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Abstract

The non-stationary gamma process is a non-decreasing stochastic process with indepen-
dent increments. By this monotonic behavior this stochastic process serves as a natural can-
didate for modelling time-dependent phenomena such as degradation. In condition-based
maintenance the first time such a process exceeds a random threshold is used as a model for
the lifetime of a device or for the random time between two successive imperfect maintenance
actions. Therefore there is a need to investigate in detail the cumulative distribution function
(cdf) of this so-called randomized hitting time. We first relate the cdf of the (randomized) hit-
ting time of a non-stationary gamma process to the cdf of a related hitting time of a stationary
gamma process. Even for a stationary gamma process this cdf has in general no elementary
formula and its evaluation is time-consuming. Hence two approximations are proposed in
this paper and both have a clear probabilistic interpretation. Numerical experiments show
that these approximations are easy to evaluate and their accuracy depends on the scale param-
eter of the non-stationary gamma process. Finally, we also consider some special cases of
randomized hitting times for which it is possible to give an elementary formula for its cdf.
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1 Introduction

The non-stationary gamma process is a monotone continuous-time non-homogeneous Markov pro-
cess with independent increments. The increments are gamma distributed with time-dependent
shape function and an identical scale parameter. It is a jump process and the number of jumps in
any time interval is infinite with probability one ([12]). These properties make the gamma process
a suitable candidate to model the temporal variability in monotone phenomena. A recent paper
by Van Noortwijk (2006) ([22]) gives an overview of the application of gamma processes within
maintenance. Within this field these processes are used to describe time-dependent degradation
such as wear, creep and corrosion. Another application of the gamma process outside the field of
maintenance, is the aggregate claim process within insurance mathematics [8].

The review by Van Noortwijk ([22]) indicates that many authors have studied the first time
a gamma process exceeds a fixed threshold value. However, only a few consider the first time a
random threshold value is exceeded. In the remainder of this paper such a time is called a ran-
domized hitting time. The first to propose a randomized hitting time within maintenance was
Abdel-Hameed (1975) [2]. He uses the gamma process to model degradation, in particular wear,
and the associated randomized hitting time serves as a model for the lifetime of a device. This
means that the cumulative distribution function (cdf) of the lifetime of the device is the cdf of a
randomized hitting time associated with a given gamma process. However, as indicated by Van
Noortwijk, authors proposing this randomized hitting time model do mostly not perform numerical
experiments. This is probably due to the complicated structure of the cdf being a two-dimensional
integral. Since computing the cdf of this randomized hitting time is a subprocedure, which for
some maintenance optimization models needs to be repeated under different parameters, the nu-
merical optimization of such a model is mostly time-consuming. Hence there is a need for a fast
numerical procedure giving reliable numerical outcomes for this cdf. As an example we mention
a model using randomized hitting times introduced by Nicolai and Frenk ([13]; [14]). They model
the duration between two maintenance actions by the time at which the gamma process (represent-
ing the deterioration process of a steel structure) exceeds a random reduction resulting from the
last imperfect maintenance action. The problem of selecting maintenance actions resulting in the
lowest expected cost over a finite horizon is then formulated as a stochastic dynamic programming
model. For this model the optimal policy needs to be computed. Due to the above considerations
the main purpose of this paper is to investigate in detail the cdf of a randomized hitting time of a
(non-)stationary gamma process.

First of all, we show in Section 2 that without loss of generality we may restrict ourselves
to the cdf of a randomized hitting time associated with a so-called standard gamma process. In
this section we also study in detail the cdf of the fractional and integer part of a randomized
hitting time and extend one of the results discussed in [18]. At the same time we simplify the
proof technique for this result. Applying now the theoretical results of this section we propose
in Section 3 two approximations for the cdf of a randomized hitting time. The first one is based
on the approximative assumption that the fractional and the integer part of the randomized hitting
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time are independent and that the cdf of the fractional part is uniformly distributed on (0, 1). To
justify these approximative assumptions (especially the latter one) we apply the results derived
in Section 2. The second approximation is based on the assumption that the sample path of a
stationary gamma process can be replaced by a piecewise linear sample path that coincides with
the original sample path at integer points. As in both approximations the true cdf at integer time
points is required, we also give a method for computing these probabilities. In Section 4 we
derive for some random thresholds having a gamma-type cdf elementary formulas for the cdf of
the associated randomized hitting times. Finally, in Section 5 numerical experiments are done to
assess the quality of both approximations proposed in Section 3. We also compare the computation
time for the construction of the approximations and the true cdf’s.

2 On randomized hitting times of a non-stationary gamma process

In this section we derive some properties of the hitting time of a non-stationary gamma process
exceeding a nonnegative random threshold value. To introduce the definition of a gamma process
we first observe ([19]) that a gamma density with scale parameter λ > 0 and shape parameter
β > 0 is given by

f(x) = Γ(β)−1λβxβ−1 exp(−λx)1(0,∞)(x)

with
Γ(β) :=

∫ ∞

0
xβ−1 exp(−x)dx

the well-known gamma function. In the rest of this paper such a cdf is denoted by gamma(β, λ).
Also we mean by X ∼ F that the random variable X has cdf F .

Definition 1 Let λ > 0 and v : [0,∞) → [0,∞) an increasing, right-continuous function satisfy-
ing v(0) = 0. The stochastic process Xv,λ = {Xv,λ(t) : t ≥ 0} is called a gamma process with
shape function v and scale parameter λ > 0 if

1. Xv,λ(0) = 0 with probability 1 and Xv,λ is a cadlag process.

2. The stochastic process Xv,λ has independent increments.

3. The random variable Xv,λ(s) − Xv,λ(t), s > t has a gamma distribution with shape pa-
rameter v(s)− v(t) and scale parameter λ > 0.

If the function v is linear a gamma process Xv,λ is called stationary, otherwise it is called
non-stationary. A stationary gamma process with v having slope 1 and scale parameter λ equal
to 1 is called standard and denoted by X. For any (non-stationary) gamma process we are now
interested in the so-called hitting time Tv,λ(r) of level r > 0 given by

Tv,λ(r) := inf{t ≥ 0 : Xv,λ(t) > r}. (1)
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If the gamma process is standard the hitting time in (1) is denoted by T(r). In [14] one is inter-
ested in the randomized hitting time Tv,λ(R) with R a nonnegative random variable independent
of the (non-stationary) gamma process. This random variable represents the random duration
between two imperfect maintenance actions. In particular, the (non-stationary) gamma process
models the deterioration of the structure under consideration and the random variable R having
a non-defective cdf GR satisfying GR(0) = 0 denotes the random reduction in damage due to
an imperfect maintenance action. We assume throughout this paper that the random variable R is
independent of the deterioration process Xv,λ. To relate the properties of the (randomized) hitting
time to the hitting time of a standard gamma process we observe by Definition 1 that

Xv,λ(t) d= λ−1Xv,1(t)
d= λ−1X(v(t)) (2)

where d= is used to indicate that two random variables have the same cdf. Using relation (2) the
next result holds.

Lemma 2 If λ > 0 and the shape function v is strictly increasing and continuous satisfying
v(0) = 0 and v(∞) = ∞, then

Tv,λ(R) d= v←(T(λR)) (3)

where v← denotes the inverse function of v.

