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Abstract

Steel structures such as bridges, tanks and pylons are exposed to outdoor weathering con-
ditions. In order to prevent them from corrosion they are protected by an organic coating
system. Unfortunately, the coating system itself is also subject to deterioration. Imperfect
maintenance actions such as spot repair and repainting can be done to extend the lifetime of
the coating. In this paper we consider the problem of finding the set of actions that minimizes
the expected maintenance costs over a bounded horizon. To this end we model the size of
the area affected by corrosion by a non-stationary gamma process. An imperfect maintenance
action is to be done as soon as a fixed threshold is exceeded. The direct effect of such an
action on the condition of the coating is assumed to be random. On the other hand, mainte-
nance may also change the parameters of the gamma deterioration process. It is shown that
the optimal maintenance decisions related to this problem are a solution of a continuous-time
renewal-type dynamic programming equation. To solve this equation time is discretized and
it is verified theoretically that this discretization induces only a small error. Finally, the model
is illustrated with a numerical example.
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1 Introduction

Steel structures such as bridges, tanks and pylons are exposed to outdoor weathering conditions. In
order to prevent them from corrosion they are protected by organic coating systems. Unfortunately,
the coating system itself is also subject to deterioration and after some time the steel loses its
coating and starts corroding. Maintenance can be done to improve the condition of the coating
system and by doing so the lifetime of the steel structure is also extended. Typical maintenance
actions for coating systems are (local) spot repair, repainting and replacement. Spot repair consists
of only painting the most visible corroded parts, while repainting means that the entire surface of
the structure is repainted without removing the corrosion completely. Finally, in a replacement
action the old coating and all corrosion is completely removed and a new coating is applied. Since
in spot repair and repainting some corrosion is not removed these actions can be seen as imperfect.
Obviously the replacement action restores the condition of the coating to new and is therefore a
perfect maintenance action. With respect to costs it is obvious that spot repair is the cheapest
action, while replacement is most expensive.

The aim of this study is to find an optimal strategy for imperfect maintenance of engineering
structures, in particular steel structures protected by coatings. To this end, we introduce a deterio-
ration model that includes the effect of imperfect maintenance. The actions defined above are then
employed to form a maintenance strategy and they are the basis of our optimization model. The
objective of this model is to minimize the expected maintenance costs over a bounded horizon.
Clearly this bounded horizon is determined by the economic or technical lifetime of the structure.
The decision variables are the maintenance actions to be executed.

To model the deterioration process of the coating we use a non-stationary gamma process with
state space the size of the coating area affected by corrosion (in e.g. the number of squared meters).
As far as the authors know, Abdel-Hameed (1975) was the first to propose the gamma process as
a proper model for deterioration in time. The gamma process has increasing sample paths and
is therefore a suitable candidate to describe the deterioration of engineering structures, see e.g.
Çinlar et al. (1977), van Noortwijk and Klatter (1999), Frangopolet al. (2004) and Newby and
Dagg (2004). In particular, in Heutinket al. (2004) and Nicolaiet al. (2007) the deterioration of
coatings on steel structures is modelled by a non-stationary gamma process. For more examples of
the application of gamma processes in maintenance we refer to a recent overview by Van Noortwijk
(2007).

Modelling deterioration as a gamma process has also been done in the presence of imperfect
maintenance. In Bakkeret al. (1999) a lifetime extending maintenance model for engineering
structures is introduced. In this model an imperfect maintenance action reduces the amount of
deterioration by a fixed amount and after such an action deterioration is again modelled by the
same gamma process. However, we shall argue below that the reduction in deterioration may also
be random in practice and secondly that the structural parameters of the deterioration process may
differ after doing an imperfect maintenance action. Our application thus asks for a more complex
model.

1



Another stochastic process that is often used to describe deterioration is the Wiener process or
Brownian motion (for a definition see Karlin and Taylor, 1975 and for an application in deteriora-
tion modelling see Nicolaiet al., 2007). In contrast to the gamma process being a jump process
with an infinite number of infinitesimal jumps in each finite interval Brownian motion has contin-
uous sample paths. As such, it is the only so-called Lévy process with this property. On the other
hand, contrary to the gamma process this process lacks the property of increasing sample paths.
Doksum and H́oyland (1992) and Whitmore and Schenkelberg (1997) have proposed the Wiener
process as a proper model for deterioration in the context of accelerated degradation due to imper-
fect maintenance. In both papers the effect of imperfect maintenance is modelled by transforming
the time scale of the Wiener process describing deterioration after maintenance.

For steel structures maintenance actions such as spot repair improve the deterioration rate of
the coating only locally, whereas other parts of the surface still deteriorate at the same rate. So, as
a whole the deterioration process may increase faster after spot repair than after replacement. The
same holds for the repainting action. So, we have to extend the model presented in Bakkeret al.
(1999) and therefore we allow for a structural change in the gamma deterioration process (such as
a time transformation) after maintenance is done.

In practice (imperfect) coating maintenance is often done as soon as the area affected by cor-
rosion exceeds a certain intervention level, set by the decision maker. An imperfect maintenance
action reduces the size of the affected area by arandomamount. This random effect occurs since
spot repair and repainting do not cover all corrosion as not all may be visible. Observe all corrosion
is removed by a replacement. As the improvement in deterioration is modelled by a nonnegative
random variable, the time between two maintenance actions is given by the time the gamma pro-
cess needs to counterbalance this improvement. This time depends on the parameters of the gamma
process and the random improvement. With respect to the latter, we consider generally distributed
random improvements in deterioration independent of the gamma process.

Our main interest is in finding the sequence of actions that minimizes the expected maintenance
costs over a finite time horizon. This problem can be formulated as a continuous-time renewal-
type dynamic programming equation. Time is discretized to solve this equation and it is shown
that the solution of the discrete-time problem is close in the supnorm to the solution of the original
continuous-time problem. This is supported by numerical evidence.

The outline of this paper is as follows. In Section 2 we introduce a deterioration model for
structures subject to imperfect maintenance. The associated continuous-time dynamic program-
ming equation describing the optimal maintenance actions is presented and analyzed in Section 3.
Also in this section we give an error analysis due to discretizing this equation. In Section 4 we
briefly discuss some techniques presented in Frenk and Nicolai (2007) to compute the cumulative
distribution function of the time between two maintenance actions. Next, in Section 5, we employ
these techniques to solve the optimization problem formulated in Section 3. In Section 6 we draw
conclusions.
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2 Modelling deterioration and maintenance

In this section we present a deterioration model for coating systems on corroding structures un-
dergoing imperfect maintenance actions. The deterioration process of the protective coating is
given by a (non-stationary) gamma process and maintenance is done as soon as the size of the
affected area exceeds a given levelρ > 0 set by the decision maker. Imperfect maintenance yields
a random reduction in this size, bringing it back between0 andρ. Next, the deterioration process
of the coating is again modelled by a, possibly different, non-stationary gamma process. In the
remainder of this paper, boldfaced letters are used to denote random variables.

