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Chapter 1

Introduction

1.1 Motivation

In the economy, the relations between economic agents are subject to change. As the
knowledge of production techniques improves, as the means of transportation allow for
long-distance trade, as the society changes its preferences for certain goods or services,
the structure of the economy varies accordingly. One of the goals of econometrics is to
describe this structure of the economy, and to track possible changes in the relationships
between the economic variables. If the basic structure of (a part of) the economy is
understood, this structure can be used to construct a decision-theoretic framework for
policy analysis.

Ever since econometrics started as a separate discipline in the 1930s, it has tried to
describe the relations between economic agents. Originally, only small data sets with linear
relations could be handled, but quickly knowledge and technology improved, allowing for
the analysis of larger regression models, or of time series using e.g. stochastic difference
equations and distributed lag models.

Gradually models became more involved, more flexible, and, as a result, they were
better able to describe more intricate relations between economic variables. A simpler
model might e.g. assume a constant exchange rate between the currencies of two countries,
and break down if after a number of months one currency would depreciate strongly with
respect to the other currency. A more elaborate model could be able to faithfully describe
a larger part of the economic structure, and be robust against changes in the value of the
currency of a country.

One can distinguish between two types of changes in a model of the economy: First,
there can be a change within the structure of the model, necessitating the use of a more
elaborate model, to describe correctly this more general structure. Second, there can be
a change in the data space, meaning that a parameter in the model changes in value, due
to a change in a variable. In this thesis, the focus is on changes in time series models, of
the structural type in the first chapters, and in the data space in chapter 5.

The next sections provide a short introduction to the research questions of the thesis.
They also outline why more standard models and methods of analysing may not be
sufficient for the question at hand, and why the choices proposed in this thesis promise
to provide better, more detailed, results.
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1.2 Inflation: Long memory, changing means and

changing variances

In recent decades a vast literature has been published on the subject of deciding whether
a macroeconomic time series is stationary (also called ‘integrated of order 0, I(0)’) or
non-stationary (often meaning ‘integrated of the first order, I(1)’). The discussion started
by the article by Nelson and Plosser (1982), and continues in e.g. Perron (1989) and
Perron and Vogelsang (1992). This discussion is closely connected to the Box-Jenkins
(1970, 1994) methodology of modelling time series. In this methodology, the time series
yt is modelled as a linear function of past observations yt−1, .., yt−p and present and past
disturbances εt, .., εt−q (p, q ≥ 0). If the time series yt is non-stationary, first differences
are taken as often as necessary to get to a stationary series.

Part of the success of the ARIMA framework can be attributed to the fact that it
provides a common framework with clear notation which can be used for many kinds
of time series. In the continuation of this introduction, and in the first chapters of the
thesis, the notation is used extensively. Therefore we introduce it here briefly. For a more
detailed explanation, see e.g. Franses (1998).

The lag operator L is central in the notation. It serves to lag an observation yt one
time period, i.e. Lyt = yt−1. With the lag operator, taking first differences of the data is
written as yt−yt−1 = yt−Lyt = (1−L)yt. The first difference operation can be applied d
times to get dth order differences: (1−L)dyt. The autoregressive (AR) part of the model
filters the observations in a (linear) manner such that a function of only disturbances
results, e.g. f(εt, .., εt−q) = yt − φ1yt−1 − ..− φpyt−p = (1− φ1L− ..− φpLp)yt. Past and
present disturbances influence the observation through the so-called moving average (MA)
part of the model, with f(εt, .., εt−q) = εt + θ1εt−1 + .. + θqεt−q = (1 + θ1L + .. + θqL

q)εt.
Lastly, the basic assumption is that the disturbances εt are independently and identically
distributed with variance σ2ε . With all of the elements taken together, the notation of an
ARIMA(p, d, q) model is

Φ(L)(1− L)dyt = Θ(L)εt,

Φ(L) = 1− φ1L− · · · − φpLp,
Θ(L) = 1 + θ1L+ · · ·+ θqL

q,

εt ∼ i.i.d.(0, σ2ε ).

(1.1)

For ease of notation, the autoregressive and moving average polynomials are denoted by
Φ(L) (of degree p) and Θ(L) (of degree q) respectively. These polynomials have their
roots outside the unit circle, see e.g. Box, Jenkins and Reinsel (1994) for details.

The parameter d governs the stationarity of the series. In the original framework of
Box and Jenkins (1970), d was restricted to be integer, with d = 0 for stationary series
or d = 1 for non-stationary, I(1) series. In a simple ARIMA(0,d = 0,0) model, yt = εt,
and clearly the model is stationary. When d = 1, the model becomes (1 − L)yt = εt, or
yt = yt−1 + εt =

∑t
i=0 εi. Such a model is clearly nonstationary, as the effect of a shock

never dies out. In Granger and Joyeux (1980) the generalization to non-integer values of
d was introduced. It can be derived that, for both integer1 and non-integer d, the dth

1For integer d, it is not trivial to see that equation (1.2) holds. Courant (1954, p. 335) elaborates
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order difference operator can be written as

(1− L)d =
∞∑

k=0

(
d
k

)
(−1)kLk =

∞∑

k=0

Γ(d+ 1)

Γ(k + 1)Γ(d− k + 1)
(−1)kLk. (1.2)

In Beran (1994) the effect of fractional integration on the long term autocorrelation is
given: If 0 < d < 1

2
, the autocorrelation of an ARFIMA(0,d,0) model at long lags k can

be approximated as

ρ(k) ∼ Γ(1− d)
Γ(d)

|k|2d−1, (k →∞). (1.3)

The autocorrelations at long term lags go down to zero at a (slow) hyperbolic rate.
This contrasts with the original case of the stationary ARIMA(p, 0, q) model, where the
autocorrelations for large k decrease at a (quicker) exponential rate,

ρ(k) ∼ cγk (k →∞), (1.4)

see e.g. Greene (1990).
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Figure 1.1: U.S. monthly inflation, all items, 1959–1999, with autocorrelation

For inflation series such as the U.S. inflation2 in the top panel of figure 1.1, it is
difficult to decide if the series is stationary (in the sense that d = 0 in (1.1)) or not.
If it were stationary, then observing a prolonged period with higher inflation as in the
seventies is not likely. On the other hand, if inflation were I(1), then the implication is
that (the logarithm of) prices are integrated of the second order. Except for periods of

the necessary theorems to show that indeed the equation is correct for ordinary first or second order
differences as well.

2Source: Bureau of Labor Statistics, series CUUR0000SA0, consumer price index U.S. city average. The
series was transformed to monthly inflation figures adjusted for seasonality, see chapter 2.
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Figure 1.2: Theoretical and simulated autocorrelation function of I(1), ARMA(1,1) and
I(d) series

hyperinflation, such behaviour is usually not observed for price indices (see Hassler and
Wolters 1995).

The autocorrelation function (ACF) of the series (see the bottom panel of figure 1.1)
can often help in getting an impression whether the series is stationary. Clearly the under-
lying inflation series is not integrated of the first order, as in that case the autocorrelation
function stays at one perpetually, at least in theory. This theoretical ACF is drawn in
the top panel of figure 1.2, together with the empirical sample autocorrelation function
of a sample of length T = 2000 of an I(1) model.3 Short memory ARMA models (that is,
models which are integrated of order d = 0) display autocorrelation functions which go
down to zero at an exponential rate, see equation (1.4). By picking special values for φ
and θ the autocorrelation function may diminish rather slowly. The second panel of figure
1.2 displays both the theoretical and a simulated sample ACF for an ARMA model with
parameters φ̂ = 0.98 and θ̂ = −0.78 as estimated from the inflation data. Comparing
this second panel of figure 1.2 to the sample autocorrelation function in figure 1.1 we see
that the shape of the autocorrelation function is not yet quite right: At short horizons,
both figures seem to display reasonably similar correlation, but at larger horizons, the

3For highly correlated time series, the sample autocorrelation functions tends to underestimate the
autocorrelation function of the data generating process, as is seen from the panels in figure 1.2.
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correlation according to the ARMA model decreases too fast.

The long term correlation can be adjusted by allowing for fractional integration (see
Granger and Joyeux 1980), with d taking non-integer values. For values of d < 1

2
the

resulting ARFIMA(p, d, q) model is still stationary (meaning that the series has a fi-
nite mean and variance), but with longer lasting correlations than in the short memory
ARIMA(p, 0, q) model. When d ≥ 1

2
the model is non-stationary. The third panel in

figure 1.2 shows the autocorrelation a sample of an I(d) model, with d estimated at 0.36.
Especially on longer horizons this model fits the sample ACF of inflation well; for the
short-term correlation, the fit can be improved using AR and MA parameters.

In chapter 2 the ARFIMA framework is used for analysing inflation the G7 countries.
Indeed the parameter d is found to be significantly different from zero. However, in these
series changes in the mean seem to have occurred. The contribution of the chapter is the
investigation into the effect of these possible changes in the mean, due to the oil crises,
on the amount of integration present in the data.

The chapter starts with a simulation exercise, using a simple AR(1) and ARFI-
MA(1,d,0) model as data generating process, to investigate what could be the effect of a
neglected break in the generated series on the estimate for the parameter d. It is found
that neglecting a break leads to a positive bias in the estimate d̂. As a consequence, when
we take the changes in the mean of inflation during the 1970s into account for the G7
countries, we find less evidence for fractional integration.

The importance of estimating the degree of integration correctly lies in the consequence
for predictions. Policy makers are in general interested in getting an impression of future
inflation, both at short (e.g. 1 month) and longer (say two-year) horizons. With a
stationary short memory series one can be quite sure that even at longer horizons the
series will stay close to the overall mean: Deviations are temporary as the effect of shocks
dies out quickly. For non-stationary series, the uncertainty grows with the horizon: The
series may well wander off indefinitely, moving further away from the present value for
longer horizons. Long memory time series, with 0 < d < 1, take up intermediate positions
between I(0) and I(1) models, with the variance increasing unboundedly with the horizon
if d > 1

2
.

This effect of the degree of integration on predictions of inflation is the topic of chapter
3. U.S. core inflation is predicted up to 24 months ahead, using a range of ARFIMA mod-
els, with and without explanatory variables serving as leading indicators. The predictions
are compared both on the basis of the precision of the point forecasts, as on the widths of
the forecast intervals. We find that the width of forecast intervals derived from ARFIMA
models appears to be correct, though we have to allow for temporary shifts in the mean
inflation in the seventies and for lower variance of inflation in the Volcker-Greenspan pe-
riod, after 1983. Non-stationary I(1) models result in forecast intervals which are too
wide.

1.3 Exchange rate: Varying trend and variance

From inflation and the internal devaluation of money it is a small step towards exchange
rates, governing the external value of money (Bos 1969). The exchange rates of the
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German DMark and Japanese Yen vis-a-vis the U.S. Dollar (1982 ≡ 1) are displayed in
figure 1.3, together with the cumulative interest rate differentials. Where there is a great
controversy about the degree of integration of inflation rates, the opposite is true for
exchange rates: Economists agree that (the logarithms of) exchange rates are integrated
of the first order. Also, as with many financial time series, it is accepted that exchange
rate returns are heteroskedastic, with periods of high volatility followed by more tranquil
periods. There is less agreement on the correlation structure of the returns. Theoretically,
the expected return should equal the interest rate differential between the home and
foreign countries, with no further predictability. However, this uncovered interest rate
parity is not found to hold convincingly on daily return data; also in figure 1.3 no clear
link between the evolution of the exchange rates and the interest rate differential is found.
Does this mean that there is no correlation in the exchange rate returns at all?
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Figure 1.3: Scaled DM/USD and Yen/USD exchange rates, together with the cumulative
return of the interest rate differential

Table 1.1: Estimation results for daily DM/USD exchange rate return data

Parameter AR FI ARMA ARFIMA

φ 0.016 (0.015) 0.857 (0.200) 0.993 (0.802)
d 0.021 (0.012) 0.016 (0.037)
θ −0.844 (0.209) −0.991 (0.832)
σ2ε 0.460 0.460 0.460 0.460

ρ(φ, θ) −0.9992 −0.9840
Note: Maximum likelihood estimation results on demeaned daily DM/USD ex-
change rate returns 1/1/1982–31/12/1997, with standard errors, calculated using
the ARFIMA package (Doornik and Ooms 1999). Last row reports the correlation
between estimates of φ and θ.

