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Abstract

Steel structures such as bridges, tanks and pylons are exposed to outdoor weathering con-
ditions. In order to prevent them from corrosion they are protected by an organic coating
system. Unfortunately, the coating system itself is also subject to deterioration. Imperfect
maintenance actions such as spot repair and repainting can be done to extend the lifetime of
the coating. In this paper we consider the problem of finding the set of actions that minimizes
the expected maintenance costs over a bounded horizon. To this end we model the size of
the area affected by corrosion by a non-stationary gamma process. An imperfect maintenance
action is to be done as soon as a fixed threshold is exceeded. The direct effect of such an
action on the condition of the coating is assumed to be random. On the other hand, mainte-
nance may also change the parameters of the gamma deterioration process. It is shown that
the optimal maintenance decisions related to this problem are a solution of a continuous-time
renewal-type dynamic programming equation. To solve this equation time is discretized and
it is verified theoretically that this discretization induces only a small error. Finally, the model
is illustrated with a numerical example.
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1 Introduction

Steel structures such as bridges, tanks and pylons are exposed to outdoor weathering conditions. In
order to prevent them from corrosion they are protected by organic coating systems. Unfortunately,
the coating system itself is also subject to deterioration and after some time the steel loses its
coating and starts corroding. Maintenance can be done to improve the condition of the coating
system and by doing so the lifetime of the steel structure is also extended. Typical maintenance
actions for coating systems are (local) spot repair, repainting and replacement. Spot repair consists
of only painting the most visible corroded parts, while repainting means that the entire surface of
the structure is repainted without removing the corrosion completely. Finally, in a replacement
action the old coating and all corrosion is completely removed and a new coating is applied. Since
in spot repair and repainting some corrosion is not removed these actions can be seen as imperfect.
Obviously the replacement action restores the condition of the coating to new and is therefore a
perfect maintenance action. With respect to costs it is obvious that spot repair is the cheapest
action, while replacement is most expensive.

The aim of this study is to find an optimal strategy for imperfect maintenance of engineering
structures, in particular steel structures protected by coatings. To this end, we introduce a deterio-
ration model that includes the effect of imperfect maintenance. The actions defined above are then
employed to form a maintenance strategy and they are the basis of our optimization model. The
objective of this model is to minimize the expected maintenance costs over a bounded horizon.
Clearly this bounded horizon is determined by the economic or technical lifetime of the structure.
The decision variables are the maintenance actions to be executed.

To model the deterioration process of the coating we use a non-stationary gamma process with
state space the size of the coating area affected by corrosion (in e.g. the number of squared meters).
As far as the authors know, Abdel-Hameed (1975) was the first to propose the gamma process as
a proper model for deterioration in time. The gamma process has increasing sample paths and
is therefore a suitable candidate to describe the deterioration of engineering structures, see e.g.
Cinlar et al. (1977), van Noortwijk and Klatter (1999), Frangopatlal. (2004) and Newby and
Dagg (2004). In particular, in Heutindt al. (2004) and Nicolaet al. (2007) the deterioration of
coatings on steel structures is modelled by a non-stationary gamma process. For more examples of
the application of gamma processes in maintenance we refer to a recent overview by Van Noortwijk
(2007).

Modelling deterioration as a gamma process has also been done in the presence of imperfect
maintenance. In Bakkest al. (1999) a lifetime extending maintenance model for engineering
structures is introduced. In this model an imperfect maintenance action reduces the amount of
deterioration by a fixed amount and after such an action deterioration is again modelled by the
same gamma process. However, we shall argue below that the reduction in deterioration may also
be random in practice and secondly that the structural parameters of the deterioration process may
differ after doing an imperfect maintenance action. Our application thus asks for a more complex
model.



Another stochastic process that is often used to describe deterioration is the Wiener process or
Brownian motion (for a definition see Karlin and Taylor, 1975 and for an application in deteriora-
tion modelling see Nicolagt al, 2007). In contrast to the gamma process being a jump process
with an infinite number of infinitesimal jumps in each finite interval Brownian motion has contin-
uous sample paths. As such, it is the only so-calledyLprocess with this property. On the other
hand, contrary to the gamma process this process lacks the property of increasing sample paths.
Doksum and Kyland (1992) and Whitmore and Schenkelberg (1997) have proposed the Wiener
process as a proper model for deterioration in the context of accelerated degradation due to imper-
fect maintenance. In both papers the effect of imperfect maintenance is modelled by transforming
the time scale of the Wiener process describing deterioration after maintenance.

For steel structures maintenance actions such as spot repair improve the deterioration rate of
the coating only locally, whereas other parts of the surface still deteriorate at the same rate. So, as
a whole the deterioration process may increase faster after spot repair than after replacement. The
same holds for the repainting action. So, we have to extend the model presented in@aitker
(1999) and therefore we allow for a structural change in the gamma deterioration process (such as
a time transformation) after maintenance is done.

In practice (imperfect) coating maintenance is often done as soon as the area affected by cor-
rosion exceeds a certain intervention level, set by the decision maker. An imperfect maintenance
action reduces the size of the affected area lgnalomamount. This random effect occurs since
spot repair and repainting do not cover all corrosion as not all may be visible. Observe all corrosion
is removed by a replacement. As the improvement in deterioration is modelled by a nonnegative
random variable, the time between two maintenance actions is given by the time the gamma pro-
cess needs to counterbalance this improvement. This time depends on the parameters of the gamma
process and the random improvement. With respect to the latter, we consider generally distributed
random improvements in deterioration independent of the gamma process.

Our main interest s in finding the sequence of actions that minimizes the expected maintenance
costs over a finite time horizon. This problem can be formulated as a continuous-time renewal-
type dynamic programming equation. Time is discretized to solve this equation and it is shown
that the solution of the discrete-time problem is close in the supnorm to the solution of the original
continuous-time problem. This is supported by numerical evidence.