2.1 Deterioration model

In this paper the deterioration process of the coating is given by a non-stationary gamma process.
To introduce the definition of a gamma process we first observe (Steutel and van Harn, 2004)
that the density of a gamma distributed random variable with shape parameterβ > 0 and scale
parameterλ > 0 is given by

f(x) = Γ(β)−1λβxβ−1 exp(−λx)1(0,∞)(x)

with

Γ(β) :=
∫ ∞

0
xβ−1 exp(−x)dx

the well-known gamma function. The cumulative distribution function (cdf) of such a random

variable is denoted by gamma(β, λ). Also we mean byX d= Y that the random variablesX and
Y have the same cdf and byX ∼ F that the random variableX has cdfF .

Definition 1 Letλ > 0 andv : [0,∞) → [0,∞) an increasing, right continuous function satisfy-
ing v(0) = 0. The stochastic processXv,λ = {Xv,λ(t) : t ≥ 0} is called a gamma process with
shape functionv and scale parameterλ > 0 if

1. Xv,λ(0) = 0 almost surely.

2. The stochastic processXv,λ has independent increments.

3. The random variableXv,λ(s) − Xv,λ(t), s > t has a gamma distribution with shape pa-
rameterv(s)− v(t) and scale parameterλ > 0.

A gamma process is called stationary if the shape functionv is linear. Otherwise it is called
non-stationary. A stationary gamma process with shape functionv(t) = t and scale parameter1
will be called standard and for notational convenience such a process is denoted byX = {X(t) :
t ≥ 0}. In Protter (1992) it is shown that there exists a unique standard gamma process modifica-
tion with right continuous sample paths having left-hand limits. This is called a càdl̀ag stochastic
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process and we will always use this modification. Clearly the expectation of the random variable
X(t) is equal to

E(X(t)) = λ−1v(t),

while its variance is given by
Var(X(t)) = λ−2v(t).

To start with our model we assume that for a given strictly increasing continuous shape function
v satisfyingv(0) = 0 andv(∞) = ∞ and a given scale parameterλ > 0 the (c̀adl̀ag) corrosion
process of a new coating is given by a non-stationary gamma processXv,λ. After having defined
the gamma process we can now formally state for everyt > 0 that

Xv,λ(t) := size of the area affected by corrosion at timet. (1)

2.2 Effect of maintenance on deterioration

Having deterioration model (1) at hand, we next introduce a model for the interaction between
deterioration and (imperfect) maintenance. A maintenance actiona is performed as soon as the
size of the affected area exceeds a given levelρ. For simplicity it is assumed that any maintenance
action takes a negligible amount of time and that such an action is chosen from a finite setA of
possible actions. In our specific example we haveA = {spot repair, repainting, replacement}.
Introducing for everyr > 0 the hitting time

Tv,λ(r) := inf{t ≥ 0 : Xv,λ(t) > r}

it follows that the random timeL of the first maintenance is given byTv,λ(ρ). Since it can be
shown (Frenk and Nicolai, 2007) that

Tv,λ(r) d= v←(T(λr))

with T(λr) denoting the hitting time to levelλr of a standard gamma process andv← the inverse
function ofv, we obtain that

L d= v←(T(λρ)). (2)

By relation (2) this yields

P{L ≤ t} = P{T(λρ) ≤ v(t)} = P{X(v(t)) > λρ}. (3)

Now consider a maintenance policyΠ = (ai)i∈N, whereai ∈ A denotes the maintenance action
chosen after levelρ is exceeded for theith time. If the selected maintenance action is replacement,
then the affected area has size zero again, while for actions belonging to the setA0 = {spot repair,
repainting} the effect of the maintenance action on the size of the affected area is not known
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Figure 1: Deterioration path before the first imperfect maintenance action and the immediate effect
of this action on deterioration.

beforehand. To model the effect of these imperfect maintenance actions we first observe by the
jump discontinuities of the sample paths of a gamma process, that the overshoot

Wv,λ(r) := Xv,λ(Tv,λ(r))− r

beyond any levelr > 0 is positive almost surely. Hence the size of the affected area at the first
maintenance momentTv,λ(ρ) just before the first maintenance actiona1 is given byρ+Wv,λ(ρ).
This is graphically shown in Figure 1. It is easy to see (Frenk and Nicolai, 2007) that

Wv,λ(ρ) d= λ−1W(λρ) (4)

with W(r) denoting the overshoot of a standard gamma process at levelr and this implies that the
random size of the affected area at momentTv,ρ(ρ) is distributed asρ + λ−1W(λρ). In practice
ρ is always much larger than the expected overshootλ−1E(W(λρ)) (see Appendix A). Hence to
avoid complicated mathematical technicalities due to the assumption of a non-stationary gamma
deterioration process and its associated discontinuous sample paths it seems realistic from a prac-
tical point of view to assume that the effect of any imperfect maintenance action will certainly
annihilate the overshoot. Therefore in modelling the effect of an imperfect maintenance action on
the size of the area affected by corrosion we will disregard the overshoot. Actually, in other studies
the overshoot of the gamma process is often not mentioned at all.

The effect of the first (imperfect) maintenance actiona1 is now given by a bounded nonneg-
ative random variableS1(a1) ≤ ρ and this random variable denotes the size of the affected area
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just after performing the first maintenance actiona1. To model the impact of the first maintenance
action we assume that this is represented by the random vectorS1 = (S1(a))a∈A consisting of
correlated components. Each componentS1(a) within this vector represents the size of the af-
fected area just after performing maintenance actiona and this component belongs to[0, ρ]. For
a representing replacement we obtainS1(a) = 0 almost surely, while fora belonging toA0 we
may also allow the random variableS1(a) to take the value0 with a small positive probability.
This means that with a (possibly small) probability the effect of the imperfect maintenance actions
spot repair or repainting may be the same as the effect of replacement. Since maintenance is al-
ways performed at intervention levelρ it follows that the second maintenance actiona2 in policy
Π = (ai)i∈N, is executed at the random time that the deterioration process occurring after the first
maintenance action exceeds the (random) levelρ − S1(a1). It is assumed that this deterioration
process, independent of the previous deterioration gamma process and the (random) improvement
of actiona1, is again a gamma process with continuous strictly increasing shape functionva1 ,
satisfyingva1(0) = 0 andva1(∞) = ∞, and scale parameterλa1 > 0. Observe the parameters of
this process, sayY1, may depend on the first maintenance actiona1 and on the first maintenance
moment.1 Hence the second maintenance action occurs at the random timeL + L1(a1) with