Table 1.1 reports the maximum likelihood results of estimating basic ARFIMA mod-
els on the exchange rate returns. From the estimate of φ for the AR model it is seen
that there is very little autocorrelation in the returns. Estimating the parameter d of an
ARFIMA(0,d,0) model shows that indeed the order of integration of the returns is approx-
imately 0, no clear sign of long memory is found in the data. The results of the ARMA
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model deserve some extra attention. At first sight, results are significant with large values
for the AR and MA parameters. At second sight, it may strike the researcher that this is a
clear case of (near) root cancellation, with the AR polynomial (1−φL) (nearly) cancelling
against the MA polynomial (1 + θL).4 Allowing for fractional integration as in chapters
2-3 does not alter this result.

In chapter 5 (chapter 4 is referred to below), exchange rates and the interest rates of
the home and foreign countries are taken as input for deciding if a company is expected
to be better off hedging its currency exposure or not. Hedging is advisable for companies
with large exposures in a foreign currency when the expected return of the currency is low
(taking the uncertainty of the return into account); when a positive return is expected,
it is often better not to hedge. For building such a decision framework, the AR(F)IMA
models do not serve well, as we saw from the imprecise parameter estimates in table 1.1.
Therefore, two alterations in the modelling strategy are made:

i. We use a structural model to model the varying local mean of the exchange rate
returns (or the local trend of the logarithm of the exchange rate);

ii. We use a Bayesian approach to incorporate the large parameter uncertainty con-
cerning the parameters modelling the local mean/trend.

The first change is meant to provide a better description of the important characteristics
of the data: For a hedging decision, we want to separate underlying trending5 behaviour
from the irregular component of the disturbances. Also, in the structural model it is
possible to have only the variance of the observation equation varying over time, leaving
the transition equation (1.6) untouched. The exchange rate returns are modelled as

st = µt + εt, Return = Expected return + Disturbance, (1.5)

µt = ρµt−1 + ηt, Expected return = ρ× Previous expectation + Disturbance.
(1.6)

With a so-called structural model (Harvey 1989), the time varying mean return contains
information on the trending of the exchange rate levels. When the disturbances are
Gaussian with constant variance, the structural model is an alternative representation for
an ARIMA model.6

In chapter 5 we allow for time variation of the variance of the disturbance term εt;
details are provided in the chapter. With such varying variance, or with a heavy-tailed
disturbance distribution, the direct link between the state space model and the ARIMA
model no longer holds.

4Not only the parameter φ is estimated close to−θ, but also the correlation between the two parameters
is extreme, see the bottom row of the table. In such a case, often the estimation procedure is not robust.
Using a different optimization method may well lead to different outcomes, e.g. EViews 3.1 reports
estimates of φ = 0.927 (0.064) and θ = −0.917 (0.068) for the same ARMA(1,1) model.

5Notice that the (local) trending of the exchange rates St in figure 1.3 corresponds to a (temporarily)
non-zero mean of the exchange rate returns st.

6The structural model can be rewritten as st =
ηt

1−ρL
+ εt ⇔ (1− ρL)st = ηt+(1− ρL)εt. This model

displays the same correlation structure as the ARMA(1,1) model (1 − φL)st = (1 + θL)vt. The ARMA
model in table 1.1 corresponds to a GLL model with parameters ρ = φ = 0.857, σε = 0.673, ση = 0.044.
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Figure 1.4: Uncertainty for the parameter ρ governing autocorrelation in equation (1.6).
The figure displays the likelihood of the parameter ρ marginal of parameters σε and ση,
and the marginal posterior density of ρ.

The second alteration in comparison to chapters 2-3 is the type of statistical analysis
that is used. Where in the earlier chapters the data contained enough information to
find estimates for the parameters, in chapter 5 the exchange rate data is little informative
about the parameters in equation (1.6) describing the local trend. In section 5.6.1 a signal-
to-noise ratio is reported, which describes the strength of the signal µt in comparison to
the noise εt. This ratio is computed as around 2%, indicating the scarcity of information
on µt in the data.

In a classical statistical analysis, inference based on a vector of parameter estimates
(possibly adjusted for results of a sensitivity analysis). The parameters are often estimated
through the method of maximum likelihood. Figure 1.4 displays the likelihood7 of the
parameter ρ governing the autocorrelation in (1.6). The classical analysis would use the
top of the likelihood function, disregarding the large spread of the likelihood over values
of ρ.

With a Bayesian analysis, a posterior density of the parameters is constructed (see
the histogram in figure 1.4). The uncertainty about the value of ρ is taken up in the
procedure for deciding whether we want to hedge or not, as the decision is made over
all possible values of the parameters, integrating them out with respect to their posterior
density.8

In chapter 5 extensive use is made of a range of Bayesian simulation techniques. These
are explained in detail in chapter 4. Apart from the simulation techniques, the chapter
provides information on methods useful for comparing models in a Bayesian fashion, for
assessing convergence, and especially on implementing the algorithms. The theory in this

7Actually, the likelihood displayed is the likelihood marginal of the parameters σε and ση in the
Generalized Local Level model (1.5)-(1.6), with normally distributed disturbances εt and ηt. The top of
the likelihood function lies at ρ̂ = 0.864, σ̂ε = 0.673, σ̂η = 0.044, even though the top of the likelihood
function after marginalising over σε and ση lies at ρ = 0.72.

8Using bootstrap methods and an elaborate sensitivity analysis, part of the uncertainty concerning
the parameters can be taken into account in a classical analysis. However, this tends to be harder than
using a Bayesian approach.
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chapter is put to action in an elaborate example.

1.4 Overview

The previous sections of the introduction provided the gist of what is to come in following
chapters. In short, this thesis deals with changing parameter models for economic time
series of inflation and exchange rates. In chapter 2 (based on Bos, Franses and Ooms 1999,
published in Empirical Economics) the relation between a changing mean and the degree
of integration in inflation series is investigated. Building on these results, chapter 3 (Bos,
Franses and Ooms 2001, published in the International Journal of Forecasting) introduces
explanatory variables in the ARFIMA model, to estimate the uncertainty of predicting
inflation along the lines prescribed by the Phillips curve. Chapter 4 prepares the Bayesian
methodology to be used in chapter 5, with an example concerning a state space model with
an unobserved changing mean component. Part of the chapter, concerning the Adaptive
Polar Sampler (section 4.3.4) is based on Bauwens, Bos and Van Dijk (2000). In chapter
5 (part of the material in this chapter is published in the articles of Bos, Mahieu and
Van Dijk (2000a, 2000b), in the Journal of Applied Econometrics and the proceedings
of ISBA 2000), the example is elaborated into a full-fledged range of models fitting time
varying trend and volatility behaviour of exchange rates. These models are used for
deciding whether it is worthwhile to hedge daily currency risk or not, for DM/USD,
Yen/USD, USD/DM and USD/Yen currency exposures. For this purpose, extensive use
is made of the Bayesian toolkit of chapter 4.

In the thesis, choices have been made regarding the topics of research. Necessarily
many other interesting topics have been left aside. Chapter 6 briefly summarizes what
has been done, and provides a list of topics for possible future research.





Chapter 2

Long Memory and Level Shifts:
Re-Analysing Inflation Rates

2.1 Introduction

A key application of long memory time series models concerns inflation. For example,
Hassler and Wolters (1995) and Baillie, Chung and Tieslau (1996) find convincing ev-
idence for the presence of long memory characteristics in, especially, inflation rates in
the G7 countries. Long memory implies that shocks have a long-lasting effect. Similar
to the arguments in the literature on unit roots versus mean shifts, see Perron (1989)
and Perron and Vogelsang (1992), it may however be that empirical evidence for long
memory is caused by neglecting one or more level shifts. Since such level shifts are not
unlikely for inflation, where these may be caused by sudden oil price shocks, we examine
whether evidence for long memory (indicated by the relevance of an ARFIMA model) in
G7 inflation rates is spurious or exaggerated.

The outline of this chapter1 is as follows. In section 2.2 we start with a brief motivation
by having a closer look at monthly U.S. inflation, thereby extending some recent results
summarized in Ooms (1996). In section 2.3 we put forward the relevant theory for testing
for long memory and structural level shifts. Our results build on that of Hidalgo and
Robinson (1996), who showed that the Wald test is applicable to testing for breaks in
a long memory model and on Cheung (1993) since we put forward LM and Wald tests.
Section 2.4 deals with a simulation study of the practical performance of the tests. In
section 2.5 we apply our tests to monthly G7 inflation rates, where we assume that
structural level shifts concur with substantial oil price changes. Our main findings are
that apparent long memory is quite resistant to mean shifts, although for a few inflation
rates we find that evidence that long memory disappears. In section 2.6, we summarize
our findings and relate them to research that appeared after the publication of the article
Bos et al. (1999) underlying this chapter.

1 This chapter is a slightly adapted version of the article Bos, Franses and Ooms (1999), which
appeared in Empirical Economics. It is reprinted with kind permission of the publisher.



12 Chapter 2. Long Memory and Level Shifts

2.2 A motivation

Consider the monthly U.S. inflation rate in figure 2.1. The data cover January 1957–
December 1995 and concern all commodities (source: Bureau of Labor Statistics, series
SA0). In the same graph, we draw straight lines that suggest that U.S. inflation has
undergone four different regimes. First, until approximately 1967, inflation is stable at a
low level. Then the Vietnam war exerts its effect on prices. Inflation is higher, but still
quite stable (around this higher level). At the time of the first oil crisis, inflation almost
doubles, while at the same time starting to display higher variability. This period of high
inflation ends approximately halfway 1981. The final subsample shows a return to earlier
inflation levels, although the variability of inflation stays high.
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Figure 2.1: U.S. inflation levels

The apparent level shifts might reflect genuine long memory properties intrinsic to
inflation. However, the level shifts may also be caused by exogenous events such as the
oil crisis. It may also be that the data are better described by a long memory model with
mean shifts.

Table 2.1: Estimated values of fractional parameter d and mean shifts β in an ARFIMA
model for U.S. inflation

Number of breaks
Parameter 0 2 4

d 0.50 (0.05) 0.40 (0.06) 0.38 (0.06)
β1973:07 1.85 (0.35) 1.65 (0.40)
β1976:07 −0.25 (0.44)
β1979:01 0.97 (0.43)
β1982:07 −1.71 (0.35) −2.10 (0.39)

Note: Standard errors are given in parentheses.

To examine the impact of including mean shifts, we estimate an ARFIMA model (of
the type discussed in section 2.3 below) for U.S. inflation (adjusted for seasonal means).



2.3. Some theoretical results 13

We allow for zero, two or four breaks in our ARFIMA model. The timing of the breaks is
fixed exogenously and corresponds with shortly before and after the first oil crisis (1973:07
and 1976:07) and shortly before and after the second oil crisis (1979:01 and 1982:07). In
table 2.1 we give some key results concerning the fractional differencing parameter d in
an ARFIMA model and the parameters for the mean shifts.

The behaviour of the parameter d indicating the degree of fractional integration is
interesting. Under the assumption of no mean shifts, we find clear indication of long
memory, with an estimate for d even at the border of the non-stationary region. Allowing
for two breaks we observe that d̂ reduces considerably. Finally, allowing for four breaks
does not seem to change much, since d̂ obtains about the same value as in the case of two
shifts.

2.3 Some theoretical results

The empirical results in table 2.1 evoke interest in the following issues. The first concerns
how one would formally address modelling breaks and fractional integration jointly. The
second concern is with test statistics that are useful to examine if structural shifts in an
ARFIMA model are statistically plausible. The asymptotic distribution of these statistics
is then relevant, but also their small sample performance. In this section we deal with
these issues, except for the simulation evidence which we postpone to section 2.4.

The ARFIMA model

A fractionally integrated model aims to capture the long memory that is apparent in
a time series. Where the influence of a shock in a stationary (I(0)) model disappears
after a limited number of periods (depending on the short memory parameters in the
autoregressive and moving average parts), and where the effect of a shock lasts forever in
a unit root (I(1)) process, the fractionally integrated model (FI(d) with d ∈ (0, 1)) takes
up an intermediate position, see Granger and Joyeux (1980), Hosking (1981), and more
recently, Baillie (1996) and Beran (1994).