Proof. By relations (1) and (2) we obtain

Tv,λ(R) d= inf{t ≥ 0 : X(v(t)) > λR}. (4)

Since the function v is strictly increasing and continuous with range [0,∞) its inverse v← is also
strictly increasing and continuous and satisfies v←(v(t)) = t for every t ≥ 0. This shows by
relation (4) that

Tv,λ(R) d= inf{v←(t) : X(t) > λR} = v←(inf{t ≥ 0 : X(t) > λR})

and we have verified the result. ¤

For a gamma process with continuous shape function it is well-known that it is an increasing
jump process with a countably infinite number of jumps over any finite interval (see e.g. [12] or
[5]) and so the overshoot at any given level is a non-degenerate random variable. If the overshoot
Wv,λ(r) of level r of a non-stationary gamma process is given by

Wv,λ(r) := Xv,λ(Tv,λ(r))− r (5)

we obtain by Lemma 2 and relation (2) that

Wv,λ(R) d= λ−1X(T(λR))−R = λ−1W(λR) (6)
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with W(λR) the overshoot of a standard gamma process beyond level λR. As for the randomized
hitting time this shows that the overshoot of a non-stationary gamma process can also be reduced
to the overshoot of a standard gamma process.

To investigate in detail the cdf of the hitting time Tv,λ(R) it follows by Lemma 2 introducing
HR(t) := P{T(R) ≤ t} that

P{Tv,λ(R) ≤ t} = HλR(v(t)). (7)

Hence, to compute or approximate the cdf of the random variable Tv,λ(R) for any non-stationary
gamma process, it is therefore sufficient to compute or approximate the cdf HR. By relation (7) it
is clear for AλR : [0,∞) → [0, 1] an approximation of the cdf of T(λR) that the approximation
Av,λ of the cdf of the random variable Tv,λ(R) is given by

Av,λ(t) := AλR(v(t)). (8)

For v continuous and increasing satisfying v(0) = 0 and v(∞) = ∞ relation (8) implies

‖Av,λ −Hv,λ‖∞ = ‖AλR −HλR‖∞ (9)

with Hv,λ denoting the cdf of Tv,λ(R) and ‖h‖∞ := sup0≤t<∞ |h(t)| the well-known supnorm.
Since the nonnegative random variable R is by definition independent of the gamma process and
its cdf satisfies GR(0) = 0 it follows by conditioning on the random variable R that

HR(t) = P{T(R) ≤ t} = P{X(t) > R} =
∫ ∞

0
P{X(t) > r}dGR(r) (10)

for every t ≥ 0. Moreover, by conditioning on the random variable X(t) with cdf Ft we obtain
for GR continuous the equivalent representation

HR(t) =
∫ ∞

0
P{R < x}dFt(x) = E(GR(X(t))). (11)

Since the gamma process is increasing and continuous in probability relation (10) and a standard
application of Lebesque’s dominated convergence theorem (see e.g. [6]) imply that the cdf HR is
continuous. Using relation (11) one can also derive for random variables R having a gamma type
cdf an elementary formula for the cdf HR. This will be done in Section 4. For general cdf’s this
is not possible and so we propose in the next section two elementary approximations. To justify
these approximations we first investigate some properties of random variables related to the hitting
time.

Let bxc be the largest integer not exceeding x for any x ≥ 0 and denote by F(x) its fractional
part given by F(x) := x− bxc. Clearly

T(R) = bT(R)c+ F(T(R)). (12)

For the integer part bT(R)c it is easy to show the following result.
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Lemma 3 If N := {N(t) : t ≥ 0} is a Poisson process with arrival rate 1, then bT(R)c d=
N(R).

Proof. Since for a standard gamma process

X(n + 1) d=
∑n+1

k=1
Yk

with Yk, 1 ≤ k ≤ n + 1 independent and exponentially distributed with scale parameter 1 we
obtain by the continuity of the cdf of the random variable T(R) that

P{bT(R)c ≤ n} = P{T(R) < n + 1} = P{T(R) ≤ n + 1}

= P{X(n + 1) > R} = P{N(R) ≤ n}.
(13)

Hence the desired result follows. ¤

By the independence of the random variable R and the standard gamma process X we obtain
by Lemma 3 and the well-known properties of a Poisson process that

P{bT(R)c = n} =
1
n!
E (Rn exp(−R)) . (14)

for every n ∈ N∪ {0}. In the next lemma we give an expression for the cdf of F(T(R)). For this
expression we introduce the functions qt : (0,∞) → R, 0 < t < 1 given by

qt(r) := 1− Ft(r)−
∫ ∞

r
1− Ft(x)dx. (15)

Lemma 4 If R is a nonnegative random variable with cdf GR satisfying GR(0) = 0 and this
random variable is independent of the standard gamma process X, then

P{F(T(R)) ≤ t} = t + E (qt(R))

for every 0 < t < 1.

Proof. By the definition of the random variable F(T(R)) we obtain

{F(T(R)) ≤ t} = ∪∞k=0{k ≤ T(R) ≤ k + t}. (16)

Since the cdf of T(R) is continuous and so {k ≤ T(R) ≤ k + t} a.s= {k < T(R) ≤ k + t} it
follows for every k ∈ N ∪ {0} that

{k ≤ T(R) ≤ k + t} a.s= {X(k) ≤ R < X(k + t)}.
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This yields by relation (16)

{F(T(R)) ≤ t} a.s= ∪∞k=0{X(k) ≤ R < X(k + t)}

and conditioning on R implies

P{F(T(R)) ≤ t} =
∫ ∞

0
P{∪∞k=0{X(k) ≤ r < X(k + t)}}dGR(r). (17)

Since X(k + t) d= X(k) + Y(t) with Y a standard gamma process independent of X and the cdf
Fk of X(k) is the k-fold convolution F k∗of an exponential distribution with scale parameter 1 we
obtain for every r > 0

P{∪∞k=0{X(k) ≤ r < X(k + t)}} =
∑∞

k=0 P{X(k) ≤ r < X(k) + Y(t)}

= 1− Ft(r) +
∫ r
0 (1− Ft(r − x)) dU(x)

(18)

with U(x) =
∑∞

k=1 F k∗(x) = x the renewal function associated with a Poisson process having
arrival rate 1. Using now ∫ ∞

0
1− Ft(x)dx = E(X(t)) = t

and relations (17) and (18) the desired result follows. ¤

To rewrite the representation of the function qt into a more suitable form we introduce a beta
cdf on (0, 1) with parameters α, β > 0. Its density is given by

bα,β(x) :=
Γ(α + β)
Γ(α)Γ(β)

xα−1(1− x)β−11(0,1)(x) (19)

and the cdf itself is denoted by beta(α, β). If β > α > 0 and τ, λ > 0 it is shown on page 261 of
[23] (see also [17]) that

(
λ

λ + τ

)α

=
Γ(β)

Γ(α)Γ(β − α)

∫ 1

0

(
λ

λ + τx

)β

xα−1(1− x)β−α−1dx. (20)

and this result leads to a well-known probabilistic interpretation of a random variable having a
gamma cdf with non-integer shape parameter. Although this result seems to be well-known (see
e.g. [7], [19] or [15] for the special case β = 1) we could not find a detailed proof of this. Hence
in the next lemma we list a short proof based on relation (20).

Lemma 5 If 0 < t < 1 and Y and V are independent nonnegative random variables with Y ∼
gamma(β, λ), β > 0 and V ∼ beta(tβ, (1− t)β), then VY ∼ gamma(tβ, λ).
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Proof. For every τ > 0 it follows by the independence of V and Y that

E (exp(−τVY)) =
Γ(β)

Γ(tβ)Γ((1− t)β)

∫ 1

0
E (exp(−τvY)) vtβ−1(1− v)(1−t)β−1dv

=
Γ(β)

Γ(tβ)Γ(β − tβ)

∫ 1

0

(
λ

λ + τv

)β

vtβ−1(1− v)β−tβ−1dv

Applying relation (20) we obtain using α = tβ < β that E( exp(−τVY)) = ( λ
λ+τ )tβ and this is

the probability Laplace-Stieltjes transform (pLSt) of a gamma distribution with scale parameter λ
and shape parameter tβ. ¤

To rewrite E (qt(R)) in a more suitable form we also introduce a Pareto distribution on (0,∞)
with parameter β > 0. Observe a Pareto(β) cdf on (0,∞) with parameter β > 1 has density ([19])

f(x) = (β − 1)(1 + x)−β1(0,∞)(x) (21)

and this cdf is denoted by par(β).