L1(a1) = Tva1 ,λa1
(ρ− S1(a1))

d= v←a1

(
T(1)(λa1(ρ− S1(a1)))

)
.

andT(1)(r) the hitting time to levelr > 0 of an independent copyX(1) of the standard gamma
processX. This shows that the random timesL andL1(a1) are independent. Continuing in this
way and disregarding the overshoot2 of the independent copiesX(i), i ∈ N, of a standard gamma
process thenth maintenance moment associated with policyΠ = (ai)i∈N is distributed as the
random variable

L +
∑n−1

i=1
Li (5)

with L andLi, 1 ≤ i ≤ n− 1, independent nonnegative random variables and

Li(ai)
d= v←ai

(
T(i)(λai(ρ− Si(ai)))

)
. (6)

Clearly in (6) the random variableT(i) denotes the hitting time of the standard gamma process
copyX(i). Again, it is always assumed (this is necessary for the dynamic programming formu-
lation to be discussed in the next section) that the parameters of the gamma deterioration process
occurring between theith and(i + 1)th maintenance action only depend on theith used mainte-
nance action and theith maintenance time. In Figure 2 a realization of the second maintenance
moment is given. Also it is assumed for every actiona andSi(a) the size of the affected area after
performing at theith maintenance opportunity actiona that the random variablesSi(a), i ∈ N

1This is suppressed in the notation.
2We always assume that in practice the improvement of the condition by even spot repair is sufficiently large. This

implies that after each imperfect maintenance action the random amount of corroded area to be counterbalanced is much
larger compared to the random overshoot.
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Figure 2: Deterioration paths before and after the first imperfect maintenance action as well as the
effects of the first two maintenance actions on deterioration.

are independent and identically distributed. This yields together with the assumption that for each
i ∈ N the random variableSi(a) is also independent ofX(i) (and henceT(i)), that by relation (6)
the random variablesLi(a), i ∈ N are independent and identically distributed and

Li(a) d= v←a (T(λaRa)). (7)

Observe the random variableRa := ρ−S1(a) concentrated on[0, ρ] is independent of the standard
gamma processX and its associated hitting timeT. In the remainder of this paper the cdf of the
random variablesLi(a), i ∈ N, is denoted byFa and by relation (7) andva strictly increasing and
continuous satisfyingva(0) = 0 andva(∞) = ∞ we obtain

Fa(t) = P{T(λaRa) ≤ va(t)} = P{X(va(t)) > λaRa}. (8)

Sinceva is continuous,va(0) = 0 andRa a positive random variable independent ofX with cdf
GRa satisfyingGRa(0) = 0 we obtain by the definition of a gamma process thatFa is continuous
and satisfiesFa(0) = 0. Under some additional condition on the cdfGRa one can actually show
that the cdfFa also satisfies the following inequality.

Definition 2 A functionu : [0,∞) → R is called Lipschitz continuous on the setB ⊆ [0,∞) with
Lipschitz constantC if

|u(t + s)− u(t)| ≤ Cs

for everyt, t + s ∈ B ands > 0.
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One can now show the following result.

Lemma 3 If the cdfGRa for somea ∈ A is Lipschitz continuous on[0, ρ] with Lipschitz constant
C, then

0 ≤ Fa(t + s)− Fa(t) ≤ Cλ−1
a (va(t + s)− va(t))

for everyt, s > 0.

Proof. Since the cdfGRa is Lipschitz continuous on[0, ρ] andGRa is the cdf of a random variable
Ra satisfyingGRa(ρ) = 1 the cdfGRa is continuous on[0,∞). This showsP{Ra < x} =
P{Ra ≤ x} for everyx > 0 and by conditioning onX(va(t)) ∼ Fva(t) we obtain from relation
(8) that

Fa(t) =
∫ ∞

0
P{Ra ≤ xλ−1

a }dFva(t)(x) = E
(
GRa(λ

−1
a X(va(t)))

)
.

This implies by the Lipschitz continuity of the cdfGRa andX an increasing process that

0 ≤ Fa(t + s)− Fa(t)

= E
(
GRa(λ

−1
a X(va(t + s)))

)− E(
GRa(λ

−1
a X(va(t)))

)

≤ Cλ−1
a E

(
X(va(t + s))−X(va(t))

)

= Cλ−1
a (va(t + s)− va(t))

and hence the desired inequality is verified. ¤

For degenerate random variables one can also show the following result.

Lemma 4 It follows forRa = ρ almost surely that there exists some constantC > 0 satisfying

Fa(t + s)− Fa(t) ≤ C(va(t + s)− va(t))

for every0 < t < t + s ≤ T .

Proof. If we consider a gamma process with shape functionva(t) = t for everyt > 0 and scale
parameterλa we obtain by relation (8) that

Fa(t) = P{X(t) ≥ λaρ} =
1

Γ(t)

∫ ∞

ρ
xt−1 exp(−x)dx.

It is well known that the functiont 7→ Γ(t) is infinitely differentiable on(0,∞) and tΓ(t) =
Γ(t + 1) for everyt > 0 (Rudin, 1976, Whittaker and Watson, 1958). This implies

t
dΓ
dt

(t) + Γ(t) =
dΓ
dt

(t + 1)
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and so
dΓ
dt (t)
Γ(t)2

=
dΓ
dt (t + 1)
tΓ(t)2

− 1
tΓ(t)

=
dΓ
dt (t + 1)

Γ(t + 1)Γ(t)
− 1

Γ(t + 1)

for everyt > 0. Hence we obtain usinglimt↓0 Γ(t)−1 = ∞ that

lim
t↓0

dΓ
dt (t)
Γ(t)2

= − 1
Γ(1)

= −1. (9)

Using relation (9) andt 7→ Γ(t)−1 is continuously differentiable on(0,∞) this yields

sup{
dΓ
dt (t)
Γ(t)2

: 0 < t ≤ T} < ∞

and so the functiont 7→ Γ(t)−1 has a uniformly bounded derivative on(0, T ]. A similar obser-
vation also applies to the functiont 7→ ∫∞

ρ xt−1 exp(−x)dx and both functionst 7→ Γ(t)−1and

t 7→ ∫∞
ρ xt−1 exp(−x)dx are therefore Lipschitz continuous on(0, T ]. Hence the product of these

functions is also Lipschitz continuous and we have shown that there exists someC > 0 satisfying

Fa(t + s)− Fa(t) ≤ Cs. (10)

For general shape functionsva(t) it follows again by relation (8) and the result for a standard
gamma process given in relation (10) that

Fa(t + s)− Fa(t) ≤ C(va(t + s)− va(t))

and the result is verified. ¤

Finally we show the following result.