The outline of this paper is as follows. In Section 2 we introduce a deterioration model for
structures subject to imperfect maintenance. The associated continuous-time dynamic program-
ming equation describing the optimal maintenance actions is presented and analyzed in Section 3.
Also in this section we give an error analysis due to discretizing this equation. In Section 4 we
briefly discuss some techniques presented in Frenk and Nicolai (2007) to compute the cumulative
distribution function of the time between two maintenance actions. Next, in Section 5, we employ
these techniques to solve the optimization problem formulated in Section 3. In Section 6 we draw
conclusions.



2 Modelling deterioration and maintenance

In this section we present a deterioration model for coating systems on corroding structures un-
dergoing imperfect maintenance actions. The deterioration process of the protective coating is
given by a (non-stationary) gamma process and maintenance is done as soon as the size of the
affected area exceeds a given lewel 0 set by the decision maker. Imperfect maintenance yields

a random reduction in this size, bringing it back betw@emdp. Next, the deterioration process

of the coating is again modelled by a, possibly different, non-stationary gamma process. In the
remainder of this paper, boldfaced letters are used to denote random variables.

2.1 Deterioration model

In this paper the deterioration process of the coating is given by a non-stationary gamma process.
To introduce the definition of a gamma process we first observe (Steutel and van Harn, 2004)
that the density of a gamma distributed random variable with shape parasnetdar and scale
parametei\ > 0 is given by

F@) =T(8) "N 27 exp(—A2)1( 00) (@)
with -
= 2PV exp(—z)dz
re) = | p(—z)d

the well-known gamma function. The cumulative distribution function (cdf) of such a random

variable is denoted by gamm@(\). Also we mean byX 2 Y that the random variableX and
Y have the same cdf and X ~ F' that the random variabX has cdfF'.

Definition 1 LetA > 0 andv : [0, 00) — [0, c0) an increasing, right continuous function satisfy-
ing v(0) = 0. The stochastic proces§, y = {X, (t) : t > 0} is called a gamma process with
shape function and scale parametex > 0 if

1. X, A(0) = 0 almost surely.
2. The stochastic process, » has independent increments.

3. The random variable&X,, »(s) — X, A(t), s > t has a gamma distribution with shape pa-
rameterv(s) — v(t) and scale parametex > 0.

A gamma process is called stationary if the shape funatielinear. Otherwise it is called
non-stationary. A stationary gamma process with shape funetign= ¢ and scale parameteér
will be called standard and for notational convenience such a process is dended X (¢) :
t > 0}. In Protter (1992) it is shown that there exists a unique standard gamma process modifica-
tion with right continuous sample paths having left-hand limits. This is callext&g stochastic
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process and we will always use this modification. Clearly the expectation of the random variable
X(t) is equal to
E(X(t)) = A" (t),

while its variance is given by
Var(X(t)) = A 2v(t).

To start with our model we assume that for a given strictly increasing continuous shape function
v satisfyingv(0) = 0 andv(co) = oo and a given scale parameter> 0 the (adiag) corrosion
process of a new coating is given by a non-stationary gamma prgessAfter having defined

the gamma process we can now formally state for every0 that

X, A (t) := size of the area affected by corrosion at titne Q)

2.2 Effect of maintenance on deterioration

Having deterioration model (1) at hand, we next introduce a model for the interaction between
deterioration and (imperfect) maintenance. A maintenance agtisrperformed as soon as the
size of the affected area exceeds a given lgvélor simplicity it is assumed that any maintenance
action takes a negligible amount of time and that such an action is chosen from a finit®ket
possible actions. In our specific example we have- {spot repair, repainting, replacemgnt
Introducing for every- > 0 the hitting time

Ty a(r) :=inf{t > 0: X, \(t) > r}

it follows that the random tim&. of the first maintenance is given i, \(p). Since it can be
shown (Frenk and Nicolai, 2007) that

Ty (r) £ v (T(\r))

with T'(Ar) denoting the hitting time to levelr of a standard gamma process atidthe inverse
function ofv, we obtain that

4

L < v (T(\)). )

By relation (2) this yields
P{L <t} = P{T(\p) < v(t)} = P{X(v(t)) > Ap}. 3)

Now consider a maintenance polity = (a;);cn, Wherea; € A denotes the maintenance action
chosen after level is exceeded for théh time. If the selected maintenance action is replacement,
then the affected area has size zero again, while for actions belonging to the-sefspot repair,
repainting the effect of the maintenance action on the size of the affected area is not known
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L= TU,)\(p)

Figure 1. Deterioration path before the first imperfect maintenance action and the immediate effect
of this action on deterioration.

beforehand. To model the effect of these imperfect maintenance actions we first observe by the
jump discontinuities of the sample paths of a gamma process, that the overshoot

Woua(r) ==Xy A(Tya(r)) — 7

beyond any levet > 0 is positive almost surely. Hence the size of the affected area at the first
maintenance momefdi, ) (p) just before the first maintenance actionis given byp + W, »(p).
This is graphically shown in Figure 1. It is easy to see (Frenk and Nicolai, 2007) that

Woa(p) £ A" W(\p) (4)

with W () denoting the overshoot of a standard gamma process atlane this implies that the
random size of the affected area at moni€pt,(p) is distributed ap + A"'W (\p). In practice
p is always much larger than the expected overshooft(W ()\p)) (see Appendix A). Hence to
avoid complicated mathematical technicalities due to the assumption of a non-stationary gamma
deterioration process and its associated discontinuous sample paths it seems realistic from a prac-
tical point of view to assume that the effect of any imperfect maintenance action will certainly
annihilate the overshoot. Therefore in modelling the effect of an imperfect maintenance action on
the size of the area affected by corrosion we will disregard the overshoot. Actually, in other studies
the overshoot of the gamma process is often not mentioned at all.

The effect of the first (imperfect) maintenance actigris now given by a bounded nonneg-
ative random variabl&;(a;) < p and this random variable denotes the size of the affected area
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just after performing the first maintenance actign To model the impact of the first maintenance
action we assume that this is represented by the random &cter (Si(a)).ca consisting of
correlated components. Each compon®ntaz) within this vector represents the size of the af-
fected area just after performing maintenance acti@md this component belongs [@ p]. For

a representing replacement we obt&ina) = 0 almost surely, while for belonging toA, we

may also allow the random variab$ (a) to take the valu® with a small positive probability.