Lemma 6 For every 0 < t < 1 it follows for any nonnegative random variable R and Z ∼ par(2)
independent of R that

E (qt(R)) = π−1 sin(πt)E
(
exp(−R(Z + 1))Z1−t

)
.

Proof. It is sufficient to show that

qt(r) = π−1 sin(πt)
∫ ∞

0
exp(−r(z + 1))z1−t(1 + z)−2dz. (22)

for every 0 < t < 1. Since X(t) ∼ gamma(t, 1) it follows by relation (15) and Lemma 5 (take
β = 1 and λ = 1) that

qt(r) = P{VY > r} −
∫ ∞

r
P{VY > x}dx (23)

with Y ∼ gamma(1, 1) and V ∼ beta(t, 1 − t) independent random variables. By Tonelli’s
theorem ([11])

∫∞
r P{VY > x}dx =

∫∞
r

∫ 1
0 P{vY > x}bt,1−t(v)dvdx

=
∫ 1
0

∫∞
r P{vY > x}dxbt,1−t(v)dv

and this implies by relation (23) that

qt(r) =
∫ 1

0

(
P{vY > r} −

∫ ∞

r
P{vY > x}dx

)
bt,1−t(v)dv. (24)
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Since Y ∼ gamma(1, 1) it follows

P{vY > r} −
∫ ∞

r
P{vY > x}dx = (1− v) exp(−rv−1)

for every 0 < v < 1 and so by by relations (19) and (24) we obtain

qt(r) = Γ(1)
Γ(t)Γ(1−t)

∫ 1
0 vt−1(1− v)1−t exp(−rv−1)dv

= 1
Γ(t)Γ(1−t)

∫∞
1 exp(−rz)(z − 1)1−tz−2dz

= 1
Γ(t)Γ(1−t)

∫∞
0 exp(−r(z + 1))z1−t(1 + z)−2dz.

(25)

Using now Euler’s reflection formula for the gamma function (see page 256 of [3]) or [23]) given
by Γ(t)Γ(1− t) = π(sinπt)−1 for 0 < t < 1 the desired representation for qt(r) listed in relation
(22) is shown. ¤

Combining Lemma 4 and 6 we immediately obtain

P{F(T(R)) ≤ t} = t + π−1 sin(πt)E( exp(−R(Z + 1))Z1−t). (26)

We will now show that the last nonnegative term in relation (26) is small for E(exp(−R))
small. Hence we may conclude in this case that the random variable F(T(R)) is approximately
uniformly distributed. We will use this observation in the next section to justify an approximation
for the cdf of T(R). Since Z and R are random variables on (0,∞) it follows that

exp(−R(Z + 1))Z1−t ≤ exp(−R)Z1−t.

By the independence of Z and R and Z ∼ par(2) this implies for every 0 < t < 1 that

E( exp(−R(Z + 1))Z1−t) ≤ E(exp(−R))E(Z1−t) = E(exp(−R))O(t−1).

Hence by (26) we obtain

0 ≤ P{F(T(R)) ≤ t} − t = O

(
sin(πt)

πt

)
E(exp(−R)). (27)

A related upperbound for R a degenerate random variable is derived in [18] using a completely
different technique. This upperbound can be derived considering relation (22). In [18] the in-
version formula for Laplace transforms is used together with an appropriate choice of the closed
contour in the associated complex contour integral. To compute the integer moments of F(T(R))
we need to evaluate for every k ∈ N ∪ {0} the function Mk : R→ R given by

Mk(a) :=
∫ 1

0
exp(at)tk sin(πt)dt. (28)

In the next lemma the function M−1 denotes the zero function.
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Lemma 7 It follows M0(a) = π
a2+π2 (exp(a) + 1) and

Mk(a) =
π exp(a)
a2 + π2

− 2ka

a2 + π2
Mk−1(a)− k(k − 1)

a2 + π2
Mk−2(a) (29)

for every k ∈ N.

Proof. It is easy to check by differentiation that the antiderivative of the function t 7→
exp(at) sin(πt) on (0,∞) is given by the function

t 7→ exp(at)
a2 + π2

(a sin(πt)− π cos(πt)).

and so the expression for M0(a) is verified. To check the recurrence relation (29) we observe by
the first part that

π(exp(a) + 1) = (a2 + π2)M0(a). (30)

Since for every k ∈ N it follows that Mk(a) = M
(k)
0 (a) with M

(k)
0 denoting the kth derivative of

the function M0 we obtain by differentiation of the identity in (30) the desired result. ¤

Using a package such as Maple and the above recurrence relation it is possible to give an
analytical expression for Mk(a). In the next lemma we give an expression for the first moment of
F(T(R)).

Lemma 8 If R is a nonnegative random variable with cdf GR satisfying GR(0) = 0 and this
random variable is independent of the standard gamma process X, then

E(F(T(R)) =
1
2
− E

(
exp(−R(Z + 1))(Z + 1)

(ln(Z))2 + π2

)

with Z independent of R and Z ∼par(2).

Proof. Since for any random variable Y on (0, 1) it is well-known that E(Y) =
∫ 1
0 P{Y > t}dt

we obtain by relation (26)

E(F(T(R)) =
1
2
− π−1

∫ 1

0
sin(πt)E( exp(−R(Z + 1)Z1−t)dt. (31)

Applying Tonelli’s theorem and relation (28) yields
∫ 1

0
sin(πt)E( exp(−R(Z + 1)Z1−t)dt = E (exp(−R(Z + 1))ZM0(− ln(Z))) (32)
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and by Lemma 7 the desired result follows. ¤

By relation (12) and Lemma 3 we immediately obtain

E(T(R)) = E(R) +
1
2
− E

(
exp(−R(Z + 1))(Z + 1)

(ln(Z))2 + π2

)
. (33)

To derive a simple upper and lower bound on the expectation of T(R) or F(T(R)) we observe
for any nonnegative random variable Z that (ln(Z))2 + π2 ≥ π2. This shows by Lemma 8 that

1
2
− π−2E (exp(−R(Z + 1))(Z + 1)) ≤ E (F(T(R))) ≤ 1

2
(34)

A similar inequality can be derived for the expectation of T(R). If we want to give a more precise
evaluation of these moments we first observe by the inverse transformation method ([16]) and
Z ∼ par(2) that

Z d= U−1 − 1

with U a standard uniform random variable. Hence, if it is easy to generate a realization of the
random variable R, we can always use Monte Carlo simulation to give an more accurate estimate
of the expression (see Lemma 8)

E
(

exp(−R(Z + 1))(Z + 1)
(ln(Z))2 + π2

)
.

If we are interested in higher integer moments E
(F(T(R))k+1

)
for some k ∈ N we observe that

E
(
F(T(R))k+1

)
= (k + 1)

∫ 1

0
tkP{F(T(R)) > t}dt. (35)

By the same technique as in Lemma 8 we obtain from relation (35) that

E
(
F(T(R))k+1

)
=

1
k + 2

− π−1E (exp(−R(Z + 1))ZMk(− ln(Z))) . (36)

Applying the recurrence relation in Lemma 7 we can again use Monte Carlo integration to estimate
the integral in relation (36). In the next section we will apply our findings on F(T(R)) and
bT(R)c to justify the first proposed approximation.