Lemma 5 If the cdfGRa is Lipschitz continuous on[0, ρ) and the cdfGRa has a jump disconti-
nuity of size0 < α < 1 at ρ, then there exists someC > 0 satisfying

Fa(t + s)− Fa(t) ≤ C(va(t + s)− va(t)).

Proof. By relation (8) we obtain

Fa(t) = P{X(va(t)) > λaRa,Ra < ρ}+ αP{X(va(t)) > λaρ}. (11)

Observe now that by the continuity ofGRa on [0, ρ) and conditioning onX(va(t)) that

P{X(va(t)) > λaRa,Ra < ρ} =
∫∞
0 P{λaRa ≤ min{x, λaρ}}dFva(x)

=
∫∞
0 GRa(min{λ−1

a x, ρ})dFva(x)

= E
(
GRa(min{λ−1

a X(va(t)), ρ})
)
.

(12)
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Since by our assumption the functionx 7→ GRa

(
min{λ−1

a x, ρ}) is Lipschitz continuous on
[0,∞) the desired result follows by applying Lemma 4 to (the second term of) relation (11) and
Lemma 3 to relation (12). ¤

In case the functionva is Lipschitz continuous on[0, T ] it follows by the above results that
the functionFa is also Lipschitz continuous on[0, T ]. Observe Lipschitz continuity turns out
to be an important property in showing that the error caused by discretizing the continuous-time
renewal-type dynamic programming equation derived in the next section, remains bounded.

3 Maintenance optimization

In this section we introduce a finite horizon optimization model for the maintenance of coating
systems protecting steel structures. In Section 3.1 the model is formulated as a continuous-time
stochastic dynamic programming problem. The corresponding renewal-type optimality equation
can only be solved by discretizing time. To this end we propose a simple numerical procedure in
Section 3.2 and we investigate in detail the accuracy of this procedure.

3.1 Continuous-time model

Let the length of the total planning horizon be denoted byT . ObserveT represents in practice
the finite usage time of the steel structure. The maintenance optimization problem is about which
action to select when the deterioration exceeds the fixed intervention levelρ. The aim is to mini-
mize the expected maintenance costs over the (finite) planning horizon with respect to the policy
Π = {ai}i∈N. The cost of a given maintenance actiona is denoted byc(a) and it does not depend
on (the parameters of) the deterioration process.

To formulate the associated Bellman (optimality) equation of the above dynamic programming
problem, let1A : [0, T ] → R be the indicator function of the setA ⊆ R given by

1A(t) =
{

1 if t ∈ A
0 otherwise

.

Moreover, denote byq(t), 0 ≤ t ≤ T , the (conditional) minimal expected maintenance cost from
time T − t up to timeT given that at timeT − t a crossing occurs and hence maintenance needs
to be done. If this crossing happens for thei∗th time and we select at that moment actiona ∈ A,
then the conditional maintenance cost from timeT − t up to timeT is given by

c(a)1(0,T ](t) + q(t− Li∗(a))1{Li∗ (a)≤t}. (13)

To justify relation (13) observe forLi∗(a) > t that the present maintenance action will be the last
one and so the total cost fromT − t up toT equalsc(a)1(0,T ](t). For t = 0 we are at the end
of the planning horizon and so we do not need to take a maintenance action anymore. This leads
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to zero maintenance cost explaining the indicator function in the above expression. IfLi∗(a) ≤ t
the next maintenance action occurs at timeT − (t − Li∗(a)) and so in this case our total cost
from T − t up toT equalsc(a)1(0,T ](t) + q(t − Li∗(a)). The last term occurs since we need to
select from timeT − (t − Li∗(a)) up to T in an optimal way the (possible) remaining actions.
By construction the random variablesLi(a), i ∈ N, are independent and identically distributed
and for eachi the random variableLi(a) is also independent of the maintenance costs occurring
after the(i + 1)th maintenance moment. Hence from relation (13) we obtain that the conditional
expected maintenance cost from timeT − t up toT given actiona is selected equals

c(a)1(0,T ](t) + E
(
q(t− Li∗(a))1{Li∗ (a)≤t}

)
= c(a)1(0,T ](t) +

∫ t

0
q(t− y)dFa(y). (14)

Selecting now at momentT − t the best possible maintenance action we obtain from relation (14)
that

q(t) = min
a∈A

{
c(a)1(0,T ](t) +

∫ t

0
q(t− y)dFa(y)

}
. (15)

for every0 ≤ t ≤ T . Introducing the convolution operation∗ given by

(q ∗ Fa)(t) :=
∫ t

0
q(t− y)dFa(y) (16)

for everyt ≥ 0 relation (15) reduces to

q(t) = min
a∈A

{
c(a)1(0,T ](t) + (q ∗ Fa)(t)

}

for every0 ≤ t ≤ T . By relation (15) and its definition the optimal value functionq : [0, T ] → R
is increasing, satisfiesq(0) = 0 and has a jump at zero. In the next subsection we will show it is
continuous on(0, T ]. Unfortunately it is difficult to solve the above continuous-time optimality
equation and so we need to discretize this renewal-type equation which can be applied to find the
optimal maintenance policy.

3.2 Solving a discrete version of the renewal-type optimality equation

In this section we solve a discrete version of the continuous-time optimality equation listed in
relation (15). In particular, we focus on the (Riemann) lower and upper sums approximation of
this renewal-type integral equation. To analyse the error of this approximation letB denote the set
of bounded functionsu : [0, T ] → R integrable with respect toFa, a ∈ A. If

‖u‖T,∞ := sup{|u(t)| : 0 ≤ t ≤ T}
denotes the well-known supnorm onB, the vector space(B, ‖.‖T,∞) is a Banach space and on this
space we introduce the operatorP : B → B given by

Pu(t) := mina∈A

{
c(a)1(0,T ](t) +

∫ t

0
u(t− y)dFa(y)

}

11



for every0 ≤ t ≤ T . To discretize the above operator leth > 0 be chosen in such a way that
T = Nh for someN ∈ N and introducetk := kh, k = 0, . . . , N , and

p
(a)
k := Fa(tk+1)− Fa(tk)

for a ∈ A andk = 0, . . . , N − 1. If for i = 0, 1 we introduce the setBi := {(u(ti), . . . , u(tN )) :
u ∈ B} and this vector space has Chebyshev norm

‖u‖i,d := max{|u(tn)| : n = i, . . . , N},
let the operatorUh : B1 → B1 be given by

Uhu(tn) := min
a∈A

{
c(a) +

∑n−1

k=0
u(tn−k)p

(a)
k

}
(17)

for n = 1, . . . , N . Also introduce the operatorLh : B0 → B0 given by

Lhu(tn) := min
a∈A

{
c(a) +

∑n−1

k=0
u(tn−k−1)p

(a)
k

}
(18)

for every n = 1, . . . , N and Lhu(t0) = 0. Before discussing some properties of the above
operators we need the following important observation. By relation (8) andX is a standard gamma
process, it follows

Fa(T ) = P{X(va(T )) > λaRa} < 1

and sinceA is a finite action set this implies

σ := maxa∈A Fa(T ) < 1. (19)

Before mentioning the next result, observe an operatorK is called a contraction (with respect to a
given norm‖.‖) if there exists some0 < β < 1 such that

‖Ku−Kw‖ ≤ β‖u− w‖
for everyu, v belonging to the domain ofK. The value0 < β < 1 is called the contraction
number.

