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Abstract

Internationally operating �rms naturally face the decision whether or

not to hedge the currency risk implied by foreign investments. In a recent

paper, Bos, Mahieu and van Dijk (2000) evaluate the returns from optimal

and alternative currency hedging strategies, for a series of 7 models, us-

ing Bayesian inference and decision analysis. The models di�er in the way

time-varying means, variances or the unconditional error distributions are

incorporated. In this extension, we compare the hedging decisions and �-

nancial returns and utilities as they result from the modelling assumptions

and the attitudes towards risk.
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1 Introduction

Every �rm with foreign investments faces the risk of a depreciation of the foreign
currency, leading to a lower value of the foreign investment expressed in the
home currency. In many �rms the decision whether or not to hedge currency
risk is revised regularly, independently of the original investment decision. In
the �nance industry this approach to currency hedging is called currency overlay
management.

In Bos et al. (2000) a series of models for the DMark/US Dollar daily ex-
change rate are constructed. Based on the models, optimal hedge ratios for a
utility-optimizing currency overlay manager are calculated, and the risk and
return of the optimal and several alternative strategies are evaluated using
Bayesian inference and decision analysis with Markov chain Monte Carlo tech-
niques. In this brief extension, we describe the sensitivity and variation of the
hedging decision in more detail.

Section 2 summarizes the models, the hedging strategy and the data that
are used. Also, the main �ndings from a Bayesian analysis of the posterior
distribution of the parameters are reported here. The paper continues in section
3 with a detailed description of the hedging decisions that are taken, with special
attention for the link between modelling decisions and the variation of the hedge
ratio over the period January 1998 until December 1999. The �nancial returns
and utilities that are derived from applying the hedging strategies are examined
both over the �rst year of the evaluation period and over both years jointly. A
summary of the results is given in section 4.

2 Preliminaries

We concentrate on the hedging decision that a manager may take in order to
hedge the currency risk. A detailed description of the setting is given in Bos et al.
(2000), here we limit ourselves to a basic overview of the modelling framework,
and on a summary of the results concerning the Bayesian posterior density.

Let st+1 be the return on the exchange rate S over the time interval [t; t+1],
de�ned as st+1 = 100 ln(St+1=St). The investor may choose to hedge a fraction
H 2 [0; 1],1 leading to a continuously compounded gross hedged currency return
exp(rt+1) equal to a weighted average of returns concerning the exchange rate
st+1 and the di�erence between the home and foreign risk free interest rates rht
and r

f
t ,

exp(rt+1) = (1�Ht) exp(st+1) +Ht exp(r
h
t � r

f
t ): (1)

The overlaymanager is interested in optimizing his wealthWt+1 =Wt exp(rt+1),
according to, as we assume here, a power utility function U(Wt+1) = (W 

t+1 �

1)=;  < 1. For a background on international portfolios and risk, see Jorion
(1985).

1We do not allow the hedging position to exceed the underlying exposure, i.e. H < 0 or

H > 1.
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In order to �nd the optimal hedging decision we need to derive a predic-
tive density P (st+1jIt), with It = fst; st�1; ::g, marginal with respect to the
posterior density of the vector of parameters � in the model. Bos et al. (2000)
consider 7 models, describing the evolution of the exchange rate return over
time. The baseline model is a state space model (see Harvey 1989),

st = �t + �t; �t � i:i:d: (0; �2�;t); (2)

�t = ��t�1 + �t; �t � N (0; �2�); (3)

which allows for a varying mean �t.
2 We also allow the variance �2�;t in the obser-

vation equation (2) to be time time varying. Special cases of this general model
include: the White Noise model (WN), with � = 1; �� = 0; �t � N (0; �2� ); the
Local Level model (LL) which equals the WN model but with �� unrestricted;
the Generalized Local Level model (GLL), both � and �� free. Four models
allow for di�erent disturbance distributions: the GLL-Student t model allows
for �t to be Student t distributed (with � degrees of freedom); aGLL-GARCH
model allows for a GARCH evolution of the variances with the �t normally dis-

tributed; a GLL-GARCH-Student t model combines the GARCH and the
Student t e�ects; and a GLL-Stochastic Volatility model (GLL-SV). The dis-
turbance of the observation equation (2) of the GLL-SV model is normally
distributed, but with a randomly evolving variance, i.e. �t � N (0; �2� exp(ht))
and ht = �ht�1 + �t; �t � N (0; �2� ).