3 Approximating the cdf of a randomized hitting time

Since in [14] we use dynamic programming to construct an optimal policy and for such a procedure
it is too time-consuming to evaluate the cdf of the randomized hitting time Tv,λ(R) exactly (e.g.
via numerical integration), we derive in this section two simple approximations of this cdf. By
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relation (7) it is sufficient to give an approximation of the cdf HR of the hitting time T(R) listed
in relation (10). To justify our first approximation we observe by relation (12) that

HR(t) = P{T(R) ≤ t}

= P{T(R)−F(T(R)) ≤ t−F(T(R))}

= P{bT(R)c ≤ t−F(T(R))}
(37)

for every t > 0. It is shown in [18] that

cov(T(r),F(T(r))) = O(exp(−r)) (38)

and this implies for every nonnegative random variable R independent of the standard gamma
process that

cov(T(R),F(T(R)) = O(E(exp(−R))). (39)

Hence for E(exp(−R)) small the random variables T(R) and F(T(R)) are practically uncor-
related. Also by the analysis in the previous section we have shown for E(exp (−R)) small that
the random variable F(T(R)) has approximately a uniform distribution on (0, 1). Although un-
correlated random variables are in general not independent (equivalence only holds for normal
distributed random variables), it seems by the above observations reasonable (for the purpose to
obtain easy expressions) to introduce the following approximation assumption. A similar approx-
imation assumption is also introduced in [18] for a different purpose.

Approximation assumption 1. The random variables T(R) and F(T(R)) are independent
and F(T(R)) is uniformly distributed on (0, 1).

Before investigating the consequence of approximation assumption 1 we list the following
result.

Lemma 9 If the nonnegative random variable Y is independent of F(Y), then bYc is also inde-
pendent of F(Y).

Proof. Since bYc =
∑∞

n=0 n1{n≤Y<n+1} and hence bYc is a function of the random variable Y
the desired result follows. ¤

If approximation assumption 1 holds we obtain by relation (37) and Lemma 9 that

HR(t) ≈ P{bT(R)c ≤ t−U} (40)

with U a uniformly distributed random variable independent of bT(R)c. Introducing now

P{bT(R)c ≤ −1} := 0
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and using the independence of U and bT(R)c it follows for every t > 0 that

P{bT(R)c ≤ t−U} = F(t))P{bT(R)c ≤ btc}+ (1−F(t))P{bT(R)c ≤ btc − 1}. (41)

Also by the continuity of the cdf HR we obtain for every t > 0 that

P{bT(R)c ≤ btc} = P{T(R) < btc+ 1} = HR(btc+ 1).

This implies by relation (41)

P{bT(R)c ≤ t−U} = F(t)HR(btc+ 1) + (1−F(t))HR(btc)

and so by relation (40) we obtain

HR(t) ≈ F(t)HR(btc+ 1) + (1−F(t))HR(btc). (42)

This shows under approximation assumption 1 that the cdf HR seems to be well approximated by
a linear interpolation of HR at the integer points.

To evaluate the continuous cdf HR on its integer points we know by relation (14) that

HR(n + 1)−HR(n) = P{n < T(R) ≤ n + 1}

= P{bT(R)c = n}

= 1
n!E(Rn exp(−R))

(43)

for every n ∈ N ∪ {0}. Alternatively, if ĜR(τ) := E( exp(−τR)) is the probability Laplace
Stieltjes transform (pLSt) of the cdf GR, then relation (43) is the same as

HR(n + 1)−HR(n) =
(−1)n

n!
Ĝ

(n)
R (1) (44)

for every n ∈ N ∪ {0} with Ĝ
(n)
R , n ∈ N denoting the nth derivative of ĜR and Ĝ

(0)
R := ĜR. If

the derivatives of ĜR are elementary functions we can directly apply relation (44) as shown in the
next example for R uniformly distributed on (a, a + b). For convenience introduce the sequence
pn, n ∈ N ∪ {0} given by

pn := HR(n + 1)−HR(n) = P{bT(R)c = n}. (45)

Example 10 If the random variable R is uniformly distributed on (a, a+b) with a ≥ 0 and b > 0
or R d= a + bU with U a standard uniformly distributed random variable we obtain

ĜR(τ) = E(exp(−τ(a + bU))) = b−1(ha(τ)− ha+b(τ)) (46)

12



with the functions hd : [0,∞) → R, d > 0 given by hd(τ) := τ−1 exp(−τd). If we introduce the
function en : [0,∞) → R given by ([3])

en(x) :=
∑n

j=0

xj

j!

it is easy to check using Leibniz formula for the differentiation of the product of two functions that
for any positive d and τ

(−1)nh
(n)
d (τ) = exp(−τd)

∑n
j=0

(
n
j

)
djτ−(n−j+1)(n− j)!

= n! exp(−τd)
∑n

j=0
dj

j! τ
−(n−j+1)

= n!τ−(n+1) exp(−τd)en(τd)

(47)

with h
(n)
d (τ) denoting the nth derivative of the function hd evaluated in τ . This implies

(−1)nh
(n)
d (1) = n! exp(−d)en(d). (48)

Hence by relations (44), (45), (46) and (48) we obtain for every n ∈ N ∪ {0}

pn = b−1 (exp(−a)en(a)− exp(−(a + b))en(a + b))

= b−1(P{N(a) ≤ n} − P{N(a + b) ≤ n})

= b−1P{N(a) ≤ n,N(a + b) > n}

(49)

with N a Poisson process with arrival rate 1. For n = 0 this reduces to

p0 = b−1P{N(a) = 0,N(a + b)−N(a) > 0}

= b−1P{N(a) = 0}P{N(b) > 0}

= exp(−a)b−1 (1− exp(−b)) .

Using relation (49) we also obtain for every n ∈ N ∪ {0} the recurrence relation

pn+1 = pn + b−1

(
exp(−a)an+1

(n + 1)!
− exp(−(a + b))(a + b)n+1

(n + 1)!

)
. (50)

If we consider the special case a = 0 it follows by relation (49) for every n ∈ N ∪ {0} that

pn = b−1P{N(b) > n}

13



Hence the recurrence relation in (50) reduces to

pn+1 = pn − bn

(n + 1)!
exp(−b) (51)

with p0 = b−1(1− exp(−b)).

In some cases we have to use a numerical procedure to evaluate ĜR(1). However, as shown by
the following example, it is still possible to write down a recurrence relation for the probabilities
pn.

Example 11 If the random variable R d= bUa for some b, a > 0 and U standard uniformly
distributed then clearly the domain of R is (0, b) and

P{R ≤ x} = P{U ≤ (b−1x)a−1} = (b−1x)a−1

for every 0 ≤ x ≤ b. By relation (43) we obtain

pn = bn

n!E(Uan exp(−bUa))

= bn

n!

∫ 1
0 xan exp(−bxa)dx

= a−1bn

n!

∫ 1
0 yn−1+a−1

exp(−by)dy.

(52)

Applying Tonelli’s theorem it follows for every ζ > 0
∫ 1
0 yζ exp(−by)dy = ζ

∫ 1
0

∫ y
0 xζ−1dx exp(−by)dy

= ζ
∫ 1
0

∫ 1
x exp(−by)dyxζ−1dx

= b−1ζ
∫ 1
0 exp(−bx)xζ−1dx− b−1 exp(−b).

By this recurrence relation and relation (52) it is easy to see for every n ∈ N ∪ {0} that

pn+1 =
n + a−1

n + 1
pn − a−1bn

(n + 1)!
exp(−b) (53)

and so for a = 1 we recover relation (51). To compute the values pn we first need to compute

p0 = E (exp(−bUa))

and this can be done by some numerical integration method (see e.g. [20]).

A generalization of a uniformly distributed random variable R is given in the following exam-
ple.

