34,707.61
IKB IKB DT.INDUSTRIEBANK AG DE0008063306 51.23% 794.35

Constraint#5, which requires stocks with market capitalization larger
than e 1 billion, filters the Aareal Bank AG and the IKB Deutsche Indus-
triebank AG from the list. The remaining stocks, the Bayerische Hypo-
Vereinsbank AG, the Commerzbank AG and the Deutsche Bank AG, meet
constraint#6.

Secondly, we transform our selection constraint#7 into concrete constraints
on our three feasible assets. Essentially, we get the following constraints:

0 ≤ wHV M ≤ 1 (2.3)

0 ≤ wCBK ≤ 1 (2.4)

0 ≤ wDBK ≤ 1 (2.5)

wHV M + wCBK + wDBK = 1 (2.6)

6We refer to (Deutsche Börse Group 2004a) for a detailed overview of the full range of
financial instruments available on German exchanges.
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where wHV M , wCBK , and wDBK define the amount of capital invested into
shares of the Bayerische Hypo-Vereinsbank AG, the Commerzbank AG and
the Deutsche Bank AG correspondingly. Constraints (2.4)–(2.6) formally de-
scribe the portfolio opportunity set of our sample investment. Figure 2.2
represents this opportunity set graphically.
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Figure 2.2: Graphical representation of the portfolio opportunity set for the sample
investment mandate in R3 (left) and R2 (right). Each point in the
colored triangle defines a feasible portfolio; in the right figure the third
asset weight, wDBK , is defined as wDBK = 1 − wHV M − wCBK .

2.3.4 Phase III: Analysis of investment performance

Actual Performance of Investment and Benchmarks

Given the concrete manager’s investment implementation, we start the evalu-
ation with calculating actual performance through December 2003 using the
specified criteria.
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Figure 2.3: Structure of the manager’s portfolio on 28 November 2003(left), and on
30 December 2003 (right).
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Figure 2.3 shows the manager’s portfolio structure and weighting of the
feasible stocks over the evaluated period. Further prescribed criteria are the
absolute performance over December 2003 and the Sharpe ratio. Table 2.1
presents the required performance values for the manager’s portfolio together
with performances of the DAX

R©
index and the equally-weighted benchmark.

Realized Return (in % per period)

Portfolio or
Benchmark Dec-03 1 Year 2 Years 3 Years

Manager’s portfolio 7.49% 56.25% -16.08% -31.34%

DAX index 5.85% 37.08% -23.16% -38.37%

Equally-weighted 0.98% 63.10% -18.70% -42.79%

Risk (in % per month)

StdDev Sharpe ratio
Portfolio or
Benchmark 1 Year 2 Years 3 Years 1 Year 2 Years 3 Years

Manager’s portfolio 12.38% 13.19% 12.25% 0.3428 -0.0082 -0.0456

DAX index 7.53% 9.76% 9.17% 0.3609 -0.0863 -0.1283

Equally-weighted 17.17% 16.79% 14.84% 0.2999 0.0147 -0.0490

Table 2.1: Performance of our portfolio as of December 2003.

Essentially, this step implements the conventional performance evaluation
with respect to selected benchmarks and performance criteria.

Frequency Distribution(s) of all Feasible Portfolios

Afterwards, we calculate the distributions of performance values for every cri-
terion from our “Setting of Performance Criteria” section. Figure 2.4 shows
the estimated distributions. (For the time being, we skip the issue how to
calculate such a frequency distribution having a formal description of an op-
portunity set.)

As Figure 2.4 shows, the calculated frequency distributions provide a com-
plete description of the manager’s “playing field”. The advantages of combin-
ing the usual performance evaluation methods with the full range of available
investment opportunities are listed in the next section. Part II of the thesis
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Figure 2.4: Frequency distributions of the realized December 2003 return, in %,
(left), and of the Sharpe ratios over the same period (right) for our
sample investment opportunity set.

provides a variety of the real-world applications of the framework, which use
the proposed methodology for market description, performance evaluation et
cetera.

2.4 Advantages of the methodology

The key element of the proposed methodology is that it allows to incorporate a
given decision context into the evaluation process. Consequently, the defined
framework offers promising advantages in two areas.

Firstly, by incorporating information from the design stage of the in-
vestment, the framework provides a comprehensive view on the full range
of opportunities available under specific requirements and constraints. So the
framework is perfectly suitable for descriptions of a specific financial market
or a segment thereof.

Secondly, taking into account this full range of opportunities and simulta-
neously using the existing techniques, we can evaluate the performance of an
individual investment more precisely. Particularly, exploring the set of port-
folio opportunities, our approach gives us the following important insights:

• The framework provides a perspective on the ex post outcomes of the
variety of portfolios that can be formed given some opportunity set and
constraints. The outcomes may be measured in terms of the return real-
ized over some period as well as in terms of average returns, (downside)
risk measures and combined metrics such as the Sharpe or the informa-
tion ratio, for example. So the proposed methodology is superior with
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respect to a peer group because it compares to real possible alternative
investments and not to “synthetic” ones. In addition, the methodol-
ogy can provide information about the opportunity set portfolios in any
necessary perspective;

• Constructing an opportunity set of a specific market or of a segment,
the result is an “ehhanced” description of this financial market or seg-
ment. Since the framework does not restrict/enforce us to use any spe-
cific performance measure, we can describe the development of the mar-
ket/segment from different perspectives;

• We can analyze the influence of constraints on (i) the set of portfolio op-
portunities and on (ii) the outcomes (e.g. on the realized return and/or
on the Sharpe ratio distribution). Therefore, our methodology offers to
clients and institutions, which engage professional managers, a capabil-
ity to impose investment restrictions more rationally in terms of both
the portfolio opportunities and the outcomes. In addition, our approach
facilitates the estimation of the costs of any constraint, which the clients
might have formulated;

• In the conventional view, the quality of market representation by an
index (e.g. the AEX

R©
, the DAX

R©
or the IBEX 35

R©
) is assumed given,

regardless of the performance attributes considered. The new method-
ology helps to evaluate the market index itself vis á vis the portfolio
opportunity set. In particular, the location of the market index may be
plotted in the frequency distribution of the selected performance mea-
sure over the portfolio opportunity set. The quantile in which the index
plots, indicates how many (feasible) portfolios have outperformed the in-
dex in terms of the selected performance measure (realized return, e.g.).
In this way it can be judged, whether an index is representative for the
market under consideration or not.7

Additionally, by the evaluation of a specific investment our approach has
the following benefits:

• The framework facilitates to examine the relative performance system-
atically. The performance can be measured relative to (i) a benchmark,
(ii) a market portfolio, and above all relative to (iii) all portfolios in the
opportunity set. Depending on the distribution of performance values
of the portfolio opportunities, an outperformance of 1% point by an in-

7The adhered criterion for representativeness is not the degree of market coverage mea-
sured in terms of capitalization (the usual view) but the degree of the coverage of the
portfolio formation opportunity set in the selected performance measure.
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vestment portfolio over a benchmark may be either large or small, for
example;

• Given a set of ex-post specific characteristics of an investment portfolio,
our methodology determines portfolio compositions, which have also in-
duced these specific characteristics. In other words, we can determine
how much flexibility we have to deviate from the “norm” composition
without changing portfolio characteristics. (From ex-ante perspective
it defines what different portfolio compositions are expected to induce
these specific characteristics and how they expect to perform.)

2.5 Summary and Conclusions

Conventional evaluation methods strongly differentiate between the universe
which is used for portfolio construction, and the universe which is used for the
performance evaluation. Whilst by composing the portfolio we consider the
complete opportunity set, in the latter case we use a very restricted, general
representation of this opportunity set: a peer group or (a) benchmark portfo-
lio(s). It is well recognized that such a reduction of the original opportunity
set causes several problems.

Essentially, the solution is to incapsulate the investment decision con-
text into the performance evaluation. We developed a qualitative framework,
which extends the performance evaluation process with investment-specific
requirements. The main idea of the framework/methodology is to consider
all possible alternative portfolios that can be constructed given the specific
investment objective(s) and also given the prescribed investment constraints.
We evaluate all these alternative portfolios according to (a) selected perfor-
mance measure(s). Simultaneously the performance of the investment portfo-
lio is calculated and then evaluated against the performance of this complete
opportunity set.

The advantages of considering feasible portfolio opportunities for perfor-
mance evaluation are manifold. The key element is that we evaluate a given
investment with respect to the full range (distribution) of performances for
all available opportunities. The various benefits become more evident by em-
pirical investigations of stock market indexes, mutual funds, strategies etc as
presented in the third part of this thesis.

Discussing the framework, we skipped the issue of how to calculate such
a frequency distribution of opportunities having a formal description of an
opportunity set. The next three chapters are devoted to this question.





Chapter 3

Investment Opportunity Sets

3.1 Investment opportunities and constraints

Like other human activities, an investment process should be viewed in the
context of its environment. This environment affects the functionality of
the investment process by imposing various explicit and implicit restrictions.
Moreover, we consider the investment process as a managed, rational activ-
ity. So we can also impose several constraints in order to influence and guide
the investment process of interest. The consequence is that if we would like
to follow our idea and evaluate a manager against his complete opportunity
universe, then we need to consider all restrictions. In other words, all im-
posed constraints are necessary for describing the portfolio opportunity set for
investments.

In addition, we argue that the consideration of investment restrictions for-
mally expressed as constraints on asset weights provides a thorough description
of manager’s opportunity sets. The rationale behind this statement is the fol-
lowing. A portfolio manager receives a concrete investment mandate. Using
his knowledge, experience and available tools, the manager selects a portfolio
composition (and possibly a reshuffling strategy), back-tests and finally im-
plements his portfolio. The selected portfolio, which consists of specific asset
weights, is a final product of the manager’s decision process. Therefore we
can formally describe the opportunity set of any investment through certain
types of constraints on weights of financial assets.

Determined to represent portfolio opportunity sets through weight con-
straints, we look firstly in the next section on a general characterization of
investment restrictions. Then we list and classify the most common types of
investment constraints; each of these constraint types is translated into a cer-
tain weight constraint. Afterwards we consider mathematical representations
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of several common types of portfolio opportunity sets.

3.2 Common types of investment constraints

Considering sources of a manager’s or a portfolio investment restrictions, we
distinguish three different kinds of investment constraints (Spronk 1982):

• Hard constraints: These constraints are externally imposed and portfo-
lio managers have to respect them. The managers are obliged to choose
portfolios and strategies, which satisfy all of the hard constraints im-
posed. Examples of hard constraints are legal investment restrictions,
which governmental regulation bodies impose in order to force finan-
cial institutions to control financial risks. The restrictions formulated in
investment mandates also belong to this kind of constraints;

• Soft constraints: These constraints are self-imposed restrictions, which
should guarantee the quality of decision-making and secure/enlarge chan-
ces of achieving the investment objective or/and reducing the chances
of failure. The managers aim to respect such constraints but are not
obligated to do so. An example is the following soft constraint of the
Credit Suisse Japan Equity Fund (Credit Suisse Funds 2003a, Credit Su-
isse Funds 2003b):1

“The Fund will invest, under normal market conditions, at least 80%
of its net assets, plus any borrowings for investment purposes, in eq-
uity securities of companies located in or conducting a majority of
their business in Japan. This percentage requirement will not be ap-
plicable during periods when the Fund pursues a temporary defensive
strategy, as discussed below. The Fund’s 80% investment policy is
non-fundamental and may be changed by the Board of Directors (the
“Board”) of the Fund to become effective upon 60 days’ notice to
shareholders of the Fund prior to any such change. . .”;

• Game-type constraints: These constraints represent a special kind of
“enforced” self-imposed restrictions. The constraints are determined by
the intension of portfolio managers to take account of other participants,
e.g. investors, other portfolio managers. An example of a game-type
constraint is the rule that a mutual fund may not invest into another

1Publicly available equity fund guidelines of Credit Suisse Group (see “Statement
of additional information” for any equity fund at the CS Asset Management site
http://www.csam.com) consist of around 80 pages prescribing fund policies towards asset al-
location among equities, options, warrants, necessary rating for assets, valuation procedure
et cetera. Most of these constraints are self-imposed.
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fund managed by the same investment company (cf. Credit Suisse Funds
(2003b), for example).2

When we talk about low homogeneity of real-world investments, the hard
constraints are usually responsible for the cross-sectional diversity through
different investment classes. For example, whilst hedge fund managers enjoy
almost full freedom of choice, pension fund managers handle in a pretty re-
strictive environment. Furthermore, the low homogeneity of investments in
the same investment class is mostly determined by differences in self-imposed
restrictions. Sharing the core knowledge about the market, the managers rely
on their company’s business practices, control procedures for risk, on access
to information and to human and capital resources. Such internal managerial
environments play a central role in the formulation of soft constraints.

Another aspect is that each of the three constraint groups has different
impact on the investment process and, consequently, on the performance eval-
uation. Whilst the hard constraints cannot be changed, portfolio managers
may adjust the soft constraints using the feedback from the performance anal-
ysis. That is, the managers may tighten or relax the value of one or more
constraints. So, by replacing the original bounds, we may create a number
of different opportunity sets for the original investment mandate. In particu-
lar, this procedure is very helpful for estimating the influence of investment
constraints on changes in the opportunity set and on the performance of an
investment. (Such investigations are usually called sensitivity analysis.)

In this chapter we specify how investment constraints determine portfolio
opportunity sets. In that, we do not differentiate between hard, soft and
game-type of restrictions and consider any constraint to be satisfied once
imposed. In other words, we are interested in how the portfolio opportunity
set will look having a specific set of investment constraints. (The analysis
of the influence of constraints on the shape of an opportunity set and on
the performance for an investment is a separate chapter of this thesis.) The
following subsections list the most common types of investment constraints
in the same order as considered by portfolio managers through stages of the
general investment cycle.

3.2.1 Screening Constraints

Investment constraints based on screening can be defined in an excluding or
in an including way. Excluding screening constraints filter out companies

2Actually, many of self-imposed mutual fund restrictions are of the game-type, which
limit actions of fund managers in order to prevent diverse agency problems.
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and financial instruments with undesirable activities or values. For example,
typical excluding constraints are restrictions forbidding to

• buy shares of “special situation companies”, i.e. companies involved in
an acquisition, merger, reorganization or in a bankruptcy;

• invest in corporate or governmental debt securities rated lower than
the four highest grades, BB/Ba through D/C, by Standard&Poor’s or
Moody’s;

• purchase non-publicly traded or illiquid securities et cetera.

On the contrary, including screening constraints select the appropriate fi-
nancial instruments or companies for investment. A typical example is to
constrain investment to

• common and preferred shares of companies from the S&P 500 index;

• debt securities rated within the four highest grades, AAA/Aaa through
BBB/Baa, by Standard&Poor’s or Moody’s rating services et cetera.

However, in many cases no strict distinction – whether a restriction is an
excluding or an including screening constraint – can be made.

Generally, these types of constraints have an absolute context: “no” or
“may be” and can be considered as a preliminary filter to reduce the in-
vestment opportunity set to instruments that are possible alternatives for
investment. The translation of screening constraints into weight constraints
is very straightforward. Having a set of assets and a excluding constraint, we
check each asset whether it satisfies the constraint. If it satisfies, then we add
the following “excluding” weight constraint to our formal description of the
opportunity set:

ws = 0 (3.1)

This constraint prevents us from investing into the asset s any amount of
capital because this asset has a property, which is not feasible for the invest-
ment. In the case of an including screening constraint the modus operandi is
opposite: we add the “equal to zero” weight constraint for all assets, which
do not satisfy the positively defined constraint.

When we apply all screening constraints, we get the set of financial in-
struments in which the manager of this specific investment may invest and
which he uses to compose a portfolio. Henceforth, we will call instruments
from such a set feasible assets.
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3.2.2 Selection Constraints

Another constraint part is the selection constraints, which impose restrictions
reducing the number of combinations, i.e. portfolios that can be built given
the set of feasible financial assets.

Restrictions on Short Sales

Prohibiting or quantitative restrictions on short sales are the most ubiquitous
of the selection constraints. For example, many pension funds avoid selling
short completely due to their chosen investment policy. Almost all equity
funds may only engage in short sales “against the box” or in order to hedge
similar long positions. The no-short-sales constraint is also one of the most
binding constraints (Clarke, de Silva & Thorley 2002).

The complete disallowing of short sales is implemented through imposing
a weight constraint:

0 ≤ wi ≤ 1 (3.2)

on any feasible financial asset. In the case of a quantitative restriction on the
short sales quantity, the constraint above could be relaxed to:

−φ ≤ wi (3.3)

−φ ≤
∑

i

wi and φ ∈ R+

where φ represents a maximal proportion of capital allowed to be raised by
short sales.

Restrictions on a Maximal Capital Exposure

Another often used restriction is a constraint on a maximal proportion of
capital, which could be invested in one financial instrument. The main rea-
son for this constraint is the enforcement of diversification. (For example,
under the current US Internal Revenue Code of 1986, in order to qualify as
a “regulated investment company” an investment company should limit its
investments so that (i) not more than 25% of its capital is invested in the fi-
nancial instruments of a single issuer, and (ii) not more than 5% of the capital
should be invested in the securities of a single issuer and the company owns
not more than 10% of voting shares for at least for 50% of the total capital.)
The restriction on a maximal capital proportion invested in a single asset is
implemented through addition of weight constraints

wi ≤ βi (3.4)
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into the formal description of the opportunity set for all assets to be restricted.
An extension of this restriction type is the constraint on a maximal capital

proportion, which could be invested into:

• different financial markets, e.g. equities, fixed income securities, deriva-
tives;

• different securities of a single issuer;

• the securities of issuers conducting their principal business activity in
the same industry or sector;

• the emerging-market securities, the American Depositary Receipts (“AD-
Rs”) or the European Depositary Receipts (“EDRs”), debt instruments
rated below investment grade et cetera.

Such restrictions on a maximal capital exposure to a specific area are imple-
mented through a “summed” weight constraint:∑

j∈Ak

wj ≤ γk, Ak ⊆ {1, 2, . . . , n} and γk ∈ R+ (3.5)

where set Ak denotes all instruments, which belong to the restricted area k,
and γk represents the maximal proportion of capital, which could be invested
into this specific financial market area. For each of such restrictions a separate
weight constraint is introduced.

Restrictions on a Minimal Capital Exposure

Sometimes a restriction on a minimal proportion of capital, which should be
invested in one or several financial instruments, is imposed. The rationale
behind this constraint is that we would like to invest into certain financial
instruments. For example, these are securities selected through analysis of
individual companies, large companies playing a substantial role in a specific
industry of a sector etc. Such minimal exposure intensions can be inserted in
the formal description using the following weight constraint:

αi ≤ wi (3.6)

where αi represents the minimal amount that a manager is “enforced” to
invest into the company i.

Similar to the maximal exposure, minimal capital exposures to a specific
area, e.g. industry, financial sector, geographic area, can be implemented
through a weight constraint:

ςk ≤
∑
j∈Bk

wj , Bk ⊆ {1, 2, . . . , n} and ςk ∈ R+ (3.7)
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where set Bk denotes all instruments, which belong to the restricted area k.
For each of such minimal exposure restrictions a separate weight constraint
should be introduced.

Restrictions According to the Risk Profile

Risk management plays a central role in a professional investment manage-
ment. Therefore, investment mandates may prescribe tolerable levels of dif-
ferent kinds of risk. Some risks, e.g. political risk, currency risk, can be
substantially lowered by hedging or handled implicitly through imposing con-
straints on maximal capital exposure to a risky area. Others, such as market
risk or reinvestment risk, could be controlled through restrictions on risk pro-
files. The shape of a weight constraint restricting a specific risk exposure
depends on the exact formula estimating portfolio risk from the risk levels of
individual assets.

Using the variance as an example, we illustrate how a risk constraint could
be translated into a formal constraint of an opportunity set. The restriction
with respect to variance is formulated as the following weight constraint:∑

i

∑
j

cov(i, j) · wi · wj ≤ ζ and ζ ∈ R+ (3.8)

where ζ is a tolerable level of variance, and cov(i, j) is the covariance between
stocks i and j.

Another widespread risk constraint is the tracking error volatility/variance
(TEV). An imposed limit on TEV restricts manager’s exposure to risk whilst
a specific over-performance of a benchmark, e.g. an index, is targeted. The
TEV restriction is stated as the following weight constraint:∑

i

∑
j

cov(i, j) · (wi − bi) · (wj − bj) ≤ ψ and ψ ∈ R+ (3.9)

where ψ determines a tolerable level of TEV, bi is the proportion of the
security i in the targeted benchmark, and wi is the proportion of the security
i in a feasible portfolio.3

Generally, the recipe is to write a formula for a portfolio risk expressed
through risks of individual securities and then create a formal constraint in

3It should be noted that imposing a single TEV constraint is not efficient because it
forces managers to optimize in the excess-return space only and hence does not account for
the total risk of a tracking portfolio (Roll 1992). However, this can be corrected through
imposing an additional constraint on the total portfolio risk especially when the TEV value
is low or a targeted benchmark is relatively inefficient (Jorion 2003).
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form of an inequality, having this formula on the left-hand side and the tol-
erable level of risk on the right-hand side.

3.3 The Geometry of Some Common Opportunity
Sets

Once we translate all prescribed investment restrictions into certain types of
constraints on asset weights, we get a system of inequalities and equalities of
the form

fs(w) ≤ 0 s ∈ I≤
ft(w) = 0 t ∈ E= (3.10)

and ∑
i

wi = 1

where I≤ denotes the set of inequality constraints on asset weights, and E=

denotes the set of equality constraints.4 Any of the f(·)(w) (in-)equalities may
be nonlinear. Similar to the convex optimization, we call any portfolio with
weights satisfying all the (in-) equalities from I≤ and E= a feasible portfolio.
Otherwise the portfolio is termed unfeasible. The set of all feasible portfolios
is called the feasible portfolio set or the portfolio opportunity set. Figure 3.1
shows two examples of formal opportunity set descriptions.

The system (3.10) is the most general mathematical model of the man-
ager’s opportunity set for a specific investment. When we consider such gen-
eral models, we have to take into account two important issues: system feasi-
bility and non-redundancy (see Exhibit 3.1 for detailed discussion). Without
loss of generality, we will assume henceforth that our formal descriptions are
feasible and non-redundant.

The geometric form of a portfolio opportunity set depends on polynomial
degrees and on the number of (in-)equalities in I≤ and E=. In this thesis we
only consider several common types of opportunity sets in detail. However,
we provide various ideas how one of these standard types or a combination
thereof can be used to handle any possible system of asset weight constraints.

4We represent inequalities with the right side different from zero, i.e. a1w
α
1 + a2w

β
2 +

. . . + anwυ
n ≤ c, as a1w

α
1 + a2w

β
2 + . . . + anwυ

n − c ≤ 0. The same notation is used for
equalities from E=.
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−wi ≤ 0 i = A, B, C

wi − 1 ≤ 0
wA + wB + wC − 1 = 0

0

1 wA

1

wB

1

wC

−wi ≤ 0 i = A, B, C

wi − 1 ≤ 0
wA + wB + wC − 1 = 0

0.25w2
A + 0.4w2

B + 0.5w2
C − 0.4wBwC − 0.25 ≤ 0

Figure 3.1: The investment set consists of three assets: A, B and C. The oppor-
tunity set is restricted by a “no-short-sales” constraint only (left); on
the opportunity set in (right) an additional constraint on the tolerable
risk is imposed. (We use the variance as the risk metric. The variances
are σ2

A = 0.25, σ2
B = 0.4, and σ2

C = 0.5. The correlation coefficients
are ρA,B = 0 and ρB,C = −0.5. The risk of a portfolio is restricted by
σ2

P ≤ 0.25.) The systems below the graphs show the formal description
of the corresponding portfolio opportunity sets.

Exhibit 3.1 Feasibility and Redundancy of Portfolio Oppor-
tunity Set Models

Given a formal description of an investment opportunity set, it may not be
clear if we could compose any feasible portfolio at all when following the
imposed constraints. Checking, whether a given description defines a feasi-
ble portfolio opportunity set, i.e. whether the opportunity set is non-empty,
may be difficult. In general, the feasibility checking procedure strongly de-
pends on the exact shape of the system (3.10) for a specific investment. For
example, when I≤ and E= consist of linear (in-)equalities only, recognizing
feasibility of a given description is at least as difficult as solving the following
linear programming problem:

minimize ξ

subject to fs(w) − ξ ≤ 0 ∀ s ∈ I≤ (3.11)

ft(w) − ξ ≤ 0 ∀ t ∈ E=

−ft(w) − ξ ≤ 0 ∀ t ∈ E=∑
i

wi ≤ 1 and ξ ≥ 0
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Including non-linear constraints into an opportunity set description af-
fects both, the complexity and the convergence, of solving the auxiliary
problem (3.11) for checking feasibility. To the knowledge of the author,
no general method exists for solving non-linear problems. However, several
methods (e.g. reduced-gradient methods, penalty and barrier approaches,
interior-point algorithms) were recently developed to handle specific classes
of (3.11) efficiently. (The books of Nash & Sofer (1996), Bertsekas (1995),
Boyd & Vandenberghe (2004) provide a comprehensive overview of contem-
porary methods for non-linear convex programming.)

Resulting formal descriptions of opportunity sets can also contain
constraint redundancies due to various reasons, e.g. large number of assets,
different sources of investment constraints, automatic translation of imposed
restrictions into weights constraints. For example, assume that we have
an opportunity set consisting of securities A, B, C, and D. After the
translation of investment guidelines restrictions we get the following formal
description of our opportunity set S:

0 ≤ wA ≤ 0.3

0 ≤ wB ≤ 0.3

wA + wB ≤ 0.7

wA + wB + wC + wD = 1

Clearly, the third constraint is redundant and it could be removed from the
description. So transformed opportunity set S′ is equal to S. It should be
noted that the redundancy elimination is desirable but not necessary: redun-
dancies just increase the size of an opportunity set description and lead to
computational inefficiency by estimation of frequency distributions. (Redun-
dancy elimination pays off in considerable computational time-reduction by
opportunity sets consisting of reasonable-wide range of assets accomplished
by a large number of investment constraints.)

The redundancies in linear (in-)equalities can be recognized and then
eliminated relatively easily. Such presolvers are a standard part of software
packages for solving LPs, and over the last ten years a wide range of sophis-
ticated presolve techniques was developed. The first class of redundancy-
reduction techniques identifies and then eliminates different linear dependen-
cies of equalities and of weights. For this purpose, we transform all linear
inequalities into equalities by introducing slack weights (slack weights are
nothing else but “artificial” variables representing differences between left-
hand side values of inequalities and the right-hand side zeros). Afterwards,
the following theorem (an adapted version of a theorem from Bertsimas &
Tsitsiklis (1997)) is applied:
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Theorem 3.3.1. Let P = {x | Ax = b, x ≥ 0} be a non-empty polyhedron,
and A be a m × n matrix with rows a1, a2, . . . , am. Assume also that
rank(A) = k < m and that rows a′

1, a
′
2, . . . , a

′
m are linearly independent.

If we define a polyhedron P ′ as

P ′ = {x | a′
1 x = b1, a

′
2 x = b2, . . . , a

′
k x = bk}

Then P = P ′.

Proof. see the proof of Theorem 2.5 in Bertsimas & Tsitsiklis (1997). 
�
It should be noted that Theorem 3.3.1 requires a numerically stable Gaus-

sian elimination routine.
The second class of redundancy-reduction techniques includes various

methods working directly on the linear (in-)equalities from (3.10). The
methods eliminate empty and singleton (in-)equalities and weights, tighten
bounds on weights, fix or free weights et cetera. The extended discussion
about different presolve techniques can be found in Andersen & Andersen
(1995), Gondzio (1997) and Gould & Toint (2004).

The reduction of redundancies in nonlinear weight constraints is a more
hardcore problem. However, several techniques used in linear cases also can
be applied for nonlinear constraints.

3.3.1 Opportunity Sets for Unrestricted Asset Weights

The case in which asset weights are unrestricted, is considered to be the most
general in the financial literature. A positive weight for an asset means that
we are buying this asset; a negative one means that we are selling this asset
short. Having n feasible assets for an investment, the portfolio opportunity
set is equal to Rn−1. (We lose a degree of freedom due to the constraint∑n

i=1 wi = 1.) Clearly, as the weight of any of n − 1 assets has a range
(−∞, +∞), we cannot calculate frequency distributions.

Furthermore, it can be shown that frequency distributions exist only in
the case when all asset weights lay in a closed range [αi, βi], αi, βi ∈ R and
αi ≤ βi. This requirement is not very binding as it seems: in almost all cases
the capital, which could be invested or sold short, is restricted. Therefore, the
closedness of weight ranges is provided. Moreover, the unrestricted weights
reflect the case of full freedom over investment choice what is clearly not
coinciding with evaluation of constrained investment performance.

Due to these reasons we do not consider the case of completely unrestricted
asset weights further; instead we focus on cases when investments are made
under diverse restrictions.
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3.3.2 Opportunity Sets with a Short-Sales Restriction only

The case, when only no-short-sales constraints are imposed, is considered as a
one of major situations in the modern portfolio management theory and asset
pricing. The formal description of the portfolio opportunity set consisting of
n feasible assets is given by the system:5

0 ≤ wi ≤ 1 ∀ i = 1, 2, . . . , n (3.12)
n∑

i=1

wi = 1

Transforming the opportunity set description into the form (3.10), we get the
following description:

−wi ≤ 0 ∀ i = 1, 2, . . . , n

wi − 1 ≤ 0 ∀ i = 1, 2, . . . , n
n∑

i=1

wi − 1 = 0

0 1 w1

1

w2

Case n = 3

0

1 w1

1

w2

1

w3

Case n = 4

Figure 3.2: Cases n = 3 and n = 4. The dotted lines border [0, 1]n−1-cubes; parts
of these cubes that satisfy the inequality

∑n

i=1
wi ≤ 1, i.e. build up the

two- and three-dimensional basic simplexes, are filled with color.

The opportunity set is a closed polyhedron called a basic simplex in Rn−1.
Figure 3.2 shows the portfolio opportunity sets, which consist of three and
four assets and are restricted by the no-short-sales constraint only.