Our inference is Bayesian. We compute posterior distributions of the pa-
rameters through Markov chain Monte Carlo sampling. For the models with-
out Student t-distributed disturbances or Stochastic Volatility, a Metropolis-
Hastings sampler can be applied (see e.g. Chib and Greenberg 1995). For
the other models, a Gibbs chain was constructed, sampling successively from
the full conditional distributions (Carter and Kohn 1994, Kim, Shephard and
Chib 1998, Koop and van Dijk 2000). In constructing the posterior, care was
taken to use only mildly informative conjugate priors. We take the sample dis-
tribution of the parameters into account in the analysis of the predictive density
and the hedging decision.

Before we can evaluate the expected utility, we need to know the predictive
density of the exchange rate returns. The predictive density P (st+1jIt) was
constructed by integrating the conditional predictive density P (st+1j�; It) with
respect to the posterior �jIt

3 (see Geweke (1989) and Bauwens, Bos and van
Dijk (1999)). E�ectively, we calculate

P (st+1jIt) �
1

N

X
P (st+1j�

(i)
; It) (4)

2The uncovered interest rate parity, which prescribes to introduce the interest rate di�er-

ential as the expectation of st, does not hold on a daily timescale. The interest rates are

introduced in the hedged return equation (1).
3Instead of resampling the posterior distribution of the parameters for each sample size t, we

use the same posterior distribution �jIT for evaluating all predictive densities P (sT+j jIT ); j >

0 in the evaluation period. As the estimation sample is large compared to the evaluation

sample, the approximation error appears to be small.
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with �
(i) the i-th drawing of the vector of parameters in the model. This pre-

dictive density is calculated over a �ne grid of values of st+1, and is used in op-
timizing the expected utility Est+1jIt

(U(Wt+1)). It is suÆcient to optimize the
expected utility using only the wealth increases wt+1 = Wt+1=Wt = exp(rt+1).
The function to be optimized is

Est+1jIt
(U(wt+1)) =

Z
exp ( rt+1(Ht))� 1


P (st+1jIt) dst+1; (5)

with equation (1) substituted for the hedged currency return. The optimization
is again implemented evaluating the expected utility increase over a �ne grid of
values for the hedge ratio Ht, and choosing the optimal Ht.
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Figure 1: DMark/US Dollar exchange rate and the interest rate di�erential

The analysis is carried out using daily observations on the DMark/US Dollar
exchange rate over the period 1/1/1982-31/12/1999 (4695 observations). We
look at the case of a manager based in Germany, seeking to hedge currency
risk connected to investments in a US Dollar denomination. Estimation4 of
the posterior distribution is done using the �rst 16 years of data, leaving two
years (523 days) for evaluating the hedging decision. For the interest rates,
the 1-month Eurocurrency middle rates are used.5;6 Figure 1 depicts both the
exchange rate St (over both the estimation and evaluation periods) and the

4All calculations are performed in Ox version 2.20 (see Doornik 1999), using SsfPack 2.3

(Koopman, Shephard and Doornik 1999)
5We assume the investor hedges the currency risk using 1-month forward contracts. If the

hedge position is changed, the overlay manager may need to reverse contracts.
6Source: Datastream, series DMARKER/USDOLLR, ECWGM1M, ECUSD1M.
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interest rate di�erential rDMt � r
USD
t over the evaluation sample. The local

trending of the exchange rate seen in the �rst panel of �gure 1 is modelled by
the varying mean of the exchange rate returns. We note that this local trending
behaviour is not apparent from autocorrelation of the exchange rate returns;
day-to-day jumps are large relative to a possibly varying mean.