The ARFIMA(p, d, q) model is written as

Φ(L)(1− L)d(zt − µz) = Θ(L)εt t = 1, .., T,

where zt is the time series at time t, µz its mean, and Φ(L) = 1− φ1L− ..− φpLp is the
stable autoregressive polynomial in the lag operator L and Θ(L) = 1 + θ1L + .. + θqL

q

the invertible moving average part (p, q ∈ {0, 1, 2, ..}). Φ(L) and Θ(L) together define the
short memory characteristics of the model. We assume the noise process εt to be Gaussian,
with expectation zero and variance σ2ε . The long memory behaviour is governed by the
part (1−L)d. If d is an integer, the I(d) process is non-fractional, and taking dth differences
of zt leads to a (stationary) I(0) series. If d ∈ (0, 1), one says that zt exhibits long memory
behaviour.
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Including a level shift

To allow for a level shift, after a fraction τ (0 < τ < 1) of the data, we write the
observations yt as the sum of an unobserved ARFIMA process and the term for the level
shift:

yt = zt + µI{t>τT}. (2.1)

The parameter µ indicates the size of the level shift in the series yt at time τT . We define
the relative level shift as

β =
µ

σz
, (2.2)

with σz being the standard deviation of the ARFIMA process. If the level shift µ and the
timing of the break τ are known, this standard deviation can be estimated directly using
the empirical standard deviation of the underlying process zt.

The extension of (2.1) to k breaks is straightforward. We define µr as the r-th shift
in level, compared to the previous level, and we define the relative breaksize βr similar
to (2.2), where r = 1, .., k. When we allow for k level changes at prespecified fractions
0 < τ1 < .. < τk < 1, we can extend (2.1) to

zt = yt −
k∑

r=1

µrI{t>τrT}.

The sample mean of the underlying process zt is defined as

z =
1

T

∑

t

yt −
1

T

∑

t

k∑

r=1

µrI{t>τrT} = y − 1

T

k∑

r=1

bT (1− τr)cµr,

where b·c denotes the operator to take the integer part of the argument (the entier func-
tion).

In this paper we assume we know the values of τ1, .., τk. It is possible to endogenize the
timing of the breaks, as in Andrews (1993), Bai (1997) or Bai and Perron (1998), but this
introduces all kinds of problems concerning the estimation method and the appropriate
critical values of the test statistics. Hsu (2000) investigates the same data set and model,
with endogenous breakpoints. The results are similar to results presented here.

The spectrum of an ARFIMA model

In order to derive the following results, we assume from now on that zt is a zero mean,
stationary and invertible ARFIMA process, which is obtained from the original data
by filtering out the known level shifts, and, if needed, by appropriate differencing, and
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subtracting the sample mean z, i.e.,

zat (µ, bd+
1

2
c) = yt −

k∑

r=1

µrI{t>τrT}, (2.3)

zbt (µ, bd+
1

2
c) = (1− L)bd+ 1

2
czat , (2.4)

zt(µ, bd+
1

2
c) = zbt − zb. (2.5)

We assume that zt in (2.5) can be described by an ARFIMA(p, d, q) model with d in
[−0.5, 0.5).

The autocovariance generating function (ACGF) of an ARFIMA(p, d, q) process is
written as

g(z; Ψ) = σ2ε
(
(1− z)(1− z−1)

)−d Θ(z)Θ(z−1)

Φ(z)Φ(z−1)
,

see Harvey (1989). To save notation, we use Φ as the set of parameters {φ1, .., φp} in the
polynomial Φ(L), Θ likewise for the MA parameters and we write Ψ as shorthand for the
ARFIMA parameters {Φ, d,Θ, σ2ε}. We use µ to denote the level shifts µ1 to µr. The
spectral generating function (SGF) of the ARFIMA model is given by

g(λ; Ψ) = σ2ε
∣∣1− eiλ

∣∣−2d
∣∣Θ(eiλ)

∣∣2

|Φ(eiλ)|2
, (2.6)

leading to the power spectrum, which is used extensively in the likelihood function as

f(λ; Ψ) =
1

2π
g(λ; Ψ). (2.7)

The loglikelihood

With zt defined as in (2.5), the loglikelihood of the ARFIMA model is

lnL(y|Φ, d,Θ, µ, σ2ε ) = −
T

2
log 2π − 1

2
log |ΣT (Ψ)| − 1

2
z′Σ−1T (Ψ)z.

The covariance matrix of z is ΣT (Ψ) = [γ(j − l)]Tj,l=1, with γ(j) the j-th autocovariance
of the process z. The loglikelihood depends only on the level shifts through the change
from observations yt to the underlying process zt. This dependence is not stressed in the
notation.

Although it is possible to construct the exact likelihood function in the time domain
(see Sowell 1992), we use an approximation in the frequency domain following Harvey
(1989). The latter procedure is computationally simpler. In practice, the problem with
the calculation of the loglikelihood function is found in the covariance matrix ΣT (Ψ),
which is a T × T matrix. Calculation of its determinant and inverse is time-consuming.
Harvey (1989, section 4.3) proposes to use the following approximations:

log |ΣT (Ψ)| = T log 2π +
T−1∑

j=0

log f(λj; Ψ), (2.8)
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with f(λ; Ψ) the power spectrum of the process zt at frequency λ, λj = 2πj/T , and

z′ΣT (Ψ)z =
T−1∑

j=0

Iz(λj;µ)

f(λj; Ψ)
, (2.9)

where Iz(λ;µ) denotes the break-adjusted periodogram of zt at frequency λ. In this
notation, the dependence of the periodogram Iz(λ;µ) on the level shifts µ is made explicit
again, see appendix 2.A.

When calculating the elements of equations (2.8)-(2.9), elements at frequency zero are
disregarded, as advocated in Beran (1994), hence the summations start at j = 1. Taking
all above results together leads to Whittle’s approximative loglikelihood function, denoted
by

lnL(y|Φ, d,Θ, µ, σ2ε )

=− T

2
log 2π − 1

2
log |ΣT (Ψ)| − 1

2
z′Σ−1T (Ψ)z

≈− T

2
log 2π − T

2
log 2π − 1

2

T−1∑

j=1

log f(λj; Ψ)− 1

2

T−1∑

j=1

Iz(λj;µ)

f(λj; Ψ)
(2.10)

=− T log 2π −
T ∗∑

j=1

δj log f(λj; Ψ)−
T ∗∑

j=1

δj
Iz(λj;µ)

f(λj; Ψ)
.

Here we use the fact that for the power spectrum it holds that f(λ; Ψ) = f(−λ; Ψ) and
that f(λ; Ψ) = f(λ+ 2π; Ψ). Furthermore, T ∗ = bT/2c and weights δj are defined as

δj =

{
1
2

if j = T
2
=
⌊
T
2

⌋

1 else
(2.11)

for j = 1, .., T ∗. The purpose of the weighting is only to make sure that the midpoint of
the range of frequencies is not used twice if T is even.

Testing for breaks

Testing whether level shifts occur corresponds with testing a linear restriction on the
parameters ξ = {Ψ, µ} = {Φ, d,Θ, σ2ε , µ}. The relevant null hypothesis and alternative
hypothesis are

H0 : Rξ = µ = 0, H1 : Rξ = µ 6= 0,

where the alternative implies that we are testing against k breaks at prespecified moments.
R is the matrix to select the parameters to be restricted from the vector ξ. In this setting,
the Wald, Lagrange Multiplier (LM) and Likelihood Ratio (LR) tests can be used. In our
case, the parameters under the null hypothesis of no breaks are more easily calculated
than under the alternative, as the inclusion of breaks in the likelihood function would
imply that for every evaluation of the likelihood, the periodogram Iz(λ;µ) would have to
be recalculated. Thus, the LM principle is our first choice for the next section, where the
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simulations are presented. In section 2.5, where the analysis is done for the countries of
the G7, both the LM and Wald test statistics are used.

Hidalgo and Robinson (1996) have proved that the Wald test statistic on a single
structural change in a long memory environment follows a χ21 distribution, when using
a non-parametric estimator for d and an OLS estimate (disregarding the value of d̂ or
any short memory parameters) for the mean of the series before and after the break.
Their proof cannot easily be translated to a setting where an iterative generalized least
squares or (approximate) maximum likelihood procedure is used. However, as parametric
estimators tend to converge at least as fast as non-parametric estimators (assuming a
correct model specification under the null hypothesis), this asymptotic χ2 distribution
can be expected to hold in our case too. As the Wald and LM tests are asymptotically
equivalent, the results of Hidalgo and Robinson can be translated to the LM test. Finally,
the extension to multiple breaks is straightforward, as long as we condition on the number
and the timing of the breakpoints. Asymptotically, we expect a χ2k distribution for the
test on k breaks under the null hypothesis.

The calculation of the test statistics follows the familiar lines:

Wµ = µ̂′
(
R J−1(Ψ̂, µ̂)R′

)−1
µ̂,

LMµ =
∂ lnL
∂ξ

⌋′

ξ̂0

J−1(Ψ̂0, 0)
∂ lnL
∂ξ

⌋

ξ̂0

,

with ξ as defined before. The Ψ̂ and µ̂ are the unrestricted estimates of the parameters
in the model, whereas ξ̂0 = {Ψ̂0, 0} is the estimate of the parameters under the null
hypothesis of no breaks. The J(Ψ, µ) denotes the information matrix

J(Ψ, µ) = −E

[
∂2 lnL
∂Ψ∂Ψ′

∂2 lnL
∂Ψ∂µ′

∂2 lnL
∂µ∂Ψ′

∂2 lnL
∂µ∂µ′

]
.

In appendix 2.A we provide more details on the calculation of these test statistics.

2.4 Simulation evidence

In this section we report on some simulation evidence concerning the small sample prop-
erties of the estimators of the parameters and of the LM test for level shifts.

Two data generating processes

We generate 512 (=T ) observations from an AR(1) process with φ = 0.8 and from an
ARFIMA(1, d, 0) process with φ = 0.4 and d = 0.3 (see appendix 2.B for information
on the generator used for the ARFIMA model). The variance σ2ε of the disturbances
is taken to be 1. Halfway the sample, we add a level shift of size β = 1, i.e., a shock
of one time the standard deviation of the underlying process is added to the mean of
the series after the observation at 1

2
T . Given the variance of the ARFIMA processes,

which is σ2z = 2.778 for the AR(1) model and σ2z = 2.357 in the ARFIMA(1, d, 0) case,



18 Chapter 2. Long Memory and Level Shifts

the parameter µ in (2.1) equals 1.667 and 1.535, respectively. For both time series, i.e.,
AR(1) and ARFIMA(1, d, 0), with and without a level shift, we estimate the parameters
of an ARFIMA(1, d, 1) model. Our simulations are based on 5000 replications.

The empirical distribution of the estimators

In figure 2.2 the empirical distribution functions of φ̂, d̂ and θ̂ are shown for data generated
according to the AR(1) process without a break. Figure 2.3 shows the estimation results
for the same parameters, but estimated for data which include a level shift. The boxes
indicate the 5%, 50% and 95% quantiles, whereas the dashed lines cross at the original
parameter value.
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Figure 2.2: Estimating parameters in an ARFIMA(1, d, 1) model. The DGP is an AR(1)
model with φ = 0.8, σ2ε = 1, without a level shift.
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Figure 2.3: Estimating parameters in an ARFIMA(1, d, 1) model. The DGP is an AR(1)
model with φ = 0.8, σ2ε = 1, with a level shift of size β = 1.

From the first graph we can conclude that the estimation procedure leads to consistent
results. The estimated medians (with the corresponding values in the DGP between
brackets) are φ̂50% = 0.80 [0.8], d̂50% = 0.00 [0.0] and θ̂50% = 0.01 [0.0]. Including a
break in the data generating process (DGP) leads to figure 2.3, which depicts the same
estimators. In the left-hand graph we see that in a certain fraction of the simulations,
inclusion of a level shift in the DGP leads to data with unit root properties (φ̂ close to 1).
A closer examination of the estimation results shows that in these cases d is estimated
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around or even below zero. In the other cases, φ was estimated below the ‘true’ value of
0.8, i.e. the median decreases to 0.66. Except for cases where a unit root was found, d
is estimated at a value higher than in the previous simulations. Indeed, a correlation of
-0.90 between φ̂ and d̂ is found. The median d̂50% shifts upwards to a value of 0.27. Such
a value for the degree of fractional integration is in general taken as a strong indication of
long memory behaviour. The estimates of the parameter θ decrease somewhat, relative
to the original value of zero, while their spread is higher than before. Clearly, neglecting
a level shift in otherwise short memory data may lead one to believe that long memory
resides in the data.
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Figure 2.4: Estimating parameters in an ARFIMA(1, d, 1) model. The DGP is an
ARFIMA(1, d, 0) model with φ = 0.4, d = 0.3, σ2ε = 1, without a level shift.
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Figure 2.5: Estimating parameters in an ARFIMA(1, d, 1) model. The DGP is an
ARFIMA(1, d, 0) model with φ = 0.4, d = 0.3, σ2ε = 1, with a level shift of size β = 1.