14



Example 12 Let GR be a concave cdf. It is well-known ([19]) that a cdf GR of a nonnegative
random variable R is concave on (0,∞) if and only if R d= UY with U a standard uniformly
distributed random variable, Y a nonnegative random variable and U and Y independent. Using
this representation we obtain for every τ > 0 that

ĜR(τ) =
∫ ∞

0
E (exp(−τbU)) dGY(b)

and so by relations (44), (45) and (50) (take a = 0) it follows p0 = E(exp(−UY)) and

pn+1 = pn − 1
(n + 1)!

E(Yn exp(−Y)) (54)

for every n ∈ N ∪ {0}. If we introduce the sequence

rn := P{bT(Y)c = n}

we obtain by relations (14) and (54) that

pn+1 = pn − 1
n + 1

rn.

This shows that one can evaluate P{bT(UY)c = n} once it is possible to compute the probabili-
ties P{bT(Y)c = n}.

If R ∼ gamma(β, ρ) we obtain by relation (44) and (45) the recurrence relation

pn+1 =
β + n

(n + 1)(ρ + 1)
pn, n ∈ N ∪ {0}, (55)

with starting value p0 = ( ρ
1+ρ)β . In the next example we discuss the case of R having an infinitely

divisible distribution thus generalizing R having a gamma distribution. A cdf GR on (0,∞) is
called infinitely divisible if for every n ∈ N there exists a sequence of independent, identically
distributed and nonnegative random variables Ri, 1 ≤ i ≤ n such that

R d= R1 + . . . + Rn

Examples of infinitely divisible cdf’s on (0,∞) are discussed in [19] and include gamma distri-
butions and scale mixtures of gamma distributions with shape parameter α ≤ 2. It is also shown
in [19] that all infinitely divisible cdf’s on (0,∞) can be obtained as weak limits of compound-
Poisson distributions.
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Example 13 Let the cdf GR satisfying GR(0) = 0 be infinitely divisible. Necessarily the non-
degenerate random variable R has unbounded support (cf. [19]) and so this excludes nonnegative
random variables R with bounded support. Also by Theorem 4.10 on page 95 and Theorem 4.14
on page 97 of [19] it follows that GR satisfying GR(0) = 0 is an infinitely divisible cdf if and only
if there exists some (Laplace-Stieltjes transform) LSt-able function K (the so-called canonical
function) satisfying

∫
(0,∞) x−1dK(x) = ∞ such that

∫ x

0
rdGR(r) = (GR ∗K)(x) (56)

for every x ≥ 0 with ∗ the well-known convolution operator. A function K is called a LSt-able
function ([19]) if K is right continuous and non-decreasing with K(x) = 0 for x < 0 and

K̂(τ) :=
∫ ∞

0−
exp(−τx)dK(x)

is finite for every τ > 0. By Tonelli’s theorem and the binomial theorem applied to (u + v)n−1 we
obtain for n ∈ N using relations (43), (45) and (56) that

n!pn =
∫∞
0 exp(−r)rndGR(r)

=
∫∞
0 exp(−r)rn−1d(GR ∗K)(r)

=
∫
R2

+
exp(−(u + v))(u + v)n−1dGR(u)dK(v)

=
∑n−1

j=0

(
n−1

j

) ∫∞
0 exp(−u)ujdGR(u)

∫∞
0 exp(−v)vn−1−jdK(v)

= (n− 1)!
∑n−1

j=0
1

(n−1−j)!pj

∫∞
0 exp(−v)vn−1−jdK(v).

(57)

Introducing the constants

rk :=
1
k!

∫ ∞

0
xk exp(−x)dK(x), k ∈ N ∪ {0}

this implies by relation (57) and (43) that

p0 = ĜR(1) and pn =
1
n

∑n−1

j=0
pjrn−1−j , n ∈ N. (58)

From relation (56) it is easy to see (see also [19]) that

K̂(τ) =
−Ĝ

(1)
R (τ)

ĜR(τ)
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and so by relation (58) one can evaluate pn, n ∈ N ∪ {0} if it is possible to compute the con-
stants rk, k ∈ N. Examples are given by Gamma distributions with shape parameter β and scale
parameter ρ. For this case the canonical function K has derivative k(x) = β exp(−ρx) and so
rn = β(ρ + 1)−(n+1), n ∈ N ∪ {0}. This yields pn = β

n

∑n−1
j=0 pj(ρ + 1)−(n−j), n ∈ N, with

p0 = ( ρ
1+ρ)β . This actually defines the same sequence as relation (55) does.

Finally, if it is not possible to derive elementary expressions for the nth derivative of the pLSt
ĜR we observe by relation (14) that the generating function (gP) P of the sequence pn, n ∈ N∪{0}
is given by

P (z) := E
(
zbT(Rc)

)
=

∫ ∞

0
exp(−r)

∑∞
n=0

(zr)n

n!
dGR(r) = ĜR(1− z) (59)

for every z ∈ C with |z| ≤ 1. Hence we can apply the (numerical) FFT method ([1]) to evaluate
the sequence pn, n ∈ N.

A second approximation of the cdf HR is motivated by the following idea. Replace (see
Figure 1) each sample path of the standard gamma process by a piecewise linear sample path
coinciding with the original sample path at integer points and consider this stochastic process Xa

instead of the original standard gamma process X. Clearly by construction

Xa(n) a.s.= X(n)

and
Xa(n + s) = X(n) + s(X(n + 1)−X(n))

for every every n ∈ N ∪ {0} and 0 < s < 1. Moreover, it follows that E(Xa(t)) = E(X(t))
for every t > 0 and so this new stochastic process has the same expectation at each point as the
original one. Alternatively by Lemma 5 we know for every non-integer t > 0 that

X(t) d= X(btc) + VF(t)Y (60)

with VF(t) ∼ beta (F(t), 1 − F(t)), Y ∼ gamma(1, 1), X(btc) ∼ gamma(btc, 1) independent
random variables. Replacing now in relation (60) the random variable VF(t) by its expectation
F(t) we obtain the proposed stochastic process Xa = {Xa(t) : t ≥ 0}. We now introduce the
following approximation assumption.

Approximation assumption 2. HR(t) = P{X(t) > R} ≈ P{Xa(t) > R}.

To evaluate the probability P{Xa(t) > R} we first need the following result.

Lemma 14 For every non-integer t > 1 and x > 0

(1−F(t))P{Xa(t) ≤ x} = P{Xa(btc) ≤ x} − F(t)P{Xa(t− 1) ≤ x}.
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0

Xa(4 + s)

Figure 1: Piecewise linear sample path of the process Xa.