Lemma 6 The operatorP : B → B is a contraction (with respect to‖.‖T,∞) and its contraction
number is given by0 < σ < 1. The same holds for the operatorLh : B0 → B0 with respect to the
norm‖.‖0,d and the operatorUh : B1 → B1 with respect to the norm‖.‖1,d and both contractions
have the same contraction number0 < σ < 1.

Proof. We only give a proof for the operatorP , since the proof for the other operators is similar.
Let u,w ∈ B be given and0 ≤ t ≤ T fixed. If aw ∈ arg mina∈A{c(a) +

∫ t
0 w(t − y)dFa(y)} it

follows by the definition ofP that

Pu(t)− Pw(t) ≤
∫ t

0
(u− w)(t− y)dFaw(y). (20)

12



Also, for au ∈ arg mina∈A{c(a) +
∫ t
0 u(t− y)dFa(y)} we obtain similarly

Pu(t)− Pw(t) ≥
∫ t

0
(u− w)(t− y)dFau(y). (21)

By relations (20) and (21) and the definition ofσ given in relation (19) this implies

|Pu(t)− Pw(t)| ≤ ‖u− w‖T,∞ max{Faw(T ), Fau(T )} ≤ σ‖u− w‖T,∞.

Since the above inequality holds for every0 ≤ t ≤ T we obtain the desired result. ¤

Since(B, ‖.‖T,∞) is a Banach space it follows by Lemma 6 and the Banach fixed point theorem
(Kreyszig, 1978) that the operatorP has a unique fixed pointq and for everyu ∈ B the sequence
Pmu with Pmu := P (Pm−1u) converges in the supnorm to this fixed pointq. Hence we obtain
for everyu ∈ B that

limm↑∞ ‖Pmu− q‖T,∞ = 0 andq = Pq. (22)

By relation (15) this fixed pointq represents the optimal value function of our dynamic program.
For the operatorLh andUh we obtain similarly

limm↑∞ Lm
h u = q and limm↑∞ Um

h u = q (23)

with q, respectivelyq, the unique fixed point of the operatorLh, respectivelyUh. This means
q(tn) = Lhq(tn) for everyn = 0, . . . , N andq(tn) = Uhq(tn) for everyn = 1, . . . , N . Observe
the fixed pointq of the operatorLh is easy to compute by forward substitution. Also at the end
of this section we show how to computeq. Using relations (22) and (23) it is easy to show the
following result.

Lemma 7 For everyn = 1, . . . , N it follows q(tn) ≤ q(tn) ≤ q(tn).

Proof. Let u ∈ B be increasing. Sinceu is increasing we obtain for everyn = 1, . . . , N that

∫ tn
0 u(tn − y)dFa(y) =

∑n−1
k=0

∫ tk+1

tk
u(tn − y)dFa(y)

≤ ∑n−1
k=0 u(tn − tk)p

(a)
k

=
∑n−1

k=0 u(tn−k)p
(a)
k .

This shows by the definition ofP andUh that

Pu(tn) ≤ Uhu(tn)

for everyn = 1, . . . , N . Suppose now by induction thatPmu(tn) ≤ Um
h u(tn) for somem ∈ N

andn = 1, . . . , N . Since it is easy to verify thatt → Pmu(t) is increasing for every increasing

13



u ∈ B this implies

Pm+1u(tn) = mina∈A

{
c(a) +

∫ tn
0 Pmu(tn − y)dFa(y)

}

= mina∈A

{
c(a) +

∑n−1
k=0

∫ tk+1

tk
Pmu(tn − y)dFa(y)

}

≤ mina∈A

{
c(a) +

∑n−1
k=0 Pmu(tn−k)p

(a)
k

}

≤ mina∈A

{
c(a) +

∑n−1
k=0 Um

h u(tn−k)p
(a)
k

}

= Um+1
h u(tn).

Hence we have verified thatPmu(tn) ≤ Um
h u(tn) for everym ∈ N andn = 1, . . . , N . This

implies by relations (22) and (23) that

q(tn) = limm↑∞ Pmu(tn) ≤ limm↑∞ Um
h u(tn) = q(tn).

By a similar proof one can show thatq(tn) ≥ q(tn) for n = 1, . . . , N and the result is verified.¤

In the next result we show that the fixed pointq of the operatorP is a continuous function
on (0,T] and under some additional condition even Lipschitz continuous on this set. Observe
Lipschitz continuity of the fixed pointq on (0, T ] is helpful in determining an upper bound on the
discretization error.

Lemma 8 The fixed pointq of the operatorP is continuous on(0, T ] and has a jump discontinuity
at 0. Moreover, ifFa is Lipschitz continuous on[0, T ] for everya ∈ A, thenq is also Lipschitz
continuous on(0, T ].

Proof. Since the functionq is increasing it is sufficient to construct an upper bound onq(t+s)−q(t)
with 0 < t < t + s ≤ T . To start the proof introduce for every increasing and bounded function
u : [0,∞) → [0,∞)

ds(u) := sup
0<x≤T−s

{u(x + s)− u(x)}. (24)

By the definition of the operatorP , q = Pq andq increasing we obtain for every0 < t ≤ T − s
fixed that there exists somea(t) ∈ A (possibly depending ont) satisfying

q(t + s)− q(t) ≤
∫ t

0
(q(t + s− y)− q(t− y))dFa(t)(y) +

∫ t+s

t
q(t + s− y)dFa(t)(y)

≤
∫ t

0
(q(t + s− y)− q(t− y))dFa(t)(y) + q(s)max

a∈A
{ds(Fa)}. (25)

Since by the observation after relation (8) the cdfFa(t) is continuous it follows that
∫ t

0
(q(t + s− y)− q(t− y))dFa(t)(y) = lim

p↑0

∫ t−p

0
(q(t + s− y)− q(t− y))dFa(t)(y). (26)

14



Using0 < t < T − s and relation (24) we obtain for everyp > 0 that

∫ t−p

0
(q(t + s− y)− q(t− y))dFa(t)(y) ≤ ds(q)Fa(t)(T ).