When the ARFIMA(1, d, 0) model is taken as the DGP, we obtain the results as given
in figures 2.4 and 2.5. Figure 2.4 shows the consistency of the approximative Whittle
estimator in the presence of long memory in the data. This result agrees with those
reported in Hauser (1999), where encouraging results for this estimator are obtained from
an extensive simulation study. The medians (with values of the DGP between brackets)
found are φ̂50% = 0.41 [0.4], d̂50% = 0.29 [0.3] and θ̂50% = 0.02 [0.0]. For the DGP where a
break is included, we observe shifts in the empirical distribution of the estimators. Now,
no indication of unit roots is found. The estimates of φ shift down to a distribution with
0.28 as a median. Estimated d̂ values indicate even stronger long memory characteristics
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than found before. The parameter θ̂ does not change much. Again, a positive bias in d̂ is
found when a level shift is neglected.

The empirical distribution of the LM test statistic for a level shift

Figure 2.6 depicts the empirical density and distribution function of the Lagrange Multi-
plier test statistic, when the presence of a break is tested in the series simulated according
to the AR(1) DGP. The dashed curve in the same graph indicates the χ21 distribution,
which is supposed to be the asymptotic distribution of the statistic.
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Figure 2.6: Empirical distribution of the LM test statistic. The DGP is an AR(1) model
with φ = 0.8, σ2ε = 1, without a level shift.
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Figure 2.7: Empirical distribution of the LM test statistic. The DGP is an AR(1) model
with φ = 0.8, σ2ε = 1, with a level shift of size β = 1.

The empirical density function exhibits the same shape as the χ2 density. However,
large values of the test statistic occur too often, as indicated by the heavier tail of the
empirical distribution when compared to the χ2 distribution. The standard 5% critical
value for the χ2 distribution is 3.84. Using this critical value leads to an empirical size of
the test of 13%. The empirical 5% critical value is found at a value of the test statistic of
7.73.

The effects of the inclusion of a break in the DGP on the LM test statistic are sum-
marized in figure 2.7. Although the shape of the density function still resembles a χ2,
much larger values of the test statistic are found. The standard χ2-based critical value
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would lead to a (correct) rejection of the null hypothesis of no break in 83% of the cases.
Using the empirical critical value of 7.73 reduces the power to 69%, which is still quite
reasonable.
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Figure 2.8: Empirical distribution of the LM test statistic. The DGP is an ARFI-
MA(1, d, 0) model with φ = 0.4, d = 0.3, σ2ε = 1, without a level shift.
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Figure 2.9: Empirical distribution of the LM test statistic. The DGP is an ARFI-
MA(1, d, 0) model with φ = 0.4, d = 0.3, σ2ε = 1, with a level shift of size β = 1.

When the data are generated according to the ARFIMA(1, d, 0) model, the empirical
size of the test (at a nominal level of 5%) is 22% (see figure 2.8). Even when generating
under the null, more large values of the test statistic are found. The empirical critical
value at the 95% confidence level is 12.51, which is considerably higher than the original
3.84. Finally, when the DGP is the ARFIMA(1,d,0) model with a break, we obtain the
results as in figure 2.9. If the critical value of 3.84 is used, the empirical power is still
around 80%, as indicated by the horizontal dashed line in the graph on the right hand side
of figure 2.9. Using the empirical 5% critical value in this case however lowers the power
to 50%. The findings on size and power are summarized in table 2.2. The third column
in this table reports the rejection rates for the Beran test for goodness-of-fit, advocated
in Beran (1994), at a nominal level of 5%. We interpret the numbers in this column as
that this test statistic does not signal important residual correlation in the models fitted
to the data.

Our simulations lead to the conclusion that a neglected level shift has a substantial
effect on the parameter estimates. The LM test seems to be able to detect a level shift,
although the power can be low and some size distortions do occur.
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Table 2.2: Empirical rejection frequencies of the LM test statistic for a level shift and the
Beran test for residual white noise

DGP: AR(1), φ = 0.8

β LM > 3.84 LM > 7.73 pBeran < 0.05

0 13.18 5.00 4.34
1 83.36 69.28 4.22

DGP: ARFIMA(1, d, 0), φ = 0.4, d = 0.3

β LM > 3.84 LM > 12.51 pBeran < 0.05

0 21.84 5.00 4.18
1 80.20 49.50 3.86

Note: Each series consists of 512 observations. The
number of replications is 5000.

2.5 Inflation: Long memory and level shifts

In this section we re-analyse part of the series previously used by Baillie et al. (1996).
The dataset consists of the Consumer Price Indices (CPI) for the countries of the G7:
Canada, France, Germany, Italy, Japan, the United Kingdom and the United States. The
data for the U.S. originates from the Bureau of Labor Statistics concerning the overall
price index SA0, and it ranges from January 1957 until December 1995. Indices for the
other countries are extracted from Citibase. Observations on the months January 1948
until March 1990 are available. Inflation rates are constructed from the price indices by
taking yt = 100∆ log CPIt. As the inflation rates exhibit rather erratic behaviour in the
first years of the sample, we only use the data starting in 1958. For the U.S., we have a
sample of 456 observations, while for the other countries 387 observations are available. To
account for part of the seasonality, the data yt are first adjusted for seasonal means. The
parameters in the ARFIMA models for the resulting series are estimated by optimizing
the likelihood as described in section 2.3. As the estimation is done in the frequency
domain, this adjustment for seasonality corresponds to putting the periodogram to zero
at the seasonal frequencies (see Ooms and Hassler (1997)). The timing of the breaks
corresponds with the oil price shocks (see table 2.1), and is taken to be equal for all
countries.

We aim to consider an ARFIMA model. Several settings with different degrees in the
AR and MA polynomials are tried. Our specification search results in a model with AR
parameters φ1, φ12 and φ13 together with the degree of integration d and residual variance
σ2ε . This model appears to capture the short and long run correlations quite well, as is
indicated by the Beran (1994) test for white noise. Specifically, adding moving average
parameters often leads to root cancellation, and hardly improves the residual variance.

In table 2.3 the results of the estimations are presented. For each country we consider
three models. First, the pure ARFIMA model is considered. The parameter φ̂13 is signifi-
cant only in the case of German inflation rates. For the other countries, the parameter can
be omitted. The fractional integration parameter d is estimated around the commonly
found value of 0.4. For the U.S., we find d̂ = 0.501. Theoretically, the approximative
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Table 2.3: ARFIMA models (with and without level shifts) for monthly inflation rates in the G7 countries

Parameter Canada France Germany Italy Japan UK USA

φ̂1 −0.140 (0.067) −0.055 (0.073) 0.033 (0.080) −0.231 (0.060) −0.224 (0.067) −0.157 (0.069) −0.268 (0.060)

φ̂12 0.228 (0.052) 0.139 (0.053) 0.096 (0.052) −0.093 (0.050) 0.160 (0.049) 0.145 (0.050) 0.078 (0.046)

φ̂13 0.144 (0.051)

d̂ 0.324 (0.049) 0.357 (0.056) 0.207 (0.064) 0.445 (0.044) 0.267 (0.056) 0.385 (0.054) 0.501 (0.050)
σ̂ε 0.304 (0.011) 0.320 (0.012) 0.257 (0.009) 0.514 (0.018) 0.694 (0.025) 0.530 (0.019) 0.239 (0.008)
σ̂z 0.382 0.407 0.286 0.672 0.737 0.646 0.328
LL −87.971 −107.836 −22.977 −290.133 −407.146 −302.569 7.598
Beran/pBeran 0.341 0.157 0.313 0.598 0.337 0.206 0.290 0.888 0.314 0.571 0.349 0.087 0.341 0.137

Two shifts Canada France Germany Italy Japan UK USA

φ̂1 −0.021 (0.077) 0.056 (0.089) 0.065 (0.086) −0.124 (0.074) −0.200 (0.071) −0.095 (0.077) −0.205 (0.068)

φ̂12 0.224 (0.052) 0.137 (0.052) 0.087 (0.052) −0.118 (0.051) 0.158 (0.050) 0.127 (0.051) 0.066 (0.046)

φ̂13 0.133 (0.051)

d̂ 0.114 (0.062) 0.186 (0.076) 0.163 (0.072) 0.274 (0.063) 0.225 (0.062) 0.276 (0.066) 0.400 (0.059)
σ̂ε 0.292 (0.011) 0.313 (0.011) 0.256 (0.009) 0.502 (0.018) 0.691 (0.025) 0.521 (0.019) 0.231 (0.008)

β̂1973:07 1.639 (0.214) 1.244 (0.292) 0.326 (0.261) 1.554 (0.276) 0.368 (0.239) 1.289 (0.294) 1.851 (0.350)

β̂1982:07 −1.258 (0.235) −1.446 (0.287) −0.468 (0.315) −0.956 (0.302) −0.521 (0.268) −0.723 (0.344) −1.708 (0.354)
σ̂z 0.304 0.334 0.275 0.532 0.716 0.557 0.259
LM/pLM 290.144 0.000 45.950 0.000 2.650 0.266 40.727 0.000 4.936 0.085 29.972 0.000 49.863 0.000
Wald/pWald 64.957 0.000 32.207 0.000 2.957 0.228 39.890 0.000 4.357 0.113 19.557 0.000 33.786 0.000
LL −74.028 −99.602 −21.911 −282.305 −405.319 −295.851 21.117
Beran/pBeran 0.312 0.608 0.309 0.660 0.331 0.291 0.266 0.988 0.315 0.561 0.354 0.060 0.354 0.044

Four shifts Canada France Germany Italy Japan UK USA

φ̂1 −0.023 (0.077) 0.075 (0.092) 0.051 (0.087) −0.127 (0.075) −0.126 (0.082) −0.111 (0.079) −0.202 (0.068)

φ̂12 0.221 (0.052) 0.130 (0.052) 0.093 (0.053) −0.117 (0.051) 0.140 (0.051) 0.135 (0.052) 0.059 (0.047)

φ̂13 0.138 (0.052)

d̂ 0.106 (0.062) 0.161 (0.080) 0.175 (0.076) 0.274 (0.065) 0.117 (0.075) 0.297 (0.075) 0.381 (0.058)
σ̂ε 0.291 (0.010) 0.312 (0.011) 0.255 (0.009) 0.502 (0.018) 0.682 (0.025) 0.520 (0.019) 0.230 (0.008)

β̂1973:07 1.452 (0.279) 1.277 (0.347) 0.028 (0.352) 1.403 (0.358) 0.922 (0.247) 1.086 (0.410) 1.653 (0.402)

β̂1976:07 0.074 (0.331) −0.227 (0.385) 0.114 (0.401) 0.107 (0.387) −0.923 (0.308) 0.185 (0.493) −0.248 (0.440)

β̂1979:01 0.432 (0.319) 0.443 (0.386) 0.597 (0.378) 0.247 (0.368) −0.033 (0.296) 0.173 (0.408) 0.974 (0.435)

β̂1982:07 −1.529 (0.275) −1.638 (0.335) −0.763 (0.351) −1.117 (0.345) −0.335 (0.252) −0.797 (0.379) −2.097 (0.394)
σ̂z 0.302 0.329 0.277 0.531 0.689 0.570 0.255
LM/pLM 852.230 0.000 49.741 0.000 7.099 0.131 49.586 0.000 29.441 0.000 31.151 0.000 64.879 0.000
Wald/pWald 73.176 0.000 39.512 0.000 6.154 0.188 41.029 0.000 22.897 0.000 17.873 0.001 42.317 0.000
LL −72.667 −98.978 −20.130 −281.860 −400.906 −295.601 23.560
Beran/pBeran 0.312 0.607 0.306 0.705 0.332 0.278 0.268 0.986 0.321 0.458 0.354 0.059 0.362 0.020
Note: Standard errors between parentheses.
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Whittle estimator is only consistent in the range of d ∈ [−0.5, 0.5), although it is known
to be little biased if the degree of integration lies just outside the stationary region. The
Beran test for the absence of residual correlation, which is reported along with its corre-
sponding p-value, does not indicate strong correlation in the residuals. The σ̂ε reported is
the estimated standard deviation of the disturbances. The σ̂z denotes the standard devi-
ation of the ARFIMA process, which in this no break case equals the standard deviation
of the process zt itself.

