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A Note on the Pay-off Matrix in Multiple 
Objective Programming 

1. I N T R O D U C T I O N  

OyE oF the key concepts in multiple objective opti- 
mization is the pay-of fmatr ix .  The elements of  the pay- 
off matrix P are defined as: pq = g,(:U), i , j  = I . . . . .  m, 
where g,(x), i = I . . . . .  m are the goal variables ~ to be 
minimized as functions of  the instruments  x and £/ 
denotes the instrument vector which minimizes the ith 
goal variable within the feasible region K. The pay-off 
matrix is a valuable tool in investigating the conflicts 
between the goals of  the decision problem at hand. Two 
important  vectors which can be derived from this matrix 
are the ideal (utopia) vector g*---- (g~' . . . . .  g*), with 

gj* = gj(£Q, j = 1 . . . . .  m, 

and the nadir vector n* = (n~' . . . . .  n~) with: 

n T =  max g j ( 5 : i ) , j = l  . . . . .  m. 
i = l . . . . , m  

For example, given the pay-off matrix: 

.~ .,~2 ,~3 
gl 7 9 8 
g2 9 3 15 
g3 6 4 1 

the ideal vector (g*) and nadir vector (n*) are: 
g* = (7, 3, 1) and n* = (9, 15, 6). 

Both the ideal and the nadir vectors are frequently 
used in interactive methods (e.g. in STEM-type 
methods). The pay-off matrix is not necessarily unique, 
because different ,~i may produce the same g* value, 'L 
thus the nadir vector is not necessarily unique either. 
In this paper we address this problem by first presenting 
two examples with non-unique nadir vectors (Section 
2). Next, we re(de)fine the concept of  the nadir vector 
(Section 3). A procedure for determining the nadir 
vector is given in Section 4. Finally, we discuss the 
computat ional  complexity of  the proposed procedure. 

2. N O N - U N I Q U E  P A Y - O F F  M A T R I C E S  

The possible implications of a non-unique pay-off 
matrix for the calculation of the nadir vector can best be 
demonstrated intuitively by two simple examples. In 
both cases there is a set of  possible nadir vectors, only 
one of which is the ' true'  one. The first example shows 
that a randomly chosen nadir vector may have higher 
values than the true nadir vector. In the second example 
we show that  a randomly chosen nadir vector may have 
lower values than the true nadir vector. 

E x a m p l e  1 

In Fig. 1, the set of  feasible solutions of  a given 
multiple objective programming problem is represented 

t ln  the literature, one often finds the term objective 
function instead of  goal variable. Our preference for 
the term goal variable is explained in [3]. 
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in goal value space. Clearly, there is only one solution 
(B) yielding the optimal goal value g~. In contrast, all 
solutions on the line segment (C,, C:) are optimal with 
respect to g,(x). If no attention were paid to the non- 
uniqueness of  the opt imum for goal variables gt(x) 
different pay-off matrices and different nadir vectors 
might result. In this case, we might have as pay-off 
matrix either 

with corresponding nadir vectors 

n ~ ' = ( 6 , 5 )  or n ,*=(6 ,10) .  

The fact that C~ dominates  all alternative solutions on 
the line segment (C~, C2) is an intuitive reason for 
defining n~' as the ' true'  nadir vector. In other words, 
if the nadir values were imposed as constraints (e.g. in 
STEM-type methods),  the n~'-values would exclude a 
larger number  of  inferior (dominated) solutions from the 
remaining set of  feasible solutions than all other possible 
nadir vectors, At the same time, the n~'-values would not 
exclude any efficient solution. 

E x a m p l e  2 

The second example is a problem described in [2]. In 
this problem, each of  three goal variables is to be 
minimized. The opt imum of  the first goal variable is 
unique whereas the opt imum of  both other goal vari- 
ables is non-unique. In Table I we summarize the 
alternative goal vectors (corner solutions) yielding the 
optimal goal values. 

Table I. 

g~ g~ g~ 

g~ 28.75 30 30.5 29.375 32.75 28.75 32.5 
g2 250 5 5 225 .5  120.5 250 133.3 
g3 0 50 45 0 0 0 0 

Using these solutions, eight different pay-off matrices 
can be constructed, resulting in six different nadir 
vectors. Apart  from the goal vector (32.5, 133.3, 0), all 
alternative solutions are efficient. The 'true' nadir vector 
would (intuitively) be defined as the vector of  max imum 
values obtained within the given set of efficient goal 
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vectors. That  is, the true nadir vector would be 

nT- = (32.75,250, 50). 

Notice, that if any of the other goal vectors were 
selected as nadir vectors and if the values of  such a nadir 
vector were imposed as constraints,  a subset of  the 
efficient set would be excluded. For instance, the values 
of  the potential nadir vector (32.75,250, 45) would, if 
imposed as constraints, exclude the goal vector 
(30, 5, 50) which is non the less an efficient solution. 