This means that with a (possibly small) probability the effect of the imperfect maintenance actions
spot repair or repainting may be the same as the effect of replacement. Since maintenance is al-
ways performed at intervention levelt follows that the second maintenance actienn policy

IT = (a;);en, is executed at the random time that the deterioration process occurring after the first
maintenance action exceeds the (random) lpvelS;(a;). It is assumed that this deterioration
process, independent of the previous deterioration gamma process and the (random) improvement
of actiona,, is again a gamma process with continuous strictly increasing shape fumgtion
satisfyingv,, (0) = 0 andw,, (00) = oo, and scale parametay, > 0. Observe the parameters of

this process, saY 1, may depend on the first maintenance actipmnd on the first maintenance
moment! Hence the second maintenance action occurs at the randori tirne; (a;) with

Li(a1) = Ty, A, (p — S1(a1)) L 05 (TYD (g, (p — S1(@)))).

andT()(r) the hitting time to level > 0 of an independent copX(!) of the standard gamma
processX. This shows that the random timesandL; (a;) are independent. Continuing in this
way and disregarding the overshbof the independent copiés?, i € N, of a standard gamma
process theath maintenance moment associated with polity= (a;);cy is distributed as the

random variable

L+y 'L (5)

with L andL;, 1 < i < n — 1, independent nonnegative random variables and

Li(ai) £ vy (T (A, (p — Si(a:)))). (6)

Clearly in (6) the random variabl®(?) denotes the hitting time of the standard gamma process
copy X9, Again, it is always assumed (this is necessary for the dynamic programming formu-
lation to be discussed in the next section) that the parameters of the gamma deterioration process
occurring between théh and(: + 1)th maintenance action only depend on itreused mainte-

nance action and thigh maintenance time. In Figure 2 a realization of the second maintenance
moment is given. Also it is assumed for every acticandS;(a) the size of the affected area after
performing at theith maintenance opportunity actienthat the random variable8;(a),i € N

1This is suppressed in the notation.

2\We always assume that in practice the improvement of the condition by even spot repair is sufficiently large. This
implies that after each imperfect maintenance action the random amount of corroded area to be counterbalanced is much
larger compared to the random overshoot.



condition

Si(a1)

time

Figure 2: Deterioration paths before and after the first imperfect maintenance action as well as the
effects of the first two maintenance actions on deterioration.

are independent and identically distributed. This yields together with the assumption that for each
i € N the random variabl8; () is also independent &) (and henceél'(?)), that by relation (6)
the random variablek;(a), i € N are independent and identically distributed and

Li(a) £ v (T(ARa)). 7)

Observe the random varialRe, := p—S; (a) concentrated oft), p] is independent of the standard
gamma procesX and its associated hitting timiB. In the remainder of this paper the cdf of the
random variable&;;(a), i € N, is denoted by, and by relation (7) and, strictly increasing and
continuous satisfying, (0) = 0 andv,(c0) = oo we obtain

Fu(t) = PIT(\Ra) < va(t)} = P{X(va(t)) > AaRa}. 8)

Sincev, is continuousy,(0) = 0 andR,, a positive random variable independenfofwith cdf
Gr, satisfyingGr, (0) = 0 we obtain by the definition of a gamma process ais continuous
and satisfied’, (0) = 0. Under some additional condition on the &, one can actually show
that the cdff, also satisfies the following inequality.

Definition 2 A functionu : [0, c0) — R is called Lipschitz continuous on the g&tC [0, co) with
Lipschitz constant’ if
lu(t +s) —u(t)] < Cs

for everyt,t + s € Bands > 0.



One can now show the following result.

Lemma 3 If the cdfGr, for somen € A is Lipschitz continuous off), p] with Lipschitz constant
C, then
0 < Fy(t+s) — Fu(t) < CX Mgt + 5) — va(t))

for everyt, s > 0.

Proof. Since the cdfFg, is Lipschitz continuous oft, p] andGr, is the cdf of a random variable
R, satisfyingGr,(p) = 1 the cdfGr, is continuous orj0, co). This showsP{R, < z} =
P{R, < z} for everyz > 0 and by conditioning oX (v,(t)) ~ F,,) we obtain from relation
(8) that

Fo(t) = / P{R, < o), ' }dF,, ) (2) = E(Gr, Ay "X (va(1)))).-
0
This implies by the Lipschitz continuity of the cdfr, andX an increasing process that

0

IN

Fu(t+s) — Fu(t)
= E(GRr,(As'X(va(t +9)))) — E(Gr, (A X(va(?))))
< ONE(X(va(t +5)) — X(va(t)))
= OX'(va(t +5) — va(t))
and hence the desired inequality is verified. O

For degenerate random variables one can also show the following result.

Lemma 4 It follows for R, = p almost surely that there exists some constant 0 satisfying
Fo(t4s) — Fo(t) < C(va(t + s) — va(t))
forevery0 <t <t+4+s<T.

Proof. If we consider a gamma process with shape functigi) = ¢ for everyt > 0 and scale
parameten, we obtain by relation (8) that

Fu(t) = P{X(£) > Aap) = th) / " ot exp(—a)da.
P

It is well known that the functiont — TI'(¢) is infinitely differentiable on(0, co0) andtI'(t) =
I'(t+ 1) for everyt > 0 (Rudin, 1976, Whittaker and Watson, 1958). This implies

dr _dr

(8 +T() = 2o+ 1)



and so dar dar dar
Ly Li41) 1 dr (¢4 1) 1

L(t)2 ~ t0(t)2  i0(t) T@E+10E) T(E+1)
for everyt > 0. Hence we obtain usinigm; o I'(¢) ™ = oo that

ar(t) 1

ez T T ©)

Using relation (9) and — I'(¢)~! is continuously differentiable of0, co) this yields

a3
sup{ th(t()Q) :

0<t<T}<o

and so the functiom — T'(+)~! has a uniformly bounded derivative ¢f, 7). A similar obser-
vation also applies to the functian— [ z'~! exp(—a)dz and both functiong — T'(¢)~'and

t— fpoo x'~! exp(—x)dz are therefore Lipschitz continuous @h T']. Hence the product of these
functions is also Lipschitz continuous and we have shown that there exista$ontesatisfying

Fy(t+s) — Fa(t) < Cs. (10)

For general shape functiong(t) it follows again by relation (8) and the result for a standard
gamma process given in relation (10) that

Fo(t+s) — Fo(t) < C(va(t + s) — va(t))
and the result is verified. O
Finally we show the following result.