Allowing for a level shift in July 1973 and July 1982 leads to parameter estimates as
reported in the second panel of table 2.3. Apart from the ARFIMA parameters, the sizes
of the level shifts µr are estimated as well. Subtracting the estimated level shifts from the
data leads to the underlying process zt as in section 2.3. The empirical standard deviation
σ̂z of this underlying process is used to calculate the relative break sizes β̂r as defined in
equation (2.2). Reported standard deviations of the estimates of βr are calculated from
the original standard deviations of the level shifts µ̂r, taking σ̂z is given. As σ̂z is not a
given, fixed parameter, the true uncertainty about the β’s is likely to be somewhat larger.
Significant values of β̂r are found in all countries except for Germany and Japan. For most
countries, a considerably lower degree of fractional integration is found compared with
the no break case. Also, the standard deviation of the residuals σ̂ε and of the underlying
process σ̂z is smaller, as expected after inclusion of extra parameters.

We also calculate the LM and Wald test statistics for the absence of level shifts. For
each country, the value of the statistic and the corresponding p-value are reported. For
the calculation of the p-value, it is assumed that the statistic follows a χ2k distribution,
with k the hypothesized number of structural mean shifts. The LM and Wald test both
point in the same direction. The hypothesis of no breaks seems to be rejected convincingly
for five out of seven countries. Finally, notice that for the U.S. and the U.K., the Beran
test statistic is getting worse. However, adding AR or MA components to our maintained
model does not yield improvement.

The final panel of table 2.3 concerns two more breaks, in July 1976 and January
1979. For Canada or France, no dramatic changes occur (as compared to the two break
case). For Germany it is interesting to see that a temporally higher inflation seems to be
found between 1979 and 1982. The Wald and LM tests however do not reject the null
of no breaks against the alternative of four breaks. For Italy and the U.K. these extra
breakpoints do not lead to a strong change. Japan, however, seems to have undergone
higher inflation in the period from 1973 until 1976, which is the first oil crisis period.
The breaksizes at those moments are about equal in absolute size and opposite in sign.
Both tests point out that allowing for four breaks should be preferred to the assumption
of no level shifts. For U.S. inflation the four breaks do seem to matter. The degree of
fractional integration decreases a little further, and both LM and Wald test statistics
obtain larger values, indicating strong evidence for level shifts. On the other hand, the
problems indicated by the Beran test statistic for residual serial correlation increase.

Allowing for level shifts is seen to have a huge effect on the degree of fractional in-
tegration. In Canada, two breaks suffice to have the degree of integration diminish to
a level that is no longer significant. In Japan, the first two breakpoints chosen do not
seem to fit well the moments at which the mean level of inflation underwent a change.
However, in the setting of four breakpoints, a high inflation period is neutralized, and the
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resulting zt series displays no significant fractional integration. In France and Germany,
d̂ decreases to a level that usually is considered as not a strong indication of the presence
of long memory, although the parameter itself is still significantly different from zero. In
Italy, the estimate of d in a model with two level shifts is notably lower than in the pure
ARFIMA model. This also holds true for the U.K. and U.S.

2.6 Conclusions

In this paper we investigated the effect a level shift can have on the apparent long memory
characteristics. Especially for inflation rates, where long memory seems to exist, level
shifts because of exogenous shocks may also have occurred. A framework for combining
level shifts and long memory was put forward. In section 2.4, a simulation study was
performed to investigate the possible effects of a level shift on the estimate of the long
memory parameter d in the ARFIMA model. A shock of only one standard deviation of
the underlying series already could lead to the erroneous impression that long memory was
present in the data. Encouraged by the results of the simulations, an investigation of the
inflation rates in the countries of the G7 was performed. Where a pure ARFIMA model
replicates previous results, that is, a significant value of d̂ is found in several countries,
addition of a set of level shifts did decrease the degree of fractional integration in various
countries.

The results of the simulations indicated a size distortion for the LM test. In the
controlled environment of a simulation, adjusting for this distortion is possible. Even if
the size is controlled, the power of the test is not impressive. This is a problem that is hard
to escape. Fractional integration and the occurrence of level shifts can be quite hard to
distinguish in samples of medium size. Indeed, an unreported investigation using a larger
sample did lead to better results for the size and power of the test, though improvement
was slow. A possible way of improving the small sample results would be to work with
the exact Maximum Likelihood method, as propagated by Sowell (1992).

In our empirical work, timing of the breakpoints was taken to be fixed exogenously.
With the parametric framework used here, the search for optimal breakpoints is compu-
tationally demanding. In a semiparametric setting, Hsu (2000) derives results for the G7
countries estimating the degree of integration jointly with the timing of (at most) two
breakdates. These results confirm the findings reported here. Furthermore, we assumed
the shifts took place suddenly, in a specific month. Allowing for a smooth transition
between regimes, as in Van Dijk (1999, chapter 2) might provide a better fit, though it is
questionable if the data is informative enough to estimate the extra parameters involved.
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2.A Calculating the likelihood and the test statistics

In the calculation of the likelihood and the test statistics, several elements are combined.
In this appendix the way the elements of these functions were calculated, are given.

In equation (2.7), the power spectrum was given as

f(λ; Ψ) =
σ2ε
2π

∣∣1− eiλ
∣∣−2d

∣∣Θ(eiλ)
∣∣2

|Φ(eiλ)|2
. (2.6)+(2.7)

The factors in this formula are calculated using

e−iλ = cosλ− i sinλ ⇔ eiλ = cosλ+ i sinλ, (2A.1)
∣∣1− eiλ
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Before calculating the periodogram, the data following the underlying ARFIMA pro-
cess are calculated from yt, t = 1, .., T , the moments of the k breaks τr, r = 1, .., k, and
the sizes of the corresponding level shifts µr, r = 1, .., k. Assuming d lies in the stationary
realm (see remarks in section 2.3), and reiterating a slightly adjusted version of equations
(2.3)-(2.5), we have

zat (µ, d) = zbt (µ, d) = yt −
k∑

r=1

µrI{t>τrT}, (2.3′)

zt(µ, d) = zbt − zb. (2.5′)

Of this transformed data set, the periodogram is calculated as
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Defining T ∗ = bT/2c, λj = 2πj
T

and weights δj as in section 2.3,
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j = 1, .., T ∗ (2.11′)
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all elements in the likelihood function are known:

lnL(y|Φ, d,Θ, µ, σ2ε ) = lnL(y|Ψ, µ)

= −T log 2π −
T ∗∑

j=1

δj log f(λj; Ψ)−
T ∗∑

j=1

δj
Iz(λj;µ)

f(λj; Ψ)
. (2.10′)

The analytical gradient of the loglikelihood with respect to the parameters of the
model was used, during the optimization routine for the model and in the calculation of
the test statistics. Separating the vector of ARFIMA parameters Ψ and the level shifts
µ, we find
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The derivatives of the power spectrum with respect to the ARFIMA parameters in Ψ are
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∂σε
= f(λ; Ψ)× 2

σε
. (2A.11)

Two derivatives are left unspecified in the equations (2A.8) and (2A.9). These follow,
after some tedious but simple algebra, as

∂
∣∣Φ(eiλ)

∣∣2

∂φr
= −2

(
(1−

p∑

k=1

φk cos kλ) cos rλ−
p∑

k=1

φk sin kλ sin rλ

)
, (2A.12)

∂
∣∣Θ(eiλ)

∣∣2

∂θr
= 2

(
(1 +

q∑

k=1

θk cos kλ) cos rλ+

q∑

k=1

θk sin kλ sin rλ

)
. (2A.13)

The last element that was left unknown in these equations was the derivative of the
periodogram of z w.r.t. the value of the breaks. This last derivative is found to be

∂Iz(λ, µ)

∂µr
=

1

πT

((
T∑

t=1

zt cos tλ

)(
T∑

t=1

∂zt
∂µr

cos tλ

)

+

(
T∑

t=1

zt sin tλ

)(
T∑

t=1

∂zt
∂µr

sin tλ

))
(2A.14)
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with

∂zt
∂µr

= I{τrT>t} +
T − τrT

T
≈ I{τrT>t} + 1− τr.

Constructing the gradient is done by combining the equations. Although it is possible
to derive the analytical second derivative as well, this would become even harder. For
calculation of the Hessian, the numerical first derivative of the (analytical) gradient is
used.

2.B Generating an ARFIMA process

Beran (1994) describes a method, originating from Davies and Harte (1987), to generate T
observations from a stationary Gaussian model, given the autocovariances γ(0), .., γ(T−1).
The following steps are taken:

i. Calculate the autocovariances of the model, γ(0), γ(1), .., γ(T − 2), γ(T − 1), and
define

γ∗(j) =

{
γ(j) if j ≤ T − 1

γ(T − j) if T − 1 < j ≤ 2T − 3
j = 0, .., 2T − 3. (2B.15)

ii. Calculate the Fourier transform of the γ∗(·),

gk =
2T−3∑

j=0

γ∗(j)eijλk ,

for k = 0, .., 2T − 3 and λk =
2πk
2T−2

. These gk should all result to be positive.

iii. Generate random normals U1, .., UT−2 and V1, .., VT−2 all independent and with vari-
ance 1; simulate U0 and UT−1 as independent of all other values and eachother, with
variance 2. Define V0 = VT−1 = 0. Construct random variables Zk in the complex
plane as

Zk =

{
Uk + iVk k = 0, .., T − 1

U2T−k−2 − iV2T−k−2 k = T, .., 2T − 3

iv. The observations yt are now calculated as

yt =
1

2
√
T − 1

2T−3∑

k=0

√
gke

i(t−1)λkZk.

Our procedure for generating an ARFIMA(p, d, q) starts with generating an ARFI-
MA(0,d,0) as described above, using the autocovariance function of the process as follows
(Gradshteyn and Ryzhik 1965, p. 372):

γ(k) = σ2ε
(−1)kΓ(1− 2d)

Γ(k − d+ 1)Γ(1− k − d)
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for the covariances needed in (2B.15). Then, the yt that are generated should be used
instead of the usual disturbances in a routine generating an ARMA(p, q). Presample
disturbances are taken to be zero. The result will be a series y ′t which is approximately
distributed as a ARFIMA(p, d, q).

2.C Data sources, programs, justifications

All estimations and simulations reported in this article have been calculated using pro-
grams written by the authors, using the Gauss programming language. Except from the
Gauss base program, version 3.2.15, the CML library, version 1.0.18, was used. As in-
dicated in appendix 2.B, routines for generating the fractionally integrated observations
are programmed using the procedure as described in Beran (1994). The likelihood of the
ARFIMA model, incorporating breaks in the mean, was programmed using routines by
Rolf Tschernig and Marius Ooms as guideline. For programming the analytical deriva-
tives of the model, elements from the programs by Breidt, Crato and de Lima (1998) were
used. Graphics are made using the GnuDraw package in Ox.

The dataset on the United States was obtained from the Bureau of Labor Statis-
tics. The series concerning the ‘Consumer Price Index-All Urban Consumers’ with ID
CUUR0000SA0 was retrieved in January 1997, for the period of January 1957 until Decem-
ber 1995. The base period was 1982-1984. The series was not seasonally adjusted.

For Canada, France, Germany, Italy, Japan and the United Kingdom the dataset on
Consumer Price Indices previously investigated by Baillie et al. (1996) was used. This
dataset can be downloaded from the data-archive of the Journal of Applied Econometrics.
It was originally constructed from data from the Citibase archive in January 1991. For
the six countries the ‘All Consumer Price Indices’ were used, ranging from January 1948
until March 1990. Also these CPI’s were not adjusted for seasonality.

Both programs and datasets are available on request from the author of this thesis.





Chapter 3

Inflation, Forecast Intervals and
Long Memory Regression Models

3.1 Introduction

This chapter1 concerns the usefulness of the ARFIMA model for U.S. inflation for out-of-
sample forecasting. We consider both point and interval forecasts and we also examine
the usefulness of explanatory variables for different forecast horizons. Therefore we do
not only consider time variation in the coefficients for the mean of inflation, but also time
variation in the forecast error variance.

The most useful explanatory variables for U.S. consumer price inflation are connected
with the Phillips curve, with oil price shocks, and with changes in monetary policy. Gali
and Gertler (2000) give references for relevant recent explanations. Unemployment, out-
put gap variables and real unit labour costs correspond with the Phillips curve. Hooker
(1999) summarises evidence on the effect of oil price shocks on postwar U.S. inflation.
Ball and Mankiw (1995) stress the effect of the sectoral distribution of price changes.

The relevant literature reveals that some variables are important for the explanation
of short term inflation dynamics, whereas others may help to explain the longer run
dynamics. Moreover, the effects of some variables, like the effect of the oil price on overall
inflation, seems to have changed significantly over time. After 1980, oil price shocks did
not have the same impact as in the 1970s, and monetary policy seems to have decreased
both the mean and the variance of inflation, ceteris paribus. The empirical part of the
economic literature also shows the sluggishness of inflation adjustment in adjusting to
fundamentals. Indeed, many lags of inflation are statistically significant in reduced form
equations of economic models, which is consistent with long memory behaviour found in
time series analysis of inflation series, as was shown in the previous chapter.