Table 1: Summary statistics of posterior distributions
GLL-

GLL- GLL- GARCH- GLL-

Parameter WN LL GLL Student t GARCH Student t SV

�� 100 �0:39

� 1 1 0:75 0:75 0:83 0:86 0:77

�� � 10 0 0:23 0:59 0:53 0:60 0:49 0:54

�� 0:68 0:67 0:67 0:67 0:65 0:76 0:67

Æ 0:90 0:92

�� 10 0:65 0:64

� 4:48 4:82

�h �1:07

� 0:93

�� 0:28

S/N �100 2:36 1:66 2:92 1:46 2:06

Ln PO �6:5 �54:6 0 143:8 163:2 256:0 270:9

The table reports the modes of the posterior density of the parameters, together

with the signal-to-noise ratio and the logarithm of the posterior odds.

In table 1 the modes of the posterior distributions of the parameters are
presented. For the WN model, a very small mean return � is found. The
mode of the standard deviation of the observation equation (2), ��, is 0.68; for
the other models a similar value is found. The distribution of the standard
deviation �� of the disturbance in transition equation (3) for the model LL
has a mode which is 30-fold smaller than that of ��, indicating that the signal
is weak. For the other models, an AR coeÆcient � for the signal around 0.8
is found. Together with �� in the range 0.05-0.06, this results in an average
signal-to-noise ratio

S/N =
�
2
�

�2�

=
�
2
�

Æ
(1� �

2)

�2�

(6)

between 0.0146 and 0.0292 as reported in the bottom of the table. The low
signal-to-noise ratio also results in a wide HPD region (not reported here) of
the parameter �. The GARCH parameters Æ and � and also the SV parameters �
and �� are estimated with high precision, indicating the importance of catering
for varying variances in the model. The degrees of freedom parameter � is
estimated between 4 and 5, corresponding to tails in the disturbance density
which are thicker than the tails of the normal density.

The last row of the table indicates the logarithm of the posterior odds (see
Kass and Raftery 1995, Chib 1995), comparing to the GLL model. The models
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are given equal prior probabilities (therefore the posterior odds equal the Bayes
factors). As the number of observations is large, only a small evidence per
observation in favour of a certain model already causes huge (log) posterior odds.
Even so, the results calculated here are stable between di�erent samples from
the posterior distribution. The importance of modelling the varying mean �t is
clear from the results. Only the LL model has a lower marginal likelihood than
the WN or GLL models. Including varying variances improves the marginal
likelihood, with highest posterior odds/marginal likelihood for the GLL-SV
model.

3 The variability of hedging decisions

Given the posterior distributions from the previously described models, we eval-
uate the optimal hedging decision for a risk-averse investor, with a risk tolerance
parameter  of -10. Table 2 reports statistics on the hedging decisions, table
3 sheds light on the resulting returns and utilities both in the �rst year and
over both years in the evaluation period 1/1/1998-31/12/1999 jointly. Figure 2
presents the evolution of the optimal hedge ratio through time.

Table 2: Variability of hedging decisions

Model H H=0 H=1 j�Hj 3M-L 3M-G

Full hedge 1:00 0 523 0:000 �0:49 �0:33

No hedge 0:00 523 0 0:000 �12:86 9:57

RW 0:46 281 242 0:471 �7:49 8:16

WN 0:91 0 0 0:004 �1:33 0:32

LL 0:47 206 191 0:074 �5:51 8:55

GLL 0:78 0 119 0:105 �1:58 2:09

GLL-Student t 0:75 0 99 0:122 �1:77 2:39

GLL-GARCH 0:61 65 162 0:179 �3:35 4:38

GLL-GARCH- 0:58 66 135 0:176 �3:60 5:65

Student t

GLL-SV 0:62 46 135 0:187 �2:16 3:95

Columns report the average hedge ratio, number of occurrences of

a no-hedge or fully hedged position, the average absolute change

in position and the maximum loss and gain over a period of three

months over the period 1/1/1998-31/12/1999, for a risk averse ( =

�10) investor.