5In (3.12) the inequalities wi ≤ 1 are redundant; we leave them in the opportunity set
description for the sake of better understanding.
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3.3.3 Opportunity Sets with Restrictions on Individual Weights
and Linear Summary Constraints

The situation when all asset weights lay in closed ranges [αi, βi], αi, βi ∈ R

and αi ≤ βi, we consider as the most general case for the constrained invest-
ment. In this case the maximal capital exposure toward any asset is restricted
along with the maximum capital, which could be raised by selling short any
of assets. Setting αi ≥ 0, we can also incorporate restrictions on minimal
capital exposure toward selected assets.6

The formal description of such portfolio opportunity sets consisting of n
feasible assets is given by the system:

αi ≤ wi ≤ βi ∀ i = 1, 2, . . . , n, αi, βi ∈ R and αi ≤ βi (3.13)
n∑

i=1

wi = 1

However, it is more convenient to analyze and use such opportunity sets
when their formal descriptions are transformed into the special representa-
tion, which we call “standard form” (see Exhibit 3.2). We use the descriptions
in standard form to analyze opportunity sets and calculate required frequency
distributions. Afterwards, results of our analysis and calculations are trans-
formed using inverse operations in order to present results in original form.
An opportunity set description in standard form is defined as:

0 ≤ wi ≤ ϕi ∀ i = 1, 2, . . . , n, ϕi ∈ R+ (3.14)
n∑

i=1

wi = 1

or it can be re-written into the form (3.10) as:

−wi ≤ 0 ∀ i = 1, 2, . . . , n

wi − ϕi ≤ 0 ∀ i = 1, 2, . . . , n, ϕi ∈ R+
n∑

i=1

wi − 1 = 0

6Indeed, section 3.3.2 discusses a particular case with all αi = 0 and βi = 1. The reason
for this extra separation is that opportunity sets with a restriction on short-sales only are
widely considered in the financial literature as the main case representing a constrained
investment activity. In addition, such opportunity sets have a “degenerate” nature, which
made them easy to analyze.
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Exhibit 3.2 Transformation of Opportunity Set Descriptions
into Standard Form

In order to transform descriptions from form (3.13) into the standard form
(3.14) we need to perform the following steps.

Firstly, if a weight wi has a lower bound αi other than zero, we subtract
the value of αi from all parts of the constraint and obtain:

0 ≤ wi − αi ≤ βi − αi

Replacing weights and upper bounds by ŵi = wi − αi and β̂i = βi − αi we
obtain:

0 ≤ ŵi ≤ β̂i ∀ i = 1, 2, . . . , n
n∑

i=1

ŵi = 1 −
n∑

i=1

αi

Secondly, all constraints should be divided by 1 −∑n

i=1
αi. Replacing

again weights and upper bounds by

w̃i =
ŵi

1 −∑n

i=1
αi

and β̃i =
β̂i

1 −∑n

i=1
αi

we obtain a description in the standard form (3.14).

Henceforth, analyzing our general case we consider formal descriptions of
opportunity sets in the standard form (3.14) only.

The geometric form of portfolio opportunity sets of the type (3.14) de-
pends on the coefficients ϕi. For example, if all ϕi are equal to 1/n, where n
denotes the number of feasible assets, then the portfolio opportunity set con-
tains only one feasible portfolio p = 〈w1 = 1/n, w2 = 1/n, . . . , wn = 1/n〉.
In the case that all ϕi are equal and lay in the interval (1/n, 1/(n− 1)], port-
folio opportunity sets are simplexes dual to the basic simplex. In the case
that all ϕi are equal and lay in the interval (1/(n − 1), 1/(n − 2)], portfolio
opportunity sets are basic simplexes with cutoff vertices and so on. Figure 3.3
shows the portfolio opportunity sets consisting of four assets and restricted
by ϕi = 1/3 and ϕi = 0.5 respectively.

The exact geometric form of opportunity sets is not relevant to the further
analysis nor suitable for working with these sets. Actually, the important
fact is that descriptions are closed convex polyhedra. The systems of linear
(in-)equalities of the form (3.14) represent these opportunity set polyhedra
in terms of linear (in-)equalities. An alternative representation of a closed
polyhedron can be given in terms of its extreme points (also called vertices).
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1
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w1 + w2 + w3 + w4 − 1 = 0
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1

w2
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−wi ≤ 0 i = 1, 2, 3, 4
wi − 0.5 ≤ 0

w1 + w2 + w3 + w4 − 1 = 0

Figure 3.3: Geometrical forms of portfolio opportunity set consisting of 4 assets and
restricted by 0 ≤ wi ≤ 0.3(3), i = 1, 2, 3, 4 (left), and 0 ≤ wi ≤
0.5, i = 1, 2, 3, 4 (right). The dotted lines border basic simplexes; parts
of these simplexes that satisfy inequalities 0 ≤ wi ≤ 0.3(3), i = 1, 2, 3, 4
and 0 ≤ wi ≤ 0.5, i = 1, 2, 3, 4 are filled with color.

We will use the latter representation.
Enumerating of all vertices of a convex polyhedron using its representa-

tion given by a system of linear inequalities is NP-complete in the general
case. However, there are several algorithms, which can enumerate vertices
efficiently, especially for some subclasses of polyhedra (e.g. Avis & Fukuda
(1992), Fukuda, Liebling & Margot (1997)).7

Insertion into opportunity set descriptions of the type (3.13) additional
“summed” linear constraints such as∑

j∈Ak

wj ≤ γk, Ak ⊆ {1, 2, . . . , n} or ςl ≤
∑
j∈Bl

wj, Bl ⊆ {1, 2, . . . , n} 8

changes the geometrical form of the feasible portfolio opportunity space.9

Still, such extended descriptions can be theoretically handled by the same
methodology as the descriptions (3.13). The only difficulty is that “summed”

7The Mathematica Information Center provides the package “VertexEnumeration”,
which implements the Avis-Fukuda algorithms for enumerating all vertices of a con-
vex polytope given by a system of linear inequalities. (For more information see
http://library.wolfram.com/infocenter/MathSource/440/.)

8cf. section 3.2.2
9Given the assumption that such a constraint is not redundant.
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constraints can vastly increase the computational complexity of calculating
frequency distributions. The reason is the potentially exponential increase in
the number of vertices of a feasible opportunity set polyhedron. We will stop
at this point and return to this issue in the next chapter.

3.3.4 Opportunity Sets with Non-linear Restrictions

Of course, we can further generalize opportunity set descriptions by incorpo-
rating non-linear constraints into (3.13). Addition of any non-linear constraint
(e.g. restriction on the risk level or on the tracking error) complicates han-
dling such opportunity sets and calculating of frequency distributions enor-
mously. For example, if we add a restriction on the portfolio variance, the
feasible space of portfolio opportunities will be the intersection of a closed
convex polyhedron representing linear constraints and the isovariance ellipse
representing maximal tolerable level of risk.

Generally, opportunity set descriptions with non-linear constraints can be
handled by simulation only. The recipe is to find the enclosed polyhedron
of the type (3.13), and reject portfolios, which do not “meet” the non-linear
constraints by evaluation.

3.4 Summary and Conclusions

We distinguish three different kinds of investment constraints. These are
hard constraints, which are externally imposed and cannot be changed; soft
constraints, which are self-imposed restrictions aimed to improve the decision-
making and reduce the chance of failure; and game-type constraints which are
the result of self-imposed restrictions aimed to take account of other parties
in the investment field.

At a very general level investment constraints can be subdivided into
two classes: screening constraints and selection constraints. Investment con-
straints based on screening can be defined in a negative or in a positive way.
Negative screening constraints filter out companies and financial instruments
with undesirable activities or values. On the contrary, positively defined
screening constraints select the appropriate financial instruments or compa-
nies for investment. Selection constraints impose restrictions on proportions,
which can be invested in one or another asset. The most common kinds of
selection constraints are restrictions on short-sales, restrictions on a maximal
and/or a minimal capital exposure toward individual assets or combinations
thereof as well as restrictions according to the risk profile.
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Once we translate all prescribed investment restrictions into certain types
of constraints on asset weights, we get a system of inequalities and equali-
ties, which formally describe a feasible portfolio opportunity set. The three
standard opportunity sets considered through this thesis are:

• Opportunity sets with a constraint on short-sales only;

• Opportunity sets with constraints on individual asset weights and linear
summary constraints thereof;

• Opportunity sets with non-linear constraints.

The first kind of opportunity sets are geometrically basic simplexes. Such sets
can be easily described and analyzed. The second kind of sets are closed con-
vex polyhydra; their geometric form strongly depends on the upper bounds of
weights. We will use tools from the analytical geometry and linear algebra for
calculating frequency distributions with respect to linear performance mea-
sures for the first two kinds of portfolio opportunity sets. The next chapter
is completely devoted to developing mathematical tools for examining such
sets.

Imposing non-linear constraints such as diverse restrictions on a risk expo-
sure enormously increase the complexity of representation and handling such
opportunity sets. Portfolio opportunity sets of such kind will be considered
in Chapter 5.





Chapter 4

Calculation of Performance
Distributions

4.1 The Intuition behind the Calculation Method-
ology

The crucial stage in the framework is the calculation of frequency distribu-
tions with respect to all specified performance measures for a formally defined
portfolio opportunity set. That is, having at our disposal

• a portfolio opportunity set for an investment (e.g. one of the type defined
by the system (3.13))

and

• one or several metrics used for evaluation of ex ante or ex post perfor-
mance (e.g. realized return over some horizon, Sharpe ratio, Jensen’s
alpha)

we are interested to know how many of the feasible portfolios take on a par-
ticular performance value for each of specified performance criteria. In other
words, we aim at calculating frequency distributions of feasible portfolios in
terms of the values of a performance measure.1

In the space of asset weights a set of portfolios, all of which have the same
value for a specific performance metric, builds up the so-called iso-surfaces.
For example, if we consider the realized return as a performance measure,
the sets of portfolios with the same returns form iso-return hyperplanes; in

1Indeed, such frequency distributions can be easily transformed into probabilistic (cu-
mulative) density functions by using the definition of geometric probability.

59
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case of the Sharpe ratio, the sets of portfolios with the same ratio values
form iso-ratio hyperellipses. Consequently, the task of calculating the fre-
quency distribution for a performance metric is equal to finding the volume
of the cross-section between the feasible portfolio set and the corresponding
iso-surfaces. We illustrate this observation with a small example.

0 wA

wB

1.0

Portfolio weight

in stock B

1.0

Portfolio weight

in stock A

Iso-return

lines

15% 12.5% 10%

�
P1
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�P3

�

P4

0 rp

Return,%

fp

Frequency of

a return

5% 10% 15%

Iso-return

lines

10% 12.5% 15%

�

P4

�P3

�

P2

� P1

Figure 4.1: Portfolio opportunity set consisting of three assets with a restriction on
short-sales (left). The dashed lines show iso-return lines for the real-
ized return measure. The shaded triangle (right) shows the frequency
distribution of feasible portfolios with respect to realized returns. The
lengths of segments [P1, P2] and [P3, P4] in (right) reflect the volume
of cross-sections between 12.5% iso-return hyperplane and the portfolio
opportunity set, and between 10% iso-return hyperplane and the oppor-
tunity set in (left).

Consider the following portfolio opportunity set consisting of three secu-
rities:2

−wi ≤ 0 ∀ i = 1, 2, 3

wi − 1 ≤ 0 ∀ i = 1, 2, 3
3∑

i=1

wi − 1 = 0

and the realized return as a performance metric. Let the returns for asset A,
B, and C be 5%, 10%, and 15% respectively. The left graph of Figure 4.1
shows the portfolio opportunity set and the iso-return lines for 10%, 12.5%,

2The inequalities wi −1 ≤ 0 are redundant; we leave them in the description for the sake
of a better understanding of upper bounds for asset weights.
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and 15%. The right graph of Figure 4.1 plots the frequency distribution for
realized returns. The lengths of segments [P1, P2] and [P3, P4] in the frequency
distribution in the right graph are equal to the volume of the cross-sections
between 12.5% iso-return hyperplane and the portfolio opportunity set, and
between 10% iso-return hyperplane and the opportunity set in the left graph
of Figure 4.1.

Commonly, our aim through this chapter is to determine an explicit an-
alytical formula for each of the standard opportunity sets from section 3.3.
That is, for a given portfolio opportunity set and a performance measure
we show how to derive the corresponding function fr(t) → R+, which cal-
culates for any performance value t its relative frequency among all feasible
portfolios. Determined to derive closed-end formulae, we look in the next sec-
tion on linear performance measures first. Then we review some properties
of closed polyhedra focusing on calculation of the polyhedron volumes using
their vertices. Afterwards we investigate whether it is possible to compute
the cross-section volumes for all standard portfolio opportunity sets defined in
the previous chapter, and, if possible, how to do this. Finally, we briefly look
at non-linear performance measures as applied to our standard opportunity
sets.

4.2 Linear Performance Measures

4.2.1 The Geometrical Form and Representations of Linear
Performance Measures

Linear performance measures mean that the performance of a portfolio τp is
a linear combination of performance values of the constituting assets, i.e.

τp = τ1w1 + τ2w2 + . . .+ τnwn

where τi is the performance of asset i. Examples of such measures are different
kinds of returns: realized, expected, average, differential.

Generally, iso-surfaces for linear performance metrics are hyperplanes in
the asset weight space. When one considers portfolio opportunity sets con-
sisting of n feasible assets and a linear performance measure τ , the formal
description of the set of portfolios having the same performance value t is
given by the following equation:

τ1w1 + τ2w2 + . . .+ τn−1wn−1 + τnwn = t (4.1)

We can rewrite the last equation in matrix form as

τ
T w = t (4.2)
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Equation 4.1 defines an n−1-dimensional hyperplane in Rn due to the budget
constraint. Sometimes it is more convenient to analyze such sets if we remove
the last dependent weight from equation (4.1):

τ1w1 + τ2w2 + . . .+ τn−1wn−1 + τn

(
1 −

n−1∑
i=1

wi

)
= t

(τ1 − τn)w1 + (τ2 − τn)w2 + . . .+ (τn−1 − τn)wn−1 = t− τn

Denoting differential performances and the right-hand side of the equation
by τ̂i = τi − τn and t̂ = t − τn, we obtain the ordinary equation of a full-
dimensional hyperplane in Rn−1:

τ̂1w1 + τ̂2w2 + . . . + τ̂n−1wn−1 = t̂ (4.3)

We rewrite the last equation in matrix form:

τ̂
T ŵ = t̂ (4.4)

Henceforth, analyzing our standard opportunity sets we consider iso-hyperpla-
nes in both (4.2) and (4.4) forms depending on in which dimension, Rn or
Rn−1, the analysis is performed. However, when we use the form (4.4), we
leave out the preprocessing transformations.

4.2.2 General Approach for Deriving an Analytical Solution

We postpone the discussion about portfolio opportunity sets and linear per-
formance measures till the end of this section and will concentrate on some
important geometrical and algebraic aspects of high-dimensional polyhedra
and their volume calculation. (We also refer to Appendix A, which contains
an elementary introduction into convex geometry.)

General Remark. When we discuss portfolio opportunity sets, we consider
the asset weight space, or w -space for short. A point in the w -space corre-
sponds to a portfolio, which is usually denoted as a vector w = 〈w1, w2, . . . , wn〉
(or pt = 〈w1, w2, . . . , wn〉 if we look at a specific portfolio t). Consequently,
iso-hyperplanes for a linear performance measure τ are denoted in the w -
space through τ

Tw = t (or τ̂
T ŵ = t̂ if we remove the dependent constraint).

Discussing the general mathematical properties of portfolio opportunity sets,
we use the usual x-coordinate space Rn or Rn−1, depending on the context.
In this case the hyperplanes are denoted through cTx = d. The reason for the
double notation is our intension to differentiate between the abstract math-
ematics of derivation of the (cross-section) volume formulae and the core
financial context of this thesis.
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We start our overview of existing mathematical tools for calculating poly-
tope volumes with a proposition, which states the volume formula for an
arbitrary simplex.

Proposition 4.2.1. Let vi, 1 ≤ i ≤ n + 1, be given vectors in Rn and let P
be a polyhedron defined on these vectors as

P = {x = 〈x1, x2, . . . , xn〉 ∈ Rn | x =

n+1∑
i=1

λivi,

n+1∑
i=1

λi = 1 and λi ≥ 0}

The (unsigned) volume of P is

Vol(P ) =
1

n!
|det(v2 − v1,v3 − v1, . . . ,vn+1 − v1)|

So, the volume of a simplex can be expressed/computed easily. A direct
method for exact volume calculation of a closed polyhedron is to decompose
it into a finite number of polytopes whose volumes can be expressed through
closed-end formulae.3 In particular, the following proposition expresses a
volume formula for a polytope through signed volumes of certain simplexes,
where at each vertex of the original polytope the simplexes are formed one at
a time.

Proposition 4.2.2. Let vi, 1 ≤ i ≤ s and s ≥ n+ 1, be given vectors in Rn,
and let P be a simple polytope defined on these vectors as

P = {x = 〈x1, x2, . . . , xn〉 ∈ Rn | x =

s∑
i=1

λivi,

s∑
i=1

λi = 1 and λi ≥ 0}

For a given halfspace S′ = {x ∈ Rn | cT x ≤ d} with the boundary hyperplane
cT x = d in a general position to P , the volume of P in S′ is defined by

Vol(P ∩ S′) =
∑
vi∈S′

Vol(∆vi) · ψ

where ∆vi is the simplex formed by the faces of P incident to the vertex vi

and the hyperplane cTx = d, and ψ ∈ {0, 1}.
That is, when we have a closed polyhedron, all vertices of which have ex-
actly n incident edges, we can define the volume of this polyhedron using
the formula for the simplex volume. Simplexes are built around all vertices
of the polyhedron: for a vertex vi the corresponding simplex ∆vi is formed
by faces incident to the vertex i and a specific additional hyperplane. This
additional hyperplane is placed in such a way that it is not parallel to any

3See, for example, the technical report of Büeler, Enge & Fukuda (1998), which provides
a compact overview of contemporary techniques for calculating volumes of high-dimensional
polytopes.
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of the edges of the polyhedron. (Henceforth, we will say that the hyperplane
is in a general position to the polyhedron.) Clearly, the volume for each of
such simplexes can be calculated and/or expressed analytically. Each of the
volumes is signed, i.e. will be positive or negative. (In Proposition 4.2.2 we
use the binary function ψ therefore.) The sum of all signed simplex volumes
gives the volume of the polyhedron.

We illustrate the idea with an example in R2 shown in Figure 4.2. The
volume of the polyhedron P can be computed as:

Vol(P ) = +Vol(v1) − Vol(v2) + Vol(v3) − Vol(v4)

where ∆’s are defined with respect to the hyperplane cT x = d. The sign of
each particular simplex volume can be determined by counting the number of
edges of the considered vertex which “reverse” the direction. For example, for
v1 in Figure 4.2 it is equal to zero, for v2 it is equal to 1, and for v3 and v4

the number is 2 and 1 respectively. The value of the function ψ can be defined
as ψ = (−1)number of “reversed” edges, so in the case of v1 ψ(v1) = (−1)0 = 1,
ψ(v2) = (−1)1 = −1 et cetera.

P

cT x ≤ d

v1

v2

v3

v4 = +

v1

−
v2

+

v3

− v4

Vol(P ) = + Vol(∆v1
) – Vol(∆v2

) + Vol(∆v3
) – Vol(∆v4

)

Figure 4.2: Illustration of volume calculation of a polytope through summing the
signed volumes of simplexes formed at the polytope vertices with respect
to a hyperplane.

The example in Figure 4.2 shows a hyperplane that does not intersect the
polytope. However, Proposition 4.2.2 also states that if we select a hyperplane
which intersects the considered polytope, we can use the same method of
signed ∆–volumes to compute the volume of the polytope part laying in the
halfspace cTx ≤ d. The only difference is that we need to sum the signed
volumes of the simplexes formed by polytope vertices laying in that halfspace
only, i.e. vertices that satisfy the inequality cTvi ≤ d. Figure 4.3 illustrates
this generalization.

Proposition 4.2.2 can easily be extended to non-simple polytopes in Rn:
For each vertex vi we use the lexicographic perturbation method to choose
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P

cT x ≤ d

v1

v2

v3

v4 = +

v1

−
v2

− v4

Vol(P ′) = + Vol(∆v1
) – Vol(∆v2

) – Vol(∆v4
)

Figure 4.3: Illustration of volume calculation of a polytope part laying in the upper
halfspace using summing signed volumes of simplexes formed at polytope
vertices with respect to a separating hyperplane.

all n combinations of hyperplanes incident to vi.
Till now we have looked only at the volume calculation for a closed poly-

hedron or a part thereof. Indeed, given a polyhedron P and a hyperplane
H, we are interested in the calculation of the cross-section volume of P and
H. When we “fix” P and the c vector of the hyperplane equation, the cross-
section volume depends only on the d value. Henceforth, we denote such
cross-section volumes by Vol(P ∩H | d) in order to emphasis the dependency
of such a volume from d by given P and c.

The following theorem states how an analytical formula for cross-sectional
volumes Vol(P ∩H | d) can be derived from an analytical expression for the
volume formula from Proposition 4.2.2. The intuitive idea is represented in
Figure 4.4. Namely, given a polytope P and a hyperplane H = {x | cTx ≤ d},
we can calculate the volume of P laying above the hyperplane (denoted by
Vol(P ′ | d) in Figure 4.4). When we “shift” the hyperplane, let us say by δ, the
volume Vol(P ′ | d+ δ) increases. As the value of δ approaches to zero, δ → 0,
the increase in the volume, from Vol(P ′ | d) to Vol(P ′ | d+ δ) approaches the
cross-section volume multiplied by h, i.e.

Vol(P ′ | d+ δ) − Vol(P ′ | d) → Vol(P ∩H | d) · h,
where h is the distance between two hyperplanes cTx = d and cTx = d+δ. In
other words, the cross-section volume is the derivative of the polytope volume
where the “changing” variable is the value of d, the right-hand side of the
hyperplane equation. Theorem 4.2.1 formally defines the relation between
the polytope volume and the cross-section volume.

Theorem 4.2.1. Let vi, 1 ≤ i ≤ s and s ≥ n + 1, be given vectors in Rn,
and let P be a polyhedron defined on these vectors as

P = {x = 〈x1, x2, . . . , xn〉 ∈ Rn | x =

s∑
i=1

λivi,

s∑
i=1

λi = 1 and λi ≥ 0}
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Figure 4.4: Graphical representation of the idea for the derivation of an analytical

formula for the cross-sectional volume Vol(P ∩H | d), H = {x | cT x =
d}, on the example of the basic simplex P in R3. Using Proposition 4.2.2
we can calculate the volume of P laying in the upper halfspace (We
denote this simplex part by P ′). This volume is shaded in both pictures.
When we shift the hyperplane H by a small amount δ, the volume of P ′

increases as the right subfigure demonstrates. As the distance between
two hyperplanes, cT x = d and cT x = d + δ decreases and approaches
to zero, the increase in the volume, [Vol(P ′ | d+ δ) − Vol(P ′ | d)]/h,
approaches to the cross-sectional volume Vol(P ∩H | d), where h is
the distance between two hyperplanes. (In the right subfigure the lower
light-colored triangle emerges with the upper, dark-colored triangle.)

If a hyperplane H = {x ∈ Rn | cT x = d} is in general position to P , then the
n− 1-dimensional volume of the intersection of P and H is

Vol(P ∩H | d) =
∂Vol(P ′|d)

∂d
· ‖c‖

Proof. We can define the Vol(P ∩H | d) as

Vol(P ∩H | d) = lim
δ→+0

Vol(P ′ | d+ δ) − Vol(P ′ | d)
h

(4.5)

where h is the distance between the hyperplane cTx = d + δ and the hyper-
plane cTx = d, and P ′ is the part of the polyhedron P laying in the halfspace
S′ = {x ∈ Rn|cT x ≤ d} with the boundary hyperplane cTx = d.

The distance between the hyperplane cT x = d + δ and the hyperplane
cT x = d is equal to:

h =
(d+ δ) − d

‖c‖ =
δ

‖c‖ (4.6)
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Substituting (4.6) into (4.5) we get:

Vol(P ∩H | d) = lim
δ→+0

Vol(P ′ | d+ δ) − Vol(P ′ | d)
δ

· ‖c‖

=
∂Vol(P ′|d)

∂d
· ‖c‖ (4.7)


�
Returning to the asset weight space, we observed that different types of

portfolio opportunity sets represent different kinds of polytopes. And linear
performance measures “collect up” the portfolios with the same performances
into hyperplanes. These iso-hyperplanes are oriented according to perfor-
mances of individual assets. Therefore, Proposition 4.2.2 and Theorem 4.2.1
provide us with necessary mathematical tools to deal with the derivation of
analytical formulae for frequency distributions for given classes of portfolio
opportunity sets and linear performance measures.

Summarizing the results of this subsection, we can define a general ap-
proach to the task of deriving analytical formulae for frequency distributions
for our standard portfolio opportunity sets from Chapter 3:

1. Consider the task of enumerating all vertices of portfolio opportunity
set polytopes of a specific kind, i.e. with restrictions on short-sales only,
with restrictions on individual asset weights et cetera.4 (Discussing op-
portunity sets, we also call vertices of the opportunity set polytopes
extreme portfolios.) Having n assets in an opportunity set of a spe-
cific kind, either the n− or n − 1-dimensional w -space may be used for
formulation of the enumeration procedure and further analysis;

2. Define the general analytical formula for the (partial) volume of opportu-
nity set polytopes. Use for this the volume decomposition formula from
Proposition 4.2.2 and vertices from Step 1 to build the decomposition
simplexes;

3. Derive the general closed-end formula for frequency distributions defined
as a function of a specific performance value t for a specific kind of op-
portunity set polytopes and of performances of individual feasible assets.
According to Theorem 4.2.1 an explicit formula for frequency distribu-
tions is the derivative of the volume formula from Step 2 multiplied by
the norm of the hyperplane coefficient vector.

4In this thesis under enumerating we mean the task of running through all of the vertices
one at a time, examine the content of each vertex and perform some calculations using the
current vertex vector. Other authors also refer to this activity as vertex listing or generating

task.
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4.2.3 Opportunity Sets with a Short-Sales Restriction only

A portfolio opportunity set of this kind consisting of n feasible assets is a
basic simplex in Rn−1 asset weight space. The n vertices of the simplex are
enumerated easily: (0, 0, . . . , 0), (1, 0, . . . , 0), (0, 1, . . . , 0), . . ., (0, 0, . . . , 1).
That is to say, each vertex represents an extreme portfolio consisting of a
single asset.

When we look at a linear performance measure τ , one specific perfor-
mance level is “attached” to each simplex vertex, and it is nothing else than
the performance of an individual asset. Additionally, these individual asset
performances determine the orientation of iso-hyperplanes: the coefficient vec-
tor τ̂ of the iso-hyperplane family τ̂

T ŵ = t̂ is defined as τ̂ = 〈τ̂1, τ̂2, . . . , τ̂n−1〉
(cf. Section 4.2.1).

We use these two observations to extend the volume formula from Proposi-
tion 4.2.2 expressing ∆vi-subvolumes through vertex performances only. For
the sake of simplicity, let us examine the problem of defining the (partial)
volume of the basic simplex with respect to any hyperplane in general terms
first. We can formulate the following theorem.5

Theorem 4.2.2. Let vi, 1 ≤ i ≤ n, be given vectors in Rn−1 and let P be a
simplex defined on these vectors as

P = {x = 〈x1, x2, . . . , xn−1〉 ∈ Rn−1 | x =
n∑

i=1

λivi,
n∑

i=1

λi = 1 and λi ≥ 0}

Let H = {x ∈ Rn−1 | cTx = d} be a hyperplane in a general position to P ,
and cTvi = di, i = 1, 2, . . . , n. For a halfspace S′ = {x ∈ Rn−1 | cTx ≤ d}
with the boundary hyperplane H the volume of P ′ = P ∩ S′ is defined as

Vol(P ′ | d) = Vol(P ) ·
∑
dk≤d

⎡⎣(d− dk)
n−1

n∏
i=1,i�=k

1

(di − dk)

⎤⎦
Proof. Without loss of generality we can assume that d1 < d2 < . . . < dn.
That is, if we make a parallel shift of hyperplane H by increasing the right-
hand side d, the vertices of our simplex P will be “passed” in ascending order.

For any given d the volume Vol(P ′ | d)=Vol(P ∩H | d) is then defined by
the formula

Vol(P ∩H | d) =
∑

vi:cT vi≤d

Vol(∆vi | d) · (−1)i+1 (4.8)

5We define this general theorem in terms of the basic simplex in Rn−1 in order to be
consistent with the opportunity set defined on n feasible assets.
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Figure 4.5 illustrates the formula expansion for three different values of the
right-hand side of H in R2.

P
′cT x = d̃

v1 v1

v2 P
′

cT x = d̂

v1

v2

v3

P
′

cT x = d̄

Vol(P ′|d̃) = Vol(∆v1
|d̃)

Vol(P ′|d̂) = Vol(∆v1
|d̂) – Vol(∆v2

|d̂)

Vol(P ′|d̄) = Vol(∆v1
|d̄) – Vol(∆v2

|d̄) + Vol(∆v3
|d̄)

Figure 4.5: Expansion of the formula (4.8) for three different values of the right-hand
side of a hyperplane H and a simplex P in R2.

Consider now the simplex formed on a vertex vk, ∆vk
. (This simplex is

formed by the faces incident to the vertex vk and the hyperplane H.) Beyond
vk other vertices of ∆vk

can be defined as

vk + λi (vi − vk) , i = 1, 2, . . . , n and i �= k

On the other hand, these vertices lay on H, i.e.

cT (vk + λi(vi − vk)) = d

cTvk + λi

(
cTvi − cTvk

)
= d

λi (di − dk) = d− dk

⇒ λi =
d− dk

di − dk

The volume of ∆vk
can be expressed by λi’s as

Vol(∆vk
| d) =

∣∣∣∣∣∣
n∏

i=1, i�=k

λi

∣∣∣∣∣∣ · Vol(P ) =

∣∣∣∣∣ (d− dk)
n−1∏n

i=1, i�=k(di − dk)

∣∣∣∣∣ · Vol(P )

Assuming that d1 < d2 < . . . < dn gives us

(−1)k+1 · Vol(∆vk
| d) =

(d− dk)
n−1∏n

i=1, i�=k(di − dk)
· Vol(P ) (4.9)

Substituting (4.9) into (4.8) we obtain the final formula. 
�
Using the last theorem we can formulate an analytical expression for calcu-

lating frequency distributions on short-sales restricted opportunity sets with
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respect to any linear performance measure. (It should be noted that we need
to substitute into the formula of Theorem 4.2.2 the hyperplane equation of
form (4.3). However, the “differential” performances τ̂i and t̂ are reduced to
the original performance values of individual assets after the substitution into
the formula.)

Corollary 4.2.3. Given an investment opportunity set consisting of n feasible
assets and a linear performance measure τ , the relative frequency of portfolios
having a specific performance t is given by

fr(t) =
1

(n− 2)!
· ‖τ̂‖ ·

∑
τk≤t

[
(t− τk)

n−2 · 1∏n
i=1, i�=k(τi − τk)

]

where τ1, τ2, . . . , τn are τ -performances of individual assets, and τ̂ is the vector
consisting of performances τ̂1, τ̂2, . . . , τ̂n−1.