We examine the predictive ability of the dynamic regression models for several hori-
zons, extending results of Stock and Watson (1999), who analysed only 12 month ahead
forecasting. We confine our analysis to only a few relevant explanatory variables. There-
fore we rule out large-scale leading indicator variables and sectoral asymmetry variables.

1 The chapter is based on the article Bos, Franses and Ooms (2001), forthcoming in the International
Journal of Forecasting.
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Moreover, we take a statistical time series approach, where we derive multi-step forecasts
from the likelihood for the model for one-step ahead predictions. In agreement with Stock
and Watson (1999) we use a simulated out-of-sample forecasting framework, but we use
fixed specifications for the recursive forecast evaluation period.

The remaining part of our paper is organised as follows. Section 3.2 starts with a
recursive ARFIMAX analysis of monthly U.S. inflation and three leading indicators. We
compare specifications for the error process up to an ARFIMAX(1,d,1) model and allow
for deterministic regime changes. We use likelihood based time domain estimators based
on the algorithm of Sowell (1992), see Doornik and Ooms (1999). This allows us to extend
the model with macroeconomic leading indicators from the database developed by Stock
and Watson (1999). Our starting point is a model with two level shifts in the period
1960-1999. We investigate the stability of the explanatory effects and we examine how
they complement the simple level shift specification. We compare the forecasting ability
of the models. We find that forecast intervals are too wide. Section 3.3 therefore analyses
the results of weighted forecasting based on structural shifts in the variance. Section 3.4
employs statistical tests on the forecasts. Section 3.5 concludes.

3.2 Recursive ARFIMAX forecasting

We consider a monthly U.S. consumer price index, as provided by the Bureau of Labor
Statistics’ (BLS) website, July 2000. It concerns the influential core consumer price
index, that is the U.S. city average items less food and energy, 1982-84=100, BLS code
CUUR0000SA0L1E. We use data from 1960:04 to 1999:12 in our statistical analysis. Core
inflation has not been affected by many outliers and it is therefore easier to interpret and
analyse than other CPI indices.

3.2.1 Basic features of U.S. core inflation

Figure 3.1 shows a time series plot of monthly core inflation, measured as 100 times the
first differences of the logarithms of the index. We seasonally adjust the series with two
sets of centred seasonal dummies, allowing for a break in the seasonal pattern in 1984.
This break roughly corresponds with a change in the seasonal pattern detected by the
official seasonal adjustment procedure used by the BLS. The autocorrelation functions of
inflation and changes in inflation establish the long memory property of inflation, that is
the inflation series appears non-stationary, while the differenced inflation series appears
to follow an MA(1) process. The combined information of figure 3.1 suggests an order
of integration larger than zero, but probably smaller than one. The autocorrelations also
show that seasonal variation has been removed. In order to concentrate on nonseasonal
variation only, we condition our analysis on these seasonally adjusted data.

It is clear from figure 3.1 that the current mean of inflation is significantly lower than
in the 1970s. Different explanations coexist, but the combination of oil price increases
and an accommodating interest rate policy by the U.S. authorities is viewed as the most
important cause of the exceptional inflation levels in the 1970s. The Volcker-Greenspan
regime kept high inflation level at bay after 1983. Since we want to compare realistic
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Figure 3.1: U.S. monthly core inflation, sample ACF of levels and differences

forecasting models, we have to allow for at least two structural breaks in the mean for all
models, one upward break in 1973:07 and one downward break in 1982:07. Furthermore
we allow for a separate mean for inflation in 1980:07, when U.S. prices were fixed in a
high inflation period.

3.2.2 ARFIMAX modelling

The ARFIMA model has been introduced by Granger and Joyeux (1980) and Hosking
(1981). Beran (1994) discusses the main asymptotic results for regression models with
long memory errors. Hassler and Wolters (1995) and Ooms and Hassler (1997) showed
that the ARFIMA(0,d,0) model with deterministic seasonality fits consumer price inflation
series of many OECD countries rather well.

It is well known that ARMA models with an AR root close to the unit circle and an
approximately cancelling MA root are also able to capture the low frequency character-
istics typifying long memory. ARMA models can also be used to forecast long memory
processes, see Brodsky and Hurvich (1999). ARIMA models are therefore interesting
competitors in a forecasting study. The ARFIMA(1,d,1) model allows us to test ARIMA
specifications by imposing restrictions. The last ACF of figure 3.1 may also indicate an
ARIMA(0,1,1) specification.

The empirical macroeconomic literature suggests that macroeconomic leading indica-



34 Chapter 3. Forecast Intervals and Long Memory

tors can help to forecast yearly inflation rates out of sample, see Stock and Watson (1999).
Hence, we extend the ARFIMA model with explanatory variables. As explanatory vari-
ables we use the U.S. unemployment rate ut (seasonally adjusted, civilian labor force 16
years and older, BLS code LFS21000000), the short term interest rate rt (we choose the
rate on federal three month treasury bills) and the spread st = Rt− rt between long term
and short term interest rates (for the long term interest rate Rt we use the return on a
10 year U.S. treasury bill with constant maturity).

The first explanatory variable, ut, is used as a benchmark leading indicator for one-
year-ahead forecasting of yearly inflation in Stock and Watson (1999). Its negative cor-
relation with future inflation rates is associated in empirical macroeconometrics with the
(old) Phillips curve. The second variable is the short term interest rate, rt. In the short
run, one observes a positive relationship between inflation and rt. In the longer run, high
interest rates are supposed to lead to lower inflation rates. The interrelationship is a
complicated one, see Gali and Gertler (2000) for a recent analysis. The third leading indi-
cator is the interest rate spread, st. A large spread is associated with higher inflationary
expectations.

We specify the ARFIMAX model as

(1− φ1L)(1− L)d(yt − x′tβ − v′t−HγH) = (1 + θ1L)εt, (3.1)

with L the lag operator (Lyt = yt−1), yt the monthly inflation rate, xt a vector of deter-
ministic terms, vt a k-vector of leading indicators, and H the forecast horizon. The zero
mean disturbances εt are Gaussian white noise with standard deviation σε. The parameter
d specifies the order of integration. We require 0 ≤ d ≤ 1, |φ1| < 1, |θ1| < 1 and φ1 6= −θ1.
Note that we need to lag the explanatory variables, vt, at least H times in order to use
them in an H-step-ahead forecasting model for inflation.

The column vector xt consists of a constant, x1,t = 1, measuring the autonomous mean
of inflation, a level-shift for the high inflation period, x2,t, and a single dummy for 1980:07,
x3,t: Observe the huge outlier in figure 3.1. The variable x2,t equals one in the period
1973:07-1982:06 and is zero otherwise. A separate level-shift for the Volcker-Greenspan
period equalling one in the period after 1982:06 turned out to have approximately zero
effect, even in a recursive analysis starting in 1984. Therefore our model incorporates the
same inflation regime before 1973 and after 1982.

When d = 1, the original constant term, β1, drops out of the model and we use the
∆xi,t = xi,t − xi,t−1, i = 2, 3, ∆vj,t−H = vj,t−H − vj,t−H−1, j = 1, . . . , k, as regressors for
∆yt. Note however, that all forecast results reported below refer to the same observations
on yt and partial sums of yt, for all values of d.

The deterministic component of yt is x
′
tβ. We conduct the time series analysis on yt,

corrected for the interventions x2,tβ2 and x3,tβ3, conditional on the information in the
leading indicators.

Our three main specifications and their respective ranges for the order of integration
for the stochastic component of inflation and log prices are summarised in table 3.1.

Tables 3.2a-3.2b present estimation results for four models for two samples, 1960:04-
1984:01 and 1960:04-1999:11, for the forecast horizon H = 1. These were obtained by
maximum likelihood as implemented by Doornik and Ooms (1999) in Ox (Doornik 1999),
with graphical output in Gnuplot using the GnuDraw package of one of the authors.
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Table 3.1: ARFIMA components and their interpretation

d φ θ Inflation Log prices

0 < 0, 1 > < −1, 0 > Short memory I(1)
1 < 0, 1 > < −1, 0 > Non-stationary I(2)

< 0, 0.5 > 0 0 Long memory I(d+ 1)

The maximum likelihood procedure is also available in the econometric software PcGive,
see Doornik and Hendry (2001). Key statistics for the specifications in tables 3.2a and
3.2b are compared with statistics for other models in table 3.3. The results for the
ARFIMAX(0,d,0) model in the first two columns of table 3.2a provide evidence of frac-
tional integration in the stochastic component of inflation, even if we condition on ut−1 and
rt−1. That is, d is about 0.25, and it differs significantly from 0 and 0.5. This coefficient is
markedly lower than the corresponding value in the plain unconditional ARFIMA(0,d,0)
model, see table 3.3. Autonomous baseline inflation, β1, in the first and the last part of
the sample is estimated between 0.25 and 0.28 percent per month in this specification.
The estimate of β2 indicates that the average autonomous inflation level was more than
twice as high in the 1970s as in the rest of the sample. The estimate for β3 shows that
there was an exceptional one-month drop in inflation in July 1980 of about 1 percent.

The third and fourth column of table 3.2a show that the ARMAX(1,1) model fits the
inflation data about as well as the ARFIMAX(0,d,0) specification. The estimates for β1
and β2 correspond quite closely to the estimates for the ARFIMAX(0,d,0) model. The
only marked difference for the initial sample is seen for the standard error of the constant
term, β1, which is smaller for the ARMAX model. Apparently, the uncertainty about
the mean of inflation is lower if one assumes an ARMA model. This partly reflects the
underlying assumption of short memory ARMA models on the speed of convergence of the
ML estimate of the mean, µ̂T , to the population mean µ as the sample size, T increases.
In ARMA models one implicitly assumes var(µ̂) = cT−1, T → ∞. For ARFIMA models
with −0.5 < d < 0.5 one allows for var(µ̂) = cT 2d−1, T → ∞, see Adenstedt (1974) and
Beran (1994, Chapter 9). Note that this difference for the standard error of β1 is smaller
for the longer sample, as the AR parameter of the ARMAX model is closer to unity than
in the initial sample. The estimate of the d parameter of the ARFIMAX model does not
change by increasing the sample.

Table 3.2b shows results for the ARIMAX(1,1,1) model and the ARIMAX(0,1,1) spec-
ification. We include the results for the latter specification because it is a straightforward
extension of the popular IMA(1,1) model for inflation rates, which leads to the well known
exponentially weighted moving average forecasts of inflation. The models of table 3.2b
do not incorporate a fixed mean for inflation, that is, β1 is not identified. An addi-
tional constant measuring an autonomous trend of inflation turned out to be insignificant
and is therefore omitted. The structural breaks in inflation are not as significant as for
the ARFIMAX(0,d,0) and ARMAX(0,0) model. These specifications are able to pick up
changes in the conditional mean without the introduction of shift-dummies in the model.
The ARIMAX(1,1,1) and ARIMAX(0,1,1) provide similar fits in the initial sample, but
in the longer sample the ARIMAX(1,1,1) model is clearly preferable.

The coefficients γ1,u and γ1,r in tables 3.2a-3.2b concern the effect of the leading indi-
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cators. The coefficient γ1,u of lagged unemployment is negative for this forecast horizon,
as expected, but this effect seems to have declined in the 1980s and 1990s. Lagged interest
rates have a significant positive and stable effect as reflected in γ1,r. These conclusions
apply to all four models for the stochastic component of inflation.

Finally, diagnostic tests of tables 3.2a and 3.2b yield satisfactory outcomes for the
period 1960-1983. For the period 1960-1999, there is evidence of heteroskedasticity, which
is also reflected in the different estimates for σε for the two samples. This may signal a
permanent downward shift in the innovation variance in the 1980s and 1990s. This can
also be the message of the ARCH test, see Lamoureux and Lastrapes (1990).

The relationships between yt and the elements of vt−H need to be relatively stable
in order to be useful for forecasting. In theory one may even estimate a complete lag
structure on all three variables simultaneously, but here we confine ourselves to one lag
per variable at a time. We experimented with adding up to 3 extra lags and differences
of the leading indicators, but this did not lead to significant improvements in either the
in-sample fit or the out-of-sample forecasts.