Hence by relations (26) and (19)

∫ t

0
(q(t + s− y)− q(t− y))dFa(t)(y) ≤ σds(q).

Using the above inequality and relation (25) yields

q(t + s)− q(t) ≤ σds(q) + q(s)max
a∈A

{ds(Fa)}. (27)

Since relation (27) holds for every0 < t < t + s ≤ T , we finally obtain that

ds(q) ≤ σds(q) + q(s)max
a∈A

{ds(Fa)}.

By relation 19)) we know thatσ < 1 and so

ds(q) ≤ q(s)maxa∈A{ds(Fa)}
1− σ

. (28)

Since the cdfFa is continuous on[0,∞) and hence uniformly continuous on[0, T ] (Rudin, 1976),
implying

lim
s↓0

ds(Fa) = 0

for everya ∈ A, the continuity ofq on (0, T ) follows by relation (28) andA finite. ForFa, a ∈ A,
Lipschitz continuous we obtain for everya ∈ A that there exists some finiteCa > 0 satisfying

ds(Fa) ≤ Cas.

Again by relation (28) andA finite the Lipschitz continuity ofq on (0, T ] follows. ¤

In the next lemma we give a conservative bound on the error‖q − q‖1,d if the cdfsFa, a ∈ A,
are Lipschitz continuous.

Lemma 9 If the cdf Fa is Lipschitz continuous for everya ∈ A, then then there exists some
constantC > 0 independent ofh such that

‖q − q‖1,d ≤ Ch.

15



Proof. By the triangle inequality andq, respectivelyq, is a fixed point of the operatorP , respec-
tively Lh, we obtain

‖q − q‖1,d = ‖Pq − Lhq‖1,d

≤ ‖Pq − Lhq‖1,d + ‖Lhq − Lhq‖1,d.
(29)

SinceFa is Lipschitz continuous for everya ∈ A we obtain by Lemma 8 that the fixed pointq is
Lipschitz continuous and increasing on(0, T ] (rememberq(0) = 0) and so there exists some finite
positive constantCq satisfying

|Pq(tn)− Lhq(tn)| ≤ Cqh + q(h)max
a∈A

{p(a)
n−1} (30)

for everyn = 1, . . . , N . Introducing for a cdfF the value

dh(F ) := supk=0,...,N−1{F (tk+1)− F (tk)} (31)

it follows by relation (30) that

‖Pq − Lhq‖1,d ≤ Cqh + q(h)max
a∈A

{dh(Fa)}. (32)

SinceLh is a contraction with contraction number0 < σ < 1 andq(0) = q(0) = 0 this implies
by relations (29) and (32) that

‖q − q‖1,d ≤ Cqh + q(h)max
a∈A

{dh(Fa)}+ σ‖q − q‖1,d

and so

‖q − q‖1,d ≤ Cqh + q(h)maxa∈A{dh(Fa)}
1− σ

. (33)

By the Lipschitz continuity ofFa with Lipschitz constantCa we obtaindh(Fa) ≤ Cah. Also by
the Lipschitz continuity ofq on (0, T ] it follows that

q(h) = q(h)− limt↓0 q(t) + mina∈A{c(a)} ≤ Cqh + mina∈A{c(a)}

and this shows in combination with relation (33) andA a finite set the desired result. ¤

It is also possible without any conditions on the cdfFa to obtain an estimate of the supnorm
error. Introducing

νh := max
1≤k≤N−1

{q(tk+1)− q(tk)}

one can show the following result.
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Lemma 10 It follows that

‖q − q‖1,d ≤ ‖q − q‖1,d ≤
νh + q(t1)maxa∈A {dh(Fa)}

1− σ

with dh(Fa) defined in relation (31).

Proof. For everyn = 1, .., N that there exists somean ∈ A such that

Uhq(tn)− Lhq(tn) ≤
∑n−1

k=0
q(tn−k)p

(an)
k −

∑n−1

k=0
q(tn−k−1)p

(an)
k

Usingq(0) = 0 the last term can be rewritten as

∑n−1

k=0
q(tn−k)p

(an)
k −

∑n−1

k=0
q(tn−k−1)p

(an)
k =

∑n−2

k=0
(q(tn−k)−q(tn−k−1))p

(an)
k +q(t1)p

(an)
n−1.

Sincev is increasing (check this by usinglimm↑∞ Lm
h u(tn) = v(tn) andu increasing impliesLhu

increasing) we therefore obtain

Uhq(tn)− Lhq(tn) ≤ νh + q(t1)max
a∈A

{p(a)
n−1}.

This implies
‖Uhq − Lhq‖1,d ≤ νh + q(t1)max

a∈A
{dh(Fa)}. (34)

Also, usingUh is a contraction with contraction numberσ, it follows

‖Uhq − Lhq‖1,d = ‖Uhq − Uhq + Uhq − Lhq‖1,d

≤ ‖Uhq − Uhq‖1,d + ‖Uhq − Lhq‖1,d

≤ σ‖q − q‖1,d + ‖Uhq − Lhq‖1,d.

(35)

Combining relations (34) and (35) finally yields

‖q − q‖1,d = ‖Uhq − Lhq‖1,d

≤ σ‖q − q‖1,d + νh + q(t1)maxa∈A{dh(Fa)}

and hence

‖q − q‖1,d ≤
νh + q(t1) maxa∈A{dh(Fa)}

1− σ
. (36)

By Lemma 7 it also follows that

‖q − q‖1,d ≤ ‖q − q‖1,d

17



and hence by relation (36) we have shown the result. ¤

As mentioned earlier, it is easy to compute the fixed pointq of the operatorLh by forward
substitution. Since the right-hand side of equation (17) involves a function evaluation intn, it
seems to be more complicated to compute the fixed pointq of Uh. However, it turns out that there
exists an easy analytic expression forq(tn), n = 1, 2, . . . , N . To this end we require the following
lemma.

Lemma 11 For A a finite set,f : A → [0,∞) andg : A → [0, 1) the optimality equation

w = min
a∈A

{f(a) + g(a)w} . (37)

has a unique solutionw ≥ 0 given by

w = min
a∈A

{
f(a)

1− g(a)

}
. (38)

Proof. Sincew 7→ mina∈A{f(a) + g(a)w} is a contraction, the above optimality equation has a
unique solution. Moreover, by the definition ofw we obtainw ≤ f(a) + g(a)w for everya ∈ A
and so

w ≤ min
a∈A

{
f(a)

1− g(a)

}
.

Again by its definition there exists somea ∈ A such thatw = f(a) + g(a)w and the result is
proved. ¤

Lemma 12 The fixed pointq of the operatorUh listed in relation(17) is given by

q(t1) = min
a∈A

{
c(a)

1− p
(a)
0

}

and forn = 2, ..., N

q(tn) = min
a∈A

{
c(a) +

∑n−1
k=1 q(tn−k)p

(a)
k

1− p
(a)
0

}
.