Lemma5 If the cdfGr, is Lipschitz continuous oft), p) and the cdiGgr, has a jump disconti-
nuity of size) < « < 1 at p, then there exists songe > 0 satisfying

Fo(t+5) — Fu(t) < Clvg(t + s) — va(2))-
Proof. By relation (8) we obtain
Fo(t) = P{X(va(t)) > A\aRa, Ra < p} + aP{X(v4(t)) > Aap} (11)
Observe now that by the continuity 6fg,, on [0, p) and conditioning oX (v, (t)) that

P{X(v4(t)) > A\aRa,Ra < p} = [5° P{AeRa < min{z, \op}}dF,, (z)
= fooo GRr, (min{\; 'z, p})dF,, () (12)
= E(Gr,(min{A\;'X(va(1)), p})).

9



Since by our assumption the functian— Gg, (min{\; 'z, p}) is Lipschitz continuous on
[0, 00) the desired result follows by applying Lemma 4 to (the second term of) relation (11) and
Lemma 3 to relation (12). O

In case the function, is Lipschitz continuous oif0, T it follows by the above results that
the functionF, is also Lipschitz continuous off), 7). Observe Lipschitz continuity turns out
to be an important property in showing that the error caused by discretizing the continuous-time
renewal-type dynamic programming equation derived in the next section, remains bounded.

3 Maintenance optimization

In this section we introduce a finite horizon optimization model for the maintenance of coating
systems protecting steel structures. In Section 3.1 the model is formulated as a continuous-time
stochastic dynamic programming problem. The corresponding renewal-type optimality equation
can only be solved by discretizing time. To this end we propose a simple numerical procedure in
Section 3.2 and we investigate in detail the accuracy of this procedure.

3.1 Continuous-time model

Let the length of the total planning horizon be denotedlbyObservel represents in practice
the finite usage time of the steel structure. The maintenance optimization problem is about which
action to select when the deterioration exceeds the fixed interventionpleVéle aim is to mini-
mize the expected maintenance costs over the (finite) planning horizon with respect to the policy
IT = {a; }ien. The cost of a given maintenance actiois denoted by:(a) and it does not depend
on (the parameters of) the deterioration process.

To formulate the associated Bellman (optimality) equation of the above dynamic programming
problem, letl 4 : [0, 7] — R be the indicator function of the sgt C R given by

1 ifte A
Lalt) = { 0 otherwise °
Moreover, denote by(t), 0 < ¢t < T, the (conditional) minimal expected maintenance cost from
timeT — t up to timeT given that at timé” — ¢ a crossing occurs and hence maintenance needs
to be done. If this crossing happens for it time and we select at that moment actiog A,
then the conditional maintenance cost from tifhe- ¢ up to time7" is given by

c(a)loq)(t) + q(t — Li=(a)) 1L, (a)<t}- (13)

To justify relation (13) observe fdg;-(a) > ¢ that the present maintenance action will be the last
one and so the total cost froif — ¢ up to7" equalsc(a)l 7|(t). Fort = 0 we are at the end
of the planning horizon and so we do not need to take a maintenance action anymore. This leads

10



to zero maintenance cost explaining the indicator function in the above expresdign(adlf < ¢

the next maintenance action occurs at tiffie- (¢t — L;«(a)) and so in this case our total cost
from T —t up toT" equalsc(a)l(o 1) (t) + q(t — Li<(a)). The last term occurs since we need to
select from timel’ — (¢ — L;«(a)) up to7" in an optimal way the (possible) remaining actions.
By construction the random variabl&s(a), i € N, are independent and identically distributed
and for each the random variabl&;(a) is also independent of the maintenance costs occurring
after the(i + 1)th maintenance moment. Hence from relation (13) we obtain that the conditional
expected maintenance cost from tiffie- ¢ up toT given actioru is selected equals

c(a)Lo.r1(t) +E(q(t — Li= (a) 1. (a)<t}) = c(a)Lo.17(t) + /0 q(t —y)dF.(y).  (14)

Selecting now at momefit — ¢ the best possible maintenance action we obtain from relation (14)
that

a(t) = min {c@om () + [ att=)dFilo)). (15

for every0 < ¢t < T'. Introducing the convolution operatiengiven by

t
(@ F)(®) = [ alt - y)aFa(w) (16)
0
for everyt > 0 relation (15) reduces to
¢(t) = min {c(@) 1o (t) + (g Fa) () }

for every0 < ¢ < T. By relation (15) and its definition the optimal value functipn[0, 7] — R

is increasing, satisfieg0) = 0 and has a jump at zero. In the next subsection we will show it is
continuous on0, 7. Unfortunately it is difficult to solve the above continuous-time optimality
equation and so we need to discretize this renewal-type equation which can be applied to find the
optimal maintenance policy.