Table 3.3 compares the models of tables 3.2a-3.2b with other AR(FI)MA(X) spec-
ifications. We present a summary of the main results for the stationary ARMA(1,1),
ARFIMA(0,d,0), ARFIMA(1,d,0), ARFIMA(0,d,1), ARFIMA(1,d,1) models and the non-
stationary ARIMA(1,1,1) and ARIMA(0,1,1) specifications, both with and without the
explanatory variables. An ARFIMAX(1,d,1) specification does not provide a significantly
better fit than either the ARFIMAX(0,d,0) model or the ARMAX(1,1) model. More im-
portantly, the parameters of the ARFIMAX(1,d,1) are not well identified, since both the
FI part and the ARMA part can capture the low frequency characteristics of the process.
In table 3.3 we observe φ̂1 = 0.98 combined with d̂ = −0.63, so that d cannot really be
interpreted as the order of integration of the inflation process in this case.

The effect of the explanatory variables is similar across the different ARFIMAX mod-
els: unemployment has a negative effect, interest rates have a positive effect, the spread
does not have an additional effect, and the introduction of the leading indicators lowers
the estimate of d in the ARFIMA models and it decreases the estimate of φ in the ARMA
models. The explanatory variables account partly for the persistence of inflation.

3.2.3 Recursive estimation and forecasting

Next we examine the point forecasts of the different models in a simulated out-of-sample
experiment. We estimate parameters of a range of models recursively. Again, we compare
univariate models with specifications with both single regressors and multiple regressors,
that is, we vary the orders p, q and k in (3.1) and we either estimate d or put it equal to
zero or unity.

We start with sample 1960:04-1984:01 and end with sample 1960:04-1999:11. We make
point predictions of monthly inflation, ŷt+H , for multiple horizons, H = 1, 3, 6, 12, 24.
Moreover, we compute cumulative (“July 1998-June 1999”) ẑt+H =

∑H
i=1 ŷt+i predictions

for quarterly, half-yearly, yearly and two-yearly inflation. Cumulative inflation forecasts
can be interpreted in other ways. They correspond with forecasts of the log price level
H periods ahead, log(Pt+H), minus todays log price level, log(Pt). For the univariate
models, they also equal the forecasts of H times the future mean of inflation over the
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Table 3.2a: ARFIMAX model estimates for U.S. core inflation

ARFIMAX(0,d,0) ARMAX(1,1)
Parameter 60:04-84:01 60:04-99:11 60:04-84:01 60:04-99:11

φ1 0.757 (.10) 0.839 (.07)
d 0.245 (.05) 0.260 (.04)
θ1 −0.519 (.13) −0.615 (.11)
β1 0.256 (.11) 0.188 (.09) 0.251 (.08) 0.174 (.08)
β2 0.296 (.06) 0.298 (.05) 0.322 (.05) 0.303 (.05)
β3 −0.919 (.19) −0.941 (.16) −0.934 (.19) −0.961 (.16)
γ1,u −0.038 (.01) −0.023 (.01) −0.040 (.01) −0.022 (.01)
γ1,r 0.045 (.01) 0.041 (.01) 0.047 (.01) 0.043 (.01)
σε 0.191 0.166 0.191 0.166
LL 66.680 180.136 68.085 180.362
AIC −119.360 −346.273 −120.170 −344.725
Normality 6.616 0.04 18.165 0.00 6.752 0.03 17.998 0.00
ARCH 2.436 0.12 9.358 0.00 1.958 0.16 11.147 0.00
Box-Pierce 20.574 0.90 27.922 0.57 20.010 0.89 31.972 0.32

Note: Estimates of (3.1) for 4 specifications and two sample sizes, standard errors in paren-
theses. Diagnostic tests on residuals: Normality test jointly on third and fourth moment,
ARCH test using 1 lag, Box-Pierce test using 36 lags and p-values of the asymptotic distri-
butions under the assumption of correct specification, see Doornik and Ooms (1999).

Table 3.2b: ARFIMAX model estimates for U.S. core inflation (continued)

ARIMAX(1,1,1) ARIMAX(0,1,1)
Parameter 60:04-84:01 60:04-99:11 60:04-84:01 60:04-99:11

φ1 0.153 (.09) 0.167 (.06)
θ1 −0.879 (.07) −0.897 (.04) −0.793 (.05) −0.821 (.04)
β2 0.223 (.08) 0.255 (.07) .191 (.09) 0.213 (.07)
β3 −0.930 (.19) −0.938 (.16) −.961 (.19) −0.964 (.17)
γ1,u −0.044 (.02) −0.029 (.02) −.046 (.03) −0.029 (.02)
γ1,r 0.039 (.01) 0.036 (.01) .039 (.01) 0.038 (.01)
σε 0.195 0.167 0.196 0.168
LL 61.777 175.549 60.301 171.863
AIC −109.554 −337.098 −108.602 −331.73
Normality 7.472 0.02 25.264 0.00 7.338 0.03 24.896 0.00
ARCH 3.574 0.06 12.518 0.00 7.719 0.01 25.095 0.00
Box-Pierce 25.339 0.71 33.327 0.31 29.18 0.56 43.694 0.07

Note: See table 3.2a for an explanation of the entries in the table.
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Table 3.3: ARFIMAX model estimates

φ d θ γ1,u γ1,r γ1,s AIC

. .26 . −.023 .041 . −346.273

.06 .30 . −.024 .041 . −344.920

. .28 .30 −.024 .041 . −344.826

.84 . −.62 −.022 .043 . −344.725

.98 −.64 −.11 −.020 .043 . −346.367

. .26 . −.027 .043 .007 −344.442
−.06 .29 . −.026 .042 .005 −343.014
. .29 −.05 −.026 .042 .005 −342.925
.83 . −.60 −.031 .047 .014 −343.404
.97 −.63 −.11 −.028 .047 .013 −344.939
. .35 . . . . −320.429

−.11 .42 . . . . −321.180
. .41 −.11 . . . −320.796
.92 . −.65 . . . −319.111

−.29 .43 .18 . . . −319.459

.17 1 −.90 −.029 .036 . −337.098

. 1 −.82 −.029 .038 . −331.727

.17 1 −.90 −.026 .030 −.012 −335.599

. 1 −.82 −.028 .033 −.009 −330.000

.17 1 −.85 . . . −317.565

. 1 −.76 . . . −312.148
Note: Sample period: 1960:04-1999:11, a . indicates that
the parameter is restricted to zero.
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forecast horizon.
For the univariate models (k = 0 in (3.1)) we expect the longer run forecasts of the

ARMA(1,1) specification to change the least as new inflation shocks enter the information
set. The ARFIMA(0,d,0) forecasts allow for longer lasting deviations from the long run
mean and are therefore expected to be more variable. The ARIMA(1,1,1) forecasts should
show the largest variation. The differences between the three models in the variability
of the long run forecasts should be reflected in their estimated forecast intervals. We
summarise the asymptotic characteristics of the forecast intervals of the univariate models
in table 3.4, where it is assumed that H →∞, H/T → 0, where T is the sample size, so
that the mean can be treated as known, see Beran (1994, §8.6). Table 3.4 makes clear
that d is an influential parameter for long run interval forecasting of the log price level, at
least theoretically. As the explanatory power of the leading indicators decreases for longer
forecast horizons we can expect a similar behaviour for the long run forecast intervals of
the models with regressors. It remains an empirical question whether the asymptotic
results of table 3.4 provide a good indication for the sample sizes and forecast horizons
in our study.

Table 3.4: Asymptotic rates of growth of variances

d = 0 var(log(PT+H/PT )|T ) is c ·H,
d = 1 var(log(PT+H/PT )|T ) is c ·H3

0 < d < 1 var(log(PT+H/PT )|T ) is c ·H2d+1

Note: Indicated are the rates of growth of forecast in-
tervals for the log prices given an order of integration d
for inflation, for horizon H →∞, H/T → 0, see Beran
(1994, §8.6).

3.2.4 Recursive estimates

Before analysing the recursive out-of-sample forecasting performance of the models, we ex-
amine their recursive parameter estimates. We first address the stability of the dynamic
parameters d, φ, θ and the mean parameter β1 over our recursive estimation period.
Figure 3.2 shows the recursive estimates of the ARFIMAX(0,d,0) model with ut−1 and
rt−1 as leading indicators. Figure 3.3 shows the recursive estimates of the corresponding
ARMA(1,1) model. The starting points and endpoints of these figures correspond to the
results in table 3.2a. Both figures indicate that the effect of interest rates and unem-
ployment has become less significant over the last decades, although the effect of interest
rates has stabilised after 1993. The estimated d for the ARFIMAX(0,d,0) model is more
stable than the corresponding φ and θ of the ARFIMAX(1,0,1) model. For comparison
we present the recursive parameter estimate of the univariate ARFIMA(0,d,0) model in
figure 3.4. The parameters of this simple model hardly change over time. This may be
an advantage in forecasting. Note again that d is much higher in this univariate model.

The difference between the univariate specification and the model with leading indi-
cators is smaller for multi-step forecasting at longer horizons. This is illustrated in figure
3.5 which shows the recursive parameter estimates of an ARFIMAX(0,d,0) model with
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rt−24 and ut−24 as the leading indicators. These estimates for d are closer to the values
obtained for the univariate model, as the explanatory power of rt−24 and ut−24 is consid-
erably smaller than in the one-step-ahead forecasting model. Note also the negative sign
of γ24,r as high short term interest rates are related with lower monthly inflation figures
after two years. This also leads to a higher estimate for β1 compared to results in figure
3.5 as γ24,rrt−24 has a negative mean over the sample whereas γ1,rrt−1 was clearly positive.
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Figure 3.2: Recursive ARFIMAX(0,d,0) estimates ± one s.e., d, β1, γ1,u, γ1,r

3.2.5 Recursive forecasting

Computing forecasts for an ARFIMA(p, d, q) model is not trivial. An ARFIMA(p, d, q)
model cannot be written as a finite order ARMA model or as a finite dimensional state
space model, so that standard methods do not apply. Here we use the optimal linear
forecast of yt+H −x′t+Hβ− v′tγH given y1−x′1β− v′1−HγH , . . . , yt−x′t− v′t−HγH , see Beran
(1994, §8.7) and Doornik and Ooms (1999) for the exact implementation. This forecast
function explicitly assumes that forecasts are generated out of a finite sample. It takes the
estimated covariance function of the stochastic part of the model as an input and results
in a time dependent forecast function depending on all available observations. Forecast
standard error estimates are computed accordingly. We use RMSEmod, that is the RMSE
as derived from the model, to denote this forecast standard error estimate below. For the
ARIMA model, d = 1, we cumulate the ARMA forecasts for the changes in inflation back
to inflation forecasts. Forecast standard errors are adjusted for this cumulation as well.

We recursively compute the forecasts for the different horizons and compare them
with actual values. Figure 3.6 illustrates two-year-ahead forecasting. It displays time
series plots of the forecasts ŷt+24|t, and the predetermined part of the forecast, x′t+H β̂t,
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Figure 3.3: Recursive ARMAX(1,1) estimates ± one s.e., φ1, θ1, β1, γ1,u, γ1,r
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together with the actual values yt+24. We present only the forecasts of the univariate
ARFIMA(0,d,0) model in graphical form. We give numerical evidence on all relevant
models and all forecast horizons below. For the ARFIMA(0,d,0) model of figure 3.6

we observe a persistent deviation between ŷt+24|t and x′t+24β̂t, for t between 1984 and
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Figure 3.5: Recursive ARFIMAX(0,d,0) estimates ± one s.e., d, β1, γ24,u, γ24,r

1994. This period corresponds to a period of persistently higher inflation, captured by
the stochastic part of the ARFIMAX(0,d,0) model. The forecasts of the ARIMAX(1,1,1)
model, not shown here, are not as smooth, but they follow the trend in inflation more
closely. The bottom panel of figure 3.6 shows the cumulative forecast intervals for two-year
inflation.

The ARFIMA(0,d,0) model tracks the downward swing in average inflation in the
beginning of the 1990s more closely than the ARMA(1,1) model. The forecast intervals
of the two models for this horizon are equally wide. This suggests that the differences
between these two models are not as large in practice as asymptotic theory suggests.
The cumulative forecasts of the ARIMA(1,1,1) model are again more volatile, but they
naturally follow the persistent decline in inflation in the 1990s quite well. The forecast
intervals are clearly much wider than for the ARFIMA(0,d,0) model. The leading indicator
models show more volatility than the univariate models in their two-year-ahead forecasts,
especially in the beginning of the evaluation period in 1984, when unemployment and
interest rates were volatile and values for 1985 and 1986 were forecast.

Table 3.5 summarises the cumulative forecasting results for four univariate models,
the ARMA(1,1), the ARFIMA(0,d,0), the ARFIMA(1,d,0) and the ARIMA(1,1,1) model.
Results for the leading indicator models are presented below.