Proof. Since0 ≤ p
(a)
0 < 1 for everya andA is a finite set the expression forq(t1) is a direct

consequence of Lemma 11. Also by the definitionq(tn) we obtain

q(tn) = min
a∈A

{
c(a) +

∑n−1

k=1

(
q(tn−k)p

(a)
k

)
+ p

(a)
0 q(tn)

}

for everyn = 2, . . . , N . Takingf(a) = c(a) +
∑n−1

k=1 q(tn−k)p
(a)
k andg(a) = p

(a)
0 , the second

formula follows again from Lemma 11. ¤

In Section 5 we will compute bothq andq and this yields by Lemma 7 an upper bound on the
‘empirical’ accuracy of the discretization procedure(s). Also in Appendix B we list a simple
algorithm for computing the fixed pointsq andq.
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4 Computing the cdf of the time between two maintenance actions

To solve the optimization problems introduced in Section 3 we need a fast method to compute
the cdf Fa listed in relation (8) of the time between two maintenance actions. Unfortunately,
this cdf only has a nice analytical expression in some special cases (Frenk and Nicolai (2007)).
In general, evaluating this cdf numerically e.g. via its two-dimensional integral representation is
time-consuming. However, as we will see it is easy to approximate this cdf.

Note thatFa relates to the cdf of the first time a standard gamma process exceeds a random
threshold. For notational convenience we suppress the subscripta in this section and consider the
cdf HR given byHR(t) := P{T(R) ≤ t} for t ≥ 0, whereT(R) is the first time a standard
gamma process exceeds some nonnegative random variableR. In particular, takingR = λaRa

and replacingt by va(t) yields relation (8). In the remainder of this section we focus on the
computation of the cdfHR for nonnegative random variablesR having a general distribution. In
Section 4.1 we give expressions for this cdf and in Section 4.2 we demonstrate how the desired
hitting time distribution can be approximated.

4.1 General expressions

Since the nonnegative, non-defective, random variableR is by definition independent of the
gamma process and its cdfGR satisfiesGR(0) = 0 it follows by conditioning on the random
variableR that

HR(t) = P{T(R) ≤ t} = P{X(t) > R} =
∫ ∞

0
P{X(t) > r}dGR(r) (39)

for every t ≥ 0. Moreover, by conditioning on the random variableX(t) we obtain forGR a
continuous cdf the equivalent representation

HR(t) = E
(
GR(X(t))

)
. (40)

In general, the above expressions have to be computed via numerical integration. On the other
hand, if the random variableR has a degenerate, uniform or gamma-type distribution, thenHR

has a ‘nice’ analytical expression (Frenk and Nicolai, 2007).

4.2 A simple approximation

In Frenk and Nicolai (2007) it is shown empirically and theoretically that a linear interpolation of
HR at the integer points approximates the true cdf quite well in the supnorm. This approximation
is given by

HR(t) ≈ (t− btc)HR(btc+ 1) + (1− (t− btc))HR(btc), t ≥ 0. (41)
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To evaluate the continuous cdfF on its integer points one uses that

HR(n + 1)−HR(n) = P{n < T(R) ≤ n + 1}

= P{bT(R)c = n}

= 1
n!E

(
Rn exp(−R)

)
(42)

for everyn ∈ N ∪ {0}. Alternatively, if

ĜR(τ) := E(exp(−τR))

is the probability Laplace Stieltjes transform (pLSt) of the cdfGR, then relation (42) is the same
as

HR(n + 1)−HR(n) =
(−1)n

n!
Ĝ

(n)
R (1) (43)

for everyn ∈ N ∪ {0} with Ĝ
(n)
R , n ∈ N, denoting thenth derivative ofĜR andĜ

(0)
R := ĜR. If

the derivatives of̂GR are elementary functions we can directly apply relation (43). Examples are
given by the class of infinitely divisible distributions, including the gamma distribution, (power
transformations of) the uniform distribution and the class of concave distributions (for more de-
tails, see Frenk and Nicolai, 2007).

Remark 13 Observe the above piecewise linear approximation is derived for a standard gamma
process and by construction it is Lipschitz continuous. By relation (3) it can also be used for a
non-stationary gamma process. Approximating now the cdf of the time between two maintenance
actionsFa byF prox

a yields a different continuous-time dynamic programming equation, given by

qprox(t) = min
a∈A

{c(a)1(0,T ](t) +
∫ T

0
qprox(t− y)dF prox

a (y)}. (44)

If the shape functionsva are Lipschitz continuous on [0,T], it follows by the remark after Lemma 3
that the approximationF prox

a is clearly Lipschitz continuous and so we may conclude from Lemma
8 thatqprox being the solution of the above approximate Bellman equation is Lipschitz continuous
on (0, T ] and satisfiesqprox(0) = 0. Also, sinceF prox

a is close in the supnorm toFa, the same
holds for the fixed pointqprox of relation (44) and the fixed pointq of relation (15). By the previous
results one may therefore conclude that the discretization of the above approximative Bellman
equation yields accurate results.

5 Numerical example

Let us illustrate the model and the methods discussed in the previous sections with the following
numerical example. Consider a planning horizon of at most50 time units, i.e.T ∈ [0, 50]. The

20



0 5 10 15
0

0.2

0.4

0.6

0.8

1
(i) "spot repair"

pr
ob

time
0 5 10 15

0

0.2

0.4

0.6

0.8

1
(ii) "repainting"

pr
ob

time
0 5 10 15

0

0.2

0.4

0.6

0.8

1
(iii) "replacement"

pr
ob

time

Figure 3: Probability distributions of the time between two maintenance actions: (i)
Fas , (ii) Far , and (iii) Faf

.

initial gamma deterioration process is given byXv,λ with v(t) = 0.25t2 andλ = 1. The interven-
tion level is given byρ = 25. Let A = {as, ar, af} be the set of maintenance actions representing
spot repair, repainting and full replacement. Suppose the size of the affected area just after each
of these three maintenance actions is given byS(as) ∼ unif(15, 20), S(ar) ∼ unif(10, 15) and
S(af ) = 0 almost surely, respectively. It follows that the reductionRa is uniformly distributed
for a ∈ {as, ar} andRaf

has a degenerate distribution. The cdfFa is computed numerically for
all actionsa ∈ A and the corresponding graphs are shown in Figure 3.