3.2 Solving a discrete version of the renewal-type optimality equation

In this section we solve a discrete version of the continuous-time optimality equation listed in
relation (15). In particular, we focus on the (Riemann) lower and upper sums approximation of
this renewal-type integral equation. To analyse the error of this approximatiBrdieote the set

of bounded functions : [0, 7] — R integrable with respect tb,, a € A. If

ull 7,00 == sup{|u(t)] : 0 <t < T}

denotes the well-known supnorm Biathe vector spaceB, ||.||7.«) is @ Banach space and on this
space we introduce the operaf®r. 5 — B given by

Pu(t) := mingea {e(a)10.(t) + /0 u(t — y)dFa(y))

11



for every0 < t < T. To discretize the above operator let> 0 be chosen in such a way that
T = NhforsomeN < N and introducéy, := kh, k=0,...,N, and

P\ = Fy(the) — Falty)

fora € Aandk =0,...,N — 1. Iffor : = 0, 1 we introduce the s&8; := {(u(t;),...,u(tn)) :
u € B} and this vector space has Chebyshev norm

llul|iq:=max{|u(t,)| :n=1,...,N},

let the operatot/;, : B; — B be given by

. n—1 a
Upu(ty) := min {c(a) + Zk:o U(tn—k)P;(f )} (17)
forn=1,..., N. Also introduce the operatdr, : By — By given by
Lyu(ty,) —mln{ —|—Zk o Ultn—k—1 P;)} (18)
for everyn = 1,...,N and Lyu(ty) = 0. Before discussing some properties of the above

operators we need the following important observation. By relation (8Xaisth standard gamma
process, it follows
F.(T) =P{X(va(T)) > MdRa} < 1
and sinceA is a finite action set this implies
0 = maxgea Fo(T) < 1. (19)

Before mentioning the next result, observe an operAtds called a contraction (with respect to a
given norm||.||) if there exists somé < 3 < 1 such that

[Ku — Kwl|| < Bllu — wl

for everyu, v belonging to the domain ok. The value0 < g < 1 is called the contraction
number.

Lemma 6 The operatorP : B — B is a contraction (with respect tf.||r ~,) and its contraction
number is given by < ¢ < 1. The same holds for the operatby, : By — By with respect to the
norm|l.||o,¢ and the operatot/;, : B; — B; with respect to the norrj.||; 4 and both contractions
have the same contraction numiiex o < 1.

Proof. We only give a proof for the operatd?, since the proof for the other operators is similar.
Letu,w € B be given and) < t < T fixed. If a,, € argmingea{c(a) + fo Fu(y)}it
follows by the definition ofP that

Pu(t) — Pul(t) < /0 (u — w)(t — y)dFy, (). (20)

12



Also, fora, € argmingea{c(a) + fg u(t — y)dFy(y)} we obtain similarly

t
Pult) - Pu(t) = [ (u=w)t - y)dF., (). (21)
0
By relations (20) and (21) and the definitioncfiven in relation (19) this implies
|Pu(t) — Pw(t)| < [lu = wllr00 max{Fu,(T), Fa,(T)} < ollu — w7 0.

Since the above inequality holds for evéryx ¢ < T we obtain the desired result. O

Since(B, ||.|| 7.« ) is @ Banach space it follows by Lemma 6 and the Banach fixed point theorem
(Kreyszig, 1978) that the operatérhas a unique fixed poitand for everyu € B the sequence
P™y with Py, := P(P™~'4) converges in the supnorm to this fixed pajntHence we obtain
for everyu € B that

limyp o0 [P — q”T,OO = 0andq = Pq. (22)

By relation (15) this fixed poing represents the optimal value function of our dynamic program.
For the operator.;, andU;, we obtain similarly

limp oo Ly'u = g @ndlimy oo Up'u =g (23)

with ¢, respectivelyg, the unique fixed point of the operatdy,, respectivelyl;,. This means
g(tn)fz Lyq(t,) foreveryn = 0,..., N andq(t,) = U,q(t,) for everyn = 1,..., N. Observe
the fixed pointy of the operatotl;, is easy to compute by forward substitution. Also at the end
of this section we show how to compuje Using relations (22) and (23) it is easy to show the
following result.

Lemma 7 Foreveryn = 1,..., N itfollows ¢(t,) < q(tn.) < G(tn).
Proof. Let u € B be increasing. Since is increasing we obtain for every=1,..., N that
Joultn —9)dFu(y) = YpZg [y ultn — y)dFa(y)
< SR ults —ti)py”
= il U(tn—k)Pi(ga)~
This shows by the definition ad? andU,, that
Pu(t,) < Upu(ty,)

for everyn = 1,..., N. Suppose now by induction th&™u(t,) < U;*u(t,) for somem € N
andn = 1,..., N. Since it is easy to verify that— P™u(t) is increasing for every increasing
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u € Bthis implies
Pm-‘rlu(tn) = mingey {C +ftn Py (t — )dF( )}
= mingea {c Y 1 t’““ P™u(t, — y)dFa(y)}

{c )+ D> épm (tn— k)P;(f)}
{et@)

k oUh (n k)p;(ga)}
= U;L"Hu( n)-

IN

mingeA

< mingey

Hence we have verified th@™u(t,) < Uj'u(t,) for everym € Nandn = 1,...,N. This
implies by relations (22) and (23) that

q(tn) = limp oo P u(tn) < limpieo Uy 'u(tn) = q(tn)-
By a similar proof one can show thatt,) > ¢(t,) forn = 1,..., N and the result is verified.]

In the next result we show that the fixed poinbf the operatorP is a continuous function
on (0,T] and under some additional condition even Lipschitz continuous on this set. Observe
Lipschitz continuity of the fixed poing on (0, 77 is helpful in determining an upper bound on the
discretization error.

Lemma 8 The fixed poing of the operatorP is continuous ort0, 7] and has a jump discontinuity
at 0. Moreover, ifF, is Lipschitz continuous oft), 7] for everya € A, theng is also Lipschitz
continuous or{0, 7).

Proof. Since the functior is increasing it is sufficient to construct an upper bound(@#-s)—q(t)
with 0 < t < t+ s < T. To start the proof introduce for every increasing and bounded function
u: [0,00) — [0, 00)

ds(u) := sup {u(z+s)—u(z)}. (24)

0<z<T—s
By the definition of the operataP, ¢ = Pq andq increasing we obtain for evefy< t <71 — s
fixed that there exists somgt) € A (possibly depending of) satisfying

t t+s
At +s)—qlt) < /0 (qlt + 5 — ) — q{t — 1)) dFay () + / 4t + 5 — y)dFy (4)

t
< /O (at + s —y) = a(t = y))dFo(r) (y) + as) max{ds(Fa)}. (25)
Since by the observation after relation (8) the £flf; is continuous it follows that
t t—p
/0 (a(t+ 5 —y) —alt — y))dFae (y) = lim ; (q(t +s—y) —q(t —y))dFyz(y). (26)
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Using0 < t < T — s and relation (24) we obtain for evepy> 0 that

/0 _p(Q(t + s —y) —q(t —y))dFau)(y) < ds(q) Fo)(T).