Proof. The proof follows directly from Theorem 4.2.1 and Theorem 4.2.2. 
�
Using this corollary we can formulate the following algorithm for com-

puting the frequency distribution function for a linear performance measure
τ :

1. Compute the τ performance values of individual assets, i.e. τ1, τ2, . . . , τn;

2. Sort performances τi in ascending order, i.e. define the order statistics
τ(1), τ(2), . . . , τ(n);

3. Compute the norm of τ̂ using the differential performances with respect
to the performance τ(n), i.e.

‖τ̂‖ =
√

(τ(1) − τ(n))2 + (τ(2) − τ(n))2 + . . . + (τ(n−1) − τ(n))2;

4. Compose the expression for fr(t) using all τ(i) ≤ t, ‖τ̂‖ and the dimension
n, and compute the required frequency for a specific performance t.

The algorithm and the closed-end formula of Corollary 4.2.3 are illustrated
with a small example in the next section.

One should take notice that the function fr(t) from Corollary 4.2.3 defines
a frequency distribution function in such a way that∫ +∞

−∞
fr(t)dt = Vol(P )

where P is the basic simplex representing a portfolio opportunity set. So,
the values of fr(t) strongly depend on the dimension of the corresponding
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opportunity set. For this reason in cases when we need to compare oppor-
tunity sets of different dimensions, we can “normalize” the frequency density
function through the volume of the opportunity set polyhedron:

fr(t) = (n− 1) · ‖τ̂‖ ·
∑
τk≤t

[
(t− τk)

n−2 · 1∏n
i=1, i�=k(τi − τk)

]
(4.10)

Henceforth, we will call such a function a normalized frequency density func-
tion. Similar to how it is usually done in the probability theory, we can also
define the cumulative frequency density function as

Fr(t) =
1

(n− 1)!
·
∑
τk≤t

[
(t− τk)

n−1 · 1∏n
i=1, i�=k(τi − τk)

]
(4.11)

And the next expression represents the normalized version of the cumulative
frequency density function:

Fr(t) =
∑
τk≤t

[
(t− τk)

n−1 · 1∏n
i=1, i�=k(τi − τk)

]
(4.12)

It should be emphasized that normalized versions of the frequency density
function and the cumulative density function are probabilistic. So we can work
with them using standard statistical methods and techniques.

4.2.4 Deriving an Analytical Solution for the 1M-return Fre-
quency Distribution for our Example Investment

We look again at our example opportunity set from section 2.3. Our invest-
ment opportunity set consists of three stocks, the Bayerische HypoVereis-
bank AG, the Commerzbank AG, and the Deutsche Bank AG, and the port-
folio opportunity set is the basic simplex in R2 (cf. Figure 2.2). Clearly,
only one of the performance measures, the absolute performance over De-
cember 2003, is linear. Let us build the analytical expression for both the
non-cumulative and the cumulative frequency density functions.

The performance values for our three feasible stocks are shown in the
table in Figure 4.6. Consequently, the iso-return hyperplanes are defined by
the following equation system:{ −0.0638wHV M − 0.0366wCBK + 0.1296wDBK = t

wHV M + wCBK + wDBK = 1
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where t denotes a specific absolute performance value. Taking the wDBK as
the dependent weight, we rewrite the iso-hyperplane equations as:

−0.1934 ŵHV M − 0.1662 ŵCBK = t̂

The corresponding portfolio opportunity set and three example iso-hyperplanes
for t equal to -6.38%, -3.66% and 12.96% together with the portfolio oppor-
tunity set are presented in Figure 4.6. Furthermore, the norm of τ̂ is equal
to:

‖τ̂‖ =
√

(−0.1934)2 + (−0.1662)2 ≈ 0.255

HVM-FF CBK-FF DBK-FF

-6.38% -3.66% 12.96%

0 wHVM

wCBK

1.0

1.0

−6.38%

−3.66%12.96%

Figure 4.6: Absolute Performance over December 2003, in %, (left), and the port-
folio opportunity set for the sample investment together with three iso-
return hyperplanes, which pass through vertices of the opportunity set
simplex (right).

According to Corollary 4.2.3, the value of τ(1) = τ1 = −6.28%, τ(2) = τ2 =
−3.66% and τ(3) = τ3 = 12.96%. These three values subdivide the domain of
fr(t) into four intervals. So the frequency density function is a spline (smooth
piecewise-polynomial function) defined as:

fr(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

fr0(t) = 0 t < τ(1)

fr1(t) = fr0(t) + 0.255 ·
[

t−τ(1)
(τ(2)−τ(1))(τ(3)−τ(1))

]
τ(1) ≤ t < τ(2)

fr2(t) = fr1(t) + 0.255 ·
[

t−τ(2)
(τ(1)−τ(2))(τ(3)−τ(2))

]
τ(2) ≤ t < τ(3)

fr3(t) = fr2(t) + 0.255 ·
[

t−τ(3)
(τ(1)−τ(3))(τ(2)−τ(3))

]
t ≥ τ(3)
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The corresponding cumulative frequency density function is defined as:

Fr(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Fr0(t) = 0 t < τ(1)

Fr1(t) = Fr0(t) + 1
2 ·
[

(t−τ(1))
2

(τ(2)−τ(1))(τ(3)−τ(1))

]
τ(1) ≤ t < τ(2)

Fr2(t) = Fr1(t) + 1
2 ·
[

(t−τ(2))
2

(τ(1)−τ(2))(τ(3)−τ(2))

]
τ(2) ≤ t < τ(3)

Fr3(t) = Fr2(t) + 1
2 ·
[

(t−τ(3))
2

(τ(1)−τ(3))(τ(2)−τ(3))

]
t ≥ τ(3)

Figure 4.7 shows the frequency density function and the cumulative frequency
density function as well as their normalized versions.
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Figure 4.7: Frequency density function fr(t) and its cumulative function Fr(t) of the
realized over December 2003 return (left), and normalized versions of
both functions (right).

Looking at Figure 4.6 we can see why fr(t) and Fr(t) have this shape.
Iso-hyperplanes with performances under -6.38% do not intersect the sample
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portfolio opportunity set, i.e. none of the feasible portfolio performed worse
than -6.38%.6 Therefore, fr(t) and Fr(t) are both equal to zero on the interval
t < τ(1) ≡ (−∞,−6.38%). The absolute performance of -6.38% has only
one portfolio consisting of HVM stock solely. On the next interval τ(1) ≤
t < τ(2) the volume of the simplex laying right to such an iso-hyperplane (cf.
Figure 4.6) is determined by the vertex (1, 0) only. So we have one term in fr(t)
and Fr(t) formulae. On the third interval τ(2) ≤ t < τ(3) ≡ [−3.66%, 12.96%)
the volume is defined by two vertices: (1, 0) and (0, 1). So, fr(t) and Fr(t)
formulae contain two terms and so on.

4.2.5 Opportunity Sets with Restrictions on Individual Weights
and Linear Summary Constraints

The geometric form of portfolio opportunity sets of this kind strongly depends
on the upper bounds ϕi, which restrict the proportion of capital that could be
invested in any single asset (cf. Section 3.3.3). So, considering opportunity
set polytopes, our first challenge is to define a procedure/algorithm, which
can enumerate all polytope vertices. It should be emphasized that in this
part we will analyze the opportunity sets consisting of n assets in Rn asset
weight space. That is, n− 1-dimensional polytopes in Rn will be considered.
Again, we start with a general discussion of the mathematics behind this kind
of opportunity sets.

Lemma 4.2.4. Let P be a polytope in Rn defined as

P = {x ∈ Rn | 0 ≤ xi ≤ ϕi,∀ i : i = 1, 2, . . . , n and ϕi ≥ 0, and
n∑

i=1

xi = 1}

A vector v = 〈v1, v2, . . . , vn〉 ∈ Rn is a vertex of polytope P if and only if:

1. ∃j ∈ {1, 2, . . . , n} such that ∀ i �= j the values vi are equal ether to 0
or to ϕi;

2. vj = 1 −∑n
i=1 i�=j vi;

3. vj ≤ ϕj .

Proof.
“⇒” Suppose to the contrary that a vector v satisfies all three conditions

6Please note that we discuss an ex post performance evaluation in our example. In an
ex ante case we will have a specific portfolio frequency density for ex ante (i.e. expected)
performance values.
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and it is not a vertex of polytope P . Without loss of generality we can assume
that

v = 〈ϕ1, ϕ2, . . . , ϕk, 1 −
k∑

i=1

ϕi, 0, . . . , 0〉.

If v is not a vertex of P , then according to the definition of polyhedron
vertices, there exist two vectors, a ∈ P and b ∈ P , both different from v,
such that v is a convex combination of a and b, i.e. v = λa + (1 − λ)b,
0 ≤ λ ≤ 1. That is, vi = λai + (1 − λ)bi ∀ i = 1, 2, . . . , n.

Taking i = 1, we have v1 = λa1 + (1 − λ)b1 and v1 = ϕ1. In addition,
a1, b1 ∈ [0, ϕ1]. This implies that either a1 = ϕ1 (if λ = 0), or b1 = ϕ1 (if
λ = 1), or that a1 = b1 = ϕ1 (if 0 < λ < 1) in order to satisfy our two
conditions. The same argument could be applied for all i = 2, . . . , k. For
k + 1 it is true due to the condition that

∑
ai =

∑
bi = 1. So, we have v =

a, or v = b, or v = a = b. Thus, contradicting our assumption, vector v is
a vertex of P when it satisfies all three conditions of the theorem.

“⇐” Suppose to the contrary that a vector v is a vertex of polytope P but
it does not satisfy the first of the three conditions (if either the second or the
third condition is violated, then the vector v is not in P , so these conditions
must be satisfied). Without loss of generality we can assume that

v = 〈ϕ1, ϕ2, . . . , κk, 1 −
k−1∑
i=1

ϕi − κk, 0, . . . , 0〉.

where 0 < κk < ϕk. That is, the first condition is violated by the k-th element
of v.

We “construct” two points as follows:

v′ = 〈ϕ1, ϕ2, . . . , κk − ε, 1 −
k−1∑
i=1

ϕi − κk + ε, 0, . . . , 0〉.

and

v′′ = 〈ϕ1, ϕ2, . . . , κk + ε, 1 −
k−1∑
i=1

ϕi − κk − ε, 0, . . . , 0〉.

where 0 < ε ≤ ϕk − κk.
Clearly, v′ and v′′ ∈ P . And, in addition, the vector v is a linear combi-

nation of v′ and v′′, i.e. v = (v′ + v′′)/2. Consequently, this contradicts our
assumption that v is a vertex of P . 
�
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Figure 4.8 illustrates the lemma by showing all vertices of a portfolio
opportunity set, which consist of three feasible assets with ϕ1 = ϕ2 = ϕ3 =
0.7.
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−wi ≤ 0 i = 1, 2, 3
wi − 0.7 ≤ 0

w1 + w2 + w3 − 1 = 0

0

1 w1

1

w2

� �

�

��

�

(w1, w2, w3)

(0.7, 0.3, 0.0)
(0.7, 0.0, 0.3)
(0.3, 0.7, 0.0)
(0.0, 0.7, 0.3)
(0.3, 0.0, 0.7)
(0.0, 0.3, 0.7)

Figure 4.8: Portfolio opportunity set consisting of three assets in R3 (left) and R2

(right) weight spaces. The maximal capital proportion, which could be
invested in any asset, is restricted by 0.7. The thick dots “mark” the
vertices of the opportunity set polytope, and the corresponding labels
show their values. The system below the left subfigure represents the
formal description of the portfolio opportunity set, the list below the
right subfigure enumerates all the vertices as if they are generated by an
enumeration algorithm.

Algorithmically, the task of enumerating vertices of such portfolio op-
portunity sets is very similar to the dynamic programming technique (see
Cormen, Leiserson & Rivest (1994), for example) and to the family of mixed-
radix algorithms for generating combinatorial patterns (Knuth 2004). So, the
generation routine for vertices can be implemented easily. In general, the
number of vertices of an portfolio opportunity set is related to the number of
assets asymptotically as O (n · 2n). In practice, however, the number of ver-
tices for reasonably-large opportunity sets is manageable. (For example, an
asset opportunity set consisting of 50 feasible assets and having an exposure
toward a single asset at most 15% of the capital has about 699 · 106 vertices.)
Larger investment opportunity sets are more amenable to sophisticated nu-
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merical techniques than to deriving and using an explicit analytical formula.7

(The numerical estimation of frequency distributions is the topic of the next
chapter.)

Having the knowledge about vertices of polytopes of this kind, our next
task is to derive a formula which defines the polytope volume with respect to
a given hyperplane. Clearly, we would like to use the volume decomposition
techniques from Proposition 4.2.2. The necessary condition for using the
proposition formula is that all polytope vertices are simple. In our case, if the
complement element j of a vertex is equal to its lower or upper bound, i.e.

vj = 1 −
∑

i=1 i�=j

vi = 0 and vj = 1 −
∑

i=1 i�=j

vi = ϕj

this requirement is violated because the vertex v has n incident faces. There-
fore, we first will consider the case when all vertices are simple, i.e. 0 < vj =
1 −∑i=1 i�=j vi < ϕj for the complement element. Afterwards, we will gener-
alize the derived volume formula for covering also polytopes with non-simple
vertices in an additional theorem.

Theorem 4.2.5. Let P be a polytope in Rn defined as

P = {x ∈ Rn | 0 ≤ xi ≤ ϕi,∀ i : i = 1, 2, . . . , n and ϕi ≥ 0, and

n∑
i=1

xi = 1}

and all vertices of P are simple. Let H = {x ∈ Rn | cTx = d} be a hyperplane
in a general position to P . For a halfspace S′ = {xRn | cT x ≤ d} with the
boundary hyperplane H the volume of P ′ = P ∩ S′ is defined as:

Vol(P ′ | d) =

√
n

(n− 1)!
·
∑

v:cT v≤d

⎡⎢⎣
(
d− cj · (1 −∑n

i=1 i�=j vi) −
∑n

i=1 i�=j ci · vi

)n−1∏n
i=1 i�=j (ci − cj)

⎤⎥⎦
where j is the complement coordinate/element of vertex v.

Proof. The theorem formula expresses the volume of polytope P through
signed volume of simplexes built at vertices of P . As the first step we consider
the volume calculation of a single simplex built at a given vertex v with respect
to a given hyperplane H. Without loss of generality we can assume that v is:

v = 〈1 −
k∑

i=2

ϕi, ϕ2, . . . , ϕk, 0, . . . , 0〉.

7Beyond the time complexity the issue is the numerical stability of calculating such
analytical formulae.
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That is, the first element is the complement to 1 (i.e. index j refer to the first
coordinate of vector v), the elements from 2 to k take maximal values, and
the others are equal to zero.

As defined, all vertices of P including v have n − 1 incident faces and
n− 1 incident edges. The signed volume of the simplex at v with respect to
H, ∆v , can be expressed by the lengths of these n− 1 incident edges as:

Vol
(
∆v|

H
)

=

n∏
i=2

λi · Vol(n−1∆) (4.13)

where λi denotes the length of the edge i of ∆v and n−1∆ denotes the n− 1-
dimensional basic simplex in Rn.

For the sake of simplicity for computing λi, we perform the following
transformation of coordinate systems first:

y1 = x1 +

k∑
i=2

ϕi

yi = xi − ϕi, i = 2, 3, . . . , k (4.14)

yi = xi, i = k + 1, k + 2, . . . , n

That is, we make a parallel shift of our opportunity set polytope P across
first k axes in such a way that vertex v moves into the point (1, 0, 0, . . . , 0)
in y-coordinate system. Figure 4.9 provides an illustration of such a parallel
shift for an example opportunity set in R3.

0

1 x1

1

x2

1

x3

�

P

1

y1

0

-1

y2

1

y3

�

P̂

X → Y

Figure 4.9: The X → Y transformation of coordinate systems for the sample oppor-
tunity set from Figure 4.8 at vertex (0.3, 0.7, 0). The vertex is “marked”
with a thick dot.
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Respectively, hyperplane H in the new coordinate system would be:

cTx = d ⇒ c1(y1 −
k∑

i=2

ϕi) + c2(y2 + ϕ2) + . . . + ck(yk + ϕk) +

+ck+1yk+1 + . . .+ cnyn = d

Reorganizing the equation, we obtain:

n∑
i=1

ciyi = d+ c1

k∑
i=2

ϕi −
k∑

i=2

ciϕi (4.15)

Replacing the right-hand side value of (4.15) by d̂, we get the new hyperplane
equation:

Ĥ =

n∑
i=1

ciyi = d̂

Beyond v other vertices of ∆v are laying on Ĥ and are defined in the
y-coordinate system as

vi = 〈y1, 0, . . . , 0, yi, 0, . . . , 0〉 i = 2, 3, . . . , n

So we can find these vertices using the following equation systems:{
y1 + yi = 1

c1y1 + ciyi = d̂
∀ i = 2, 3, . . . , n

Solving the systems, we find that the lengths of ∆v edges are:

λi = yi =
d̂− c1
ci − c1

∀ i = 2, 3, . . . , n (4.16)

The other value which we need for formula (4.13) is the expression for Vol(n−1∆),
i.e. the volume of the n−1-dimensional basic simplex in Rn. We can find the
exact formula for Vol(n−1∆) using the following observation that

Vol(n∆) =
1

n!
. (4.17)

That is, the volume of the basic simplex in Rn can be found using Proposi-
tion 4.2.1. On the other hand, the volume is a product of the face volume
of the basic simplex, i.e. Vol(n−1∆), with the simplex height and the extra
dimension factor:

Vol(n∆) =
1

n
· 1√

n
· Vol(n−1∆) (4.18)
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Therefore, the analytical expression of Vol(n−1∆) is:

Vol(n−1∆) =

√
n

(n− 1)!
(4.19)

Substituting d̂, (4.16) and (4.19) into (4.13), we obtain the final formula for
the volume of the simplex build at v with respect to given H:

Vol(∆v | H) =

√
n

(n− 1)!
·
(
d− c1(1 −∑k

i=2 ϕi) −
∑k

i=2 ciϕi

)n−1∏n
i=1 i�=j(ci − c1)

(4.20)

Equation (4.20) expresses the signed volume formula for ∆v in terms of coef-
ficients of H, dimension n, and vector v solely.

The extension of (4.20) to define the Vol(P ′ | d) is straightforward: we
add simplex volumes for all vertices, which lay in halfspace S′:

Vol(P ′ | d) =

√
n

(n− 1)!
·
∑

v:cT v≤d

⎡⎢⎣
(
d− cj(1 −∑i�=j ϕi) −

∑
i�=j ciϕi

)n−1∏n
i=1 i�=j(ci − cj)

⎤⎥⎦
where j denotes the index of the complement element in a vertex, and i’s are
vertex elements, which take on the upper bound values ϕi.

According to Lemma 4.2.4 all coordinates vi but the complement coordi-
nate vj of every vertex of P are equal either to 0 or to ϕi. So, we replace
in sums

∑
i�=j ϕi and

∑
i�=j ciϕi the upper bounds with vi’s and obtain the

theorem formula. 
�
The volume formula is true for the general case when the complement

coordinate value is coinciding with lower of upper bound.

Corollary 4.2.6. Let P be a polytope in Rn defined as

P = {x ∈ Rn | 0 ≤ xi ≤ ϕi,∀ i : i = 1, 2, . . . , n and ϕi ≥ 0, and

n∑
i=1

xi = 1}

Let H = {x ∈ Rn | cT x = d} be a hyperplane in a general position to P . For
a halfspace S′ = {x ∈ Rn | cTx ≤ d} with the boundary hyperplane H the
volume of P ′ = P ∩ S′ is defined as:

Vol(P ′ | d) =

√
n

(n− 1)!
·
∑

v:cT v≤d

⎡⎢⎣
(
d− cj(1 −∑n

i=1 i�=j vi) −
∑n

i=1 i�=j civi

)n−1∏n
i=1 i�=j(ci − cj)

⎤⎥⎦
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Proof. We need to proof the formula only for the case where P contains one
or more non-simple vertices. Clearly, in this case we can slightly “disturb”
the faces of P , let us say by an amount ε, in such a way that all vertices of P
become simple. Then the formula will be correct. Decreasing ε, the volume
of the modified polytope approaches the volume of the original polytope, and
in the limit converges with it. Therefore, the formula is also correct for the
general case. 
�

Returning to the discussion of opportunity sets, we can easily translate
these general results into the concept of frequency distributions. We start
with the definition of extreme portfolios in the w-space for the [0, ϕi]-restricted
opportunity sets.

Corollary 4.2.7. Given a portfolio opportunity set consisting of n feasible
assets with investment restrictions:

−wi ≤ 0 ∀ i = 1, 2, . . . , n

wi − ϕi ≤ 0 ∀ i = 1, 2, . . . , n and ϕi ≥ 0
n∑

i=1

wi − 1 = 0

a portfolio p is an extreme portfolio if:8

1. all asset weights but one in the portfolio vector p are equal to either 0
or ϕi;

2. an asset weight wj is the complement to 1 of all asset weights from 1),
i.e.

wj = 1 −
n∑

i=1 i�=j

wi and wj ≤ ϕj

Proof. Immediate from Lemma 4.2.4. 
�
Using Theorem 4.2.5 and Corollary 4.2.7 we can formulate an analytical

expression for calculating frequency distributions for [0, ϕi]-restricted oppor-
tunity sets with respect to any linear performance measure.

8As a side remark we state that the set of extreme portfolios contains the portfolios
with the best and the worst performances with respect to a linear performance measure.
Similarly to the linear optimization theory we can state that given a portfolio opportunity
set and a linear performance measure:

• The portfolio with the best performance is one of the extreme portfolios;
• The portfolio with the worst performance is one of the extreme portfolios.
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Corollary 4.2.8. Given an investment opportunity set consisting of n feasible
assets and a linear performance measure τ , the relative frequency of portfolios
having a specific performance t is given by

fr(t) =

√
n

(n− 2)!
·‖τ‖·

∑
p: τ

T p ≤ t

⎡⎣⎛⎝t− τj

⎛⎝1 −
n∑

i=1 i�=j

wi

⎞⎠−
n∑

i=1 i�=j

τiwi

⎞⎠n−2

· 1∏
i�=j(τi − τj)

⎤⎦
where τ1, τ2, . . . , τn are τ -performances of individual assets, p=〈w1, w2, . . . , wn〉’s
are extreme portfolios of the corresponding portfolio opportunity set, and j de-
notes the index of the complement coordinate of a p vector.

Proof. Immediate from Theorem 4.2.5 and Corollary 4.2.7. 
�
Using the corollary we can formulate the following algorithm for com-

puting the frequency distribution functions fr(t) and/or Fr(t) for a linear
performance measure τ :

1. Compute the τ performance values of individual assets, i.e. τ1, τ2, . . . , τn.
Use these performances to calculate the norm ‖τ‖;

2. Generate a new extreme portfolio p according to Corollary 4.2.7;

3. Evaluate the new extreme portfolio. If τ
T p ≤ t, add the corresponding

term to the expression for fr(t) and/or Fr(t) using values τ1, τ2, . . . , τn,
the dimension n, and ‖τ‖;

4. If all extreme portfolios are evaluated, then stop. Otherwise return to
step 3.

The algorithm and the closed-end formula of Corollary 4.2.8 are illustrated
with a small example in the next section.

Normalized versions of fr(t) and Fr(t) can be computed by calculation
first the volume of given portfolio opportunity set (For that we can use in
the formula the largest τi as t value), and then dividing the value of the
non-normalized version of fr(t) or Fr(t) by this volume.

4.2.6 Deriving an Analytical Solution for the 1M-return Fre-
quency Distribution for our Example Investment if
ϕHV M = ϕCBK = ϕDBK = 0.7

We look again at our example opportunity set from section 2.3. The invest-
ment opportunity set consists of three stocks, the Bayerische HypoVereis-
bank AG, the Commerzbank AG, and the Deutsche Bank AG, but in con-
trast to Section 4.2.4 here we consider the portfolio opportunity set where
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the maximum capital that can be invested in one asset is restricted by 0.7.
Consequently, the portfolio opportunity set is the same as in Figure 4.8. The
only performance measure we are evaluating is the absolute performance over
December 2003. Let us build the analytical expression for both, the non-
cumulative and the cumulative, frequency density functions.

Extreme
portfolio wHV M wCBK wDBK Return

p1 0.7 0.3 0 -5.56%

p2 0.3 0.7 0 -4.47%

p3 0.7 0 0.3 -0.58%

p4 0 0.7 0.3 1.33%

p5 0.3 0 0.7 7.16%

p6 0 0.3 0.7 7.98%

Table 4.1: Extreme portfolios and their absolute performances over December 2003
(in %).

The performance values for our three feasible stocks are:

HVM-FF CBK-FF DBK-FF

-6.38% -3.66% 12.96%

Consequently, τ = 〈−0.0638,−0.0366, 0.1296〉, and the iso-return hyper-
planes are defined by the following equation system:{ −0.0638wHV M − 0.0366wCBK + 0.1296wDBK = t

wHV M + wCBK + wDBK = 1

where t denotes a specific absolute performance value. The extreme portfolios
together with their absolute performances are listed in Table 4.1.

According to Corollary 4.2.8, the values of p1 through p6 subdivide the
domain of fr(t) into seven intervals. So the frequency density function is a
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spline defined as:

fr(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fr0(t) = 0 t < p1

fr1(t) = fr0(t) +
√

3
1! · 0.149 ·

[
t−τ2(1−ϕ1)−τ1ϕ1

(τ1−τ2)(τ3−τ2)

]
p1 ≤ t < p2

fr2(t) = fr1(t) +
√

3
1! · 0.149 ·

[
t−τ1(1−ϕ2)−τ2ϕ2

(τ2−τ1)(τ3−τ1)

]
p2 ≤ t < p3

fr3(t) = fr2(t) +
√

3
1! · 0.149 ·

[
t−τ3(1−ϕ1)−τ1ϕ1

(τ1−τ3)(τ2−τ3)

]
p3 ≤ t < p4

fr4(t) = fr3(t) +
√

3
1! · 0.149 ·

[
t−τ3(1−ϕ2)−τ2ϕ2

(τ1−τ3)(τ2−τ3)

]
p4 ≤ t < p5

fr5(t) = fr4(t) +
√

3
1! · 0.149 ·

[
t−τ1(1−ϕ3)−τ3ϕ3

(τ2−τ1)(τ3−τ1)

]
p5 ≤ t < p6

fr6(t) = fr5(t) +
√

3
1! · 0.149 ·

[
t−τ2(1−ϕ3)−τ3ϕ3

(τ1−τ2)(τ3−τ2)

]
t ≥ p6

The corresponding cumulative frequency density function is defined as:

Fr(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fr0(t) = fr0(t)/fr6(t) t < p1

Fr1(t) = fr1(t)/fr6(t) p1 ≤ t < p2

Fr2(t) = fr2(t)/fr6(t) p2 ≤ t < p3

Fr3(t) = fr3(t)/fr6(t) p3 ≤ t < p4

Fr4(t) = fr4(t)/fr6(t) p4 ≤ t < p5

Fr5(t) = fr5(t)/fr6(t) p5 ≤ t < p6

Fr6(t) = fr6(t)/fr6(t) t ≥ p6

Figure 4.10 graphically shows the frequency density function and the cumu-
lative frequency density function as well as their normalized versions.

4.3 Opportunity Sets with Non-linear Restrictions

and Non-linear Performance Measures

We examine non-linear performance measures as applied to linear opportunity
sets first. The task of calculating the volume of the cross-section between
a portfolio opportunity set and non-linear iso-surfaces is equal to the task
of finding the surface volume of a non-linear (convex) body, which is “cut
off” by a specific n-dimensional angle. For example, in case of Sharpe ratio,
sets of portfolios with the same ratios form hyperellipses. Consequently, the
corresponding mathematical problem is to find an analytical formula, which
defines the surface volume of ellipse part which is “cut off” by an angle.
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Figure 4.10: Frequency density function fr(t) and its cumulative function Fr(t) of
the realized over December 2003 return (left), and normalized versions
of both functions (right).

In general, analytical formulae of this kind are very cumbersome to derive
even for three-dimensional elliptical surfaces. (Clearly, extending opportunity
sets to incorporate non-linear investment restrictions further complicates the
derivation of the analytical formulae.) Also, the form of the volume formula
depends on the shape of the performance measure polynomial. Therefore,
the reasonable approach in such cases is to look for a numerical solution,
which allows to “trade-off” the solution exactness against the complexity. So,
relaxing the requirement of precise values and looking for reasonably-good
approximations for fr(t) and Fr(t) only, we can reduce the complexity sharply
and generalize the computational process simultaneously. Finding a numerical
estimation of the (cumulative) frequency density function fr(t) (Fr(t)) is the
topic of the next chapter.
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4.4 Summary and Conclusions

In the space of asset weights a set of portfolios, all of which have the same
value for a specific performance metric, builds up so-called iso-surfaces. Con-
sequently, the task of calculating the frequency distribution for a performance
metric is equal to finding the volume of the cross-section between the portfolio
opportunity set and the corresponding iso-surfaces.

The general approach for deriving analytical formulae for (cumulative)
frequency distributions is to enumerate all extreme portfolios of a specific
type of opportunity sets (i.e. vertices of opportunity set polytopes), and then
to decompose the opportunity set polytope into finite number of opportunity
sub-sets that are built at the extreme portfolios one at a time.

Using the developed methodology, we have derived the general formula
for the (cumulative) frequency distribution for opportunity sets with a short-
sales restriction and linear performance measures. The frequency distribution
function is a spline with critical points at performances of individual feasible
assets. Also for portfolio opportunity sets with restrictions on individual
weights the frequency density function is a similar spline. However, for the
latter opportunity sets the computation is more difficult and time-consuming
because the asymptotic increase in the number of extreme portfolios.

Using non-linear performance measures and/or imposing non-linear con-
straints such as diverse restrictions on a risk exposure enormously increase
the complexity of deriving analytical formulae for frequency distributions. So,
it is reasonable to look in such cases for a numerical solution. The latter is
the topic of the next chapter.



Chapter 5

Numerical Estimation of
Performance Distributions

5.1 Important Aspects of a Numerical Estimation
Procedure

As discussed in the previous chapter, a closed form formula for a (cumulative)
frequency density function(s) derived analytically with respect to the selected
performance measure(s) is the primary choice. Unfortunately, in case of a
very complicated set of investment constraints the formulation of the fre-
quency distribution function in analytical form is difficult or even impossible
to derive. Similar to integration in multi-dimensional space, the required fre-
quency distributions can be estimated numerically. The procedure is based
on statistical sampling: we estimate the distribution of performance values
of the full opportunity set through the distribution of performance values of
a reasonably-large sample. The important aspects of a numerical estimation
are:

• How to form the sample of random portfolios considering a portfolio
opportunity set of a particular kind;

• The quality of the estimate fr∗(t) with respect to the original fr(t) func-
tion, i.e. what is the accuracy of estimation. Additionally, we are
interested in, which factors influence the accuracy and how it can be
increased.