The �rst panel in tables 2 and 3 corresponds to special hedging cases where
no use of a model was made. An in�nitely risk-averse investor would choose
never to run any exchange rate risk and will have H = 1 over the complete
evaluation sample, 1/1/1998-31/12/1999. No changes in the hedging position
occur, and the total return C over the two years is -3.20%, the cumulative
interest rate di�erential over the period. A risk-seeking investor, not hedging at
all during the 523 days, obtains a return equal to the return on the exchange
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Table 3: Return and utility of hedging decisions
First year Both years

Model C U C U

Full hedge �1:48 �1:48 �3:20 �3:20

No hedge �7:65 �11:52 8:18 0:24

RW �3:61 �5:34 7:56 3:35

WN �1:99 �2:01 �2:18 �2:24

LL �8:02 �8:93 3:51 �0:16

GLL �2:56 �2:73 �1:05 �1:59

GLL-Student t �2:59 �2:78 �0:50 �1:17

GLL-GARCH �3:35 �3:96 �0:56 �2:62

GLL-GARCH- �3:28 �3:95 2:31 �0:01

Student t

GLL-SV �1:54 �1:97 4:29 3:10

Columns report cumulative returns and utilities over

the �rst year and over both years jointly, for a risk

averse ( = �10) investor.

rate. Note that this includes periods with large losses and others with large
gains. Reported in the columns labeled by 3M-L and 3M-G are the maximum
losses and gains encountered over a 3-month period. The power utility function
with risk tolerance parameter  = �10 is skewed, penalizing losses more than
equally sized gains can counterbalance, such that the utility of the no-hedge case
is -11.52 for a return of -7.65 in the �rst year, and only 0.24 for a total return
of +8.18 over the two years. The third row reports the results from a Random
Walk (RW) strategy, where tomorrow's risk is fully hedged whenever today a
loss is led, and vice versa. The hedging position uctuates strongly, judging
from the average absolute change j�H j. The �rst panel in �gure 2 displays the
hedging decision for this case. The maximum loss over a three month period
is no more than 7.49%, substantially less than the 12.86% loss of the exchange
rate itself. The total return is slightly less than the return on the exchange rate
itself, even though on almost half of the days the risk was hedged. This results
in a positive utility after two years of 3.35, as most of the exchange rate return is
obtained at a lower risk. It turns out that improvements on this simple strategy
during this evaluation period of a strongly appreciating currency are not easy
to �nd.

The second panel in table 2 reports results on the hedging decisions based

on the predictive density P (st+1jIt) resulting from the models, after integrating
out the parameters. The WN model allows neither the mean nor the variance
to vary over time. Therefore, the only uctuating element in the return equation
(1) is the interest rate di�erential �rt. The hedge ratio is high on average, with
a �nal return and utility, in table 3, close to (but slightly higher than) the fully
hedged return of -3.20%.

The LL model takes an extreme position: The exchange rate is modelled as
an I(2) process. When the hedging decision changes, it changes strongly. In 397
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Figure 2: Hedging decisions during the evaluation sample

out of 523 days a border solution H = 0 or H = 1 is chosen. The �nal hedging
result is halfway the no-hedge and full-hedge return. Even though the return
is lower than the no-hedge return, utilities are of similar size, as the return is
gained incurring less large losses. The maximum 3-month loss and gain are
similar to the results of the RW strategy.

The GLL model is more conservative, with a slower adaptation to shocks.
It results in a higher average hedge ratio (see also panel 4 in �gure 2). This
model points out that the risk resulting from the varying exchange rate is most
of the time too high, resulting in a negative return (though it is still higher both
in return and utility than the WN or fully hedged return). The downside risk,
judging from the value of 3M-L, is covered to a large extent.