Hence by relations (26) and (19)

/Ot((J(t +5—y) —q(t —y))dFy4)(y) < ods(q).
Using the above inequality and relation (25) yields
q(t +5) = q(t) < 0ds(q) + q(s) max{ds(Fa)}. (27)
Since relation (27) holds for evety< t < t + s < T, we finally obtain that
ds(q) < 0ds(q) + g(s) max{ds(Fa)}.

By relation 19)) we know that < 1 and so

Q(S) maXaEA{ds(Fa)} )
1-0

ds(q) < (28)

Since the cdf, is continuous o0, co) and hence uniformly continuous ¢ 7] (Rudin, 1976),

implying .
181%1 ds(F,) =0

for everya € A, the continuity ofg on (0, T") follows by relation (28) and! finite. ForF, a € A,
Lipschitz continuous we obtain for evetiye A that there exists some finite, > 0 satisfying

ds(F,) < Cgs.
Again by relation (28) andl finite the Lipschitz continuity o§ on (0, 7] follows. O

In the next lemma we give a conservative bound on the grer ¢|| 4 if the cdfsFy, a € A,
are Lipschitz continuous.

Lemma 9 If the cdf F, is Lipschitz continuous for every € A, then then there exists some
constantC' > 0 independent ok such that

lg —qllia < Ch.
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Proof. By the triangle inequality ang, respectively, is a fixed point of the operatad?, respec-
tively L, we obtain

lg—dqllia = |Pq— Lng
|Pq— Lng

1d
(29)

IN

1,d + 1Lng — Lug|l1,q-

SinceF, is Lipschitz continuous for every € A we obtain by Lemma 8 that the fixed poipts
Lipschitz continuous and increasing (i 7'] (remember;(0) = 0) and so there exists some finite
positive constant’, satisfying

[Pq(tn) = Lng(ta)| < Cgh + q(h) max{p;, } (30)
foreveryn = 1,..., N. Introducing for a cdfF' the value
dn(F) := supg—q, . N_1{F (tkt1) — F(te)} (31)

it follows by relation (30) that
1Pg = Luallra < Coh + q(h) max{dn(Fa)} (32)

SinceLy, is a contraction with contraction number< ¢ < 1 andq(0) = ¢(0) = 0 this implies
by relations (29) and (32) that

la = allva < Coh + (h) max{dn(F.)} + ollg = gllva
and so

th + Q(h) maXaEA{dh(Fa)}
1—0o .

(33)

lg—qllia <

By the Lipschitz continuity off, with Lipschitz constan€, we obtaind, (F,) < C,h. Also by
the Lipschitz continuity of; on (0, T it follows that

q(h) = q(h) —limy q(t) + mingea{c(a)} < Cyh + mingea{c(a)}
and this shows in combination with relation (33) a#é finite set the desired result. d

It is also possible without any conditions on the é{fto obtain an estimate of the supnorm
error. Introducing

= t —q(t
vni= | max {q(trr) = a(te)}

one can show the following result.
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Lemma 10 It follows that

Vh + Q(tl) maXgecA {dh(Fa)}
1—0

lg—qllia < 17— gqllia <

with dj, (F,,) defined in relation (31).

Proof. For everyn = 1, .., N that there exists somg, € A such that

n—1 an n—1 an
Ung(tn) = Lng(ta) < D altai)pi™ =D altn—r—1)p}™

Usingq(0) = 0 the last term can be rewritten as

n—1 an n—1 an n—2 an an
Zk:o a(tar)p} )_Zkzo Q(tar-1)py™ = Zkzo (a(tn—k) =~ q(tn-r—1)p\"" +a(t1)pl].

Sincev is increasing (check this by usitign, . L} u(t,) = v(t,) andu increasing implied.,u
increasing) we therefore obtain

Una(tn) = Lug(ta) < vi + () max{p,”, ).

This implies
1Ung = Ligllra < va + ¢(t1) max{dn(Fa)}. (34)
Also, usingUy, is a contraction with contraction numbey it follows
UG — Lngllia = |Un@ — Ung + Ung — Lpg|l1,a
< ||UnG@ — Ungll1,a + |Ung — Lingll1.a (35)
ollg = glli,a + 1Urg — Lagll1,a.

IN

Combining relations (34) and (35) finally yields

14 = |Un@— Lpg|1a
< 0l|g — qll1,a + vi + q(t1) maxaea{dn(Fa)}

17— ¢

N

and hence
Uh + q(t1) maxeea{dn(Fa)}

l1—0c

17— qllia < (36)
By Lemma 7 it also follows that

lg —qllia <117 —qll1,q
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and hence by relation (36) we have shown the result. O

As mentioned earlier, it is easy to compute the fixed pgiof the operator;, by forward
substitution. Since the right-hand side of equation (17) involves a function evaluatign iin
seems to be more complicated to compute the fixed gaifit/;,. However, it turns out that there
exists an easy analytic expressiong6r,,), » = 1,2, ..., N. To this end we require the following
lemma.