Beyond these two points, several other technical aspects arise, e.g. how the
frequency histogram can be transformed into the estimate fr∗(t), what is the
optimal histogram bin size, and how the values between estimation points can

87
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be interpolated.
We consider core aspects of an estimation procedure in the successive sec-

tions. In the next section we review various techniques to form a portfolio
opportunity set sample, their convergence speed and efficiency. We also intro-
duce the discrepancy notion. Sections 3 through 5 discuss the sampling tech-
niques in detail. The numerical estimation is more or less independent of the
evaluated performance measure, so looking at each technique, we first consider
our standard case with the single no-short-sales restriction, i.e. 0 ≤ wi ≤ 1
∀ i. Afterwards, we generalize sampling methods to other types of opportunity
sets. At the end of each of these sections we analyze the quality of estima-
tion. In particular, we are interested in how we could compute confidence
intervals for our estimates. Section 6 deals with some additional aspects of
the numerical computation of (cumulative) frequency density function(s) such
as optimal histogram bin size and curve fitting techniques.

It should be noted that each of these topics is a “thing in itself” and that
we consider only the core issues and techniques, which are relevant for our
needs.

5.2 Forming a Portfolio Opportunity Set Sample

5.2.1 Approaches to Form a Sample

Clearly, the sample consists of feasible portfolios, which should be uniformly
distributed over the opportunity set. We can use one of the following alter-
natives to form such a sample:

• Regular grid (implicitly implies the use of a quadrature rule);

• Straightforward Monte Carlo method;

• Quasi-random sequences (e.g. Halton’s or Sobol’s low discrepancy se-
quences). This method is also often referred as the quasi-Monte Carlo.

Using a regular grid, we obtain an estimation with a guaranteed error
bound. Namely, this approach gives us a guarantee that the error does not
exceed a specific upper bound. Generally, it can be shown that no grid estima-
tors exist with an error bound better than O (N−1/s

)
, where N is the number

of grid points, and s is the dimension of the estimated domain (Bakhvalov,
Zhidkov & Kobelkov 2000).1 Thus, the clear deficiency of a grid method is

1Essentially, the Bakhvalov’s theorem states that given a deterministic quadrature, there
exists a s-dimensional integrand with r continuous bounded derivatives such that the con-

vergence rate has the order O
�
N−r/s

�
.



5.2. Forming a Portfolio Opportunity Set Sample 89

that the number of grid points increases exponentially with s having a specific
level of accuracy required.2

The Monte Carlo method provides a faster convergence with respect to
a required level of accuracy. In general, the convergence rate has the order
O (N−1/2

)
and is independent of the problem dimension (Sobol’ 1994). Thus,

the method is asymptotically much faster than the grid method with respect
to the accuracy level required. However, the Monte Carlo uses a random
sampling and therefore it provides a probabilistic error bound only. This
means that the error bound is expected with some (high) probability but not
guaranteed.

The quasi-Monte Carlo method is a modification of the Monte Carlo
method with the error bound O (f(s) · (lnN)s ·N−1)

)
, where f(s) is a func-

tion depending on the domain dimensionality only. The bound is deterministic
because the sample consists of well-chosen deterministic points. In general,
the quasi-Monte Carlo is faster than the grid and comparable to the standard
Monte Carlo in yielding a prescribed level of estimation accuracy.

Another distinguish feature which characterizes the quality of a sampling
method is the notion of discrepancies. The next section addresses this theo-
retical concept in more detail.

5.2.2 On Discrepancy Bounds for Sampling Methods

Computing a frequency density function fr(t) numerically, the kernel of the
procedure is the estimation of partial volumes of a portfolio opportunity set
P , Vol(Pδ), for each of the equal performance intervals having a length δ.
(We use a histogram to calculate how many random portfolios fail within
each of the performance intervals. That is, we estimate the ratios of Vol(Pδ)
relative to the complete volume of P .) Therefore, our task is nothing else
but numerical integration in multidimensional space. Let us consider the
numerical integration over the normalized s-dimensional integration domain
[0, 1]s, i.e. over the [0, 1]s-hypercube, in general terms.

The general condition of the (quasi-) Monte Carlo method(s) is that having
an infinite sequence x1, x2, x3, . . ., of vectors, the following equality should
hold for a reasonable class of integrands f(·) on the [0, 1]s:

lim
N→∞

1

N
·

N∑
i=1

f(xi) =

∫
[0,1]s

f(z)dz (5.1)

2We consider only the grid method, which is one of the broad family of lattice methods.
Not all of lattice methods are featured by the “curse of dimensionality” to the same extent
as the regular grid does. Presently, lattice methods are subject of active research.
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Consequently, using a finite sequence x1, x2, . . ., xN , we can obtain an ap-
proximation of the integral value. If the sequence x1, x2, x3, . . . is uniformly
distributed in the [0, 1]s, then (5.1) holds for all Riemann-integrable functions
(Niederreiter 1992). So, we need a measure of uniformity or non-uniformity
for sequences of vectors.

Discrepancy is a quantitative measure how inhomogeneously a sequence
of n-dimensional vectors is distributed in the unit hypercube [0, 1]s. Formally,
for a sequence X consisting of vectors x1, x2, . . ., xN ∈ [0, 1]s the discrepancy
is defined as:

D
(s)
N (X) = sup

y∈[0,1]s

∣∣SN (Πy) −N · VΠy

∣∣ (5.2)

where y denotes a point in the unit hypercube, Πy is the s-dimensional par-
allelepiped delimited by coordinate planes and y as the upper-right corner,
SN (Πy) denotes the number of xi ∈ Πy, and VΠy is the volume of Πy.3

Sobol’ (1969) and (1981) showed the following discrepancy bounds for differ-
ent methods:

Regular grid (as defined in section 5.3): D
(s)
N = O

(
N1− 1

s

)
Monte Carlo method: D

(s)
N = O

(√
N
)

Quasi-Monte Carlo method (Sobol sequences): D
(s)
N = O (lns−1N

)
For an in-depth discussion of theoretical concepts behind the low-discrepancy
sequences and the analysis of different sampling methods we refer to Sobol’
(1967), (1969), Niederreiter (1992), and Tezuka (1995).

The discrepancies and estimation error bounds are strongly related: se-
quences of vectors with small discrepancy guarantee small errors. (For exam-
ple, Niederreiter (1992) provides the error bounds for the quasi-Monte Carlo
method in terms of the bounded variation of the integrand and of the star
discrepancy. We also discuss this relation in section 5.5.3 devoted to the cal-
culation of accuracy of quasi-Monte Carlo methods.) The discrepancy of the
grid method is deteriorating very fast and approaches the order N with the
increase of the dimensionality. Therefore, the convergence of the grid method
is very slow and is inferior to the Monte Carlo method already for dimen-
sions n > 3. Consequently, our preferences are clear:4 we would rather use

3It should be noted that in the literature different kinds of discrepancy measures are
considered: the star discrepancy, the extreme discrepancy, the isotropic discrepancy et

cetera. We choose the measure used by Sobol’ to analyze his sequences. This measure is very
similar to the star discrepancy: D

(s)
N = N · D∗

N . Thus, the star discrepancy is a normalized

version of D
(s)
N . The analysis based on the star discrepancy is given in Niederreiter (1992).

4More precisely: at least from the theoretical point of view.
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the QMC or the MC to form a sample. The grid method is the last choice.
However, for the sake of simplicity we analyze in details three sampling meth-
ods as applied to different opportunity sets in the following sections in the
opposite order.

5.3 Regular Grid

Forming a representative sample based on a regular grid is what often seems to
be a natural and good choice for estimating a frequency density function. But
the method is inferior in all aspects (i.e. computability and convergence speed
with respect to a specific estimation error) to the other sampling methods.

Let us consider the standard case when the opportunity set is restricted
by no-short-sales constraint only. Given n assets, their weights form a basic
n− 1 dimensional simplex and a regular grid can be defined as

〈w1 =
�1

M
, w2 =

�2

M
, . . . , wn−1 =

�n−1

M
〉

where �1, �2, . . . , �n−1 independently take on values 0, 1, 2, . . . ,M and are sub-
ject to the following constraint:5

n−1∑
i=1

�i

M
≤ 1

The constant M + 1 defines the number of regular grid points across each di-
mension of our weight simplex. From the financial point of view, we subdivide
the available capital into equal investable lots, e.g. 5% of the whole capital,
and then build our portfolio by investing these lots into different assets. Of
course, we can invest more than one lot into an asset or none at all.6

Figure 5.1 shows regular grid points for the opportunity set consisting of
3 assets (left) and 4 assets (right), which have the minimal investable lot equal
to 0.25 or 25% (i.e. M = 1.0/0.25 = 4 and, thus, we have M + 1 = 5 grid
points across each dimension in this particular case).

Estimating performance distributions through a regular grid, we have to
calculate the performance value in each grid point, though in any order. The
total number of grid points, N , is related to n and M parameters as:

N (n,M) =
(n− 1 +M)!

M ! · (n− 1)!
(5.3)

5Obviously, the latest asset weight for such grid is defined as wn = 1 −
�n−1

i=1
�i

M
.

6i.e. wi ∈ {0.0, 0.05, 0.10, 0.15, . . . , 1.0} ∀ i = 1, 2, . . . , n
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Figure 5.1: The regular grid defined on the opportunity set, which is restricted by
the no-short-sales constraint and consists of three assets (left) and four
assets (right). The minimal investable lot is equal to 0.25 or 25% in both
cases (i.e. M = 4). The basic simplex formed by n − 1 independent
asset weights is filled with color on both subfigures.

The distribution estimation accuracy ε for the grid method is proportional to
the inverse value of M to the power of 2. The sample size is related to the
number of assets asymptotically as:

N (n,M) = O (n · (n+ 1) · (n+ 2) · . . . · (n− 1 +M)) = O (nM
)

Consequently, M = O (lognN). Thus, we obtain that the accuracy depends
on the problem dimensionality n and the sample size N as:

ε = O (log−1
n 2N

)
(5.4)

Therefore, aiming for a reasonably good estimation for (cumulative) frequency
distributions, the regular grid method is extremely computationally ineffi-
cient. Because of the time complexity, the method cannot be used whenever
we have more than a handful of assets in the opportunity set. Another reason
for not using the grid method is its poor discrepancy bound when compared
to the two other methods.

Henceforth, we consider only the Monte Carlo and quasi-Monte Carlo
methods as applied to the estimation of frequency density functions fr(t).
Both, the MC and QMC, have their advantages and drawbacks.
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5.4 Straightforward Monte Carlo Approach

The Monte Carlo method (MC) is the most famous technique among the
numerical methods. The general idea of the approach is to solve problems by
random sampling. Formally, assume that we need to compute the quantity
a. Selecting a random variable ξ with E [ξ] = a, the Monte Carlo method is
defined as:

1

N

N∑
i=1

ξi
P−→ a (5.5)

ξi represent independent trials of ξ, and as N → ∞ the mean of ξi stochasti-
cally converges to a.7

In our case we estimate frequency distributions by choosing N feasible
portfolios randomly from an evaluated opportunity set, and then calculate
the performance metric(s) for these selected portfolios. The distribution of
performance values of the sampled portfolios approximates the frequency dis-
tribution for the full opportunity set. Clearly, the bigger the sample size
N , the greater is the accuracy of the MC estimation. (The accuracy of the
MC method is discussed in section 5.4.3 in details.) The key issue of the
MC method is how to generate the stream of random portfolios over a given
opportunity set. We start with our standard case with the no-short-sales
constraint only.

5.4.1 Opportunity Sets with a Short-Sales Restriction only

Let us consider a portfolio opportunity set consisting of n assets. The op-
portunity set is the n − 1-dimensional basic simplex, and we need to gen-
erate random points (i.e. sample portfolios) over it. The commonly used
acceptance-rejection generation procedure is very inefficient due to reasons
given in Exhibit 5.1. So we consider in details two alternative transformation
techniques to generate random portfolio vectors that are uniformly distributed
over the surface and interior of the multidimensional basic simplex of asset
weights. Both algorithms are described in Rubinstein & Melamed (1998).
However, our description of uniform spacing technique is based on Devroye
(1986).

Exhibit 5.1 A Note of Caution on Using the Acceptance-
Rejection Generation Techniques

An often used strategy to generate uniformly distributed random points over
bounded, regular region S is to generate random points over the multidimen-

7This description has been adapted from Sobol’ (1998).
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sional [0, 1] hypercube; then use an affine transformation to translate the gen-
erated points into uniformly distributed over hyper-rectangle or hypercube
including S. Generating a new random point, we accept or reject it depend-
ing whether the point is inside or outside the investigated region S. So at
first sight we can adopt the following simple acceptance-rejection strategy:

1. Generate weights w1, w2, . . . , wn−1 as n − 1 independent [0, 1] uni-
formly distributed random numbers;

2. Check if the condition
∑n−1

i=1
wi ≤ 1 is valid for these weights. If not,

then repeat the first step;

3. Create a new random portfolio pt with asset weights

pt = 〈w1, w2, . . . , wn−1, 1 −∑n−1

i=1
wi〉.

The fundamental (and disastrous) disadvantage of this acceptance-rejection
technique is that the proportion of feasible random portfolios in the gen-
erated sequence, i.e. random weight vectors which pass the second step,
decreases strongly with an increase of the number of assets in the opportu-
nity set. The following proposition defines this ratio explicitly.

Proposition. Let U = 〈u1, u2, . . . , un−1〉 be an n − 1-dimensional [0, 1]
uniformly distributed random variable. The expected number of iterations of
the algorithm that are needed to produce m points such that u1 + u2 + . . .+
un−1 ≤ 1 is (n− 1)! ·m.

Proof. The fraction of [0, 1]n−1 uniformly distributed random points, that
pass the u1 + u2 + . . .+ un−1 ≤ 1 rejection test, is equal to the volume ratio
of two polytopes:

Volume of the basic Rn−1simplex

Volume of the [0, 1]n−1-cube
or

Vol
({

〈u1, u2, . . . , un−1〉 | 0 ≤ ui ≤ 1, i = 1, 2, . . . , n− 1 and
∑n−1

j=1
uj ≤ 1

})
Vol({〈u1, u2, . . . , un−1〉 | 0 ≤ ui ≤ 1, i = 1, 2, . . . , n− 1})

0 1 w1

1

w2

Case n = 3

0

1 w1

1

w2

1

w3

Case n = 4
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Proof (continued). The figures above illustrate particular cases for
n = 3 and n = 4, i.e. [0, 1]n−1-cubes and basic simplexes in R2 and
R3. The dotted lines border [0, 1]n−1-cubes, and the basic simplexes
are filled with color.

The volume of the [0, 1]n−1-cube is always 1 and the volume of the
basic simplex is equal to 1/(n−1)!. Clearly, as the 1/(n−1)! fraction
of points is the only accepted one, the acceptance-rejection algorithm
should generate (n − 1)! · m points to produce m points uniformly
distributed in the basic Rn−1 simplex. 
�

Generating Random Portfolios Using Uniform Spacings

Let U1, U2, . . . , Un−1 be [0, 1] uniformly distributed random variables and let
U(1), U(2), . . . , U(n−1) be an ordering for a sample of these variables such that

U(1) ≤ U(2) ≤ . . . ≤ U(n−1)
8

We define two additional values: U(0) = 0 and U(n) = 1. The statistics

Si = U(i) − U(i−1), 1 ≤ i ≤ n

are called the uniform spacings for this sample.

Theorem 5.4.1. 〈S1, S2, . . . , Sn−1〉 is uniformly distributed over the
n− 1-dimensional basic simplex ∆ in Rn−1:

∆ = {〈x1, x2, . . . , xn−1〉 ∈ Rn−1 | xi ≥ 1, i = 1, 2, . . . , n− 1 and

n−1∑
i=1

xi ≤ 1}

and 〈S1, S2, . . . , Sn〉 is uniformly distributed over the n− 1-dimensional basic
simplex n−1∆ in Rn:

n−1∆ = {〈x1, x2, . . . , xn〉 ∈ Rn | xi ≥ 1, i = 1, 2, . . . , n and

n∑
i=1

xi = 1}9

Proof. see Devroye (1986) 
�
Using this theorem we can formulate the following algorithm to generate

random portfolio vectors that are uniformly distributed over the portfolio op-
portunity set consisting of n assets. The algorithm uses a standard generator
of random numbers uniformly distributed on the interval [0, 1].

8Such an ordering is also called the order statistics for the sample of U1, U2, . . . , Un−1.
9i.e. the random variable is uniformly distributed over the surface of the basic simplex

∆ in Rn
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1. Generate U1, U2, . . . , Un−1 as n − 1 independent [0, 1] uniformly dis-
tributed random variables (i.e. Ui ∼ U(0, 1), i = 1, 2, . . . , n− 1);

2. Sort Ui in ascending order, i.e. define the order statistics
U(1), U(2), . . . , U(n−1);

3. Create a new random portfolio p with asset weights 〈w1, w2, . . . , wn〉
where wi = U(i) − U(i−1), 1 ≤ i ≤ n, U(0) = 0 and U(n) = 1. Add this
new random portfolio to the sample;

4. If the sample is big enough, then stop.10 Otherwise return to step 1.

The algorithm is very compact and can be implemented easily. For generation
of [0, 1] uniformly distributed random variables we can use any of widely avail-
able standard routines, e.g. the “Numerical Recipes in C” book (Press, Flan-
nery, Teukolsky & Vetterling 1993) provides three different routines ran0(),
ran1() and ran2(). The fast Mersenne Twister routine (Matsumoto & Nishimu-
ra 1998) is another alternative.

The only drawback of the uniform spacings approach is that in the second
step we need to sort the uniform variates. For opportunity sets consisting of
large number of assets, the sorting can substantially slow down the generation
of random portfolios due to the time complexity O (n lg n). The next subsec-
tion provides another algorithm, which can be more time efficient in case of
large number of assets.

Generating Random Portfolios Using the Exponential Approach

An alternative approach can also be used to generate random portfolio vec-
tors:

1. Generate E1, E2, . . . , En as n independent exponentially distributed
random variables with the exponential distribution parameter λ = 1
(i.e. Ei ∼ E(1), i = 1, 2, . . . , n);

2. Create a new random portfolio p with asset weights 〈w1, w2, . . . , wn〉
where

wi =
Ei∑n

j=1Ej
, i = 1, 2, . . . , n

Add this new random portfolio to the sample;

3. If the sample is big enough, then stop. Otherwise return to step 1.

10We are discussing this issue in the next section.
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Theorem 5.4.2. Let E1, E2, . . . , En be independent exponentially distributed
random variables with λ = 1. Then the n − 1-dimensional random variable
〈x1, x2, . . . , xn−1〉,

wi =
Ei∑n

j=1Ej
, i = 1, 2, . . . , n− 1

is distributed over the n− 1-dimensional basic simplex ∆ in Rn−1:

∆ = {〈x1, x2, . . . , xn−1〉 ∈ Rn−1 | xi ≥ 1, i = 1, 2, . . . , n− 1 and
n−1∑
i=1

xi ≤ 1}

and 〈x1, x2, . . . , xn〉 is uniformly distributed over the n−1-dimensional basic
simplex n−1∆ in Rn:

n−1∆ = {〈x1, x2, . . . , xn〉 ∈ Rn | xi ≥ 1, i = 1, 2, . . . , n and

n∑
i=1

xi = 1}

Proof. see (Karlin & Taylor 1975) or (Rubinstein & Melamed 1998) 
�
In the first step we use any standard generator of random numbers uni-

formly distributed on the interval [0, 1] with an additional transformation
of these uniform variates into exponentially distributed random variables.11

In the second step we create a random portfolio just by dividing the first n
variables by the sum of all variables generated in first step. According to The-
orem 5.4.2, the random portfolio vectors generated in this way are uniformly
distributed over the portfolio opportunity set consisting of n assets.

For a large number of assets the exponential approach is faster than the
uniform spacings algorithm because the computational overhead to standard
[0, 1] uniform routine consists of the transformation of uniform variates into
exponential variables, and dividing of each exponential variable by the sum
only.12 That is, the time complexity of these extra calculations is O (2n) only.

5.4.2 Extending Random Portfolio Generation to Different
Types of Constraints

The geometric form of portfolio opportunity sets depends on imposed invest-
ment constraints. Presently there exist several universal algorithms, e.g. by
Smith (1984), Borovkov (1994), which can generate a random variable X over
any bounded region P ⊂ Rn with a given density f (e.g. uniformly distributed

11We use the Inverse-Transform method for the last operation.
12The former operation is equivalent to taking natural logarithm, i.e. calling ln(Ui) func-

tion.
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over P in our case). However, these methods are substantially slower than
the transformation techniques used for the no-short-sales case.

The general idea of all algorithms is to construct an ergodic Markov chain,
recursively generating a sequence of points all in P and whose stationary dis-
tribution is uniform. If the initial point of the chain is uniformly distributed
over P and the transition kernel is symmetric, then the points of the gener-
ated sequence will be independent and uniformly distributed over P asymp-
totically. The most known algorithms from the family are the Hit-and-run
algorithm by Smith (1984), (1993) and the Sequential Direction algorithm13

by Telgen (Berbee, Boender, Kan, Scheffer, Smith & Telgen 1987) and Ritov
(1989).We adopt the last one to generate random portfolios for the general
case opportunity sets.

Generating Random Portfolios Using the Sequential Direction Ap-
proach

For the sake of simplicity let us consider the opportunity sets with restrictions
on individual weights and linear summary constraints (cf. section 3.3.3) first.
Such an opportunity set P is defined as:

0 ≤ wi ≤ ϕi ∀ i = 1, 2, . . . , n and ϕi ∈ R+
n∑

i=1

wi = 1∑
j∈Ak

wj ≤ γk Ak ⊆ {1, 2, . . . , n} and γk ∈ R+ (5.6)

ςl ≤
∑
j∈Bl

wj Bl ⊆ {1, 2, . . . , n} and ςl ∈ R+

A portfolio opportunity set of this kind consisting of n feasible assets forms
a n − 1-dimensional polytope. Removing the second budget constraint from
the system (5.6), we obtain a full-dimensional opportunity set polytope in
Rn−1. Henceforth, we denote coefficients of the transformed system through
a “hat” sign above the corresponding scalars and vectors. The sequential
direction algorithm that generates random portfolios uniformly distributed
over such a transformed opportunity set P̂ ⊂ Rn−1 is formulated as follows:

1. Choose uniformly a feasible random point p0 = 〈w(0)
1 , w

(0)
2 , . . . , w

(0)
n−1〉

in a given portfolio opportunity set P̂ ;

13It is also called the Coordinate Direction algorithm. The Sequential Direction algorithm
is a slight modification of the Hit-and-Run algorithm proposed by Smith (1984).



5.4. Straightforward Monte Carlo Approach 99

2. Draw a straight line L through the point pt (the subscript t = 0, 1, 2, . . .
denotes the actual step of the chain) in a direction taken consequently
from the direction set D = {e1, e2, . . . , en−1,−e1,−e2, . . . ,−en−1} (i.e.
e1, e2, . . . , en−1,−e1,−e2, . . . ,−en−1, e1, e2, . . .), where ei are the elements
of an orthogonal basis in Rn−1;

3. Compute the next element of the chain pt+1 by choosing a point on L∩P̂
uniformly. Formally:

pt+1 ∼ U(L ∩ P̂ )

L ∩ P̂ = {x | x = λpt + (1 − λ)dt, λ ∈ [0, 1]}
where

dt = pt + a · ej
and the scalar a such that dt is the endpoint of L laying on the boundary
of the portfolio opportunity set P̂ ;

4. Create a new random portfolio extending pt+1 = 〈w(t+1)
1 , w

(t+1)
2 , . . . , w

(t+1)
n−1 〉

with the last depending weight as

〈w(t+1)
1 , w

(t+1)
2 , . . . , w

(t+1)
n−1 , w

(t+1)
n = 1 −

n−1∑
i=1

w
(t+1)
i 〉

Add this new random portfolio to the sample;

5. If the sample is big enough, then stop. Otherwise return to step 2.

The transition kernel from pt to pt+1 of the chain is defined in the step 3 of the
algorithm. As we “move” along the orthogonal vectors only, the computation
of the endpoint dt of L is efficient due to usual sparsity of the constraints
system P̂ : Substituting the values of pt except the value for wj element into

P̂ , we just need to define the tightest bound for w
(t)
j variable in order to find

the dt point. Consequently, pt+1 can be found easily.
Furthermore, the routine leaves the two important issues open:

• How to find an initial point of the chain, i.e. p0;

• How many steps of the chain are necessary in order to guarantee that all
“one-dimensional” projections of the chain will be uniformly distributed,
i.e. the chain converges to an invariant uniform distribution.

The simplest solution to the first issue is to “pack” a given opportunity set
into a simple “envelope”, for example a cube or a simplex, and then sampling
uniformly until a feasible point will be found. A more sophisticated technique
for this preprocessing step with polynomial time is discussed in Lovász (1998).
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The second issue is also discussed in Lovász (1998). The article proves that
Markov chains constructed by hit-and-run algorithms converge to the uniform
distribution in O (n3

)
steps. Thus, having n assets in the opportunity set,

we need to generate at least O (n3
)

random portfolios in order to guarantee
the uniformity of the sample. (It should be noted that another bound is
imposed through the required accuracy of estimation. We consider it in the
next section in detail.)

The generalization of the discussed approach for handling other types of
investment constraints such as bounds on risk, for example, is very straight-
forward: We determine dt endpoint of L having just additional (may be
non-linear) inequalities in the opportunity set description. Because we are
moving across orthogonal directions, the number of inequalities needed to
evaluate may increase, but the complexity does not rise substantially and we
can generate random portfolios rather efficiently.

5.4.3 Confidence Interval for a Frequency Density Function
Estimate

When estimating a frequency density function fr(t) numerically, it is natural
to ask what errors may occur. Formally, we are interested to quantify the
following expression:

Pr [| fr∗(t) − fr(t) |≤ ε] = ρ (5.7)

where fr∗(t) is an estimate of fr(t). The expression defines a ρ-percent confi-
dence interval of estimate for fr(t). It is intuitively clear that the estimation
accuracy ε depends on the size of the portfolio opportunity set sample: the
bigger the sample used the better should be our estimate for fr(t). For the sake
of simplicity we analyze linear performance measures first and then generalize
the result.

As discussed in Chapter 4, given a portfolio opportunity set P and a per-
formance measure τ , the frequency distribution function fr(t) represents the
volumes of the cross-section between P and the corresponding τ -isosurfaces.
Furthermore, using a histogram to tabulate the performance values from the
sample, we estimate how many of random portfolios “fail” within each of the
performance intervals. Let us consider such an interval for performances be-
tween t and t+δ. This interval corresponds to the volume of P laying between
two hyperplanes τ

T w = t and τ
T w = t+ δ (cf. Figure 4.4). We denote this

partial volume of P by Vol(Pδ). Both values, fr(t) and Vol(Pδ), are related.
Namely, for small values of δ the following approximation holds:

fr(t) ≈ Vol(Pδ)

h
(5.8)
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where h is the distance between the hyperplanes τ
T w = t and τ

T w = t+ δ.
We will use this approximation later. For the time being, we concentrate on
the analysis of probabilities of random portfolios “hitting” Pδ.

We consider a random portfolioW as an independent random variable, the
outcome of which can be classified either as a “success” when the performance
ofW fails between t and t+δ, or a “failure” otherwise. That is, the probability
density function is given by:

Pr
[
t ≤ τ

TW ≤ t+ δ
]

= p (5.9)

Pr
[
τ

TW < t or τ
TW > t+ δ

]
= 1 − p

Then W is a multidimensional Bernoulli random variable. Random portfolios
are uniformly distributed over the portfolio opportunity set whatever algo-
rithm we use for forming our sample. Therefore, the probability p is equal to
the ratio of Vol(Pδ) to the volume of the portfolio opportunity set Vol(P ), i.e.

p =
Vol(Pδ)

Vol(P )
(5.10)

Consequently, we can also consider our portfolio opportunity set sample of
N random portfolios as N independent realizations/trials of the Bernoulli
variable (5.9). In these N realizations let Nδ be the number of realizations
with “success” When N is large, the law of large numbers implies that Nδ

is approximately normally distributed with the mean N · p and the variance
N · p(1 − p) (Shiryaev 2004, Ross 2001), or, equivalently,

Nδ −N · p√
N · p · (1 − p)

∼ N (0, 1) (5.11)

Hence,

Pr

[∣∣∣∣∣ Nδ −N · p√
N · p · (1 − p)

∣∣∣∣∣ ≤ χ

]
= 2Φ(χ) (5.12)

where Φ(χ) is the Laplace function

Φ(χ) =
1√
2π

∫ χ

0
e−

y2

2 dy

and χ is the quantile of Φ(χ).14

14The Laplace function Φ(χ) specifies values of the standard normal distribution function
for the domain [0, +∞).
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Expressions (5.12) and (5.7) are closely related, obviously. For any specific
probability level, e.g. 99% or 95%, the following inequality holds:∣∣∣∣∣ Nδ −N · p√

N · p · (1 − p)

∣∣∣∣∣ ≤ χ

Then, ∣∣∣∣Nδ

N
− p

∣∣∣∣ ≤ χ ·√p · (1 − p)√
N

Replacing p through the right-hand side of (5.10), we obtain:∣∣∣∣Nδ

N
− Vol(Pδ)

Vol(P )

∣∣∣∣ ≤ χ ·√Vol(Pδ) · [Vol(P ) − Vol(Pδ)]√
N · Vol(P )

(5.13)

Using approximation (5.8) and the inequality Vol(P )−Vol(Pδ) ≤ Vol(P ), we
rewrite (5.13) as ∣∣∣∣Nδ

N
− fr(t) · h

Vol(P )

∣∣∣∣ ≤ χ ·√fr(t) · h · Vol(P )√
N · Vol(P )

or, equivalently,∣∣∣∣Nδ

N
· Vol(P ) · 1

h
− fr(t)

∣∣∣∣ ≤ χ ·√fr(t) · Vol(P )√
N · √h (5.14)

The multiplication factor (Nδ/N) ·Vol(P ) on the left-hand side of (5.14) rep-
resents nothing else but an estimate for Vol(Pδ). We denote it by Vol*(Pδ).