Proof. If 1 < t < 2 then Xa(t)
d= X(1) + F(t)Y1 with the random variables X(1) and Y1

independent and both exponentially distributed with parameter 1. After some calculations this
implies for every x > 0 that

(1−F(t))P{Xa(t) ≤ x} = (1−F(t))P{X(1) + F(t)Y1 ≤ x}

= P{X(1) ≤ x} − F(t)P{F(t)Y1 ≤ x}
(61)

Since
Xa(t− 1) d= F(t)Y1 and X(1) = Xa(1)

we have verified the desired formula for 0 < t < 1. To verify the formula for arbitrary non-integer
t > 2 it follows by the definition of the process Xa that

Xa(t) = Xa(btc) + F(t)Y1
d= Xa(btc − 1) + X(1) + F(t)Y1 (62)

with the random variables X(1), Y1 and Xa(btc − 1) independent and X(1), Y1 exponentially
distributed with parameter 1. This implies by relations (62) and (61) that

(1−F(t))P{Xa(t) ≤ x} = (1−F(t))P{Xa(btc − 1) + X(1) + F(t)Y1 ≤ x}

= P{Xa(btc − 1) + X(1) ≤ x} − F(t)P{Xa(btc − 1) + F(t)Y1 ≤ x}.
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Since Xa(btc) d= Xa(btc−1)+X(1) and Xa(t−1) = Xa(btc−1)+F(t)Y1, the desired result
follows. ¤

By Lemma 14 it follows for R independent of the standard gamma process X and hence
independent of Xa that

(1−F(t))P{Xa(t) ≤ R} = P{Xa(btc) ≤ R} − F(t)P{Xa(t− 1) ≤ R}. (63)

This implies the recurrence relation

(1−F(t))P{Xa(t) > R} = P{Xa(btc) > R} − F(t)P{Xa(t− 1) > R}. (64)

To compute in relation (63) the probability P{Xa(btc) ≤ R} we observe by the continuity of HR

and Xa(btc) = X(t) that

P{Xa(btc) > R} = P{T(R) ≤ btc} = P{bT(R)c ≤ btc − 1}
and this implies by relations (43) and (45) that

P{X(btc) > R} =
∑btc−1

j=0

E(Rj exp(−R))
j!

=
∑btc−1

j=0
pj (65)

for t > 1. Finally, for 0 < t < 1, we obtain using Xa(t)
d= F(t)Y1 with Y1 ∼ gamma(1, 1) that

P{Xa(t) > R} = E(exp(−F(t)−1R)) = ĜR(F(t)−1). (66)

By relation (64) up to (66) we can compute recursively the value P{Xa(t) > R} in case the pLSt
of the random variable R is an elementary expression. In Appendix A an algorithm for computing
P{Xa(t) > R} for t > 0 is given. In the next section we consider some special cases for which
the cdf of T(R) has an elementary expression.

4 On the cdf of the randomized hitting time for some special cases

In this section we consider some special cases for which one can give an analytical and/or a simpler
probabilistic interpretation of the cdf HR. We start with the simplest case of R having a degenerate
distribution at r > 0, i.e. the threshold R is not random but deterministic.

Example 15 If R has a degenerate distribution at r > 0, then

HR(t) = P{X(t) ≥ r} =
Γ(t, r)
Γ(t)

, (67)

where Γ(a, x) =
∫∞
z=x za−1 exp(−z)dz is the incomplete gamma function for a ≥ 0 and x > 0.

It follows that

P{Tv,λ(R) ≤ t} =
Γ(v(t), rλ)

Γ(v(t))
. (68)
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Another simple case occurs when R has an exponential distribution.

Example 16 If the random variable R has an exponential cdf with scale parameter ρ > 0 given
by GR(r) = 1− exp(−ρr), r > 0 then by relation (11)

HR(t) = 1− E (exp(−ρX(t))) = 1− (1 + ρ)−t. (69)

This implies

T(R) d=
Y

ln(1 + ρ)
. (70)

with Y exponentially distributed with parameter 1. Since the random variable λR has an expo-
nential cdf with scale parameter ρλ−1 it follows by Lemma 2 and relation (69) that

Tv,λ(R) d= v←
(

Y
ln(1 + ρλ−1)

)
. (71)

and this shows
P{Tv,λ(R) ≤ t} = 1− (1 + ρλ−1)−v(t).

For the power function v(t) = tq, q > 0 we obtain that v←(u) = uq−1
and so by relation (71) this

yields

Tv,λ(R) d=
Yq−1

(ln(1 + ρλ−1))q−1 .

Since Y is exponentially distributed with parameter 1 and hence Yq−1
is Weibull distributed with

shape parameter q and scale parameter 1 ([4]) we obtain that Tv,λ(R) is a Weibull distributed
random variable with shape parameter q and scale parameter (log(1 + ρλ−1))q−1

.

A generalization of the exponential distribution is given in the following example.

Example 17 If the positive random variable R has density function gR on (0,∞) belonging to
the class CM of completely monotone densities g, i.e. g is nonnegative and (−1)ng(n)(x) ≥ 0
for x > 0 and n ∈ N with g(n)(·) denoting the nth derivative of g, then by Bernstein’s theorem
([9, 19]) we obtain

gR(r) =
∫ ∞

0
y exp(−yr)dG(y), r > 0

for some cdf G on (0,∞). This shows gR ∈ CM if and only if R d= ZY with Y exponentially
distributed with parameter 1, Z a nonnegative random variable and Z independent of Y. By
relation (70) and zY has an exponential distribution with scale parameter z−1 this yields

T(R) d=
Y

ln(1 + Z−1)
(72)
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and so for R having a mixture of exponential distributions also the cdf HR has a mixture of
exponential distributions. In general it is not possible to give a nice analytical expression for the
cdf HR unless the cdf GR has a finite mixture of exponential distributions given by

GR(r) =
∑q

k=1
pk(1− exp(−λkr))

with 0 < λ1 < . . . < λq and pi > 0,
∑q

k=1 pk = 1. This means that the discrete distribution of Z
is given by

P{Z = λ−1
k } = pk.

and by relation (72) we obtain

HR(t) =
∑q

k=1
pk(1− (1 + λk)−t) = 1−

∑q

k=1
pk(1 + λk)−t. (73)

Similarly it follows by Lemma 2, λR d= λZY and relation (72) that

Tv,λ(R) d= v←
(

Y
ln(1 + (λZ)−1)

)
(74)

and this implies for v(t) = tq, q > 0 that

Tv,λ(R) d=
Yq−1

ln(1 + (λZ)−1)q−1 .

As before for R having a finite mixture of exponential distributions it is easy to check that the cdf
HR has a nice analytical expression given by a finite mixture of Weibull distributions. Moreover,
if it is possible to generate a realization of the random variable Z it is easy by relation (74) to
estimate the cdf of Tv,λ(R) by Monte Carlo simulation.

If the positive random variable R has a gamma distribution with shape parameter 0 < β < 1
and scale parameter 1 it follows by Lemma 5 that R has a completely monotone density. In
particular one can show the following.

Example 18 If the random variable R has a gamma distribution with shape parameter 0 < β < 1
and scale parameter 1, then by Lemma 5 we obtain that

R d= ZY

with Y and Z independent, Y ∼ gamma(1, 1) and Z ∼ beta(β, 1−β). Hence by relation (72) we
obtain

T(R) d=
Y

ln(1 + Z−1)
(75)
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Since Z ∼ beta(β, 1−β) it is well-known ([10], [24]) that Z d= Zβ(Zβ +Z1−β)−1 with Zβ , Z1−β

independent and Zβ ∼ gamma(β, 1) and Z1−β ∼ gamma(1− β, 1). This implies by relation (75)
that

T(R) d=
Y

ln(2 + Z1−βZ−1
β )

.

By Lemma 2 it follows similarly

Tv,λ(R) d= v←
(

Y
ln(1 + λ + Z1−βZ−1

β )− ln(λ)

)

and so for v(t) = tq, q > 0 we obtain

Tv,λ(R) d=
Yq−1

(
ln(1 + λ + Z1−βZ−1

β )− ln(λ)
)q−1 .

Another generalization of the exponential cdf is given by the following.

Example 19 If the positive random variable R follows a gamma distribution with shape param-
eter m ∈ N and scale parameter ρ > 0 we obtain

GR(r) = 1− exp(−ρr)
∑m−1

j=0

(ρr)j

j!
.