The costs associated with the maintenance actions arec(as) = 2, c(ar) = 3 andc(af ) =
5, respectively. Finally, let the gamma processes describing the size of the affected area after
maintenance actiona have shape functionva = v, ∀a ∈ A, and scale parameterλas = λ/2,
λar = 2λ/3 andλaf

= λ, respectively. By doing so deterioration is accelerated by a factor
2 (3/2) after spot repair (repainting), while keeping the variability of the deterioration process
the same. Moreover, the ratio of the expected time until the next crossing of levelρ due to a
maintenance action and the unit cost is approximately2 for all maintenance actions.

Algorithm 14 in Appendix B has been utilized to computeq andq with discretization step
h = 0.01. It appears from plots (a) and (b) in Figure 4 that these bounds onq are approximately
equal. That is, in this example the discretization of the dynamic programming equation yields
accurate results. In plot (a) we also see that the minimal expected cost (just before a maintenance
action has to be selected) as a function of the planning horizonT is almost linear. Plots (c) and
(d) in Figure 4 show for both bounds the optimal maintenance action just before the intervention
level is exceededT time units before the end of the horizon. It can be seen that on the short term
‘spot repair’ is the best action, whereas on the long term ’replacement’ is most beneficial. It is
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Figure 4: (a) Fixed pointsq and q of the operatorsLh and Uh, respectively. (b)
Relative difference100

(
q(tn)− q(tn)

)
/q(tn). (c)-(d) Optimal maintenance actions

associated withq andq, respectively.

noteworthy that ‘repainting’ is cost optimal whenT ∈ [5, 7] and that the optimal action changes
a number of times from ‘spot repair’ to ‘replacement’ forT ∈ [10, 25]. Here the end of horizon
effect may play a role. The optimal maintenance actions associated with the boundsq andq are
almost the same, again showing that the discretization yields a good approximation.

6 Conclusions

The life-cycle management of steel structures involves decisions regarding the timing and the
type of maintenance of protective coatings. In this paper we have presented a model for optimal
maintenance of such coatings on steel structures. The deterioration of coatings is represented
by the size of the area affected by corrosion and this is modelled by a non-stationary gamma
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process. Imperfect maintenance actions such as spot repair and repainting reduce this size by a
random amount, whereas replacement reduces the size to zero. After maintenance the size again
follows a non-stationary gamma process with possibly different parameters. It is assumed that
maintenance is done as soon as the gamma process exceeds a fixed threshold and consequently the
time between two maintenance actions is the first time a gamma process exceeds some nonnegative
random threshold. The problem is to find the sequence of maintenance actions that minimizes the
expected cost over a finite horizon. The continuous-time problem is formulated as a renewal-type
optimality equation and it is solved by discretizing time. It is shown that the discretization yields an
accurate approximation of the original problem. The outcomes of a numerical experiment suggest
that different maintenance actions can be optimal over the decision horizon.
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Appendix

A On the overshoot of a non-stationary gamma process

In this appendix we give an upper bound on the expected overshootE(Wv,λ(r)) of a non-stationary
gamma process for anyr > 0. By relation (4) we know that

Wv,λ(r) d= λ−1W(λr)

with W(λr) the overshoot at levelλr of a standard gamma process and so we only need to deter-
mine an upper bound on the expected overshoot of a standard gamma process. Introduce for any
h > 0 the hitting time

Th(r) := min{nh > 0 : X(nh) > r} (45)
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with X a standard gamma process. By the definition of the hitting timeT(r) of a standard gamma
process it is obvious that

T(r) ≤ Th(r) (46)

almost surely. Also, since the standard gamma process has independent and identically distributed
increments the random variablesSn := X(nh) form a partial sum process and for this process we
introduce the renewal processNh := {Nh(t) : t ≥ 0} given by

Nh(t) = sup{n ∈ N ∪ {0} : Sn ≤ t}. (47)

This shows by relations (45) and 46) that

Th(r) = h(Nh(r) + 1)

and sinceX has increasing sample paths we obtain by relation (46) that

W(r) = X(T(r))− r

≤ X
(
h(Nh(r) + 1)

)− r

= SNh(r)+1 − r

This implies using the well-known relationE(SNh(r)+1) = E(Nh(r) + 1)E(X(h)) that

E(W(r)) ≤ E(Nh(r) + 1)E(X(h))− r. (48)

SinceX(h) ∼gamma(h, 1) we obtain

E(X(h)) = h andE(X2(h)) = h + h2.

Hence by Lorden’s inequality for the renewal functiont 7→ E(Nh(t)) (for an elementary proof of
this inequality see Frenket al., 1997) we obtain

E(Nh(r) + 1) ≤ r

h
+

h + h2

h2
=

r + 1
h

+ 1.

This implies by relation (48) that
E(W(r)) ≤ h + 1

for everyr > 0. Since this inequality holds holds for anyh > 0 we finally obtain thatE(W(r)) ≤
1 and soE(Wv,λ(r)) ≤ λ−1. This also implies thatE(Wv,λ(R)) ≤ λ−1 for any random variable
R independent of the gamma process. We may assume that in practice the expected reduction
E(Ra) À λ−1 for any actiona ∈ A and so this justifies that we do not consider the overshoot in
our model.
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B Dynamic programming algorithm

The algorithm below simultaneously computes lower and upper bounds for the minimal expected
maintenance coststn time units before the end of the horizon, just before a maintenance action
has to be selected, forn = 0, 1, . . . , N .

Algorithm 14
Input: integerN , real T , real arrayc(a), ∀a ∈ A

INITIALIZATION:
h = T/N

computep(a)
k := Ga((k + 1)h)−Ga(kh), k = 0, 1, . . . , N − 1, ∀a ∈ A

v(0)=w(0)=0
optactionv(k) = optactionw(k) = 0,k = 1, 2, . . . , N

MAIN:
For n = 1 to N do

sumv(a) = sumw(a) = 0,∀a ∈ A
For k = 1 to n− 1 do

For a ∈ A do
sumv(a) = sumv(a) + v(n− k)p(a)

k−1

sumw(a) = sumw(a) + w(n− k)p(a)
k

Nexta
Nextk
Letv(n) = mina∈A {c(a) + sumv(a)}.
optactionv(n) = arg mina∈A {c(a) + sumv(a)}.
Letw(n) = mina∈A

{
(c(a) + sumw(a))/(1− p

(a)
0 )

}
.

optactionw(n) = arg mina∈A

{
(c(a) + sumw(a))/(1− p

(a)
0 )

}
.

Nextn

OUTPUT:
The arraysv(n), n = 0, 1, . . . , N , andw(n), n = 0, 1, . . . , N , consist of the lower and upper
bounds on the minimal expected maintenance costs,tn time units before the end of the horizon and
just before a maintenance action has to be selected. The elements of the arraysoptactionv(n),
n = 1, 2, . . . , N , andoptactionw(n), n = 1, 2, . . . , N , are the maintenance actions to be taken
tn time units before the end of the horizon, just before the intervention level is exceeded.
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