15

Therefore, we have∣∣∣∣Vol*(Pδ) · 1

h
− fr(t)

∣∣∣∣ ≤ χ ·√fr(t) · Vol(P )√
N · √h

or, equivalently,

|fr∗(t) − fr(t) | ≤ χ ·√fr(t) · Vol(P )√
N · √h

Finally, we can formulate the expression for the confidence interval of the
estimate of a (cumulative) frequency density function as:

Pr

[
|fr∗(t) − fr(t) | ≤ χ ·√fr(t) · Vol(P )√

N · √h

]
= 2Φ(χ) (5.15)

15We estimate these partial volumes Vol*(Pδ) for equal intervals δ by composing a fre-
quency histogram.
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In the term defining the confidence interval bounds in formula (5.15) we have
the value of fr(t). However, instead of this unknown value we can use either
a rough estimate (e.g. the volume of a cross-section of the [0, 1]n-cube) or a
reasonably big constant by computing the bounds.

The approximation (5.8) is still valid in case of “slicing” of a portfolio
opportunity set by a non-linear performance measure. Therefore, the last for-
mula for the estimation of confidence interval for frequency density functions
is also valid in general.

5.4.4 Computing a Confidence Interval for a Numerical Solu-
tion for our Example Investment

In this section we compute a numerical estimation of the frequency density
function for our example opportunity set from section 2.3. The portfolio
opportunity set consists of three stocks restricted by the no-short-sales con-
straint only, and it is the basic simplex in R2 (cf. Figure 2.2). The perfor-
mance measure we are evaluating is the absolute performance over Decem-
ber 2003.

Expression (5.15) defines the confidence interval for a numerical estimate
of the frequency density function given a specific confidence level, a histogram
bin size, and the number of random portfolios in a sample. We consider the
inverse problem: given a specific confidence level, a histogram bin size, and
a specific estimation accuracy, we would like to find the size of a sample,
which “guarantees” with the specified probability the required accuracy of
estimation.

Let the bin size δ be equal to 0.5%. The vector formed by performances is
defined as τ = 〈−0.0638,−0.0366, 0.1296〉, so the norm of τ̂ is equal to ‖τ̂‖ =
0.255. Consequently, distances between hyperplanes defining a histogram bin
are equal to h ≈ 0.0196. Requiring the 99% confidence level and the accuracy
ε = 0.1, we obtain the expression:

Pr

[
|fr∗(t) − fr(t) | ≤ χ ·√fr(t) · Vol(P )√

N · √h = ε

]
= 2Φ(χ)

Hence,

N =
χ2 · fr(t) · Vol(P )

ε2 · h
For the 99% level, χ2 = 5.4119. And, finally,

N =
5.4119 · √2 · 0.5

0.12 · 0.0196 = 19524
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So, we need to sample at least 19524 random portfolios in order to achieve the
estimation accuracy ε = 0.1 with the probability of 99%. Figure 5.2 shows the
frequency density function as computed in section 4.2.4, the 99% confidence
interval, and the estimated values of fr(t) using given parameters as well as a
sample of 25 thousand random portfolios.
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Figure 5.2: Frequency density function fr(t) of the realized over December 2003
return. The thick dots show the estimated values of fr∗(t), and the thin
dashes lines border the 99% confidence interval for the estimation error
of 0.1.

5.5 Quasi-Monte Carlo Approach

The general condition for (5.1) to hold is the uniformity of the chosen se-
quence. Thus, approximating the right-hand integral of (5.1) through a finite
sequence/sample, the uniformity of the chosen sequence is the key element,
which determines the quality of approximation. The idea behind the quasi-
Monte Carlo (QMC) is that we can use some deterministic number sequences,
which are in some sense evenly distributed, to compose a sample (For that
reason the term “low-discrepancy” sequences is more suitable than the QMC
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to reflect the nature of this subject). Presently, there exist several algorithms
to construct such sequences of well-chosen points. The most famous are:

• Halton-Hammersley sequences (Halton 1960);

• Faury sequences (Faury 1982);

• Sobol’ sequences (Sobol’ 1967, Sobol’ 1969);

• Niederreiter sequences (Niederreiter 1992).

For a more detailed theoretical treatment of the mentioned algorithms, im-
plementation details and code together with diverse applications of QMC
in finance we refer to Jackel (2002) and Glasserman (2004). For a rigor-
ous and comprehensive discussion of the theory of low-discrepancy sequences
we refer to the excellent book of Niederreiter (1992). The recent develop-
ments in the area can be found at the server entirely devoted to QMC:
http://www.mcqmc.org.

Let us consider how low-discrepancy sequences can be used to compose a
sample of random portfolios and, thus, estimates fr∗(t) of frequency density
functions can be computed.

5.5.1 Opportunity Sets with a Short-Sales Restriction only

Given n assets, the opportunity set is the n−1-dimensional basic simplex, and
we need to generate the low-discrepancy points over it. All existing algorithms
assume the transformation of the integration domain to the [0, 1]s region
(i.e. [0, 1]n−1 in our case), and provide standard routines, which generate the
low-discrepancy sequences over the unit hypercube. As generating the low-
discrepancy points over the unit cube and then accepting only basic simplex
points is very inefficient (cf. Exhibit 5.1), we have to find a way to generate the
low-discrepancy points directly over the basic simplex without any “rejection”
losses.

The exponential approach from section 5.4.1 can be easily adapted for
such a transformation of a low-discrepancy sequence distributed over the unit
hypercube to a low-discrepancy sequence distributed over the basic simplex
as follows:

1. Construct the next n-dimensional point xt = 〈x(t)
1 , x

(t)
2 , . . . , x

(t)
n 〉 of a

[0, 1]n low-discrepancy sequence (e.g. Sobol’, or Halton or Faure se-
quence);

2. Create a new random portfolio pt with asset weights 〈w(t)
1 , w

(t)
2 , . . . , w

(t)
n 〉



106 Chapter 5. Numerical Estimation of Performance Distributions

where

w
(t)
i =

ln(x
(t)
i )∑n

j=1 ln(x
(t)
j )

, i = 1, 2, . . . , n

Add this new random portfolio to the sample;

3. If the sample is big enough, then stop. Otherwise return to step 1.

The key element of the procedure is that by such a transformation of a [0, 1]n

low-discrepancy sequence, the discrepancy bound on that sequence will still
be valid after the transformation.

For the practical implementation of the algorithm we can use any of
available standard implementations of low-discrepancy sequences. For exam-
ple, one alternative is to use the C routines for Sobol’ numbers from (Press
et al. 1993) together with the primitive polynomials modulo 2 provided by
Jackel (2002) on the accompanying CD. (This implementation of Sobol’ num-
bers with regularity breaking initialization shows no substantial decline in
uniformity up to 100 dimensions.) The libseq C++ library of Ilja Friedel and
Alexander Keller (Caltech Multi-Res Modeling Group) provides an implemen-
tation of fast generation of various QMC sequences.16 For more information
on further available software packages we refer to Glasserman (2004).

5.5.2 Extending QMC Portfolio Generation to Different Types
of Constraints

The geometric shape of opportunity sets strongly depends on the type and
number of constraints in the description of those sets. To the knowledge of
the author, there exists no methodology or an algorithm, which can generate
a low-discrepancy sequence of any kind over arbitrary bounded regions (even
when defined through linear inequalities only).

Therefore, the general recipe in this case is to “pack” a given portfolio
opportunity set into a parallelepiped or a simplex, generate low discrepancy
points over this “envelope”, and accept only those points that satisfy all
constraints of the opportunity set. The major drawback of this approach is
that the number of rejected portfolios can be huge with respect to the number
of feasible portfolios (cf. Exhibit 5.1). However, for many opportunity sets
from practice (e.g. opportunity sets of mutual funds of Credit Suisse Group
mentioned in Chapter 3) the method works quite well and it has a rather
tolerable acceptance/rejection ratio.

16The library is freely available at http://www.multires.caltech.edu/software/libseq/
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5.5.3 Calculating the Accuracy of a Numerical Estimation
through QMC

Generally, the error of estimation of the right-hand integral of (5.1) through a
finite low-discrepancy sequence x1, x2, . . . , xN is given through the Koksma-
Hlavka inequality:∣∣∣∣∣ 1

N

N∑
i=1

f(xi) −
∫

[0,1]n
f(z)dz

∣∣∣∣∣ ≤ V (f) · D∗
N (x1,x2, . . . ,xN ) (5.16)

where D∗
N (·) is the star discrepancy of the sequence, and V (f) is the Hardy

and Krause’s variation of the integrand f on [0, 1]s (Niederreiter 1992). That
is, the error is split into two factors: variation V (f), which is entirely defined
by the “shape” of the integrand, and discrepancy D∗

N (·), which completely
depends on the quality (uniformity) of the sequence used for the estimation.

Inequality (5.16) defines a tight worst-case bound on the QMC error.17

In practice, unfortunately, this bound could not be used for error estimation
because the evaluation of both factors, V (f) and D∗

N (·), is extremely difficult
(even harder than the numerical integration itself). Therefore, one often used
strategy is to randomize the QMC points. The consequence of this step is that
we can use the MC intervals to measure errors but retain all low-discrepancy
sequence features. And randomizing QMC points wisely, we can even improve
the accuracy of our estimation.18 Another strategy is to use L2-norm instead
of L∞. The V (f) and D∗

N (·) with respect to L2-norm can be computed
relatively easily. For example, the L2-star discrepancy is computed as

DL2∗
N =

√√√√(1

3

)s

− 2

N

N∑
i=1

s∏
k=1

(
1 − (x

(i)
k )2

2

)
+

1

N2

N∑
i,j=1

s∏
k=1

(
1− max(x

(i)
k , x

(j)
k )
)

where x
(i)
k denotes k-th element of i-th point, i.e. xi vector, of a low-discrepancy

sequence. To the best knowledge of the author, we can use V L2
(f) and DL2∗

N

to compute the error bound. However, in this case we obtain the mean square
error. The detailed discussion of discrepancies and the corresponding error
bounds with respect to different norms are given in Hickernell (1998).

Furthermore, a simpler and practical consideration is that we need to
choose the length of a low-discrepancy sequence proportional to 2N − 1. The
reason lays in the way how points of a sequence “fill” the integration area.

17And, on the contrary to the Monte Carlo, this bound is not probabilistic.
18We refer to Owen (1998) for this subject. Other papers concerning the scrambled QMC

sequences can be downloaded from Owen’s webpage: http://www-stat.stanford.edu/∼owen/.
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In addition, considering (5.16) we noted that the estimation error depends
on the integrand variation V (f) and discrepancy D∗

N (·). In our case, we
have a given portfolio opportunity set and, thus, V (f) cannot be changed.
So, D∗

N (·) is a decisive element. Looking at star discrepancies for the MC
and QMC, O (N−0.5

)
and O ((lnN)s ·N−1

)
respectively, the QMC method

has advantages over the MC (i.e. lower errors) when the dimensionality of a
problem is low. For medium- and high-dimensional problems the MC method
is often a better choice.19

5.5.4 Computing a Numerical Solution for our Example In-
vestment Using the quasi-Monte Carlo

We compute a numerical estimation of the frequency density function for our
example opportunity set from section 2.3 using Sobol’ low-discrepancy num-
bers (cf. section 5.4.4 for the MC-based estimation). The example portfolio
opportunity set consists of three stocks restricted only by the no-short-sales
constraint and, thus, it is the basic simplex in R2. Again, the evaluated
performance measure is the absolute performance over December 2003.

Let the bin size δ be equal to 0.5%. The vector formed by performances is
defined as τ = 〈−0.0638,−0.0366, 0.1296〉. By applying the standard Monte
Carlo estimation and requiring the estimation accuracy ε = 0.1 with the
probability of 99%, we computed in section 2.3 that we need to sample 19524
random portfolios at least. Figure 5.3 shows the frequency density function
as computed in section 4.2.4 the 99% confidence interval (as in Figure 5.2),
and the estimated values of fr(t) using 25 thousand portfolios sampled using
the exponentially-transformed Sobol’ numbers.

Comparing Figure 5.2 and Figure 5.3, we see that differences in estimates
fr∗(t) are marginal, possibly with a slightly better QMC-estimate.

5.6 Further Aspects of the Estimation Procedure(s)

Finally, we briefly consider several technical aspects of the estimation proce-
dure. One of them is the question how to choose the histogram bin size.

The histogram bin size δ is directly related to distance h between iso-
surfaces (cf. section 5.4.4, for example). Furthermore, expression (5.15)
defines the confidence interval of the MC estimates of a (cumulative) fre-
quency density function. Reformulating that expression for N and denoting

19Despite a better asymptotic behavior, the function g(N) = (ln N)s · N−1 is increasing
on the interval (0, N = es), and is decreasing on the interval (N = es, +∞).
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Figure 5.3: Frequency density function fr(t) of the realized over December 2003
return. The small squares show the values of fr∗(t) estimated using
Sobol’ numbers, and the thin dashes lines border the 99% confidence
interval for the estimation error of 0.1 as calculated for the Monte Carlo
estimation in section 5.4.4.

|fr∗(t) − fr(t)| by ε, we obtain the following equation:

N =
χ2 · fr(t) · Vol(P )

ε2 · h
On the one side, fixing a number of portfolios in a sample, the denominator of
the right-hand side of this expression could be seem as a trade off between the
accuracy and the number of bins in the histogram (the reverse of values δ and
h). On the other side, requiring a specific estimation accuracy, the expression
can be seem as a trade off between the increased approximation “accuracy”,
which comes from increasing the number of bins (i.e. smaller values for δ’s
and h’s), and the increased cost of estimation (i.e. the required number of
portfolios in the sample).

Generally, determination of the optimal number of bins in a histogram,
which was used to estimate a distribution, is one of the problems in non-
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parametrical statistics. Scott (1979) has shown that the optimal histogram
bin size is:

δ = 3.49 · σ ·N−1/3

where σ is the standard deviation of the distribution. The expression is
optimal in the sense that it asymptotically minimizes the mean squared error
between estimates and distribution densities.

Of course, estimating frequency density functions fr(t) and Fr(t), we pur-
sue a different objective. However, the above expression can be used as a “rule
of thumb” for defining or approximating the histogram bin size. Empirical
investigations indicate that the bin size calculated using this rule is rather
suitable for most cases.

5.7 Summary and Conclusions

Numerical estimation is a universal but rather slow technique for calculating
frequency distributions. The procedure is based on statistical sampling: we
estimate the distribution of performance values of the full opportunity set
through the distribution of performance values of a reasonably-large sample.

We can use one of the following alternatives to form such a sample: the
Monte Carlo method or a low-discrepancy sequence (the quasi-Monte Carlo).
Looking at the Monte Carlo technique, the most universal approach for sample
random portfolios is the Sequential Direction algorithm, which constructs
an ergodic Markov chain. The approach is universal in any sense: we can
estimate frequency distributions for portfolio opportunity sets restricted by
both linear and non-linear constraints with respect to any kind of performance
measure. In addition, for the no-short-sales case the further two efficient
transformation approaches, the Uniform Spacings and the Exponential, can be
used. Furthermore, the error of estimation is easily computed as a confidence
interval.

The low-discrepancy sequences are another technique for numerical esti-
mation of frequency distributions. The general recipe in this case is to “pack”
a given portfolio opportunity set into a parallelepiped or a simplex, generate
low discrepancy points over this “envelope”, and accept only those points that
satisfy all constraints of the opportunity set. As low-discrepancy sequences
are fully deterministic, so is the corresponding error bound. However, the
worst-case error is very difficult to compute in practice.

Generally, we experienced that Monte Carlo-based methods are more suit-
able for estimating frequency distributions. They are easier to analyze, im-
plement and use. They are also more efficient than the low-discrepancy se-
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quences in many cases. However, the latter are worth using as an alternative
estimation mechanism and further investigating in more detail.





Chapter 6

Market Dynamics from the
Portfolio Opportunity
Perspective: the DAX Case1

6.1 Introduction and Motivation

Financial market dynamics can be described in different ways (cf. Chap-
ter 1). A widely used approach for describing financial market development
is the use of indexes. For many markets and segments of these markets, in-
dexes are available: if we wish to study the development of a market (or a
market segment), we study the appropriate market (or segment) index. A
flourishing industry of index providers exists, delivering standardized indexes
(be it that different providers generally use different definitions and stan-
dards). The choice of an appropriate index has developed into a fine art.
Also, providers develop tailor-made indexes for individual clients. Another
approach for describing financial market dynamics is to look at the perfor-
mance of portfolios in a peer group such as mutual funds that invest in the
same market or market segment. Intuitively, most investors know that an
index or a peer group only provide a limited view on the market dynamics.
And of course, an index or any other average by definition summarizes the
price dynamics of individual financial assets and only shows part of the vast
amount of information available. The information which is hidden by the use
of indexes is potentially useful.

The objective of this chapter is to apply our methodology (i.e. frequency

1This chapter is a revised version of the article Hallerbach, Hundack, Pouchkarev &
Spronk (2005).
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distributions with respect to various return and risk metrics) in order to pro-
vide a new way of looking at markets and of describing their dynamics over
time. The distinctive feature of our approach is that we choose the perspec-
tive of available portfolio opportunities. When aiming at specific investment
objectives and satisfying specific investment constraints, a universe of feasible
portfolios, a portfolio opportunity set, can be identified. This set signifies a
level playing field for any portfolio that aims for the same investment objec-
tives and respects the same constraints. Next, we observe the dynamics of
each feasible portfolio in this opportunity set. Finally, we condense the infor-
mation of the whole portfolio opportunity set into a compact and informative
market description.

The rationale behind describing the market dynamics from the portfolio
opportunity perspective is fourfold.

Firstly, the advantage of our approach is that our market description can
be made commensurate with any specific investment environment (such as
an investment mandate, defined by goals and constraints). Many investors
are interested to see the potential (including the upside and downside) of
a market or a segment from the viewpoint of their specific investment cir-
cumstances. Therefore, our view from the portfolio opportunity perspective
provides valuable insights into such “window of opportunities” available on a
market/segment at any specific time.

Secondly, the performance of an investment portfolio is usually evaluated
vis á vis the performance of a benchmark. So, when evaluating an investment,
we can calculate the relative performance with respect to the benchmark.
But how substantial is a relative over- or under-performance for a specific
period? Our way of viewing a market can answer this question, because we
can compare the performance of a particular investment portfolio with the
performances of all portfolio opportunities. Moreover, when comparing two
different portfolio strategies within the considered market over time, we can
“norm” these relative performances against the performances of all portfolio
opportunities. (For an enhanced illustration we refer to Chapter 7.)

Thirdly, we can consider an (equity) market or a market segment and the
mutual funds that invest into this market (segment) using the portfolio op-
portunity perspective. Comparing these two views, we can evaluate whether
mutual funds exploit the available investment opportunities in a successful
way (for an illustration we refer to Pouchkarev, Spronk & Steenbeek (2005).

Fourthly, our way of viewing a market can help to assess the relative im-
portance of different investment activities on that market. For example, by
estimating the view with respect to different sectors and confronting it with
the view with respect to the securities, we can assess the relative importance



6.2. Methodology and Data 115

of the sector allocation versus the selection of individual securities for any
period of time. In addition, this allows us to appraise changes in their impor-
tance ratio over time. (We refer to Kritzman & Page (2003) for an enhanced
discussion of evaluation of the hierarchy of investment choice).

In this chapter particularly, we illustrate how our methodology can be
used for providing enhanced market descriptions on example of the blue-chip
segment of the German stock market as represented by the DAX

R©
index over

the last 14 years.2 Imposing the same investment restrictions as the DAX
does, we invest with varying weights in baskets of all the index components.
We show the estimated dynamics of this investment universe over the last 14
years from different perspectives, i.e. in terms of realized returns, average
returns, and different kinds of risk measures.

The organization of the chapter is as follows. Section 6.2 outlines the
new methodology and describes our data set. Section 6.3 reviews the DAX
index and its methodology and presents the conventional view on the index
development over the last 14 years. The next sections are devoted to the
empirical results from the portfolio opportunity approach. We apply our
methodology and provide the description of the German market dynamics
between January 1990 and June 2004 in terms of various return (Section 6.4)
and risk (Section 6.5) metrics from the perspective of investing in DAX stocks.
Section 6.6 gives a combined risk-return perspective. Having the description
of the investment universe of the DAX, we analyze the performance of the
index and other benchmark portfolios. Section 6.7 concludes.

6.2 Methodology and Data

6.2.1 Description of the Methodology

Our goal is to view the dynamics of the large cap segment of the German
equity market from the perspective of portfolio opportunities available under
the same investment constraints as implied by the definition of the DAX. By
applying the rules and constraints as used by the DAX to select stocks (see
chapter appendix 6.A), we obtain the same set of 30 stocks that compose the
index. Consequently, the portfolio opportunity set consists of all portfolios
that can be composed from these stocks with weights subject to the following
constraints:

2DAX
R©

is a registered trademark of Deutsche Börse AG. It is written with the symbol
R© in the title, and at the first occurrence in this chapter, and as DAX thereafter.
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0 ≤ wi ≤ 0.15, i = 1, 2, . . . , 30 such that
30∑
i=1

wi = 1 (6.1)

Clearly, given these weight constraints, the number of portfolios in the op-
portunity set is infinite. Therefore, we numerically estimate the required fre-
quency distribution of performance values from a reasonably-large sample.3

In particular, we use the following procedure:

I. In each simulation step we sample ten million feasible random portfo-
lio weight vectors for stocks of the DAX. We use the adapted uniform
spacing algorithm (cf. section 5.4.1) to generate random portfolios:4

1. Generate U1, U2, . . . , U29 as 29 independent [0, 1] uniformly dis-
tributed random variables (i.e. Ui ∼ U(0, 1), i = 1, 2, . . . , 29);

2. Sort Ui in ascending order, i.e. define the order statistics
U(1), U(2), . . . , U(29);

3. Create a new random portfolio with asset weights 〈w1, w2, . . . , w30〉
where wi = U(i) − U(i−1), 1 ≤ i ≤ 30, U(0) = 0 and U(30) = 1;

4. Check if the condition wi ≤ 0.15 is valid for all weights. In not,
then repeat steps 1-3. Otherwise add this new portfolio to the
sample;

5. If the sample is big enough, then stop. Otherwise return to step 1.

Each sampled weight vector defines a feasible portfolio and is an alter-
native for investing in the German large cap segment. The sampled
portfolios are uniformly distributed over the DAX portfolio opportunity
set;

II. For these sampled portfolios, as well as for the actual DAX index and
the equally weighted benchmark, we calculate different portfolio return
characteristics: realized discrete (percentage) returns over different pe-
riods, the arithmetic average rate of returns, standard deviations, and

3Given the DAX portfolio opportunity set, there are several ways to compute the required
distribution(s). One way is to use the analytical formula from section 4.2.5, simulation is
another. However, we use the numerical estimation because of computation of frequency
distributions for various non-linear risk metrics.

4The first three steps of the algorithm are equal to the uniform spacing approach de-
scribed in section 5.4.1. We use an additional acceptance-rejection step in order to filter
the portfolios, which satisfy the DAX upper bound constraint, i.e. wi ≤ 0.15. In should be
noted that only about 23% of portfolio are rejected in step 4. So, the generation algorithm
is rather efficient.
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semi-standard deviations. Except for realized returns, these statistics
are estimated using 36 monthly observations prior to the actual evalua-
tion period. (For example, for evaluating the market during May 2004,
the stock returns from May 2001 through April 2004 are used.);

III. We estimate the frequency distributions of the selected performance
measures over the whole portfolio opportunity set;

IV. The time window is shifted one month forward and the next simulation
is carried out.

Thus, steps I-III provides a “snapshot” of existing opportunities available
on the German blue-chip equity market over a certain time period. The in-
formation content of these steps is the location and form of the computed
distributions of performance values. Step IV provides a picture of the devel-
opment of the market dynamics over time by showing the development of the
dispersion of these distributions.

6.2.2 Dataset

We used the “Short Information to the Equity Indices of Deutsche Börse”
as well as reports on the DAX index published by the Deutsche Börse AG
to comprise the list of stocks constituting the DAX from December 1987
till present. The input data consists of monthly observations on the DAX
stocks from January 1987 through June 2004. We used closing prices at the
last trading day of each month to compute discrete (percentage) returns;5

until May 1999 inclusive, these are closing prices traded on the floor at the
Frankfurt Stock Exchange, afterwards Xetra

R©
-prices are used (This coincides

with the DAX calculation methodology, see Deutsche Börse Group (2004b)
for details).

The stock data and correction factors for all corporate actions (e.g. stock
splits, capital increases, dividends) were downloaded from the Karlsruher
Kapitalmarkt Datenbank (KKMDB) and cross-checked against the data avail-
able through the Bloomberg and Thompson Datastream databases. The
prices are corrected through operation blanche for all corporate actions in-
cluding dividends as well as for the Euro introduction (see Sauer (1991), for
more details).

For a few stocks e.g. Deutsche Telekom, Deutsche Post, only short histor-
ical time series exist before the index inclusion. Therefore, we performed the

5We use ultimo month prices, so our evaluation horizon is one month. We do not use
within-month averaged prices because this would generate various statistical biases in the
return series, see for example Wilson, Jones & Lundstrum (2001) and Hallerbach (2003).
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regression of such stocks on the DAX level and other index constituents in
order to extend their time series to have 36 monthly price observations before
the index inclusion.6

An important issue in our simulation procedure is how to handle changes
in the index composition. Regular changes are carried out once a year in
the third Friday in September. However, the changes in the DAX are quite
irregular due to mergers, new admissions, deletions, et cetera, which should
be reflected in the index shortly after their occurrence. After changes in
the structure of the DAX are decided upon by the Deutsche Börse, they
give a 4-6 weeks notice before implementation. Therefore our strategy is to
hold the security deleted from the index until the start of the replacement
month and then replace it by the new one. For example, on July 23, 2001,
Dresdner Bank was exchanged in the index against MLP. When we evaluate
the performance of the feasible portfolios at the last trading day of June 2001,
we have Dresdner Bank as one of the DAX stocks. For the evaluation month
July 2001 the Dresdner Bank stock drops from the stock set and, thus, from
the portfolios. Instead, MLP will be used as a new stock in the DAX stock
set to form portfolios.

6.3 Conventional View on the DAX Index

The DAX is the major benchmark index of the German equity market. It
consists of the 30 largest German companies in 14 different sectors7 that have
the largest free-float capitalization and the highest exchange liquidity level.
The objective of the index is to reflect the financial capital dynamics of the
German blue-chip companies from the main sectors of the national economy

6We use a recursive regression approach to fill in missing observations. When there is
one or more missing observations (for example when a stock is incorporated in the DAX),
we start with a window of 36 return observations on the stock i and the index I , which
begins immediately after the missing return data point for the stock. Within this window,
we use OLS regression to estimate the parameters αi and βi of the market model:

ri,t = αi + βi · rI,t + εi,t t = 1, 2 . . . , 36

Given these parameters and the available index return for the first observation t = 0 before
the start of the window, we construct the stock return, conditional on the index return:

ri,t | rI,t = αi + βi · rI,t t = 0

Finally, we randomly sample one residual term from the 36 residuals in the estimation
window and add that to ri,0 | rI,0. We substitute this return for the missing return ri,0.
We can repeat the procedure by moving the data window backwards in time.

7As of June 30, 2004, see also chapter appendix 6.A.
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(Over the last five years the average index capitalization accounts for more
than 70% of the total capitalization of the German stock market).

The DAX is a free float capitalization-weighted performance index. It is
based on the Laspeyres’ index formula, with the base date December 30, 1987
and a base value of 1,000. The DAX index is considered to be a good repre-
sentative of the dynamics of the German large caps segment. It is formulated
strictly and clearly, and can be easily “reproduced”. For these reasons the
index is widely used as a benchmark of the German stock market, and also as
underlying for diverse derivative products such as ETC’s, ETF’s, options and
futures. For the actual index formula, constraints and the index composition
as of June 30, 2004 we refer to chapter appendix 6.A. For the detailed index
methodology, the actual composition and index values we refer to the site of
the Deutsche Börse, http://www.exchange.de.

1000

2000

3000

4000

5000

6000

7000

8000

-4.0%

-2.0%

0.0%

2.0%

4.0%

0.0%

3.0%

6.0%

9.0%

12.0%

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Figure 6.1: The development of the DAX. Monthly and 36-month moving average
index level from January 1990 through June 2004 (top), two-year moving
averages of monthly-realized returns (middle) and 36-month equally-
and exponentially-weighted standard deviation of returns representing
the index risk (bottom, dark line and light lines respectively).
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Return (in %) Risk (Std Dev,% ann.) Sharpe Ratio

Index 1Y 3Y 5Y 10Y 1Y 3Y 5Y 10Y 1Y 3Y 5Y 10Y

DAX 26.7 -32.7 -24.1 102 18.1 32.1 28.6 25.1 0.371 -0.097 -0.047 0.078

MSCI 27.0 -31.0 -24.5 95 17.5 31.3 28.0 24.1 0.386 -0.094 -0.051 0.074

Table 6.1: Performance and risk metrics of the DAX and MSCI Germany indexes as
of June 30, 2004. (Source: Thompson Datastream & MSCI).

The development of the DAX over the last fourteen-and-half years is shown
in Figure 6.1 and Table 6.1. The top graph in Figure 6.1 shows the monthly
index values over the period January 1990 through June 2004. The light
line plots the 36-month moving average of index values. The graph in the
middle plots the two-year moving average of monthly realized returns.8 The
bottom graph shows two different types of standard deviation of the monthly
returns. The dark line represents the conventional equally-weighted standard
deviation and the light line represents the standard deviation based on the
exponentially weighted moving average scheme (EWMA) with a decay factor
of 0.95.9

The top graph and performance figures in Figure 6.1 show that the general
trend of the German equity market was upward over the sample period. This
is also reflected by the fact that the averages of monthly-realized returns lay
above the zero level almost for the entire sample period, as the middle graph
shows.

The DAX index has been developed in line with the international markets.
It experienced a rapid growth from 1997 due to the upward effects of the
ICT bubble in the US until that bubble burst in March 2000. As the top
graph shows, in that period we clearly see three intervals of extreme growth
interrupted for a short time by the Asia crisis in the summer of 1997 and
the Russian default in August 1998. After March 2000, together with other
developed equity markets, the German stock market was falling sharply until
March 2003, when it reached the level of 1995. After that, the market has
experienced an impressive renaissance: from March 2003 till June 2004 the
DAX surged from 2,202.96 to 4,080.08 points, or 85%, and it was the best-

8The last business day of each month is used.
9The EWMA scheme allows to register changes in the variance (standard deviation)

faster and avoids clustering effects caused by shocks. We refer to (J.P.Morgan 1996) for
further details about the EWMA procedure.
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performing market index in Europe.

6.4 Return Dynamics from the Portfolio Opportu-
nity Perspective

We start the discussion of the results by looking at the distributions of one-
year realized returns. Figure 6.2 considers one such a distribution, for returns
realized from January 1, 2003 through December 31, 2003 by portfolios from
the DAX opportunity set.