Hence by relation (11) it follows that

HR(t) = 1−
∑m−1

j=0

ρj

j!
E(X(t)j exp(−ρX(t))). (76)

To evaluate the expressions in relation (76) we observe using X(t) ∼ gamma(t, 1) that

E(X(t)j exp(−ρX(t))) =
1

Γ(t)

∫ ∞

0
exp(−(1 + ρ)x)xj+t−1dx (77)

It is now easy to show by its relation with a gamma distribution with scale parameter λ > 0 and
shape parameter j + t that

1
j!Γ(t)

∫ ∞

0
exp(−λr)rj+t−1dr =

Γ(j + t)
Γ(t)j!λj+t

=
(

t + j − 1
j

)
λ−(j+t) (78)

with (
k

j

)
:=

{ Qj−1
p=0(k−p)

j! j ∈ N
1 j = 0

, k ∈ R,
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for every λ > 0, t > 0 and j ∈ N ∪ {0}. Hence it follows for every j ∈ {0, ..., m− 1}

E(X(t)j exp(−ρX(t))) = j!
(

t + j − 1
j

)
(1 + ρ)−(j+t)

and this implies using relation (76) that

HR(t) = 1− (1 + ρ)−t
∑m−1

j=0

(
t + j − 1

j

)(
ρ

1 + ρ

)j

. (79)

Moreover, since λR has a gamma distribution with shape parameter m ∈ N and scale parameter
λ−1ρ we obtain by relation (79) that

HλR(t) = 1− (λ−1ρ + 1)−t
∑m−1

j=0

(
t + j − 1

j

) (
ρ

λ + ρ

)j

and applying lemma 2 yields

P{Tv,λ(R) ≤ t} = 1− (λ−1ρ + 1)−t
∑m−1

j=0

(
v(t) + j − 1

j

) (
ρ

λ + ρ

)j

.

5 Numerical study

This section presents the computational results of the two proposed approximations of the random-
ized hitting times discussed in Section 3. We first focus on the accuracy of the approximations of
the cdf of the random variable T(R). Next we also compare the computing time of the approx-
imations and the exact (numerical) evaluation of the cdf of Tv,λ(R). To serve our purposes we
have written a computer program using MATLAB 7.2 on a Pentium III–2 GHz personal computer.

In our first experiments we consider four distributions for the random variable R and these
are given in Table 1. The discrete mixture of two exponentials in Table 1 is also referred to as a
hyperexponential-2 with balanced means ([21]). For these four distributions analytical expressions
for the cdf HR exist and this enables us to assess the accuracy of the approximations.

The accuracy of the approximations is measured by the maximum absolute difference between
the approximative and the true cdf on its entire domain. By relation (9) we only have to focus on
the accuracy of the used approximation of the cdf HλR. To give an approximation of the supnorm
error we first evaluate the true cdf HλR and the used approximation for values of t on a grid
{ih}i=1,2,...,N , with h = 0.005 and

N = inf{n ∈ N : P{T(λR) ≤ dnhe} > 1− 10−7}.
Subsequently, the right-hand side of (9) is estimated by the maximum absolute difference between
the approximations and the true cdf on this grid, i.e.

max
i=1,2,...,N

|AλR(ih)−HλR(ih)|, h > 0.
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Distribution Parameters
Deterministic (det) r > 0

Uniform (unif) a, a + b, a, b > 0
Erlang (erlang) m ∈ N, ρ > 0

Mixture of two exponentials (hyp-2) p1, λ1, p2, λ2 > 0, p1 + p2 = 1, p1

λ1
= p2

λ2

Table 1: The four distributions for R under consideration.

Since for the first proposed approximation we have to compute the cdf of T(R) at integer points
and then interpolate, it is straightforward to obtain the approximation of this cdf at non-integer
points. The algorithms presented in Appendix A are implemented to compute the second approx-
imation of HR. Since it is possible to vary the scale parameter λ of a stationary gamma process
in such a way that the first hitting time of R can take a wide range of values we fix the value of
the expectation of R to 100. This means for a degenerate random variable that r = 100. Next,
we vary the coefficient of variation cR of R, given by cR = (Var(R))1/2 / E(R), from 0 (R
deterministic) to 1.2 (R mixture of two exponentials) by steps of 0.2. The parameters of the three
non-degenerate distributions are now determined by means of a two-moment fit ([21]). The coef-
ficient of variation of a uniform random variable is bounded from above by

√
3/3. The discrete

mixture of two exponentials with balanced means has only two free parameters and its coefficient
of variation is bounded from below by 1. The coefficient of variation of the Erlang distribution can
take any value greater than 0.

In Table 2 the maximum absolute differences between the approximations and the true cdf
of T(λR) are shown for a range of values of λ. The higher the value of λ the higher the accu-
racy of the approximations. Both methods appear to be quite accurate for λ ≥ 0.05. Since for λ
increasing the expectation E(exp(−λR)) becomes smaller this is to be expected from our theo-
retical results in Section 2. The smaller this expectation the more the fractional part of TλR has
a uniform cdf and at the same time the correlation between the fractional and integer part of TλR

vanishes. This makes our approximative assumption more accurate. The effect of the coefficient
of variation of the random variable R on precision is not unambiguous. In Figure 2 the accuracy
of the approximations is plotted against λ (on a double-logarithmic scale) for R Erlang distributed
with cR = 1.2. We observe that the maximum absolute error is smaller than 0.01 for λ > 0.02.
In Figure 3 the exact and approximative cdf’s of T(λR) are plotted against time t for uniformly
distributed R with cR = 0.2 and λ = 0.02. It appears that the left tail of the distribution is not
approximated very well.

We have seen that the scale parameter of the gamma process rules the accuracy of the approx-
imations. However, the computing time of the true cdf of the random variable Tv,λ(R) is affected
by both the shape function and the scale parameter. In order to assess this effect, we focus on
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λ
R cR Approx 0.0005 0.005 0.05 0.5 5

Deterministic 0 1 2.85E-01 4.32E-02 7.31E-03 6.35E-04 6.14E-05
2 3.98E-01 5.57E-02 7.83E-03 6.38E-04 6.15E-05

Uniform 0.2 1 2.86E-01 4.24E-02 6.66E-03 2.52E-04 7.97E-06
2 3.98E-01 5.53E-02 7.12E-03 2.53E-04 7.97E-06

0.4 1 2.92E-01 3.98E-02 5.72E-03 1.84E-04 5.81E-06
2 3.98E-01 5.96E-02 6.52E-03 1.86E-04 5.81E-06

Erlang 0.4 1 2.96E-01 4.08E-02 6.33E-03 1.19E-04 1.32E-06
2 4.05E-01 6.41E-02 6.74E-03 1.20E-04 1.33E-06

0.6 1 2.90E-01 3.67E-02 6.09E-03 8.43E-05 8.85E-07
2 3.87E-01 5.88E-02 6.46E-03 8.44E-05 8.87E-07

0.8 1 2.79E-01 3.45E-02 5.14E-03 1.11E-04 1.21E-06
2 3.61E-01 5.07E-02 5.32E-03 1.11E-04 1.21E-06

Hyp-2 1 1 3.24E-01 9.01E-02 3.80E-03 4.85E-05 4.99E-07
2 4.04E-01 9.43E-02 3.80E-03 4.85E-05 4.99E-07

1.2 1 3.31E-01 1.01E-01 5.35E-03 7.40E-05 7.67E-07
2 4.13E-01 1.07E-01 5.36E-03 7.40E-05 7.67E-07

Table 2: The maximum absolute difference between the approximation and the true
cdf for different values of λ and various choices of the random variable R.