The GLL-Student t model includes a heavier tailed disturbance distribu-
tion. The extreme position H = 1 occurs less often, leading to a higher �nal
return than for the GLL model. As the inuence of the heavy tails on the
hedging decision is not large, returns and utilities do not di�er much with the
GLL model.

The next model introduces changing variances through a GARCH compo-
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nent. Periods of lower risk can now be recognized, with a lower average hedge
ratio as a result. Both downside risk and upside risk appear to be larger com-
pared with the GLL and GLL-Student t models; the �nal return is slightly
higher. The exibility of the heavier tails and the GARCH e�ect are combined
in the GLL-GARCH-Student t model. The downside risk hardly changes,
but larger gains are made in periods of appreciation. The GLL-SV model is
indicated by the posterior odds as the model with the best �t. It leads to less
extreme hedging positions (both H = 0 and H = 1 are chosen less often), but
the hedging position changes considerably (j�H j is largest). The downside risk
is lower compared with the other models with varying variance. In the �rst year,
with strong depreciation in the foreign currency, the GLL-SV model manages
to incur no stronger loss than the cumulative interest rate di�erential, leading
to the best utility of the model-based strategies. In the second year, highest
positive gains are made, leading to a utility which is of a size similar to the
cumulative result of the RW case.

Table 4: Correlation between hedging decisions

GLL-

GLL- GLL- GARCH-

Model RW WN LL GLL Student t GARCH Student t

WN �0:02

LL 0:20 0:11

GLL 0:55 0:07 0:57

GLL-Student t 0:60 0:13 0:57 0:96

GLL-GARCH 0:48 �0:01 0:58 0:91 0:88

GLL-GARCH- 0:49 0:04 0:63 0:88 0:91 0:96

Student t

GLL-SV 0:54 0:02 0:50 0:88 0:89 0:92 0:91

Table 4 displays the correlation between the hedging decisions. The similar-
ity between the results for the GLL and GLL-Student t models results in a
correlation coeÆcient of 0.96. Likewise, inclusion of the Student t disturbance
distribution only marginally alters decisions from the GLL-GARCH model:
Even though the �nal cumulative return is 2.9% higher, correlation between the
Ht's is 0.96 as well. The di�erence in returns results from a small number of
days with large appreciations on which the GLL-GARCH-Student t model
leads to a lower hedge ratio. It is interesting to note that the RW strategy,
seemingly so random, has a positive correlation of 0.5 with most model based
strategies.

The results for the RW hedging strategy indicate a higher utility than for
the model based strategies, at least for the two-year evaluation period with the
strong appreciation of the US Dollar vis-a-vis the German DMark, and with a
risk tolerance of  = �10. Figure 3 displays the cumulative utilities over the
evaluation period for the set of models and the RW-based strategy, over a range
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of risk tolerance parameters . For  2 [�14;�6], the utility of theRW strategy
is (slightly) higher than for the best model strategy. For lower values of , the
losses of the RW strategy are penalized such that the �nal utility is lower; for
values of  > �6 the average hedge ratio of the model based strategies becomes
smaller, such that the appreciation of the exchange rate is picked up in the
returns and utility. In unreported calculations we switched focus to an investor
based in the US, seeking to hedge the currency risk connected to investments
in the German market. In this case the RW strategy loses out compared to
the other strategies, for almost all values of . The RW strategy is not able to
e�ectively cover downside risk.