3. C E L L A R ,  N A D I R  A N D  P E S S I M I S T I C  
V E C T O R S  

To solve the problems sketched above, we need a more 
precise definition of  the nadir vector concept. Let us 
denote the feasible set o f  the decision problem by K and 
the efficient set by E. In addition, define K~ = {xlx  e K  
and g,(x) = g,*}, with 

g* = min g,(x). 
xeK 

Furthermore,  let 

Ksl,= {xlx EK, and gj (x)=g~,}  

with 

with 

g~ = rain gs(x); 
t~K, 

KklSl, = {x Ix e Ksl ~ and g,(x) = g~:i }; 

gfJli = min gs(x); etc. 
x~Kjli 

Next, we define the nadir vector n* as the vector of  
goal values of  which the j t h  element is given by 

where 

with 

n~ = max {g , (x ) } ,  
xG/¢ 

R is the union of  all Ki, l.. li,, 

i k = 1 . . . . .  m for eachk  = I . . . . .  m. 

The reader can easily verify that this nadir vector is 
unique. It is often assumed that the elements of  the nadir 
vector represent the worst values of  the goal variables 
over the entire efficient set. In many cases this is. not 
correct (not even with the precise definition of  the nadir 
vector), as is shown in [I], [31 and [51. Therefore, we 
define the cellar vector c as the vector whose elements are 
the worst values of  the goal variables over the entire 
efficient set: 

c j =  max {gs(x)}, j = 1 . . . . .  m. 
x ~ E  

As mentioned above, for the redefined nadir vector 
n 7 < c  i for j =  1 . . . . .  m in the general vector min- 
imization problem. 

The elements of  the nadir and cellar vector can be seen 
as parameters of  the decision problem at hand,  which are 
independent of  the preferences of  the decision-maker. 
The term pessimistic rector is used for the maximaliy 
required at tainments  determined by the decision maker. 
The elements of  the pessimistic vector p are the highest 
goal values which the decision-maker considers to be 
acceptable. Obviously, the decision-maker may choose 
any (feasible) value of  p/. That  is, he may choose 

p/> cj, n 7 < pj < cj, or P/< nT- If the decision-maker 
does not know exactly what he wants, one should be 
careful in defining the p:values  for him. In well-defined 
models, it is reasonable to choose pj = cj, j = 1 . . . . .  m. 

4. D E T E R M I N A T I O N  O F  T H E  N A D I R  
V E C T O R  

The definition of  the nadir vector suggests that it is 
necessary to solve a great number  of  optimization 
problems. However, if the solution of  one of these 
problems--e.g.  

min g i (x) - - i s  unique, 
x E K 

then it is immediately clear that this solution is the only 
feasible vector in K, I.. • i~ _ d J, i~ # j ,  . . . .  i~ _ ~ # j .  This 
means that testing whether the solution of the opti- 
mization problem at hand is unique or not, may reduce 
the number  of  optimization problems considerably. 

To avoid unnecessary technical details, we will not 
give a formal presentation of the procedure. Instead, we 
illustrate it by means  of  a simple decision problem with. 
three goal variables g~(x), gz(x) and g3(x). The elabor- 
ation of  the procedure is summarized in Fig. 2. First, we 
set all elements of  the nadir vector equal to infinity: 
Then, the first goal variable, gt(x), is optimized within 
the set of  alternatives, K, and we test whether the 
solution of this optimization problem is unique. In this 
example, the solution is unique. The nadir vector is 
updated by taking as its elements the values of  the goal 
variables in this unique solution. Then the goal variable 
g2(x) is optimized. Now we have alternative solutions, 
by which it becomes necessary to perform another two 
optimizations. From the flow-chart in Fig. 2 it can be 
concluded that the solution of  

min gl(x) 
teK' .  

is unique. Therefore, the nadir vector must  be updated 
by adopting those goal values resulting from 

min gl(x) 
x • K2 

which are higher than the corresponding values in the 
old nadir vector. The solution of  

min g3(x) 
xEK'. 

is not unique, so we have to perform another 
optimization: 

min gl(x),  to. 
xEK]i2 

Finally, we add a technical remark concerning the 
implementation of the procedure. Testing whether there 
are alternative solutions or not can be carried out with 
the non-basic reduced cost vector: if at least one element 
of this vector related with the non-basic variables in the 
final row of  the Dantzig simplex' tableau (see [4]) is the 
zero coefficient, we have alternative optima. There exists 
no other procedure which calculates the nadir vector as 
defined above. However, alternative procedures can be 
proposed which guarantee that n*s<:ej, j = 1 . . . . .  m. 
Among  others, one can determine such a nadir vector by 
performing the optimization problems: 

min ,{g,(x) +j~# Egj(x)}, i = l . . . . .  m 

OME. 13 6---H 
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with ~ a small positive scalar, or lexmin 

{gd(x), g,+ i(x) . . . . .  g,Cx) . . . . .  g,_ re(x)}, i = I . . . .  m. 

5. D I S C U S S I O N  

It can easily be verified that the structure of  the 
proposed procedure is a tree, in which the nodes corre- 
spond to the optimization problems. If there are m goal 
variables, the maximum number of  nodes ~,(m) is given 
by 

, , ' -  I m !  

= z  ° ; .  
Of course, the formula given above represents the 

worst case where all optimization problems in the pro- 
cedure have alternative optima. In general, only some of 
the optimization problems will have alternative optima, 
limiting the number of  problems to be optimized. 
Second, as mentioned above, the redefined nadir vector 
is not equal to the cellar vector (Section 3). Nevertheless, 
the nadir vector as defined here may constitute a good 

starting point for finding the elements of  the cellar 
vector. Of course, other starting points might be appro- 
priate. However, the question which is the best one 
cannot be answered before a good procedure to find the 
cellar vector is available. 
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