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R ∼  Hyp−2 with c
R

 = 1.2

λ

m
ax

 a
bs

 d
iff

 

 
approx 1
approx 2

Figure 2: Maximum absolute difference between P{T(λR) ≤ t} and the two approx-
imations for different values of λ and R ∼ hyp-2 with cR = 1.2.
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Figure 3: Exact and approximative cumulative distribution functions of T(λR),
where R ∼ unif with cR = 0.2 and λ = 0.02.

non-standard gamma processes Xv,λ having a shape function v proportional to a power of time,
i.e. v(t) = νtq with ν > 0, and scale parameter λ > 0. We set the value of the power q at 0.5, 1, 2
and 4 and thus cover concave as well as convex shape functions. The mean of the non-stationary
gamma process at time t0 is fixed at x = λ−1νtq0 = 100 and for t0 we consider the values 10, 20,
50 and 100. The coefficient of variation of the gamma process at time t0 is varied from 0.1 to 0.7
by steps of 0.2. For given values of q, t0 and c = cXv,λ(t0) = ν−1/2t0

−q/2, the parameters ν and
λ are now determined by a two-moment fit. This yields ν = c−2t−q

0 and λ = c−2x−1. Observe a
high value of c implies a small value of λ. Therefore, the approximation of the cdf of a randomized
hitting time associated with non-stationary gamma processe is accurate whenever the variability
of the gamma process is not too high. For obvious reasons we are only interested in the computing
times of good approximations. In the scenarios defined by the experimental settings in Table 3
the value of λ ranges from 0.020 (c = 0.7) to 1 (c = 0.1) and hence by our previous findings the
approximations are accurate.

The computing time is defined as the time needed to evaluate or approximate the cdf of
Tv,λ(R) on a grid {ih}i=1,2,...,N , where h = 0.02 and N is the first integer such that the cdf
in the integer point dv(Nh)e exceeds 0.999. We only focus on R deterministic and R uniform,
since for these random variables the cdf of Tv,λ(R) has no nice analytical expression.

In Table 4 the computing times of the approximations and the true cdf are given for one par-
ticular scenario of Table 3. Note that the value of λ is constant and so the hitting times of the
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Settings Xv,λ Values
t0 = {t > 0 : E(Xv,λ(t)) = 100} 10, 20, 50, 100 time units

q 0.5, 1, 2, 4
cXv,λ(t0) 0.1, 0.3, 0.5, 0.7

Table 3: Experimental settings.

q
R cR Evaluation 0.5 1 2 4

Deterministic 0 exact 4.14 1.86 1.23 1.04
approx1 1.10E-02 3.80E-03 2.94E-03 5.99E-03
approx2 9.63E-02 4.24E-02 5.58E-02 5.68E-02

Uniform 0.2 exact 19.07 8.06 5.20 4.17
approx1 3.64E-02 2.87E-02 2.75E-02 3.15E-02
approx2 1.99E-01 1.39E-01 1.46E-01 1.46E-01

Uniform 0.4 exact 24.14 8.89 5.60 4.55
approx1 4.84E-02 3.69E-02 3.60E-02 3.96E-02
approx2 2.29E-01 1.40E-01 1.48E-01 1.89E-01

Table 4: Computing times for different values of q and different random variables R.
Here, t0 = 50 and cXv,λ(t0) = 0.3 yielding λ = 1

9 .
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(non-stationary) gamma processes are all related to the same random variable T(λR). The results
show that the efforts of obtaining both approximations is much less than the effort of computing
the true cdf. In all cases the first approximation can be obtained faster than the second approxima-
tion. Also, increasing values of q are negative related to the effort of computing the true cdf. This
is caused by the fact that the right tail of the hitting time distribution is smaller for larger values
of q. Thus for fixed values of E(R) and cR the cdf is computed in fewer points for q large. This
effect is not that apparent for the approximations since their computing times are mainly affected
by the number of integer time points in which the cdf needs to be computed and this again depends
on the value of λ. The experiments with the other scenarios yield similar results and are available
upon request.

6 Conclusions

The gamma process plays an important role in maintenance optimization. In particular, the first
time at which this process exceeds a random threshold is often used to model the lifetime of
structures subject to degradation. In this article we have investigated in detail the cdf of this
random variable. We have first shown that the cdf of a randomized hitting time associated with
a non-stationary gamma processes is easily derived from the cdf of a similar hitting time of a
standard gamma process. Secondly, we have extended an existing result on the cdf of the fractional
part of a randomized hitting time.

Explicit formulas for the cdf of a randomized hitting time have been derived for some special
cases. In general however, the evaluation of the cdf of a randomized hitting time for a standard
gamma process is time-consuming. Therefore, we have proposed two approximations having a
clear probabilistic interpretation. The first approximation comes down to a linear interpolation of
the exact hitting time cdf at integer points and it is justified by above-mentioned result on the cdf
of the fractional part of the hitting time. We have shown that due to the structure of a standard
gamma process it is possible to compute the probability distribution of a randomized hitting time
at integer time points. The second approximation is obtained by replacing each sample path of
a standard gamma process by a piecewise linear sample path coinciding with the original sample
path at integer points.

Numerical experiments show that both approximation formulas are quite accurate when the
random threshold is not too small and the variability of the (non-stationary) gamma process is not
too high. The second approximation method may be somewhat prohibitive from a numerical point
of view. On the other hand, the first approximation is quite efficient and appears to be a good
replacement for the exact distribution in time-consuming optimization algorithms.
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A Algorithm for approximation 2

The algorithm below computes P{Xa(t) > R} for t > 0.

Algorithm 20 (Forward approximation algorithm)
Input: time t > 0. Output: P{Xa(t) > R}.

(1) For k = 0 to btc
Let cdfint(k) =

∑k−1
j=0 pj , where

∑−1
j=0 pj = 0 (cdfint(k) = P{Xa(k) > R}).

Next k
Here pj is computed using the right-hand side of (44). If F(t) = 0, then return cdfint(btc).
Otherwise, proceed with step (2).
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(2) Let cdf = ĜR(F(t)−1) (cdf = P{Xa(F(t)) > R}).

(3) For j = 1 to btc
Let cdf = (cdfint(j)− cdf · F(t))/(1−F(t)) (cdf = P{Xa(t) > R}, j < t < j + 1).

Next j
Return cdf.

Unfortunately, when the values of cdf and cdfint are close to 1 and F(t) > 0.5, the repeated
subtraction in step (3) leads to loss of precision for t > 1. These numerical difficulties are circum-
vented by employing a backward version of algorithm 20.

Algorithm 21 (Backward approximation algorithm)
Input: time t > 1 with F(t) > 0.5. Output: P{Xa(t) > R}.
Let M be a large integer, say M = 100.

(1) For k = 0 to bt + Mc +1
Let cdfint(k) =

∑k−1
j=0 pj , where

∑−1
j=0 = 0 (cdfint(k) = P{Xa(k) > R}).

Next k
Here pj is computed using expression (44).

(2) Let cdf=cdfint(bt + Mc + 1)F(t)+ cdfint(bt + Mc)(1 − F(t)). (cdf here represents the
approximate value of the cdf at time M + F(t) according to method 1).

(3) For j = btc+ C to btc+ 1 step (−1)
Let cdf = (cdfint(j)− cdf · (1−F(t)))/F(t) (cdf = P{Xa(t) > R}, j < t < j + 1).

Next j
Return cdf.

In step (2) we estimate the cdf at time M +F(t) by linear interpolation at the surrounding integers
(approximation method 1). The estimate does not even have to be very accurate, because the
backwards algorithm gains precision in every step (as opposed to the forward algorithm).

Finally, note that in order to compute the cdf P{Xa(t) > R} one needs to compute the cdf at
time points F(t),F(t) + 1, . . . , t− 1 (forward algorithm) or M +F(t),M − 1 +F(t), . . . , t + 1
(backward algorithm). So, if one wants to compute the cdf at equidistant points ih, i = 1, . . . , N ,
for some N ∈ N and h > 0, one only has to compute the cdf at the greatest (smallest) time
points with different fractional parts in the forward (backward) algorithm. The other cdf values
are obtained for free.
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