� � � � � � � �

20
.0
%

30
.0
%

40
.0
%

50
.0
%

60
.0
%

70
.0
%

80
.0
%

90
.0
%

�

DAX

�

ewP

+ + + +
lower value 1st quartile 3rd quartile upper value

Figure 6.2: The distribution of returns realized from January 1, 2003 through De-
cember 31, 2003 by feasible portfolios of DAX stocks. The dashed white
lines mark the upper and lower distribution values as well as the 1st and
3rd quartiles. In addition the performances of the DAX and the equally-
weighted benchmark are plotted.

This particular distribution has a lower value of 27.17% and an upper
value of 80.47%. Two additional dashed white lines in the graph show the
1st and the 3rd quartiles of the distribution, 44.35% and 53.6% return re-
spectively. The position of the DAX realized return and the return of the
equally-weighted benchmark (ewP) are also plotted in the distribution. Given
an investment universe and the portfolio forming constraints as defined in sec-
tion 6.2, the distribution represents the full range of investment opportunities
with respect to the realized return for the year 2003. More precisely, in that
period any feasible portfolio returned between 27.17% and 80.47%. Thus,
from the viewpoint of portfolio opportunity perspective our DAX investment
mandate had the lower potential of 27.17% and the upper potential of 80.47%;
so under this mandate it was impossible to lose money. Furthermore, the dis-
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tribution reveals interesting insights into the performance of the DAX. The
index performed strongly over the year 2003 and ended up 37% relative to its
level at the beginning of the year.

However, looking at realized returns from the portfolio opportunity per-
spective, the index performance is poor. By taking some portfolio completely
randomly from our portfolio opportunity set, we expect to outperform the
DAX index in approximately 96% of the cases. The performance of the ewP
offered a better performance in this respect.

Figure 6.3 graphically shows 15 distributions of one-year realized returns
over the whole sample period from 1990 through 2004. For each sub-period
the corresponding pictogram represents the distribution of returns realized
over the calendar year for the DAX portfolio opportunity set. That is, the
1990 pictogram shows the distribution of returns realized by feasible portfolios
from January 1, 1990 through December 31, 1990; the 1991 pictogram repre-
sents the distribution of returns realized by feasible portfolios from January 1,
1991 through December 31, 1991 and so on. For the year 2004 the correspond-
ing pictogram shows the distribution of returns realized from January 1, 2004
through June 30, 2004. Figure 6.4 represents the same distributions as Fig-
ure 6.3 by means of box plots. Considering the development of one-year
realized return distributions we can make the following observations:

1. General upward trend. From the portfolio opportunity perspective the
upside potential of our investment mandate prevails over the downside
potential;

2. Heterogeneity of stock returns has increased. Heterogeneity is defined
here loosely as the magnitude of the differences between the cross-sectio-
nal stock returns. For the period from 1996 onwards we observe that
the heterogeneity of stock returns in the large cap segment of the Ger-
man equity market has increased strongly. While from 1990 to 1995 the
spreads between the upper and lower values of distributions for the con-
sidered portfolio opportunity set were about 25% in terms of one-year
realized returns, from 1996 on such spreads increased to approximately
40%. We look at this issue in more detail by considering the monthly
return figure;

3. DAX stability with respect to the considered investment mandate is de-
creased. While till 1998 the performance of the DAX index was quite
persistent with respect to our portfolio opportunity set and the index
is located in the interquartile ranges, from 1999 onwards the location
of the DAX is mostly in the 1st or 3rd quartiles. Our conjecture is
that this fact reflects the relatively extreme performance of the large
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capitalization stocks in the index;

4. Superior portfolios. It seems that over the last five years, a strategy
tilting towards an equally-weighted portfolio would have been clearly
superior to the DAX, seen as a strategy.

-60%

-40%

-20%

0%

20%

40%

60%

80%

 1990  1991  1992  1993  1994  1995  1996  1997  1998  1999  2000  2001  2002  2003  2004*

ewP

DAX

Figure 6.4: The distributions of portfolio realized returns from 1990 through 2004
by box plots. The length of the fat bar represents the return range
of the middle 50% of all portfolios. The thin bar represents the range
capturing all generated portfolios. Additionally, the diamonds indicate
the development of the DAX realized returns, and the dots indicate the
returns realized by the equally weighted portfolio.

At this point it is important to note that these insights are produced
because of the portfolio opportunity perspective and that these insights were
not obvious at all by looking at the index development alone.

Panel A of Figure 6.5 graphically shows the distributions of monthly real-
ized returns for portfolios of our DAX opportunity set over the whole sample
period from January 1990 through June 2004. The distributions are repre-
sented by box plots: for each month end, the return distribution is mapped
on a vertical bar. The length of the fat bar represents the return range of
the middle 50% of all portfolios. The thin bar represents the return range
capturing all generated portfolios. In addition, the rhombus dots represent
the corresponding monthly realized returns of the DAX index. The box plots
clearly reflect the development of the rate-of-return distributions during the
sample period.

From January 1990 to approximately June 1997, the distributions display
similar form and range. Also the changes in the month to month distribution
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locations are similar.10 From July 1997 onwards these characteristics of the
distributions have changed substantially:

• The return range of feasible portfolios has increased from 8-10% to 12-
16%;

• The month-to-month volatility of returns in cross-section has increased.

To focus on the changes in the locations of the distributions, Panel B of
Figure 6.5 displays for each month the cross-sectional average of the returns on
the 30 stocks in the DAX. So each dot represents the return on the equally-
weighted portfolio in the respective month. The graph suggests that the
cross-sectional averages are more loosely distributed from 1997 to 2004 than
in the first half of the sample period.

To focus on the changes in the ranges of the return distributions, we
computed for each month the cross-sectional standard deviation of the stock
returns. These cross-sectional standard deviations are depicted in Panel C
of Figure 6.5. The graph clearly shows that the return dispersion across
stocks has strongly increased over time. Hence, the market has become more
heterogeneous over time. Note that Panel A and Panel C both reveal the
increased heterogeneity of the German large cap segment. However, only
Panel A presents the market heterogeneity from the full portfolio opportunity
perspective. In Panel C only one portfolio is considered: the equally-weighted
portfolio.

6.5 Risk Dynamics from the Portfolio Opportunity
Perspective

Let us now consider the risk development of the DAX investment universe
from the portfolio opportunity perspective. In the form of box plots, Fig-
ure 6.6 shows the distribution of 36-month trailing standard deviations in
feasible portfolios for DAX stocks from January 1990 through June 2004.
The length of the middle box (i.e. the fat bar) represents the range of the
middle 50% of all portfolios. The thin bar represents the range capturing all
generated portfolios. Additionally, the dark line plots the 36-month moving
standard deviations of the DAX values, and the light line plots the values for
the equally-weighted portfolio.

Figure 6.7 presents two graphs of the dynamics of portfolio opportunities
in terms of alternative market risk measures. Panel A of this figure shows

10An exception is formed by the four distributions for realized returns over August-
September 1990, September 1995, and August 1996.
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the distributions of 36-month exponentially weighted standard deviations in
feasible portfolios for DAX stocks from January 1990 through June 2004.
Panel B plots the distributions of portfolio semi-variances for the same period.
In both graphs the boxes represent the middle 50% of all portfolios, and the
thin bars identify the ranges capturing all generated portfolios. Additionally,
the dark line plots the 36-month exponentially-weighted standard deviations
and semi-standard deviations of the DAX index, and the light line plots the
exponentially-weighted standard deviations and semi-standard deviations of
the equally-weighted portfolio. The risk graphs reveal the following facts:

1. Increase of risk. As both graphs suggest, the common market risk level
has increased substantially. While till 1997 the standard deviation level
of monthly returns for portfolios from the DAX opportunity set was
about 4-7%, from 1998 onwards this range was “pushed” by various
periods of euphoria alternating with depression and crises to the 6-11%
range. The same trend is observable for the downside part of the risk;

2. Heterogeneity in risk levels has increased. Observing the full risk range
(and/or the middle 50% box length) of feasible portfolio distributions
over time, we see that this range has almost doubled over the last years
when compared with the level of the early 90s;

3. DAX risk profile has changed from moderate to high-risk. As graphs in
Figure 6.7 and Figure 6.6 show, till 1997 the index was “medium risk”
when compared with the risk of the other portfolios in the opportunity
set. Afterwards, the DAX has moved into the high-risk area.

We look now at these facts in more detail. As the bottom graph of Fig-
ure 6.7 showed, the risk level of the DAX strongly increased from 1998 on-
wards. Thus, looking only at a risk graph of the index, we can observe the
tendency towards higher risk. However, the observation on basis of a single
index or portfolio does not tell whether the riskiness of the entire portfolio
population is rising. Viewing a specific investment universe from the portfo-
lio opportunity perspective provides such evidence. In the particular case of
DAX, we see that a general trend of increasing market risk is present (cf. Fig-
ure 6.7). Furthermore, the overall increase of the risk level is coincident with
the observation that the month-to-month volatility of returns has increased.

Another observation is that the heterogeneity of portfolios with respect
to risk has become stronger. Generally, the heterogeneity with respect to a
measure (e.g. return or standard deviation) is characterized by the range of
the corresponding distribution. In particular, the range of the distribution
of standard deviations is determined by the covariances of stocks. Changes
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in this range over time reflect how changes in the covariance structure of the
investment universe (in our case the 30 DAX stocks) influence the potential
riskiness of a specific investment (in our case the riskiness of the DAX oppor-
tunity set). As Figure 6.7 suggests, the risk heterogeneity has almost doubled
over the last years.

To get more insight into the development of the covariance structure, we
calculated at the end of each month of the sample period the covariance matrix
and the corresponding correlation matrix using the preceding 36 monthly
return observations of the DAX stocks. The top two graphs in Figure 6.8
show the trailing averages (on the left) and standard deviations (on the right)
of the covariance matrix entries. The increase of the average covariance values
coincides with the observation that the common risk level is increased over
time (the level of the variance/covariance entries have risen substantially).
And the rise in the standard deviation of the covariance terms represents the
strengthened heterogeneity of the stock risks.

The two bottom graphs in Figure 6.8 show the corresponding averages and
standard deviations of the correlation matrix entries. The left graph show-
ing the average correlations suggests that stocks are more loosely correlated
from 1997 to 2004 than in the first half of the sample period. However, we
observe some “recovery” in the correlations in the last 2-3 years. The right
graph depicting the standard deviations of the correlations shows that the
heterogeneity of correlation entries has strongly increased over time. That is,
the stocks move more discordantly. Again, Figure 6.8 and Figure 6.7 present
this information from different perspectives.

6.6 Combined View on Risk-Return Dynamics

When considering the performance of a portfolio opportunity set, one may
look at one performance measure at a time as we did in the two preceding
sections. Obviously, one may also wish to consider two (or more) performance
measures at a time. The risk-return is an obvious domain to show the fre-
quency distribution for a given portfolio opportunity set. In Figure 6.9, we
show the DAX portfolio opportunity set as of December 2003 in terms of the
frequency distribution which has the ’average return’-’exponentially-weighted
standard deviation’ plane as domain. The right diagram shows the projection
of the left diagram on the ’return’-’standard deviation’ space that is often
used in the portfolio selection literature (The vertical axis shows average re-
turn and the horizontal axis shows standard deviation.) In both diagrams
the positions of the DAX index and the equally weighted index are indicated.
Figure 6.9 clearly shows that during this particular month, neither the DAX
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nor the equally-weighted portfolio are doing very well: both of them are domi-
nated by a large proportion of the feasible portfolios. The DAX is doing worse
than the equally-weighted portfolio. Actually, there are hardly any portfolios
that are dominated by the DAX; on the contrary, the DAX is dominated by
most portfolios.
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Figure 6.9: Average return-exponentially-weighted standard deviation frequency dis-
tribution of portfolios from the DAX portfolio opportunity set as of De-
cember 2003. The right diagram shows the projection of the left diagram
on the standard return-standard-deviation space that is often used for
portfolio selection. In both diagrams the positions of the DAX index and
the equally weighted benchmark (ewP) are marked by a triangle and by
a dot respectively.

To show the dynamics of the risk-return distributions over time, we show
the “boxes” that are defined by the limits of the risk-return diagrams as de-
picted in the right hand side of Figure 6.9. This is demonstrated in Figure 6.10
and Figure 6.11. In both graphs, the standard deviations of the portfolio re-
turns are estimated exponentially-weighted. In this way, changes in volatility
are accounted for in a timely fashion. In Figure 6.10, however, the realized re-
turns are computed over a one-year time span, whereas in Figure 6.11 returns
are averaged over a 3-year period (to obtain somewhat smoother averages).
The risk-return box plots confirm what the distributions of the portfolio stan-
dard deviations already revealed in Figure 6.6 and Figure 6.7: that the range
of portfolio risk in the opportunity set has increased over time. Moreover,
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they provide additional insights because of adding the average return dimen-
sion. In addition to the conclusions concerning the one-dimensional measures
as discussed in the two preceding sections, one can conclude that over each of
the 14 years considered, both the equally weighted index and the DAX were
dominated by many other portfolios.

The observed effects can be explained by an interplay between:

• The returns on individual stocks, dispersed in cross-section;

• The weights of the stocks in a portfolio;

• The correlations between the stock returns.

At this point, we do not want to draw any further conclusions from this
empirical phenomenon. However, the portfolio opportunity approach can be
a fruitful basis for describing market dynamics and analysis.

6.7 Summary and Conclusions

In this chapter, we introduced and illustrated a novel way of looking at stock
market performance. Our approach starts from constructing the relevant
portfolio opportunity set. This is the universe of all feasible portfolios that
respect prespecified investment constraints. For any portfolio in this set we
can compute the desired performance metric: realized return, average return,
standard deviation of return, and so on. We can collect this information and
represent it by means of a frequency distribution. Comparing these distribu-
tions over time (and the changes in their location and form) provides us with
information about the market dynamics. We have illustrated this approach
for the German stock market and the DAX index.

Studying market dynamics from this portfolio opportunity perspective
provides many advantages over the conventional view on the index. We here
highlight two: enhanced market description and relative performance evalua-
tion. Firstly, instead of focusing on only one portfolio (the index) it provides
a comprehensive perspective on the performance of the variety of portfolios
that can be formed given some opportunity set and constraints. So we obtain
a broad view on opportunities available on a specific market. In addition, we
can study the dynamics of the portfolio opportunity set over time. For the
German stock market we found that both the level of risk and the hetero-
geneity of the portfolio opportunities increased over time. We were able to
support that observation by investigating the dynamics in the covariance and
correlation structures of the stock returns over time.

Secondly, in the conventional view, the quality of market representation
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by an index is assumed given, regardless of the performance attributes con-
sidered. The new methodology, instead, helps to evaluate the market index
itself vis à vis the portfolio opportunity set. In particular, the location of the
market index may be plotted in the frequency distribution of the selected per-
formance measure over the portfolio opportunity set. The quantile in which
the index plots indicates how many (feasible) portfolios have outperformed
the index in terms of the selected performance measure (realized return, e.g.).
In this way it can be judged whether an index is representative for the market
under consideration or not. The adhered criterion for representativeness is
not the degree of market coverage measured in terms of capitalization (the
usual view) but the degree of coverage of the portfolio formation opportu-
nity set. Over the period 1990-2004 studied, we find that the DAX is often
outperformed by many portfolios in the portfolio opportunity set in terms
of realized returns. The changes over time in the width of the performance
metric distributions also provide a means to “norm” the performance of in-
vestment portfolios. After all, a wide distribution allows for large differences
in performance whereas in a narrow distribution even very small differences
in performance are relevant.

Furthermore, apart from enhancing the market description (and extend-
ing the description to also include sector information), and apart from fur-
ther investigating applications to performance evaluation, we note that the
methodology may help in discovering promising investment strategies that
comply with specific constraints. This would complement the real-time and
ex post use of the methodology with an ex ante use.

6.A Short Description and Methodology of the DAX
Index

The DAX is the major index of the German equity market. The objective
of the index is to represent the price dynamics of the largest German blue-
chip companies that are available worldwide for investing. To achieve broad
and fair market representation, the following selection criteria and rules are
imposed:

• Companies should be incorporated in Germany, i.e. have Germany as
their legal domicile;

• Only shares of companies listed in the Prime Standard segment of the
Frankfurt Stock Exchange (FWB) and traded continuously on Xetra

R©

system can be included into the index;
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• The index contains 30 stocks that have the largest free-float market
capitalization and the highest turnover/liquidity within the last review
period of twelve months; 11

• Shares of companies should have at least 5% of share free float;

• Market capitalization of each stock is limited to 15% of the total index
capitalization. (If the free-float capitalization of a company exceeds
the limit, then the number of shares is lowered to 15% of the index
capitalization on the chaining date.)

The DAX is a free-float capitalization-weighted performance index.12 It is
based on the Laspeyres’ index formula and is calculated as follows:

DAXt = Kt1 ·
∑30

i=1

(
pi(t) · qi(t1) · ffi(t1) · ci(t)

)
∑30

i=1

(
pi(0) · qi(0)

) · 1000

where

0 – December 30, 1987
t1 – day of last index chaining

Kt1 – chain index factor
ci(t) – actual adjustment factor of stock i

ffi(t1) – free-float factor (from June 24, 2002)

pi(0) – price of individual stock i as at December 30, 1987

qi(0) – number of shares of individual stock i as at December 30, 1987

pi(t) – actual price of individual stock i

qi(t1) – number of shares of individual stock i as at review date

Factors ci(·) are used to adjust for dividends and equity capital changes be-
tween the last and the next chaining days. On the date the Eurex stock-index
futures fall due, i.e. the third Friday of the quarter end month, the DAX is
calculated for the last time using the actual factors ci(·). This day is set-up

as a new chaining day and the Xetra
R©

closing prices are used for chaining
procedure: all ci(·) are set to 1 and the number of shares of each company qi
is updated. Simultaneously, the index-chaining factor K is adjusted in order

11Deutsche Börse uses these two statistics to compose the monthly equity ranking. Apply-
ing the 35/35 rule on this ranking as well as using different absolute and relative measures
such as frequencies of price determination, sector affiliation, patterns of traded value, statis-
tics of buy-sell spreads, etc. the Management Board of Deutsche Börse decides upon the
composition of the DAX.

12Deutsche Börse uses free-float instead of full market capitalization from June 24, 2002
on.
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to avoid an index breakup. (The factor K is used for adjustment after index
composition change as well.)

The base date of the DAX is December 30, 1987. The value of the index
was set to 1000 at that date. The index is updated in real time every 15
seconds during market hours. Furthermore, a daily settlement price (based
on intraday midday auction prices) and the closing index level (based on
last traded prices) are calculated once a day. Based on these data the daily
report is published after 6 pm.13 The index data are available at the Ger-
man exchange home page (Deutsche Börse, http://www.exchange.de) and in
major financial databases such as Reuters (.DAX) and Bloomberg (DAX).
The index is used as an underlying for options (ODAX) and future contracts
(FDAX) traded at Eurex, warrants traded on the cash market, and a variety
of exchange-traded funds (ETF’s) and exchange-traded certificates (ETC’s)

offered on the Xetra
R©
.

The development of the DAX index over the period January 1990 through
June 2004 is shown in Figure 6.12.
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Figure 6.12: The development of the DAX index daily and the 200-day moving
average from January 1990 through June 2004.

As of June 30, 2004 the DAX index consisted of the 30 largest German
companies in 14 sectors. Of the sectors, Industrial is responsible for about
13.58% of the index market capitalization, followed by Automobile (13.25%),
Utilities (12.67%) and Banks (12.05%). The capitalization of each sector is

13Additionally, the DAX price index level is calculated once a day after a closing bell.
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shown in Figure 6.13. The largest company in the index is Siemens (11.52%),
followed by E.On and Deutsche Bank (9.10% and 8.35% respectively). The
complete DAX composition as of June 30, 2004 and the historical index
changes are summarized in Table 6.2 and Table 6.3 respectively.
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Figure 6.13: Capitalization of each sector in the DAX index as of 30. June 2004.

Closing Free Market

Company ISIN price float cap Weight

e Bl.e

ADIDAS-SALOMON DE0005003404 98.13 100.0% 4,460.38 1.04%
ALLIANZ DE0008404005 89.03 87.8% 30,072.83 7.04%
ALTANA DE0007600801 49.43 49.9% 3,463.05 0.81%
BASF DE0005151005 43.99 100.0% 24,342.90 5.70%
BAY.HYPOVEREINSBN. DE0008022005 14.62 81.6% 8,782.16 2.05%
BAY.MOTOREN WERKE DE0005190003 36.37 53.4% 12,084.65 2.83%
BAYER DE0005752000 23.70 94.3% 16,322.48 3.82%
COMMERZBANK DE0008032004 14.48 81.4% 7,046.78 1.65%
CONTINENTAL DE0005439004 39.64 100.0% 5,370.76 1.26%
DAIMLERCHRYSLER DE0007100000 38.40 81.0% 31,502.88 7.37%
DEUTSCHE BANK DE0005140008 64.58 94.9% 35,686.07 8.35%

DEUTSCHE BÖRSE DE0005810055 41.77 100.0% 4,670.01 1.09%
DEUTSCHE POST DE0005552004 17.75 37.4% 7,389.30 1.73%
DEUTSCHE TELEKOM DE0005557508 14.44 57.0% 34,550.86 8.08%
E.ON DE0007614406 59.30 94.8% 38,901.75 9.10%
FRESENIUS MED. CARE DE0005785802 60.99 49.2% 2,100.50 0.49%
HENKEL KGAA DE0006048432 70.18 100.0% 4,167.82 0.98%
INFINEON TECHOLOG. DE0006231004 11.03 81.8% 6,742.42 1.58%
LINDE DE0006483001 45.24 67.7% 3,652.70 0.85%
LUFTHANSA DE0008232125 11.18 89.9% 4,605.03 1.08%
MAN DE0005937007 29.98 71.8% 3,033.72 0.71%
METRO DE0007257503 38.96 44.3% 5,593.90 1.31%

MUNCHENER RÜCKV. DE0008430026 89.10 80.6% 16,493.35 3.86%
RWE DE0007037129 38.65 75.4% 15,245.03 3.57%



140 Chapter 6. Market Dynamics: the DAX Case

(continued)

Closing Free Market

Company ISIN price float cap Weight

e Bl.e

SAP DE0007164600 136.26 65.4% 28,127.08 6.58%
SCHERING DE0007172009 48.43 89.4% 8,401.38 1.97%
SIEMENS DE0007236101 59.11 93.5% 49,236.27 11.52%
THYSSENKRUPP DE0007500001 14.01 80.0% 5,766.39 1.35%
TUI DE0006952005 15.70 68.6% 1,922.98 0.45%
VOLKSWAGEN DE0007664005 34.72 68.8% 7,650.88 1.79%

Table 6.2: The DAX constituting stocks and their weighting in the index as of
June 30, 2004. (Source: Deutsche Börse AG)

Date of Announ- Companies

change ced deleted new

03.09.90 22.05.90 FELDMÜHLE NOBEL METALLGESELLSCHAFT
NIXDOFT PREUSSAG

15.09.95 18.07.95 DEUTSCHE BABCOCK SAP
22.07.96 06.01.96 KAUFHOF∗ METRO

23.09.96 16.07.96 CONTINENTAL MÜNCHENER RÜCK
18.11.96 16.07.96 METALLGESELLSCHAFT DEUTSCHE TELEKOM
19.06.98 26.05.98 BAY.VEREINSBANK∗ BAY.HYPOVEREINSBANK

BAY.HYPO-& WECH.-BANK ADIDAS-SALOMON
21.12.98 05.11.98 DAIMLER∗ DAIMLERCHRYSLER

THYSSEN∗ THYSSEN-KRUPP
01.01.99 22.10.98 switched from DEM to Euro

22.03.99 03.02.99 DEGUSSA∗ DEGUSSA-HÜLS
20.09.99 20.07.99 HOECHST FRESENIUS MED.CARE
14.02.00 10.02.00 MANNESMANN EPCOS
19.06.00 10.05.00 VEBA EON

VIAG INFINEON

18.12.00 14.11.00 DEGUSSA-HÜLS∗ DEGUSSA (Fusion with SKW)
19.03.01 14.02.01 KARSTADT QUELLE DEUTSCHE POST
23.07.01 26.06.01 DRESDNER BANK MLP
23.09.02 13.08.02 DEGUSSA ALTANA

23.12.02 12.11.02 EPCOS DEUTSCHE BÖRSE
22.09.03 19.08.03 MLP CONTINENTAL

Table 6.3: Review of the DAX over January 1990 – June 2004. The star sign *
marks the merger companies. (Source: Deutsche Börse AG)

For further details about the DAX formula, index guidelines, correction
factors, and the actual index composition we refer to Deutsche Börse Group
(2004b), (2004c) and to the official site of the Frankfurt Stock Exchange
http://www.exchange.de.



Chapter 7

Performance Evaluation
Using the Portfolio
Opportunity Universes

7.1 Introduction

The objective of this chapter is to provide two applications of our framework
and demonstrate how portfolio opportunity sets (we also call them portfolio
opportunity universes) can be used for the evaluation of professional invest-
ment managers. Firstly, we consider how a standard evaluation procedure
can be extended through the formation of portfolio opportunity set distribu-
tions. In particular, we examine the evaluation of a managed portfolio using
the Sharpe ratio. Secondly, we consider a very common case when a manager
is restricted by a tracking error constraint. For such managers we discuss
how the corresponding portfolio opportunity sets can be calculated. These
descriptions of opportunity universes together with the location of the active
portfolio and of the benchmark allow to verify whether portfolio managers
respect the given tracking error constraint on the run, to test the portfolio
efficiency for a given mandate etc. Then, it is also possible to calculate the
distribution of information ratios. In particular, we consider how opportunity
sets can be used to incorporate information embedded in portfolio opportu-
nity sets into the evaluation process. For that we propose to compute the
opportunity set-adjusted information ratios.

Of course, the use of portfolio opportunity sets for performance evaluation
is much broader than the particular applications discussed in this chapter.
Our main objective is to demonstrate how such universes can extend the

141
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existing performance evaluation procedures and metrics. The section devoted
to the information ratio demonstrates, for example, how we can introduce
an additional step into the standard evaluation procedure. In this step the
“raw” realized returns are “normalized” in a special way to the contemporary
opportunity sets. The ratio is then calculated on those adjusted returns. This
general idea can be used for other performance measures straightforwardly.

Throughout the chapter we work primarily with the realized returns as
performance metric. The rationale behind this is the following. A portfolio
manager receives a concrete investment mandate. Using his knowledge, expe-
rience and available tools, the manager selects a portfolio composition (and
possibly a reshuffling strategy), back-tests and finally implements his portfo-
lio. The concrete portfolio allocation (i.e. portfolio weights) is a final product
of manager’s thoughts, work and skills. Usually, this information stays pro-
prietary and is not disclosed. For that reason, the major part of performance
measures uses the realized returns as a basis for performance analysis.

We proceed as follows. Section 7.2 defines how our general framework ex-
tends the performance evaluation. We discuss first how portfolio opportunity
sets put the performance into perspective for a given and specific managerial
environment. Then we list the important aspects revealed by the opportu-
nity sets. In Section 7.3 we consider in detail how one- and multiple-period
performance evaluation can be extended via portfolio opportunity sets. We
illustrate the formal concepts with distributions of Sharpe ratios using the
same investment mandate as in Chapter 6 and considering a specific man-
aged portfolio. Section 7.4 formally defines the portfolio opportunity sets
with a tracking error constraint and reveals the methodology for calculating
frequency distributions for such opportunity sets. Afterwards, we present sev-
eral applications of computed opportunity set distributions. In particular, we
discuss how frequency distributions of realized returns can be used to mon-
itor portfolio managers and how we can normalize the information ratio for
particular market developments. Section 7.5 concludes.

7.2 How relative is the relative performance?

The primary task of a professional investment manager is to provide superior
returns relative to a (passive) benchmark or a reference index. Consequently,
the professional quality of the manager is judged on the basis of excess returns
with respect to the selected benchmark. Furthermore, the persistence of these
returns is of special interest. However, the question remains: how relative
are these excess returns (or risk-adjusted metrics such as information ratio).
That is, we would also like to know how difficult it was to achieve the attained
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overperformance over a given period. Figure 7.1 provides an illustration of
this issue.

-20%
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Figure 7.1: The portfolio opportunity sets of quarterly realized returns for an equity
fund, the actual return of the equity fund and of the MSCI Netherlands
equity index over the same periods. The excess return of the fund
relative the benchmark index is of a different nature over these two
sample periods. While the overperformance of 2% over the 2nd quarter
2000 seems to be relatively easy achievable (more than 50% of portfolios
from the fund opportunity provided the excess of more than 2% over the
MSCI index), the superior return over the 2nd quarter 2004 is indeed
extraordinary.

When considering only the performance of an equity fund and its bench-
mark, the MSCI Netherlands index, over the second quarters in 2000 and 2004
(as shown in Figure 7.1), it is not possible to differentiate between these two
2% excess returns. Generally, in order to get more insights into how difficult
it was to achieve a certain realized or excess return one would usually look
at the peers (i.e. equity funds investing in the Netherlands in this particu-
lar case). But then one would face various problems associated with a peer
group-based evaluation (cf. Section 2.1).1

If we apply our framework, we can calculate the frequency distributions
of performance values with respect to various performance measures. The
enormous advantage is that using portfolio opportunity universes provides a
natural way to put the relative performance for a specific managerial input

1Indeed, some large investment companies such as Russell (http://www.russell.com) con-
sider a multi-manager approach as one the pillars of their investment activity. On a continu-
ous basis Russell’s analysts try to identify managers who most likely outperform the targeted
index and/or peers, and, thus, provide the best excess returns. (In addition, diversifying
among the top 25% of managers should improve the persistence of excess returns.)
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(i.e. investment mandate) and/or for an investment environment in which
the evaluated manager operates in perspective. In Figure 7.1 we plotted
the corresponding portfolio opportunity sets for both quarters. As can be
observed, the 2% excess returns of our equity fund relative to the MSCI
Netherlands index have a different nature and it makes sense to valuate these
excess returns differently.2 Generally, two issues matter:

• The location of the evaluated (managed) portfolio and the corresponding
benchmark in the opportunity set distribution, calculated with respect
to a given performance measure. The two top graphs in Figure 7.2 for
the time periods t1 and t2 illustrate this issue. The evaluated portfolio
and the corresponding benchmark have the same Sharpe ratios over two
investment periods t1 and t2. Having the same overperformance with
respect to the benchmark over these two periods, the portfolio manager
clearly provides a better “performance quality” as he/she “beat” most
of the alternative portfolios in period t2;

• The width of the frequency distribution for a given opportunity set over
the evaluated period, which represents market opportunities with re-
spect to a specific performance metric for a given investment mandate.
Considering the two bottom graphs in Figure 7.2 (i.e. for investment pe-
riods t3 and t4), we definitely would value the excess performance over
the benchmark in period t4 as a more substantial one.