Lemma 11 For A afinite set,f : A — [0,00) andg : A — [0, 1) the optimality equation

w = min {f(a) + g(a)w}. (37)
has a unique solutiow > 0 given by
o f(a)
o=min{ i) %)

Proof. Sincew — mingc4{f(a) + g(a)w} is a contraction, the above optimality equation has a
unique solution. Moreover, by the definition @fwe obtainw < f(a) + g(a)w for everya € A

and so
w < min f(a) .
acA | 1 —g(a)
Again by its definition there exists sonaec A such thatw = f(a) + g(a)w and the result is
proved. O

Lemma 12 The fixed poing of the operatotU}, listed in relation(17)is given by

_ : c(a)
Q(tl) = ggﬂ { 1_ p((]a) }

c(a) + 01 q(tn- )p,&a’}
1—p® '

andforn=2,....N

acA

q(ty) = min {

Proof. Since0 < p(()“) < 1 for everya and A is a finite set the expression fg(t;) is a direct
consequence of Lemma 11. Also by the definitidt),) we obtain

)= e+ 57 (1) + 00

for everyn = 2,...,N. Taking f(a) = c(a) + 37~} q(tn_k)p,(f) andg(a) = p(()“), the second
formula follows again from Lemma 11. O

In Section 5 we will compute both andg and this yields by Lemma 7 an upper bound on the
‘empirical’ accuracy of the discretization procedure(s). Also in Appendix B we list a simple
algorithm for computing the fixed pointsandg.
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4 Computing the cdf of the time between two maintenance actions

To solve the optimization problems introduced in Section 3 we need a fast method to compute
the cdf F,, listed in relation (8) of the time between two maintenance actions. Unfortunately,
this cdf only has a nice analytical expression in some special cases (Frenk and Nicolai (2007)).
In general, evaluating this cdf numerically e.g. via its two-dimensional integral representation is
time-consuming. However, as we will see it is easy to approximate this cdf.

Note thatF}, relates to the cdf of the first time a standard gamma process exceeds a random
threshold. For notational convenience we suppress the subsdniplis section and consider the
cdf Hgr given by Hg(t) := P{T(R) < t} for ¢t > 0, whereT(R) is the first time a standard
gamma process exceeds some nonnegative random vdRabte particular, takingR = A\, R,
and replacing by v,(t) yields relation (8). In the remainder of this section we focus on the
computation of the cdffr for nonnegative random variabl® having a general distribution. In
Section 4.1 we give expressions for this cdf and in Section 4.2 we demonstrate how the desired
hitting time distribution can be approximated.

4.1 General expressions

Since the nonnegative, non-defective, random vari@lées by definition independent of the
gamma process and its c@fr satisfiesGr(0) = 0 it follows by conditioning on the random
variableR that

Hr(t) = P{T(R) < t} = P{X(t) > R} = /0 T P(X(1) > r}dGr(r) (39)

for everyt > 0. Moreover, by conditioning on the random variab{ét) we obtain forGr a
continuous cdf the equivalent representation

H (1) = E(Gr(X(1))). (40)

In general, the above expressions have to be computed via numerical integration. On the other
hand, if the random variablR has a degenerate, uniform or gamma-type distribution, fiign
has a ‘nice’ analytical expression (Frenk and Nicolai, 2007).

4.2 A simple approximation

In Frenk and Nicolai (2007) it is shown empirically and theoretically that a linear interpolation of
Hg at the integer points approximates the true cdf quite well in the supnorm. This approximation
is given by

Hr(t) =~ (t = [t Hr([t] +1) + (1 = (¢ - [t])) Hr([t]), t = 0. (41)
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To evaluate the continuous cfifon its integer points one uses that
Hr(n+1)— Hr(n) = Pn<TR)<n+1}
= P{|T(R)| =n} (42)
= LE(R"exp(—R))
for everyn € NU {0}. Alternatively, if
Gr(r) == E(exp(~TR))

is the probability Laplace Stieltjes transform (pLSt) of the €4f, then relation (42) is the same
as

Hr(n +1) — Hr(n) = ( nll) Gy () (43)
for everyn € NU {0} with G neN, denoting thenth derivative ofGg andég) .= Gg. If

the derivatives ofig are elementary functions we can directly apply relation (43). Examples are
given by the class of infinitely divisible distributions, including the gamma distribution, (power
transformations of) the uniform distribution and the class of concave distributions (for more de-
tails, see Frenk and Nicolai, 2007).

Remark 13 Observe the above piecewise linear approximation is derived for a standard gamma
process and by construction it is Lipschitz continuous. By relation (3) it can also be used for a
non-stationary gamma process. Approximating now the cdf of the time between two maintenance
actionsF, by FY"™ yields a different continuous-time dynamic programming equation, given by

T
dpo1) = min{e(@) 10+ [ apott — 9)AFT () (44)

If the shape functions, are Lipschitz continuous on [0,T], it follows by the remark after Lemma 3
that the approximatio, ™ is clearly Lipschitz continuous and so we may conclude from Lemma
8 thatgprox being the solution of the above approximate Bellman equation is Lipschitz continuous
on (0, 7] and satisfiegpox(0) = 0. Also, sinceF? " is close in the supnorm té,, the same

holds for the fixed poinfprox Of relation (44) and the fixed poigtof relation (15). By the previous
results one may therefore conclude that the discretization of the above approximative Bellman
equation yields accurate results.

5 Numerical example

Let us illustrate the model and the methods discussed in the previous sections with the following
numerical example. Consider a planning horizon of at m0gime units, i.eI" € [0,50]. The
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(i) "spot repair" (ii) "repainting" (iii) "replacement"”
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Figure 3: Probability distributions of the time between two maintenance actions: (i)
Fo, (i) Fy,, and (iii) Fy, .

initial gamma deterioration process is givenXy , with v(t) = 0.25t*> and\ = 1. The interven-
tion level is given byp = 25. Let A = {a, a,, as} be the set of maintenance actions representing
spot repair, repainting and full replacement. Suppose the size of the affected area just after each
of these three maintenance actions is giverSiys) ~ unif(15,20), S(a,) ~ unif(10,15) and
S(af) = 0 almost surely, respectively. It follows that the reducti®p is uniformly distributed
fora € {as,a,} andR,, has a degenerate distribution. The édfis computed numerically for
all actionsa € A and the corresponding graphs are shown in Figure 3.

The costs associated with the maintenance actions(atg¢ = 2, c(a,) = 3 andc(ay) =
5, respectively. Finally, let the gamma processes describing the size of the affected area after
maintenance action have shape function, = v, Va € A, and scale parametey,, = \/2,
Ao, = 2)A/3 and )., = A, respectively. By doing so deterioration is accelerated by a factor
2 (3/2) after spot repair (repainting), while keeping the variability of the deterioration process
the same. Moreover, the ratio of the expected time until the next crossing ofgdelet to a
maintenance action and the unit cost is approximatdty all maintenance actions.