In �gure 3 it is also seen how the ordering of the models indicated by the
posterior odds in table 1 does not correspond to a clear ordering of models by
their cumulative utility over the two years considered. Models with varying
variance tend to deliver better hedging results, though di�erences are small.
Taking an incorrect decision on just one or two days can lead to a lower �nal
utility, which can switch the ordering in utility between models. Switching
the focus to a US investor in the German market alters the ordering, then the
GLL-GARCH model comes out �rst.
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Figure 3: Cumulative utility attained using di�erent strategies over the period
1/1/1998-31/12/1999, for a range of risk tolerance parameters

4 Summary of the results

For 7 models, di�ering in the method of modelling varying means, varying vari-
ances, and the distribution of the disturbances of the exchange rate return, we
evaluated the optimal strategy of hedging the currency risk for a risk-averse in-
vestor. The models were compared on the basis of the optimal hedging decisions,
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and of the �nancial return, downside risk and the upside risk.
It was found that even though the exchange rate returns exhibit very little

correlation, it does make a large di�erence in the hedging decision whether local
trending behaviour in the exchange rate is modelled. An even larger e�ect was
found when the volatility was allowed to change over time. In periods of lower
variance, an investor could adapt his hedging position accordingly, while still
hedging against depreciations in periods of higher volatility. The di�erence in
hedging decisions between the GLL-GARCH, -GARCH-Student t and -
SV models is small. Even though the correlation in decisions is high, a small
di�erence in the hedging ratio on only a few days with stronger movements
in the exchange rate can alter the (ordering of the) �nal cumulative returns
and utilities. Furthermore, it was found that in periods of strong appreciation
simple strategies that hedge little can appear to be best, and likewise during
strong depreciation a strategy always hedging a high percentage can perform
well. The added value of model-based hedging decisions is better appreciated
in periods with switching high and low downside risk, which e.g. the GLL-SV
model covers well. The framework described here can be of use for an overlay
manager, as a decision-supporting tool.

An evaluation of the performance of the hedging strategies over a longer
period, and on exchange rates between other currencies, can shed more light
on the robustness of the results presented in this paper, and is left for later
research.

References

Bauwens, L., Bos, C. S. and van Dijk, H. K. (1999), Adaptive polar sampling
with an application to a Bayes measure of Value-at-Risk, Tinbergen Dis-
cussion Paper TI 99-082/4, Tinbergen Institute.

Bos, C. S., Mahieu, R. J. and van Dijk, H. K. (2000), `Daily exchange rate
behaviour and hedging of currency risk', Journal of Applied Econometrics

(forthcoming) .

Carter, C. K. and Kohn, R. (1994), `On Gibbs sampling for state space models',
Biometrika 81(3), 541{553.

Chib, S. (1995), `Marginal likelihood from the Gibbs output', Journal of the
American Statistical Association 90(432), 1313{1321.

Chib, S. and Greenberg, E. (1995), `Understanding the Metropolis-Hastings

algorithm', The American Statistician 49(4), 327{335.

10



Doornik, J. A. (1999), Object-Oriented Matrix Programming us-

ing Ox, 3rd edn, London: Timberlake Consultants Ltd. See
http://www.nuff.ox.ac.uk/Users/Doornik.

Geweke, J. (1989), `Exact predictive densities for linear models with ARCH

disturbances', Journal of Econometrics 40, 63{86.

Harvey, A. C. (1989), Forecasting, Structural Time Series Models and the

Kalman Filter, Cambridge University Press, Cambridge.

Jorion, P. (1985), `International portfolio diversi�cation with estimation risk',
Journal of Business 58(3), 259{278.

Kass, R. E. and Raftery, A. E. (1995), `Bayes factors', Journal of the American

Statistical Association 90(430), 773{795.

Kim, S., Shephard, N. and Chib, S. (1998), `Stochastic volatility: Likelihood
inference and comparison with ARCH models', Review of Economic Studies

64, 361{393.

Koop, G. and van Dijk, H. K. (2000), `Testing for integration using evolving
trend and seasonal models: A Bayesian approach', Journal of Econometrics

97(2), 261{291.

Koopman, S. J., Shephard, N. and Doornik, J. A. (1999), `Statistical algorithms
for models in state space using SsfPack 2.2', Econometrics Journal 2, 107{
160.

11