In order to “clean” the performance value(s) of a portfolio from the influ-
ence of these two effects (e.g. if we would like to compare performances over
two different periods) we can “normalize” the performance(s) by subtracting
the cross-sectional mean and then dividing by the cross-sectional standard
deviation of the corresponding distribution of performance values.3 When we
consider, for example, the distribution of realized returns for the period t3 in
Figure 7.2, the normalized performance rp (i.e. normalized realized t3 return)
of a portfolio p is:

rp =
rp − µXS

σXS
(7.1)

where µXS is the mean of the realized return distribution (i.e. mean of the
cross-sectional distribution in t3), and σXS its standard deviation. We use
such a particular “normalization” of realized returns when we consider the

2It should be noted that we do not attribute the Q2-2004 return to “skill” or “luck” but
emphasize the fact that it was much more difficult to achieve the 2% excess return in that
quarter.

3Under the term “normalize” we mean to make things (e.g. distribution of performances)
of the same type (e.g. all have the same mean and standard deviation).
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Figure 7.2: The graphs in this figure point to the two important aspects when a
performance evaluation is extended through portfolio opportunity set
distributions In our case these are distributions of Sharpe ratios for a
hypothetical investment mandate. Two top graphs reveal the effect
of the location of the evaluated portfolio and the benchmark in the
distribution of Sharpe ratios for portfolios from the opportunity set. Two
bottom graphs show the effect of the distribution width. Clearly, in both
cases we would consider the results over t2 and t4 as of a better quality
performance results.

information ratio in Section 7.4.

7.3 Evaluation of Investments under Constraints

7.3.1 General Procedure

Our general idea is that instead of limiting ourselves to evaluating the per-
formance of the investment against a benchmark or a peer group, we first
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estimate the distribution(s) of the performance values (e.g. distribution of re-
alized returns, and/or of variances, and/or of Sharpe and information ratios
etc.) of all portfolios from the relevant portfolio opportunity set. We also
calculate the actual performance of the evaluated investment portfolio and
all benchmarks using the required performance measures. Combining the dis-
tributions with the performances of our portfolio and benchmark, we obtain
comprehensive performance data which could be analyzed in various ways.

We distinguish between two types of evaluation:

• One-period performance evaluation. We consider at place the evaluation
over a specific time horizon (e.g. as defined in the investment mandate).
In this case the location and the form of the performance distributions
as well as the positions of the portfolio and benchmark(s) are of main
interest. Both the location and form over such a period yield a picture
of the variety of portfolios that can be composed under specific invest-
ment requirements, (i.e. all possible decision alternatives available to a
manager at the portfolio design time);

• Multi-period performance evaluation. Here we consider the development
of the dispersion of these distributions over multiple evaluation periods.
The dynamics of the distributions of performance values, the portfolio
and benchmarks offers, for example, the possibility to check the persis-
tence of the manager or of the strategy selection ability, skills et cetera.

Clearly, the performance evaluation using the portfolio opportunity universes
is very similar to the ideas revealed in Chapter 6. But instead of describing
the market dynamics we compute the frequency distributions of performance
values for our investment mandate and “plug-in” the performances of the
evaluated portfolio, the underlying benchmark(s), and of the peers (if any)
into these distributions. The following sections provide various illustrations
of such extended evaluations.

7.3.2 One period Performance Evaluation

Let us consider the use of performance opportunity universes for the usual
ex post performance evaluation first. Given a performance measure(s) (e.g.
realized return, Sharpe ratio etc.), the combination of the distribution of per-
formance values and the performances of the evaluated portfolio and bench-
mark provides us with the following information, which enhances the usual
performance numbers:

• Minimum and maximum performance values. These two values deter-
mine boundaries for performances, which were achievable under our in-
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vestment mandate. That is, the values define the “window of alternative
performances”, which were available at the market;

• Continuous frequency distribution function fr(t). Consequently, the whole
area of feasible portfolio alternatives can be subdivided into performance
areas, which can be used for classification of portfolio manager profes-
sionalism. One very common division is the following quartiles:

Percentile Performance

75 Excellent
50 Good
25 Below average
0 Poor

• Percentile values for the evaluated portfolio and benchmark. We can cal-
culate the percentiles for the evaluated portfolio and benchmark. These
percentiles give us the exact proportion of alternative portfolios, which
under- and overperformed the portfolio or benchmark;

• Score of the excess performance over the benchmark. Using the normal-
ization procedure discussed at the end of Section 7.2, we can compute
the excess-performance coefficient (we call this coefficient the score) for
our portfolio over the corresponding benchmark. Scores have the range
approximately between -2 and 2. Thus, the score is a fair measure of
relative over- or underperformance, which is invariant to the distribution
width.

Of course, this list can be easily extended.
As an example we consider the performance of a managed portfolio invest-

ing into the large caps segment of the German equity market. This portfolio
has a simple investment mandate restricting the manager to investing into
the DAX stocks with a maximum proportion of capital invested in one asset
equal to 15% (i.e. wi ≤ 0.15). We use the same monthly price observations
as in Chapter 6 (cf. Section 6.2.2) and evaluate the performance as of De-
cember 31, 2000. As a performance metric we use the Sharpe ratio based on
the return observations over the previous 3 years.

The managed portfolio had a Sharpe ratio equal to 0.1738 against 0.1601
of the benchmark (the DAX index). That is, the portfolio provided 17.38
basis points of return over the risk-free rate for each 100 basis points of risk.
Furthermore, comparing to the underlying benchmark, the performance of
our portfolio was clearly better than of the benchmark because it provided
1.37 basis points of return additionally while having the same level of risk.
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Figure 7.3: The distribution of monthly Sharpe ratios as of December 31, 2000
by feasible portfolios of DAX stocks. The ratios are based on 3-year
monthly observations. The dashed white lines mark the upper and lower
distribution values as well as the 1st, 2nd and 3rd quartiles. In addition
the performances of the benchmark (DAX) and the managed portfo-
lio are plotted. The different colors for quartiles help to attribute the
performance grade.

Figure 7.3 shows the distribution of performance values for opportunity
set portfolios with respect to the Sharpe ratio as of December 31, 2000. Using
this distribution of performance values of all feasible portfolios, we can derive
the following performance information:

• Minimum and maximum performance values. The maximum Sharpe ra-
tio for our portfolio opportunity set for the evaluated period was equal
to 0.2897, and the minimum ratio was 0.0612. These two boundaries de-
fine achievable performances (i.e. Sharpe ratios) under our investment
mandate. An immediate consequence of these values is the observation
that over the evaluated period our investment mandate provided posi-
tive premium with respect to the risk-free rate whatever portfolio was
composed;

• Continuous frequency distribution function fr(t). In Figure 7.3 the whole
area of feasible portfolio alternatives is subdivided in quartiles. The
white lines show the quartile boundaries, the quartile areas are filled
with colors: green for the 1st quartile, light green for the 2nd, light
red for the 3rd and red for the 4th. Although the performance of our
portfolio not only in absolute, but also in relative context (with respect
to the DAX) seems to be good, from the perspective of other available
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alternatives it falls in the “Below average” category only. Thus, a large
amount of opportunities (more than 50%) was left unused;

• Percentile values for the evaluated portfolio and benchmark. The eval-
uated portfolio and benchmark outperformed 42.98% and 25.99% of its
“mandate peers” correspondingly. Again, these results position the per-
formance values of the portfolio and benchmark inside the realized mar-
ket environment very precisely;

• Score of the excess performance over the benchmark. The difference
between the Sharpe ratios for the evaluated portfolio and benchmark is
quite large. And the distribution in Figure 7.3 shows how large is it in a
relative context. The normalized excess-performance coefficient (score)
of our portfolio over the corresponding benchmark is equal to 0.3728.
The comparison with the distribution shows that the score reflects the
overperformance degree very plausibly.

Obviously, the presented performance data are only a small part of various
insights provided by extending the evaluation through portfolio opportunity
sets.

Till this point we considered the ex post performance evaluation exclu-
sively. However, the portfolio opportunity set is invariant from the perspec-
tive, ex post or ex ante, we are interested in. What changes is the used asset
statistics. In the ex post case these are the realized ones, in the ex ante case
these are expected ones. Therefore, from ex ante perspective we obtain the
distribution(s) of expected performance values. Consequently, all statistics
discussed above in this section have expected context and the frequency dis-
tributions are used to explore which specific characteristics (e.g. return/risk)
are expected to be induced by different portfolio compositions and how these
compositions are expected to perform.

Clearly, in both ex ante and ex post cases our methodology allows to an-
alyze the performance on a completely new comprehensive level. The use
of portfolio opportunity sets does not replace the existing performance mea-
sures but extends them in a very natural way with very interesting insights.
It is worth noting that our methodology can be applied to any performance
measure (the Sharpe ratio is just one of them) or any multi-dimensional com-
bination thereof (e.g. differential return with respect to the risk free rate
across one dimension and volatility across another).
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7.3.3 Multi-period Performance Evaluation

Having several single-period performance distributions at our disposal, we
are interested in the development of these distributions over time. Given a
performance measure, such a multi-period evaluation can be enhanced via
portfolio opportunity sets with the following information:

• General trend & dispersion of distribution widths. The development of
the portfolio opportunity sets provides information about the general
trend and exposure dynamics (e.g. toward return, risk et cetera) of the
underlying investment mandate over time;

• Sensible mandate formulation. We can analyze the influence of vari-
ous constraints on our portfolio opportunity set and on the exposures
(e.g. toward the realized return and/or volatility and/or the Sharpe ra-
tio distributions). Therefore, to clients and institutions, which engage
professional managers, the methodology offers a capability to impose
investment restrictions more rationally in terms of both the portfolio
opportunities and the outcomes. We can also facilitate the estimation
of the costs of any constraint which the clients might have formulated;

• Portfolio performance persistence. We can consider the performance
persistence of the managed portfolio not only with respect to the un-
derlying benchmark, but also with respect to the portfolio opportunity
universes (e.g. looking at the relative percentile values) as well as us-
ing the normalized version of the relative overperformance: the score
coefficient (cf. Section 7.3.2);

• Benchmark profile. The quality of a mandate representation through
a benchmark is often assumed given, regardless of the performance at-
tributes considered. We can evaluate the benchmark itself vis á vis the
portfolio opportunity sets. In particular, the percentile indicates how
many (feasible) portfolios have outperformed the benchmark in terms of
the selected performance measure. In this way it can be judged whether
a benchmark is representative for the market under consideration or not.

Obviously, this list of statistics can be extended as the need arises.

For an illustration we consider once again the investment mandate from
Section 7.3.2. Figure 7.4 graphically shows 15 distributions of Sharpe ra-
tios from 1990 through 2004 for our sample investment mandate. For each
sub-period the corresponding pictogram represents the distribution of Sharpe
ratios at the end of a calendar year; the ratios are estimated using the 36



7.3. Evaluation of Investments under Constraints 151

0
.5

0
.4

0
.3

0
.2

0
.1

0
.0

−
0
.1

−
0
.2

−
0
.3

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

E
v
a
lu

a
te

d
p
o
rt

fo
li
o

B
e
n
ch

m
a
rk

(D
A

X
in

d
e
x
)

F
ig

u
re

7
.4

:
T

h
e

d
is
tr

ib
u
ti
o
n

o
f

S
h
ar

p
e

ra
ti
o
s

fr
o
m

1
9
9
0

th
ro

u
g
h

2
0
0
4

fo
r

o
u
r

sa
m

p
le

p
or

tf
o
lio

o
p
p
or

tu
n
it
y

se
t.

F
or

ea
ch

su
b
-p

er
io

d
th

e
co

rr
es

p
o
n
d
in

g
p
ic

to
g
ra

m
re

pr
es

en
ts

th
e

d
is
tr

ib
u
ti
o
n

o
f
S
h
ar

p
e

ra
ti
o
s

at
th

e
en

d
o
f
a

ca
le

n
d
ar

ye
ar

.
T

h
e

ra
ti
o
s

ar
e

es
ti
m

at
ed

u
si
n
g

th
e

3
6

m
o
n
th

ly
o
b
se

rv
at

io
n
s

pr
io

r
th

e
en

d
o
f

th
e

co
rr

es
p
o
n
d
in

g
ye

ar
.

T
h
at

is
,
th

e
1
9
9
0

p
ic

to
g
ra

m
sh

ow
s

th
e

d
is
tr

ib
u
ti
o
n

o
f
S
h
ar

p
e

ra
ti
o
s

re
al

iz
ed

by
fe

a s
ib

le
p
or

tf
o
lio

s
fr
o
m

Ja
n
u
ar

y
1
,
1
9
8
8

th
ro

u
g
h

D
ec

em
b
er

3
1
,

1
9
9
0
;

th
e

1
9
9
1

p
ic

to
g
ra

m
re

pr
es

en
ts

th
e

d
is
tr

ib
u
ti
o
n

o
f

ra
ti
o
s

re
al

iz
ed

by
fe

as
ib

le
p
or

tf
o
lio

s
fr
o
m

Ja
n
u
ar

y
1
,
1
9
8
9

th
ro

u
g
h

D
ec

em
b
er

3
1
,
1
9
9
1

an
d

so
o
n
.

T
h
e

p
er

fo
rm

an
ce

o
f
th

e
ev

al
u
at

ed
p
or

tf
o
lio

an
d

b
en

ch
m

ar
k

(t
h
e

D
A
X

in
d
ex

)
ar

e
m

ar
ke

d
by

a
th

ic
k

d
o
t

an
d

a
sm

al
l
tr

ia
n
g
le

,
re

sp
ec

ti
ve

ly
.



152 Chapter 7. Performance Evaluation Using the Portfolio Opportunity Universes

monthly observations prior the year end.4 That is, the 1990 pictogram shows
the distribution of Sharpe ratios by feasible portfolios from January 1, 1988
through December 31, 1990; the 1991 pictogram represents the distribution
of returns realized by feasible portfolios from January 1, 1989 through De-
cember 31, 1991 and so on. With respect to these particular distributions we
can derive the following information for the statistics listed previously:

• General trend & dispersion of distribution widths. The major observa-
tion is that our investment mandate provided positive return premium
most of the years observed. In addition, although the location could
change dramatically from year to year (for example, at the end of 2001
our mandate provided positive return-risk ratios for almost all portfo-
lios; at the end of 2002 not one portfolio could manage to do it), the
distribution width was not substantially changing over the whole period
1990-2004. Comparing this fact with the observations that the market
homogeneity with respect to the returns and risks dramatically increased
in the late 90th (cf. Section 6.4 and Section 6.5), we can conclude that
the cost of return in terms of risk was stable over time;

• Sensible mandate formulation. We have conducted several experiments
in order to estimate sensitivities for different kinds of return and risk
with respect to various investment constraints. One of the result was,
for example, that the exposures to risk-adjusted returns of our mandate
can be improved by about 10% diversifying between German and Dutch
stocks (in the last case we used the constituents of the MSCI Netherlands
index) and enforcing the more even allocation of capital across different
sectors;

• Portfolio performance persistence and Benchmark profile. Considering
the performance persistence of the managed portfolio with respect to the
benchmark, we can observe that the portfolio (i.e. our manager) out-
performed the index in terms of risk-adjusted return by a large amount
from the year 2000 on. However, in the same period the portfolio per-
formed worse with respect to the corresponding portfolio opportunity
sets (cf. Figure 7.4) than in the period between 1990 and 2000. This
is due to the observations that the benchmark stability with respect to
the portfolio opportunity sets of returns decreased simultaneously with
the change of the benchmark risk profile from moderate to high risk (cf.
also with discussion in Sections 6.4-6.6).

4Thus, only one-third of observations have been renewed at each year end and we observe
the smoothed transition of distributions over time.
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Again, in this section we considered how the ex post multi-period perfor-
mance evaluation can be enhanced via portfolio opportunity sets. From the
ex ante perspective we would have considered the distribution(s) of expected
performance values from some multiple scenarios.

7.4 Evaluation of Tracking Error-Restricted Invest-
ments

With strongly increased interest for investing into ETFs and other index-
linked investment products we would also be interested in the evaluation
of such investment mandates and investments. The next section provides
valuable insights into evaluation of such kind of investments.

7.4.1 Opportunity Sets with Tracking Error Constraints

Delegating an investment implementation to a professional manager, investors
very often “anchor” their mandate to a specific benchmark or an index, and
control the manager’s exposure to risk via the tracking error volatility con-
straint (TEV). The case is widely discussed and analyzed in financial litera-
ture. Few references are Roll (1992), Grinold & Kahn (2000), Jorion (2003).

The portfolio opportunity set, which consists of n assets and which is
subject to such a TEV-constraint, can be specified through the following
formal description:

n∑
i=1

n∑
j=1

cov(i, j) · (wi − bi) · (wj − bj) ≤ ψ2 (7.2)

n∑
i=1

(wi − bi) = 0

where ψ determines a tolerable level of TEV, bi is the proportion of the
security i in the targeted benchmark, and wi is the proportion of the security
i in a feasible portfolio.

It should be noted that imposing a single TEV constraint is not efficient
because it forces managers to optimize in the excess-return space only and
hence does not account for the total risk of a tracking portfolio (Roll 1992).
However, this can be corrected through imposing an additional constraint
on total portfolio risk especially when the TEV value is low or a targeted
benchmark is relatively inefficient (Jorion 2003). Another often used tech-
nique is to constraint the beta of the portfolio to be equal to 1 with respect to
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the benchmark. Alexander & Baptista (2004) also discuss how imposing an
additional VaR constraint can mitigate the problem pointed by Roll (1992).
Although such additional constraints are undoubtedly important, they can be
incorporated in the estimation procedure easily and have no impact on the
general ideas described in this chapter. Therefore, for the sake of simplicity,
we consider the opportunity sets as formally described by (7.2).

It is more convenient to work with such opportunity sets if we remove the
last dependent weight from the system (7.2). Reorganizing the second budget
equation from (7.2), we have:

wn − bn = −
n−1∑
i=1

(wi − bi) (7.3)

Substituting (7.3) into the first equation of (7.2), we obtain:

n−1∑
i=1

n−1∑
j=1

[cov(i, j) − 2 cov(i, n) + cov(n, n)] · (wi − bi) · (wj − bj) ≤ ψ2 (7.4)

Denoting the expression in the square brackets by ĉov(i, j), we obtain the
expression for a full-dimensional portfolio opportunity set in Rn−1:

n−1∑
i=1

n−1∑
j=1

ĉov(i, j) · (wi − bi) · (wj − bj) ≤ ψ2 (7.5)

Considering the issue of generating portfolios for TEV-constrained opportu-
nity sets, we use the short form (7.5) explicitly and leave out the preprocessing
step.

7.4.2 Estimating frequency distributions of TEV-constrained
opportunity sets

We can easily adopt the Sequential Direction algorithm from section 5.4.2
to generate random portfolios uniformly distributed over a TEV-constrained
opportunity set P̂ , where P̂ is defined by (7.5). Having n assets in the oppor-
tunity set and transforming the set into (7.5) form, the estimation procedure
is formulated as follows:

1. Choose uniformly a feasible random portfolio p0 = 〈w(0)
1 , w

(0)
2 , . . . , w

(0)
n−1〉

in a given portfolio opportunity set P̂ (The simplest solution is to sample
uniformly in the neighborhood of the benchmark);
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2. Having the last generated portfolio pt = 〈w(t)
1 , w

(t)
2 , . . . , w

(t)
n−1〉 (the sub-

script t = 0, 1, 2, . . . denotes the actual step of our ergodic Markov chain),

determine the “changing” weight w
(t)
j as j-th element of pt and j is taken

consequently from the set {1, 2, . . . , n− 1};
3. Substituting all w

(t)
i but w

(t)
j into the left-hand side of (7.5) and replacing

the inequality sigh with equality, we obtain a quadratic equation of only

one variable w
(t)
j . Solving the equation, we obtain two boundary values

for w
(t)
j , ẇ

(t)
j and ẅ

(t)
j . Compute the next value of w

(t+1)
j by choosing a

point on the segment
[
ẇ

(t)
j , ẅ

(t)
j

]
uniformly, i.e.

w
(t+1)
j ∼ U(ẇ

(t)
j , ẅ

(t)
j )

4. Create a new random portfolio extending pt+1 = 〈w(t+1)
1 , w

(t+1)
2 , . . . , w

(t+1)
n−1 〉

with w
(t+1)
i = w

(t)
i for all elements but w

(t+1)
j , a new w

(t+1)
j from step 3,

and the last depending weight as

〈w1 = w
(t+1)
1 , w2 = w

(t+1)
2 , . . . , wn−1 = w

(t+1)
n−1 , wn = 1 −

n−1∑
i=1

w
(t+1)
i 〉

Add this new random portfolio to the sample;

5. If the sample is big enough, then stop. Otherwise return to step 2.

Having n assets in the opportunity set, we need to generate at least O (n3
)

random portfolios in order to guarantee the uniformity of the sample over a
given TEV-constrained opportunity set. The accuracy of a frequency density
estimation is the same as for linearly-restricted opportunity sets (cf. Sec-
tion 5.4.3).

It should be noted that the algorithm is slower than the direct trans-
formation techniques used for opportunity sets with a short-sales constraint
only. However, the portfolios can be generated rather efficiently, and we can
use large samples (e.g. 1 million portfolios) estimating frequency distribu-
tions for TEV-restricted sets. Furthermore, the algorithm can be easily ex-
tended to incorporate additional risk constraints as discussed by Jorion (2003)
and Alexander & Baptista (2004). In that case, we introduce an additional
acceptance-rejection step, which filters out portfolios violating at least one of
these supplementary constraints.

7.4.3 Evaluation of TEV-constrained Investments

Obviously, the TEV-constrained opportunity sets can be evaluated in the
same way and using the same metrics as discussed in Section 7.3. In this
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section we focus on additional ways how portfolio opportunity sets can be
used for the evaluation of the TEV-constrained investments. In particular,
we consider the evaluation using the information ratio (IR). Grinold & Kahn
(2000) argue that information ratio is a key statistic measuring performance
of an active portfolio manager because “information ratios determine value
added”. Also in practice, the IR is the most frequently used statistic to
measure manager’s skills and performance for index- or benchmark-linked
investments.5

Descriptive Statistics & Evaluation

The TEV-constrained opportunity sets can be evaluated using the absolute or
relative context. In the absolute context we evaluate the performance using
the realized or projected returns, standard deviations et cetera. Thus, the
evaluation is done in the same way as we discussed in Section 7.3 with the
only exception that we consider portfolios which satisfy a prescribed TEV-
constraint. And frequency distributions would be estimated using the proce-
dure in Section 7.4.2.

In the relative context we are interested in the differential returns and/or
other metrics based on these differential returns with respect to a given bench-
mark. Again, frequency distributions of such metrics can be numerically esti-
mated as described in Section 7.4.2.6 Let us consider frequency distributions
of information ratios (IR) for a given TEV-constrained active investment man-
date, in particular. Grinold & Kahn (2000) propose a typical distribution of
IR for professional managers: According to the authors’ criteria, top 25%
of managers should provide an IR greater than 0.5. However, the empirical
study of Goodwin (1998) on 10-year data shows that “a manager’s information
ratio should be judged relative to the manager’s style universe”.7 Another
result of the study is that information ratios are sensitive to the choice of the
underlying benchmarks.

Considering the frequency distributions of ex ante (e.g. historical) IRs
allows us to quantify our expectation toward the possible IR and, thus, toward
the possible value-added of active management for a particular investment
mandate. For example, having the top quartile of IR-distribution equal to

5Formally this is only true when differential return is uncorrelated with return on the
underlying benchmark (Treynor & Black 1973). To conform with practice and without loss
of generality we here use the simple differential return.

6It should be noted that when we consider ex ante case the underlying benchmark is a
median of the distribution of standard deviations/variances. This is not necessarily true for
frequency distributions of other performance metrics.

7Goodwin (1998), p.40.
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0.2, we could expect that a top manager will have about 20 basis points of
overperformance for 100 basis points of active risk (tracking error volatility).

The frequency distribution of the ex post IR for a given investment man-
date, allows us to evaluate the professional skills of the hired manager realis-
tically. Opportunity set distributions help us judge the professional quality of
managers relative to their universe, investment mandate and the underlying
benchmark.

Monitoring/Controlling Portfolio Managers

The TEV-restricted opportunity sets can be also used to monitor whether
portfolio managers respect a given tracking error constraint on the run.

The idea is very simple. Let us consider a TEV-restricted portfolio op-
portunity set consisting of n assets. At time t when portfolio is composed or
adjusted by the portfolio manager, we have knowledge about the benchmark
weights and the co-variances of individual securities (the last ones are esti-
mated in the same way as our manager does, e.g. using historical data). From
(7.2) we can derive the information about portfolios, which satisfy the TEV-
constraint (The simplest method is to form a sample of feasible portfolios as
described in Section 7.4.2).

As the next evaluation point t+1 arrives, we observe, for example, the ex
post returns for each of the assets over the period from t to t+ 1. Hence we
have the information which portfolio compositions were feasible with respect
to the TEV-constraint at time t. Next, we can compute the distribution
of performance values (realized returns in our example case) at time t +
1 combining the returns with the portfolio compositions. And confronting
this distribution with the realized return provided by the manager, we can
verify whether the constraint was respected at time t if return falls inside
the distribution. Clearly, if the return is outside of the distribution range,
the constraint was violated. The opposite statement, if return falls inside the
distribution then the manager respects the constraint, is not always true. The
similar verification can be performed using other metrics.

Opportunity Set-Normalized Information Ratio

Given a portfolio opportunity set, the width of the distribution of realized
returns varies substantially over time (cf. Chapter 6). The same applies to the
frequency distributions of differential returns. Consequently, as differential
returns are conditional on contemporary market dynamics, so is the IR. In
some circumstances we would wish to consider an IR which is unconditional
of market dynamics.
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In Section 7.2 we introduced normalized performances in which values were
normalized by subtracting the cross-sectional mean and dividing by the cross-
sectional standard deviation of the corresponding distribution of performance
values (see equation (7.1)). Utilizing this idea, we can introduce an additional
step into the IR calculation procedure in order to compute an unconditional
IR.

Let us consider how such unconditional IR (henceforth we denote such

information ratios by IR) can be calculated given realized returns rp,t of an
active portfolio P and returns rb,t of the underlying benchmark b over some
historical periods t = 1, 2, . . . , T . Calculating the distributions of realized
returns for each period t, we can calculate the normalized differential return
between the active portfolio and benchmark as

r
d
t = rp,t − rb,t =

rp,t − µXS,t

σXS,t
− rb,t − µXS,t

σXS,t
=
rp,t − rb,t
σXS,t

(7.6)

where µXS,t is the mean of the realized return distribution (i.e. mean of
the cross-sectional distribution for a time period t), and σXS,t its standard

deviation. Afterwards we calculate the IR either by dividing the average of
these normalized differential returns by their standard deviation, i.e.
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]
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[
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d
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] (7.7)

or using the least-squares regression (Treynor & Black 1973):

r
d
p,t = α+ β · rd

b,t + εt

and
IR =

α

D [εt]
(7.8)

When σXS,t = σXS for all t, the normalized version of IR reduces to conven-

tional IR. The main advantage of IR is that it measures normalized differential
returns and, thus, is independent of a specific market conditions and invest-
ment mandate. It should be also noted that the unconditional information
ratio is very similar to the t-statistic.
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7.5 Summary and Conclusions

Using portfolio opportunity universes provides a natural way to put in per-
spective the absolute and relative performance for a specific decision context
(e.g. investment mandate) and/or for an investment environment in which
the evaluated manager operates. Considering a frequency distribution for a
given performance measure, our methodology highlights two issues: where the
evaluated (managed) portfolio and the corresponding benchmark are located
in the distribution calculated with respect to a given performance measure,
and what is the width of this frequency distribution, which represents mar-
ket opportunities with respect to a specific performance metric for a given
investment mandate.

Evaluating performance over one period, the portfolio opportunity sets
provide us with the following statistics: minimum and maximum performance
values, which define the “window of alternative performances”, continuous
frequency distribution function fr(t), which can be used for classification of
portfolio manager professionalism by subdividing the possible performances
into areas as well as for calculating the percentile. The function can also
be used for computing a score coefficient of the excess performance over the
benchmark, which is invariant to the market development. The metric list
can be extended.

Evaluating performance over multiple periods, the portfolio opportunity
sets provide us with information about general trend and dispersion of distri-
bution widths over time, help to analyze the influence of various constraints
on the exposure of portfolio opportunity set toward performance metrics.
In addition, we can evaluate the persistence of a portfolio performance not
only with respect to the underlying benchmark, but also with respect to the
corresponding portfolio opportunity universes (e.g. looking at the relative
percentile values) as well as using the normalized version of the relative over-
performance, the score coefficient.

Our methodology can be easily adapted to evaluate different types of in-
vestments. When we consider TEV-constrained investments, we can evaluate
such investments in various ways using the portfolio opportunity sets. In
particular, our methodology provides very interesting insights for evaluation
using the information ratio. The distribution(s) can help us to quantify the
expectation toward the possible IR and, thus, toward the possible value-added
of active investment for a given mandate. Opportunity set distributions can
also help us to judge the professional quality of managers relative to their IR-
universe. In addition, our methodology can be deployed to monitor whether
portfolio managers respect a given tracking error constraint on the run. Using
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the portfolio opportunity sets, we can also calculate a normalized version of
information ratio, which is invariant to the market developments.



Chapter 8

Conclusions and Directions
for Research

Conventional evaluation methods strongly differentiate between the universe
which is used for portfolio construction, and the universe which is used for
the performance evaluation. Whilst by composing the portfolio we consider
the complete opportunity set, in the latter case we use a very restricted, gen-
eral representation of this opportunity set: a peer group or (a) benchmark
portfolio(s). It is well recognized that such a reduction of the original oppor-
tunity set causes several problems. From our point of view, the solution is to
incapsulate the investment decision context into the performance evaluation.

In this thesis we present a conceptual framework, which allows to incorpo-
rate the decision context of any constrained investment into the performance
evaluation process. The main feature that distinguishes our methodology
from conventional performance evaluation methods is that it tackles the per-
formance at the decision-making level: the portfolio weights. We consider
all possible portfolios that can be constructed given the specific investment
objective(s) as well as the prescribed investment constraints, and then evalu-
ate all these portfolios according to (a) selected performance measure(s). The
performance of the investment portfolio is calculated simultaneously and then
evaluated against the performance of this complete opportunity set. Conse-
quently, our methodology extends the conventional performance metrics with
the insights into opportunities existed for a particular investment.