Algorithm 14 in Appendix B has been utilized to compytendg with discretization step
h = 0.01. It appears from plots (a) and (b) in Figure 4 that these boundsasa approximately
equal. That is, in this example the discretization of the dynamic programming equation yields
accurate results. In plot (a) we also see that the minimal expected cost (just before a maintenance
action has to be selected) as a function of the planning hoffznalmost linear. Plots (c) and
(d) in Figure 4 show for both bounds the optimal maintenance action just before the intervention
level is exceeded’ time units before the end of the horizon. It can be seen that on the short term
‘spot repair’ is the best action, whereas on the long term ‘replacement’ is most beneficial. It is
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(a) Lower and upper bound on optimal expected cost (b) Relative difference between the lower and the upper bound on q
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Figure 4. (a) Fixed pointg andq of the operators.;, and Uy, respectively. (b)
Relative difference00(g(tn) — q(tn))/q(tn). (c)-(d) Optimal maintenance actions
associated witly andg, respectively.

noteworthy that ‘repainting’ is cost optimal wh&he [5, 7] and that the optimal action changes
a number of times from ‘spot repair’ to ‘replacement’ fbre [10, 25]. Here the end of horizon
effect may play a role. The optimal maintenance actions associated with the bpandg are
almost the same, again showing that the discretization yields a good approximation.

6 Conclusions

The life-cycle management of steel structures involves decisions regarding the timing and the
type of maintenance of protective coatings. In this paper we have presented a model for optimal
maintenance of such coatings on steel structures. The deterioration of coatings is represented
by the size of the area affected by corrosion and this is modelled by a non-stationary gamma
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process. Imperfect maintenance actions such as spot repair and repainting reduce this size by a
random amount, whereas replacement reduces the size to zero. After maintenance the size again
follows a non-stationary gamma process with possibly different parameters. It is assumed that
maintenance is done as soon as the gamma process exceeds a fixed threshold and consequently the
time between two maintenance actions is the first time a gamma process exceeds some nonnegative
random threshold. The problem is to find the sequence of maintenance actions that minimizes the
expected cost over a finite horizon. The continuous-time problem is formulated as a renewal-type
optimality equation and it is solved by discretizing time. It is shown that the discretization yields an
accurate approximation of the original problem. The outcomes of a numerical experiment suggest
that different maintenance actions can be optimal over the decision horizon.
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Appendix

A On the overshoot of a non-stationary gamma process

In this appendix we give an upper bound on the expected overBli¥9}, » (1)) of a non-stationary
gamma process for any> 0. By relation (4) we know that

WA (r) £ A "W (Ar)

with W (Ar) the overshoot at levelr of a standard gamma process and so we only need to deter-
mine an upper bound on the expected overshoot of a standard gamma process. Introduce for any
h > 0 the hitting time

Ty (r) := min{nh > 0: X(nh) > r} (45)
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with X a standard gamma process. By the definition of the hitting itfg of a standard gamma
process it is obvious that
T(r) < Tn(r) (46)

almost surely. Also, since the standard gamma process has independent and identically distributed
increments the random variabl8s := X (nh) form a partial sum process and for this process we
introduce the renewal procedg, := {IN,(¢) : t > 0} given by

N, (t) = sup{n e NU{0}: S, < t}. (47)
This shows by relations (45) and 46) that
Ty(r) = h(Nu(r) +1)
and sinceX has increasing sample paths we obtain by relation (46) that
W(r) = X(T(r))—r
< X(h(Np(r) +1)) —r
= SNu(r)+1— T
This implies using the well-known relatidb(Sy;, (-y+1) = E(Np(r) + 1)E(X(h)) that
E(W(r)) <E(Np(r) + DHE(X(h)) — 7. (48)
SinceX(h) ~gammadh, 1) we obtain
E(X(h)) = handE(X?(h)) = h + h2.

Hence by Lorden’s inequality for the renewal functior> E(IN,(¢)) (for an elementary proof of
this inequality see Frendét al, 1997) we obtain

+h+h2_r+1+1
2 h ‘

E(Nh(r) + 1) <

Sl

This implies by relation (48) that
E(W(r) < h+1

for everyr > 0. Since this inequality holds holds for ahy> 0 we finally obtain thalE(W (r)) <

1 and soE(W,, (7)) < A~L. This also implies thaE(W, ,(R)) < A~ for any random variable

R independent of the gamma process. We may assume that in practice the expected reduction
E(R,) > A1 for any actiona € A and so this justifies that we do not consider the overshoot in

our model.
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B Dynamic programming algorithm

The algorithm below simultaneously computes lower and upper bounds for the minimal expected
maintenance costs, time units before the end of the horizon, just before a maintenance action
has to be selected, far=0,1,..., N.

Algorithm 14
Input: integerN, real T', real array c(a), Va € A

INITIALIZATION:

h=T/N

compute'™ := Go((k + 1)h) — Ga(kh), k =0,1,...,N —1,Va € A
v(0)=w(0)=0

optactionv(k) = optactionw(k) =0k = 1,2,..., N

MAIN:
Forn =1to N do
sumv(a) = sumw(a) = a € A
Fork=1ton—1do
Fora € Ado
sumv(a) = sumv(a) + v(n — k:)p,(f_)1
sumw(a) = sumw(a) + w(n — k:)plga)
Nexta
Nextk
Letv(n) = mingea {c(a) + sumv(a)}.
optactionv(n) = argminge 4 {c(a) + sumv(a)}.
Letw(n) = minge 4 {(c(a) + sumw(a))/(1 — p(()a))}.

optactionw(n) = arg minge A {(c(a) + sumw(a))/(1 — p[()a))}.
Nextn

OUTPUT:

The arraysv(n), n = 0,1,..., N, andw(n), n = 0,1,..., N, consist of the lower and upper
bounds on the minimal expected maintenance ctstane units before the end of the horizon and
just before a maintenance action has to be selected. The elements of theauti@ysonv(n),
n=1,2,...,N, andoptactionw(n), n = 1,2,..., N, are the maintenance actions to be taken
t,, time units before the end of the horizon, just before the intervention level is exceeded.
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