Our framework is not limited to specific performance measures. On the
contrary: it is suitable for almost any performance measure or a combination
thereof. Moreover, we leave the choice of the relevant performance attributes
to the evaluator who may choose one or more performance measures depend-
ing on the performance question(s) to be answered.
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In the thesis we considered in detail two areas where the portfolio oppor-
tunity perspective (as delivered by our framework) provides many advantages
over the conventional methods: enhanced market descriptions (as discussed
in Chapter 6), and performance evaluation (as discussed in Chapter 7).

In the particular case of enhanced market descriptions we observed the
following valuable benefits.

Firstly, instead of focusing on only one portfolio, an index, our view pro-
vides a comprehensive perspective on the performance of the variety of port-
folios that can be formed given a specific opportunity set and constraints.
Thus we obtain a broad view on opportunities available on a specific market.
We can also study the dynamics of the portfolio opportunity set over time.
Observed statistics are locations of the distributions, trend, homogeneity of
performance values et cetera.

Secondly, a very important feature is that our market descriptions can be
commensurate with any specific investment environment such as an invest-
ment mandate defined by goals and constraints.

Thirdly, with regard to the performance attributes considered, the method-
ology helps to evaluate the market index itself vis á vis the portfolio oppor-
tunity set. Here key statistics are the quantile, in which the index plots, as
well as the stability of this quantile over time.

In the area of evaluating the performance of constrained investments, us-
ing portfolio opportunity sets provides a natural way to put the absolute and
relative performance in the perspective of a specific decision context (i.e. in-
vestment mandate, market and business environment) in which the evaluated
manager operates.

Evaluating performance over one period, the portfolio opportunity sets
approach provides us with the following statistics: minimum and maximum
performance values, which define the “window of alternative performances”,
continuous frequency distribution function, which can be used for classifica-
tion of portfolio manager professionalism by subdividing the possible perfor-
mances into areas as well as for calculating the percentile. The function can
also be used for computing a score coefficient of the excess performance over
the benchmark, which is invariant to the market development.

Evaluating performance over multiple periods, the portfolio opportunity
sets approach provides the information about general trend and dispersion
of distribution widths over time, helps to analyze the influence of various
constraints on the exposure of portfolio opportunity set toward performance
metrics. In addition, we can evaluate the persistence of a portfolio perfor-
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mance not only with respect to the underlying benchmark, but also with
respect to the corresponding portfolio opportunity sets (e.g. looking at the
relative percentile values) as well as using the normalized version of the rela-
tive overperformance, the score coefficient.

The modelling techniques and mathematical tools developed throughout
this thesis are very powerful and general; they can be broadly applied for thor-
ough analysis of constrained investments far beyond the area of performance
evaluation. Especially we would like to draw attention to the two following
aspects.

Firstly, we have shown in this study that institutional, legal and self-
imposed investment constraints can be translated into constraints on asset
weights. Using this approach we formalize the description of investment de-
cision contexts and represent them as polyhedra in the asset weight space.
This allows us to use the tools of geometry and linear algebra in our analysis.
In particular, we derived an explicit formula for the frequency distributions
of performance values; these values turn out to be equal to the cross-sectional
volume of the opportunity set polyhedra. Further analysis of various oppor-
tunity sets by their geometrical representations opens wide horizons.

Secondly, in this study we developed and used mathematical tools for
working with the continuous asset weight spaces (i.e. continuous portfolio
spaces). Obviously, the portfolios and benchmarks we are dealing with on
financial markets are discrete. However, it can be very beneficial to consider
the space of continuous asset weights, especially in the case when an invest-
ment or a portfolio is restricted by some characteristics (e.g. prescribed asset
allocation, exposure to risk and return). The continuation is the standard ap-
proach in most of the mathematical studies, and, hence, many mathematical
tools were elaborated over time for analyzing continuous objects.

Finally, we would like to point out some directions for future research. One
natural application of our framework and methodology is the investigation of
investment constraints. In this thesis we assumed that any constraint should
be satisfied once imposed. That is, we did not differentiate between hard,
soft and game-type restrictions. However, beyond the hard constraints, other
restrictions often can be relaxed or even removed. But what is the price of
imposing or tightening or relaxing a specific constraint? And given specific
performance attributes, what is the effect of such an action on investment
performance? These issues have become the subject of increased interest of
several authors over the last few years. And our framework is an excellent
tool for the investigation of the influence of constraints in a more systematic
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way.
Furthermore, the methodology can be used for comparison and/or dis-

covering promising investment strategies that have to comply with specific
constraints.

Last but not the least, the portfolio opportunity sets represent a new tool.
And how correctly noticed by one of my colleagues “if you have new spectacles,
you can recognize new details but the question remains where to look...”. The
portfolio opportunity sets have been developed for the performance evaluation
of professional managers acting on behalf of clients. However, over time other
applications such as market descriptions and the comparison of strategies
emerged. Surely, the above list of possible applications of our methodology is
far from being final.
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(en dimension s)’, Acta Arithmetica (41), 337–351.

Friend, I., Blume, M. & Crockett, J. (1970), Mutual Funds and Other Insti-
tutional Investors, McGraw-Hill, New York.

Fukuda, K., Liebling, T. & Margot, F. (1997), ‘Analysis of backtrack al-
gorithms for listing all vertices and all faces of a convex polyhedron’,
Computational Geometry (8), 1–12.

Glasserman, P. (2004), Monte-Carlo Methods in Financial Engineering,
Springer-Verlag, Berlin.

Gondzio, J. (1997), ‘Presolve analysis of linear programs prior to applying an
interior point method’, INFORMS Journal of Computing 9(1), 73–91.

Goodwin, T. (1998), ‘The information ratio’, Financial Analysts Journal
54(4), 34–43.

Gould, N. & Toint, P. (2004), ‘Preprocessing for quadratic programming’,
Mathematical Programming 100(2).

Grinold, R. & Kahn, R. (2000), Active Portfolio Management: A Quantitative
Approach for Providing Superior Returns and Controlling Risk, 2nd edn,
McGraw-Hill, New York.

Hallerbach, W. (2003), ‘Cross- and auto-correlation effects arising from aver-
aging: the case of us interest rates and equity duration’, Applied Finan-
cial Economics 13(4), 287–294.

Hallerbach, W., Hundack, C., Pouchkarev, I. & Spronk, J. (2005), ‘Market

Dynamics from the Portfolio Opportunity Perspective: the DAX
R©

Case’,
Zeitschrift für Betriebswirtschaft (accepted for publication).



168 Bibliography

Halton, J. (1960), ‘On the efficiency of certain quasi-random sequences of
points in evaluating multi-dimensional integrals’, Numerische Mathe-
matik (2), 84–90.

Hickernell, F. (1998), ‘A generalized discrepancy and quadrature error bound’,
Mathematics of Computation 67(221), 299–322.

Ho, T. S. (1995), ‘Quality-based investment cycle’, Journal of Portfolio Man-
agement (22), 62–69.

Jackel, P. (2002), Monte Carlo Methods in Finance, John Wiley & Sons,
Chichester.

Jensen, M. C. (1968), ‘The performance of mutual funds in the period 1945-
1964’, Journal of Finance XXIII(2), 389–415.

Jensen, M. C. (1969), ‘Risk, the pricing of capital assets, and the evaluation
of investment portfolios’, Journal of Business 42(2), 167–247.

Jorion, P. (2003), ‘Portfolio optimization with tracking error constraints’,
Financial Analysts Journal 59(5), 70–82.

J.P.Morgan (1996), ‘RiskMetrics - Technical Document’, 4th Ed., J.P.Morgan,
New York.

Karlin, S. & Taylor, H. (1975), A First Course in Stochastic Processes, Aca-
demic Press, San Diego.

Knuth, D. (2004), The Art of Computer Programming and Modeling. Vol-
ume 4. Combinatorial Algorithms. to appear. Pre-fascicle is available at:
http://www-cs-faculty.stanford.edu/ knuth/taocp.html.

Kritzman, M. & Page, S. (2003), ‘The hierarchy of investment choice’, Journal
of Portfolio Management 29(4), 11–20.

Lehmann, B. N. & Modest, D. M. (1987), ‘Mutual fund performance evalua-
tion: A comparison of benchmarks and benchmark comparisons’, Journal
of Finance 42(2), 233–265.

Lovász, L. (1998), ‘Hit-and-run mixes fast’, Mathematical Programming
86(6), 443–461.

Malkiel, B. G. (1995), ‘Returns from investing in equity mutual funds 1971
to 1991’, Journal of Finance L(2), 549–572.



Bibliography 169

Matsumoto, M. & Nishimura, T. (1998), ‘Mersenne twister: A 623-
dimensionally equidistributed uniform pseudorandom number genera-
tor’, ACM Transaction on Modeling and Computer Simulation 8(1), 3–
30.

Modigliani, F. & Modigliani, L. (1997), ‘Risk-adjusted performance’, The
Journal of Portfolio Management (Winter), 45–54.

Nash, S. & Sofer, A. (1996), Linear and Nonlinear Programming, McGraw-
Hill, New York.

Niederreiter, H. (1992), Random Number Generation and Quasi-Monte Carlo
Methods, SIAM, Philadelphia.

Owen, A. (1998), ‘Scrambling sobol’ and niederreiter-xing points’, Journal of
Complexity 14(1), 466–489.

Pouchkarev, I., Spronk, J. & Steenbeek, O. (2005), A Broadband View of
the Japanese Stock Market: Evaluating the MSCI Japan Index and Mu-
tual Fund Performance, Technical report, Erasmus Research Institute of
Management. to appear.

Press, W., Flannery, B., Teukolsky, S. & Vetterling, W. (1993), Numerical
Recipes in C: The Art of Scientific Computing, 2nd edn, Cambridge
University Press, Cambridge.

Ritov, Y. (1989), ‘Monte carlo computation of the mean of a function with
convex support’, Computational Statistics & Data Analysis 7(3), 269–
277.

Roll, R. (1992), ‘A mean/variance analysis of tracking error’, Journal of Port-
folio Management 18(4), 13–22.

Ross, S. (2001), Simulation, 3rd edn, Academic Press, San Diego.

Rubinstein, R. & Melamed, B. (1998), Modern Simulation and Modeling, John
Wiley & Sons, New York.

Sauer, A. (1991), Die Bereinigung von Aktienkursen - Ein kurzer Überblick
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Samenvatting (Summary in
Dutch)

Binnen conventionele performance-evaluatiemethodieken bestaat een discre-
pantie tussen enerzijds het universum van financïele instrumenten waaruit
portefeuilles worden samengesteld, en anderzijds het universum van beleg-
gingsmogelijkheden dat ten grondslag ligt aan de performancemeting. Bij
het samenstellen van een portefeuille wordt immers het gehele keuzeveld van
individuele beleggingsmogelijkheden betracht, terwijl bij de performancemet-
ing wordt uitgegaan van slechts een algemene representatie van dit keuzeveld
in de vorm van hetzij een “peer group” dan wel één of verscheidene bench-
mark portefeuilles. Dit representatie-probleem kan worden opgelost door het
proces van performance-evaluatie te beschouwen binnen de specifieke context
waarin de beleggingsbeslissing werd genomen. Dit is het onderwerp van deze
dissertatie.

Een algemeen raamwerk voor de performance-evalua-

tie van gerestricteerde portefeuilles (Hoofdstuk 2)

In deze studie presenteren we een raamwerk waarbij binnen het proces van
performance-evaluatie rekening wordt gehouden met doelen en restricties zoals
die zijn gesteld aan de voorafgaande beleggingsbeslissing. De onderliggende
kerngedachte van het raamwerk is om bij de performance-evaluatie van een be-
leggingsportefeuille niet slechts enkele maar alle mogelijke alternatieve porte-
feuilles te betrachten, waarbij deze alternatieve portefeuilles op een zodanige
wijze zijn samengesteld dat zij alle voldoen aan de geldende beleggingsdoel-
stellingen en opgelegde beleggingsrestricties. Deze verzameling van (mogeli-
jke) alternatieve portefeuilles noemen we de “(feasible) portfolio opportunity
set”. Vervolgens evalueren we al deze alternatieve portefeuilles op basis van
de geselecteerde performancemaatstaf (of -staven). De performance van de te
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evalueren portefeuille kan dan worden afgezet tegen de performance van de
verzameling van alternatieve portefeuilles.

Het beschouwen van de verzameling van portefeuilles (in plaats van het
beschouwen van een conventionele peer group of een benchmark-portefeuille)
impliceert een verrijking van het proces van performance-evaluatie. De vo-
ordelen van de voorgestelde benadering blijken niet alleen bij het proces van
performance-evaluatie, maar ook bij het beschrijven van financiële markten
en het evalueren van marktindices, en bij het evalueren van portefeuille-
strategieen. Dit wordt nader uiteengezet in het derde deel van deze dissertatie.

Om ons raamwerk te operationaliseren moet een tweetal kernvragen wor-
den beantwoord: (1) hoe kan de context van de beleggingsbeslissing formeel
worden gepreciseerd om daaruit de portfolio opportunity set te destilleren, en
(2) gegeven de formele beschrijving van de portfolio opportunity set en gegeven
de keuze van een performancemaatstaf, hoe kan de frequentieverdeling van de
performancemaatstaf over de portfolio opportunity set worden bepaald. Deze
vragen worden beantwoord in de hoofdstukken 3, 4 en 5.

Portfolio Opportunity Sets (Hoofdstuk 3)

We onderscheiden drie typen van randvoorwaarden waaraan de beleggings-
beslissing kan zijn onderworpen: (1) randvoorwaarden van het harde type,
die van buitenaf aan de belegger worden opgelegd en waaraan niet kan wor-
den getornd; (2) randvoorwaarden van het zachte type, die de belegger zichzelf
oplegt en die tot doel hebben om het proces en de uitkomst van de besluitvorm-
ing te verbeteren, en tenslotte (3) randvoorwaarden van het spel-type, die de
belegger zichzelf oplegt om zodoende rekening te houden met de beslissingen
en het gedrag van andere spelers in het beleggingsveld.

In zijn algemeenheid kunnen beleggingsrestricties worden onderverdeeld in
twee klassen: screening-restricties en selectie-restricties. Beleggingsrestricties
met betrekking tot screening kunnen positief dan wel negatief worden gefor-
muleerd. Negatieve screening-restricties beogen beleggingsmogelijkheden uit
te sluiten met onwenselijke kenmerken of eigenschappen; positieve screening-
restricties zijn er juist op gericht om wenselijke beleggingsmogelijkheden te
filteren uit het keuzeveld. Selectie-restricties stellen randvoorwaarden aan
het bedrag of proportie dat mag worden belegd in een beleggingsobject. De
meest voorkomende selectie-restricties zijn restricties gesteld aan short-sales,
aan minimale en/of maximale beleggingsproporties (portefeuillegewichten) die
gelden voor individuele beleggingsobjecten of groepen van beleggingsobjecten,
en randvoorwaarden gesteld aan het risicoprofiel.



Summary in Dutch 175

We vertalen alle beleggingsrestricties naar restricties op portefeuillegewich-
ten. We verkrijgen dan een stelsel van gelijkheden en ongelijkheden die teza-
men formeel een feasible portfolio opportunity set definiëren. In deze studie
onderscheiden we drie standaard portfolio opportunity sets:

• opportunity sets onder slechts een short-sales restrictie;

• opportunity sets onder restricties op de gewichten van individuele beleg-
gingsobjecten alsmede lineaire combinaties daarvan;

• opportunity sets onder niet-lineaire restricties.

Portfolio opportunity sets van het eerste type zijn meetkundig gezien basis
simplexen en kunnen als zodanig gemakkelijk worden beschreven en geanal-
yseerd. Portfolio opportunity sets van het tweede type zijn gesloten convexe
polyeders; hun vorm wordt bepaald door de bovengrenzen gesteld aan de
portefeuillegewichten. Om voor deze eerste twee typen van portfolio oppor-
tunity sets de frequentieverdelingen van performancemaatstaven te bepalen
gebruiken we inzichten uit de analytische meetkunde en lineaire algebra. In
het bijzonder is het in dit geval mogelijk om expliciete analytische uitdrukkin-
gen af te leiden voor de genoemde frequentieverdelingen.

Bij het opleggen van niet-lineaire restricties daarentegen (bij portfolio op-
portunity sets van het derde type) neemt de complexiteit van de analyse der-
mate toe dat we in dit geval zijn gedwongen uit te wijken naar het toepassen
van numerieke methoden.

Berekening van Verdelingen van Performance Maat-
staven (Hoofdstuk 4)

Beschouwd in de ruimte van beleggingsgewichten vormt een verzameling van
toegelaten portefeuilles die elk eenzelfde waarde hebben voor de geselecteerde
performancemaatstaf een iso-(hyper-)vlak (“iso-surface”). Dit betekent dat
het bepalen van de frequentieverdeling van een performancemaatstaf gelijk
staat aan het bepalen van het volume van de doorsnede van de portfolio
opportunity set en de corresponderende iso-vlakken.

De algemene benadering voor het afleiden van analytische uitdrukkingen
voor de (cumulatieve) frequentieverdelingen is om eerst alle extreme porte-
feuilles van een specifiek type van portfolio opportunity sets te bepalen (dit
zijn de vertices van de opportunity set polytopen), en vervolgens de oppor-
tunity set polytoop te decomponeren in een eindig aantal van opportunity
subsets die beurtelings zijn verkregen uit de extreme portefeuilles.
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Met de ontwikkelde methodologie zijn we in staat om algemene uitdrukkin-
gen af te leiden voor de (cumulatieve) frequentieverdelingen van lineaire per-
formancemaatstaven over portfolio opportunity sets onder een short-sales re-
strictie. De frequentieverdeling heeft de vorm van een spline waarvan de
kritieke punten worden gevormd door de performance van individuele beleg-
gingsobjecten. Voor portfolio opportunity sets gevormd onder restricties op
de gewichten van individuele beleggingsobjecten heeft deze frequentieverdel-
ing ook de vorm van een dergelijke spline; de achterliggende berekeningen
zijn evenwel complexer en daarmee tijdrovender vanwege de asymptotische
toename in het aantal van extreme portefeuilles.

In geval van niet-lineaire performancemaatstaven en/of wanneer niet lin-
eaire restricties gelden (zoals restricties aan het risicoprofiel) neemt de com-
plexiteit van de analyse dermate toe dat analytische uitdrukkingen voor fre-
quentieverdelingen onbereikbaar zijn. In deze gevallen moet derhalve worden
uitgeweken naar numerieke methoden.

Numerieke Bepaling van Performance Verdelingen
(Hoofdstuk 5)

Numerieke methoden kennen een universele toepassing, maar binnen ons
raamwerk vormen zij een vrij trage benadering om frequentieverdelingen van
performancemaatstaven te bepalen. De numerieke procedure is gebaseerd op
het statistisch trekken van steekproeven: we schatten de frequentieverdeling
van een performancemaatstaf over de gehele portfolio opportunity set aan de
hand van de frequentieverdeling over een adequate steekproef van toegelaten
portefeuilles.

We kunnen twee wegen bewandelen om een dergelijke adequate steekproef
te verkrijgen: volgens de Monte Carlo methode, of volgens een quasi-Monte
Carlo methode (gebruikmakend van low-discrepancy sequences). De meest
universele benadering om binnen de Monte Carlo methode steekproefsgewijs
toevallige toegelaten portefeuilles te trekken is om gebruik te maken van het
Sequential Direction algoritme, dat een ergodische Markov keten vormt. Deze
benadering is universeel in alle opzichten: we kunnen de frequentieverdel-
ing bepalen van elke mogelijke performancemaatstaf over portfolio opportu-
nity sets die zijn onderworpen aan zowel lineaire als niet-lineaire restricties.
Bovendien kunnen in het geval van louter “no short-sales” restricties twee
efficiënte transformatieprocedures worden gebruikt (namelijk Uniform Spac-
ings en exponentieel). Tenslotte kan het betrouwbaarheidsinterval van de
schattingsfout worden bepaald.
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Een alternatieve benadering voor het verkrijgen van frequentieverdelin-
gen is gebaseerd op low-discrepancy sequences. In dat geval vatten we een
gegeven portfolio opportunity set samen in een parallellepipedum of een sim-
plex, genereren we hierin low-discrepancy punten, en accepteren we slechts die
punten die voldoen aan alle restricties opgelegd aan de portfolio opportunity
set. Daar low-discrepancy sequences volstrekt deterministisch zijn, is ook de
corresponderende foutenmarge deterministisch. De grootst mogelijke fout is
in de praktijk evenwel zeer moeilijk te bepalen.

In onze toepassingen blijken Monte Carlo methoden het meest geschikte
vehikel om frequentieverdelingen te bepalen. Zij zijn gemakkelijker te anal-
yseren en te implementeren. Daarenboven zijn zij in veel gevallen efficiënter
dan low-discrepancy sequence methoden. Als alternatieve benadering verdi-
enen laatstgenoemde methoden evenwel nader onderzoek.

Markt Dynamiek vanuit het Perspectief van Porte-
feuillemogelijkheden: de DAX

R©

Case (Hoofdstuk 6)

De toepassing van ons raamwerk opent een frisse kijk op de performance en dy-
namiek van aandelenmarkten. De procedure is als volgt. We starten met het
bepalen van de relevante portfolio opportunity set : het universum van toege-
laten portefeuilles die voldoen aan de restricties die gelden voor beleggingsob-
jecten opgenomen in een marktindex. Voor elk van de portefeuilles binnen
deze verzameling kunnen we de gewenste performancemaatstaf bepalen (het
gerealiseerde rendement over een bepaalde horizon, het gemiddelde rende-
ment, de standaarddeviatie van het rendement, enz.) en samenvatten in een
frequentieverdeling. Wanneer we deze verdelingen opstellen voor verschillende
perioden kunnen we deze verdelingen (en met name hun ligging en vorm) on-
derling vergelijken. Dit verschaft ons belangrijke informatie over de dynamiek
in de beschouwde markt. Ook stelt deze benadering ons in staat om de re-
latieve performance van de marktindex ten opzichte van de portfolio opportu-
nity set te analyseren. We illustreren deze benadering van marktbeschrijving
en -analyse voor de Duitse aandelenmarkt en de DAX index.

Het analyseren van de performance en dynamiek van een financiële markt
aan de hand van portfolio opportunity sets biedt verscheidene voordelen boven
de gebruikelijke focus op een marktindex. In de eerste plaats zijn we niet
langer gebonden aan één specifieke portefeuille (in de vorm van de mark-
tindex) om een markt te beschrijven. We kunnen daarentegen het perspec-
tief verbreden naar de varïeteit van portefeuilles die kunnen worden gevormd
op basis van een gegeven keuzeveld van beleggingsobjecten onder de voor
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de beschouwde index geldende restricties. De analyse van deze portefeuille-
mogelijkheden verschaft ons meer informatie over een markt dan de analyse
van de marktindex. Bovendien kunnen we de dynamiek in de portefeuille-
mogelijkheden in de tijd bestuderen. Voor de Duitse aandelenmarkt vinden
we dat in de periode 1990-2004 het risiconiveau van de toegelaten porte-
feuilles (gemeten aan de hand van de standaarddeviatie van het rendement)
is toegenomen. Ook is de heterogeniteit van de portefeuillemogelijkheden
(gemeten aan de hand van de spreiding in de gerealiseerde rendementen op
de toegelaten portefeuilles) in deze periode toegenomen. We hebben deze ob-
servaties kunnen onderbouwen door de dynamiek in de covariantiestructuur
van de aandeelrendementen in de tijd aan een nader onderzoek te onderwer-
pen.

In de tweede plaats kunnen we de marktindex evalueren ten opzichte van
alle portefeuillemogelijkheden zoals weergegeven door de portfolio opportunity
set. Dit staat in schril contrast met de conventionele benadering waarin de
marktindex wordt geacht een representatieve afspiegeling te vormen van de
corresponderende markt. De marktindex is evenwel slechts één van de mo-
gelijke portefeuilles die onder dezelfde restricties op de markt kunnen worden
gevormd. We kunnen nu de marktindex plotten in de frequentieverdeling
van de geselecteerde performancemaatstaf over de portfolio opportunity set.
Het quantiel van deze verdeling waarin de marktindex valt geeft aan hoeveel
toegelaten portefeuilles een betere performance hebben behaald in termen van
de geselecteerde performancemaatstaf (bv. het gerealiseerde rendement over
een bepaalde periode). Op deze wijze kan worden nagegaan in hoeverre een
marktindex representatief is voor de beschouwde markt. De mate van repre-
sentativiteit wordt dan niet (zoals gebruikelijk) uitgedrukt in de fractie van
de totale marktkapitalisatie die wordt beslagen door de index, maar afgelezen
uit de plaats van de index in de verdeling van de portfolio opportunity set.
Over de periode 1990-2004 blijkt dat de DAX in termen van gerealiseerd ren-
dement vaak in de lagere quantielen van de portfolio opportunity set valt; een
groot deel van de toegelaten portefeuilles realiseert dus een hoger rendement
dan de DAX.

Niet alleen de performance van een marktindex kan worden geëvalueerd
met behulp van portfolio opportunity sets, maar ook de performance van ieder
willekeurige beleggingsportefeuille. Wel dient in dit geval de portfolio oppor-
tunity set worden opgesteld conform het onderliggende beleggingsmandaat
zodat de verzameling van portefeuillemogelijkheden ook daadwerkelijk toege-
laten portefeuilles omvat. De dynamiek in de verdelingen van een perfor-
mancemaatstaf in de tijd, en met name de wisselende spreiding van deze
verdelingen, verschaft ons ook de mogelijkheid om de beleggingsperformance
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te normaliseren. Bij het normaliseren corrigeren we een performancemaatstaf
voor de spreiding in de bijbehorende verdeling van performancemaatstaven
over de portfolio opportunity set. Bij een kleine spreiding van deze verdeling
moeten we immers een grotere waarde toekennen aan verschillen in perfor-
mance dan bij een grote spreiding. In hoofdstuk 7 gaan we hierop verder
in.

In de derde plaats (naast marktbeschrijving en performance-evaluatie)
kan onze methodiek worden toegepast op het ontwikkelen en analyseren van
veelbelovende beleggingsstrategieën die zijn onderworpen aan specifieke rand-
voorwaarden. Dit betekent dat de voorgaande ex post toepassingen van onze
benadering wordt gecomplementeerd met een ex ante toepassing.

Performance Evaluatie op Basis van Portfolio Op-
portunity Sets (Hoofdstuk 7)

Met behulp van portfolio opportunity sets kan de absolute en relatieve perfor-
mance van beleggingsportefeuilles met inachtneming van de geldende beleg-
gingsdoelstellingen en opgelegde beleggingsrestricties (zoals bv. neergelegd
in een mandaat) op een natuurlijke wijze in een breder perspectief worden
geplaatst. Bij het evalueren van de frequentieverdeling van een performance-
maatstaf over de relevante portfolio opportunity set zijn twee aspecten van
belang: (1) waar zijn de te evalueren portefeuille en (indien van toepassing)
de bijbehorende benchmark gepositioneerd in deze verdeling, en (2) wat is de
spreiding in performances die deze verdeling laat zien.

We beschouwen eerst de performance gemeten over één periode. Uit de
verdeling over de portfolio opportunity set kunnen de minimum en maximum
performancewaarden worden afgelezen; dit geeft het interval aan waarbin-
nen de performance van alternatieve toegelaten portefeuilles valt. De gehele
continue frequentieverdeling kan worden gebruikt om performance-klassen te
formuleren, dan wel om de exacte percentielen van relatieve performance te
bepalen. De performance is dan relatief ten opzichte van de gehele portfolio
opportunity set en niet ten opzichte van een benchmark.

Vervolgens bezien we de performance gemeten over verscheidene perioden.
De verandering in ligging en vorm van de frequentieverdelingen in de tijd geeft
inzicht in de ontwikkeling van performancemogelijkheden. De performance
van een portefeuille afgezet tegen de ligging van de frequentieverdelingen geeft
informatie over de persistentie van de behaalde performance. De spreiding
van de frequentieverdelingen geeft aan of een behaalde (out-) performance
relatief gemakkelijk (grote spreiding) dan wel relatief moeilijk (kleine sprei-
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ding) was te realiseren binnen de toegelaten portefeuille-mogelijkheden. We
gebruiken de spreiding van de frequentieverdeling om genormaliseerde perfor-
mancemaatstaven af te leiden, de zogenaamde score coefficients. Deze maat-
staven maken het mogelijk om de gemeten performance te schonen voor de
marktdynamiek (de wisselende heterogeniteit in portefeuillemogelijkheden).

De ontwikkelde methodologie kan op een eenvoudige wijze worden uitge-
breid om ook de relatieve performancemeting ten opzichte van een benchmark
te accommoderen. Portefeuilles die zijn onderworpen aan een restrictie op de
tracking error volatility kunnen worden geëvalueerd ten opzichte van port-
folio opportunity sets die zijn gevormd onder dezelfde randvoorwaarden. In
dit geval zijn met name de frequentieverdelingen van de information ratio
van belang. Analoog aan de werkwijze in hoofdstuk 5 laten we zien hoe
deze frequentieverdelingen kunnen worden afgeleid. De door een portefeuille-
beheerder behaalde information ratio kan wederom worden geëvalueerd ten
opzichte van de ligging en vorm van de frequentieverdeling over de portfolio
opportunity set. We gebruiken de spreiding van de frequentieverdeling om
een genormaliseerde information ratio te construeren. Deze genormaliseerde
information ratios zijn geschoond voor marktdynamiek en kunnen in de tijd
onderling worden vergeleken. Daarenboven maakt onze benadering het mo-
gelijk om te toetsen of een portefeuillebeheer al dan niet een restrictie op
de tracking error volatility respecteert. Vanuit een ex ante perspectief kun-
nen we tenslotte de verdeling van potentieel te behalen information ratios
bepalen, aan de hand waarvan inzicht kan worden verkregen in de mogelijke
toegevoegde waarde van actief portefeuillebeheer onder een bepaald mandaat.
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Performance Evaluation of Constrained Portfolios
Conventional performance evaluation methods strongly differentiate

between the universe which is used for portfolio construction, and

the universe which is used for the performance evaluation. Whilst by

composing the portfolio we consider the complete opportunity set,

in the last case we use a very restricted, general representation of

this opportunity set: a peer group or (a) benchmark portfolio(s).

In this thesis we present a conceptual framework, which allows to

incorporate the decision-making context of any constrained invest-

ment portfolio into the performance evaluation process. The main

feature that distinguishes our methodology from conventional perfor-

mance evaluation methods is that it tackles the performance at the

decision-making level: the portfolio weights. We consider all possible

portfolios that can be constructed given the specific investment

objective(s) as well as the prescribed investment constraints, and

then evaluate all these portfolios according to (a) selected perfor-

mance measure(s). The performance of the investment portfolio is

calculated simultaneously and then evaluated against the perfor-

mance of this complete opportunity set. Consequently, our methodo-

logy extends the conventional performance metrics with the insights

into the performance of all opportunities that existed at the time of

the investment decision.
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