We present three measures of forecasting performance. First, we report the mean
forecast error, MFE= (t2 − t1 + 1)−1

∑t2
t=t1

et+H , with et+H = ẑt+H − zt+H , where ẑt+H is
the cumulative inflation estimate for the period t to t+H, using the data and parameter
estimates up to time t, t + H=(1984:01)+ H . . . 1999:12. Second, table 3.5 reports the

root mean squared error, RMSE=
(
(t2 − t1 + 1)−1

∑
e2t+H

) 1
2 , Third, we compute the mean

absolute prediction error, MAPE= (t2 − t1 + 1)−1
∑ |et+H |. We also report the root of
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the H-step-ahead forecast error variance as predicted by the model, RMSEmod. The
RMSEmod-values in the table are the mean values of the recursively computed model
estimates over the evaluation sample. Finally we present the ratio of RMSEmod and
RMSE to give a first indication of the coverage probability of the forecast intervals.
We note that forecast intervals for the ARFIMAX(0,d,0) model and the ARMAX(1,1)
specification are approximately equally wide, whereas the actual forecast RMSE for the
ARFIMAX(0,d,0) model is considerably smaller for larger horizons.

The results for the best model for each forecast criterion are printed in boldface. It
appears that the ARIMA(1,1,1) model provides the best forecasts overall at all horizons.
The ARMA(1,1) model performs the worst. The relative differences in forecasting per-
formance between the models increase with the forecast horizon. The one-step-ahead
forecasts of the models are very similar. The estimated model forecast error variances
(RMSEmods) agree very closely for horizons 1 to 6. Under correct specification these
RMSEmods are expected to slightly underestimate the true forecast error variance in fi-
nite samples, because they neglect the effect of parameter uncertainty, but here we observe
for all models that the RMSEmods are significantly higher than the actual RMSEs. In
particular for the ARIMA(1,1,1) model, the estimated forecast error variances for the 12
and 24 period ahead cumulative forecasts are much too large. Refer also back to figure



44 Chapter 3. Forecast Intervals and Long Memory

Table 3.5: Simulated cumulative out-of-sample forecasts 1984-1999 for univariate models
for U.S. core inflation

Model H
p d q 1 3 6 12 24

MFE 1 0 1 0.001 0.001 0.015 0.059 0.280

MFE 1 1 1 0.006 0.019 0.051 0.153 0.453
MFE 0 1 1 0.004 0.014 0.039 0.125 0.386
MFE 0 d 0 0.005 0.020 0.058 0.164 0.471
MFE 1 d 0 0.006 0.023 0.064 0.179 0.501

MFE 0 d 1 0.006 0.022 0.063 0.175 0.493

RMSE 1 0 1 0.118 0.251 0.386 0.697 1.550

RMSE 1 1 1 0.115 0.233 0.339 0.552 1.228

RMSE 0 1 1 0.117 0.244 0.367 0.615 1.355
RMSE 0 d 0 0.116 0.240 0.358 0.616 1.344
RMSE 1 d 0 0.117 0.241 0.355 0.600 1.317
RMSE 0 d 1 0.116 0.240 0.354 0.601 1.320

MAPE 1 0 1 0.094 0.202 0.315 0.589 1.398

MAPE 1 1 1 0.091 0.182 0.266 0.439 0.969

MAPE 0 1 1 0.093 0.190 0.284 0.479 1.050
MAPE 0 d 0 0.092 0.194 0.296 0.528 1.211
MAPE 1 d 0 0.092 0.194 0.289 0.510 1.182
MAPE 0 d 1 0.092 0.193 0.289 0.511 1.185

RMSEmod 1 0 1 0.183 0.415 0.761 1.455 2.530
RMSEmod 1 1 1 0.185 0.424 0.761 1.519 3.439
RMSEmod 0 1 1 0.186 0.413 0.782 1.719 4.296
RMSEmod 0 d 0 0.184 0.427 0.751 1.354 2.484
RMSEmod 1 d 0 0.183 0.417 0.748 1.389 2.611
RMSEmod 0 d 1 0.183 0.418 0.747 1.381 2.582

RMSEmod/RMSE 1 0 1 1.554 1.657 1.972 2.088 1.633
RMSEmod/RMSE 1 1 1 1.612 1.820 2.247 2.750 2.800
RMSEmod/RMSE 0 1 1 1.587 1.692 2.130 2.795 3.171
RMSEmod/RMSE 0 d 0 1.587 1.779 2.096 2.197 1.848
RMSEmod/RMSE 1 d 0 1.569 1.729 2.108 2.315 1.983
RMSEmod/RMSE 0 d 1 1.577 1.743 2.111 2.299 1.956

Note: Best ranking results in boldface, worst ranking results in italics.

3.6, which shows that all 2-year inflation outcomes lie in a one-σ forecast interval.

Table 3.6 contains a selection of the corresponding simulated out-of-sample forecasting
results for a range of leading indicator models. We examined the forecasting performance
of 6 specifications for the stochastic part and 5 specifications for the leading indicator
part. We allowed for ARMA(1,1), ARFIMA(0,d,0), ARFIMA(1,d,0), ARFIMA(0,d,1),
ARIMA(1,1,1), ARIMA(0,1,1) errors. We use three single leading indicator models with
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u, r, s, one double leading indicator model with u and r (in tables 3.2a-3.2b) and finally
a model with both u, r and s. We present the results for the best and for the worst
of these 30 models for three forecasting criteria, MFE, RMSE and MAPE, and for 5
horizons: 1, 3, 6, 12, and 24 months. However, for the single leading indicator rt−H we
show the outcomes for all stochastic specifications, as the interest rates proves to be the
most interesting explanatory variable.

Table 3.6 shows that rt−1 is the best leading indicator for one-step-ahead forecast-

Table 3.6: Simulated cumulative out-of-sample forecast performance 1984-1999 for leading
indicator models for U.S. core inflation

Model H
X p d q 1 3 6 12 24

MFE r 1 0 1 0.003 0.004 0.009 0.048 0.486
MFE r 1 1 1 0.001 0.010 0.048 0.157 1.042
MFE r 0 1 1 0.001 0.009 0.042 0.140 0.938
MFE r 1 d 0 0.001 0.007 0.044 0.143 0.955
MFE r 0 d 0 0.001 0.006 0.035 0.120 0.815
MFE r 0 d 1 0.001 0.007 0.041 0.137 0.938
MFE u 1 0 1 0.002 0.004 0.013 0.044 0.203

MFE u 1 1 1 0.015 0.066 0.175 0.368 0.567
MFE urs 1 1 1 0.010 0.070 0.215 0.512 1.636

MFE urs 1 d 0 0.006 0.025 0.088 0.246 1.187

RMSE r 1 0 1 0.115 0.245 0.378 0.658 1.732
RMSE r 1 1 1 0.113 0.229 0.334 0.559 2.066
RMSE r 1 d 0 0.114 0.235 0.345 0.571 1.679
RMSE r 0 d 0 0.114 0.234 0.344 0.575 1.632
RMSE r 0 d 1 0.114 0.235 0.344 0.571 1.669
RMSE s 1 1 1 0.116 0.247 0.359 0.514 1.701
RMSE u 1 1 1 0.116 0.233 0.360 0.616 1.245

RMSE ur 1 0 1 0.119 0.268 0.432 0.748 1.724
RMSE urs 1 0 1 0.119 0.268 0.430 0.753 1.896
RMSE urs 1 1 1 0.114 0.247 0.445 0.724 2.407

RMSE urs 0 1 1 0.116 0.248 0.451 0.687 2.363

MAPE r 1 0 1 0.092 0.199 0.307 0.546 1.538
MAPE r 1 1 1 0.090 0.183 0.263 0.444 1.583
MAPE r 1 d 0 0.091 0.191 0.277 0.483 1.404
MAPE r 0 d 0 0.091 0.191 0.278 0.488 1.383
MAPE r 0 d 1 0.091 0.191 0.277 0.483 1.396
MAPE s 1 1 1 0.092 0.195 0.294 0.415 1.356
MAPE u 1 1 1 0.092 0.187 0.281 0.499 0.997

MAPE ur 1 0 1 0.096 0.225 0.362 0.616 1.466
MAPE ur 1 1 1 0.092 0.195 0.284 0.536 1.982

MAPE urs 1 0 1 0.097 0.225 0.362 0.617 1.623

Note: Best ranking results in boldface, worst ranking results in italics.
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ing. Using only rt−1 brings the mean forecast error in inflation down to .001 percent for
the ARFIMAX(0,d,0), ARFIMAX(1,d,0), ARFIMAX(0,d,1), ARIMAX(0,1,1) and ARI-
MAX(1,1,1) models. The RMSE is brought down to 0.113 percent per month. Using ut−1
or st−1 does not lead to predictions that outperform the univariate models in short run
forecasting. Using a combination of ut−1 and rt−1 does not improve upon the univariate
models either. We observe similar results for forecast horizons of three and six months.
Using only rt−3 and rt−6 respectively, leads to the most accurate forecasts. Forecast effi-
ciency as measured by the RMSE is improved by two percent compared with univariate
specifications.

For the one-year and two-year horizons we find that rt is no longer the dominating
leading indicator. At the one-year horizon, the ARIMAX(1,1,1) model with st−12 as a
single leading indicator provides the most accurate forecasts, although the other models
with st−12, not shown in the table, are still dominated by their counterparts with rt−12.
At the two year horizon we see that ut−24 is the best leading indicator, despite the slowly
declining effect we observed in the recursive parameter estimates in figure 3.5. However,
the univariate models provide forecasts with better RMSEs.

Apparently, a substantial part of the long swings in inflation the 1980s and 1990s is
successfully accounted for by the positive effect of lagged short term interest rates. On
the other hand, an increase in short term interest rates can also be associated with a lower
inflation in the longer run. This was illustrated by the recursive estimates of the negative
coefficient γ24, of rt−24. This coefficient is less pronounced than the coefficient of rt−1.

Overall, the ARIMA(1,1,1) model dominates the forecast performance of the other
specifications for the error term. Although the persistent shifts in inflation can be mod-
elled by explanatory variables, this does not entail a better forecasting performance for
the ARFIMAX(0,d,0) model, compared with ARIMAX(1,1,1). Comparing the results
of tables 3.5 and 3.6 overall, we do not observe large increases in forecasting precision
by the addition of explanatory variables, but the regression variables do help for short
run forecasting. For H = 24 the univariate models outperform the regression models on
all criteria. Adding more regressors worsens the forecasting performance at all horizons.
For short horizons, the precision loss is a few percent, but for two-year-ahead forecasting
the differences are dramatic, resulting in RMSEs which are 20 percent larger than for
univariate models.

Table 3.7 presents the predicted forecast root mean squared error, RMSEmod, of the
leading indicator models and compares them with their actual forecast RMSEs. Com-
paring the RMSEmods for the ARFIMAX(0,d,0) model using rt−H in table 3.7 with the
RMSEmods for the univariate ARFIMA(0,d,0) model in table 3.5 we see lower values for
shorter horizons and higher values for H = 24. These higher RMSEmods are connected
with two effects, first the lower explanatory power of rt−24 compared with rt−1 and second
the higher estimated d in the model with H = 24. Overall, the predicted forecast error
standard deviations as measured by RMSEmod are much larger than actual RMSEs, es-
pecially for the ARIMAX(1,1,1) models. For horizon 1, RMSEmods are a factor 1.6 too
large on average. For H = 24 this factor is even 2.7 for the ARIMAX(1,1,1) model with
leading indicator ut−24. The most likely reason for this overestimation of the scale of fore-
cast intervals is the persistently low innovation variance over the period of the forecasting
exercise, compared to the variance in the earlier estimation period.
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Table 3.7: Predicted and actual root mean squared error of leading indicator models for
U.S. core inflation

Model H
X p d q 1 3 6 12 24

RMSEmod r 1 0 1 0.179 0.406 0.741 1.381 3.117
RMSEmod r 1 1 1 0.181 0.414 0.754 1.522 3.342
RMSEmod r 0 1 1 0.186 0.413 0.782 1.719 4.296
RMSEmod r 1 d 0 0.179 0.402 0.728 1.367 2.737
RMSEmod r 0 d 0 0.179 0.405 0.722 1.328 2.561
RMSEmod r 0 d 1 0.179 0.402 0.725 1.357 2.713
RMSEmod s 1 1 1 0.182 0.404 0.698 1.464 3.382
RMSEmod u 1 1 1 0.183 0.408 0.697 1.316 3.367

RMSEmod ur 1 0 1 0.177 0.397 0.700 1.282 3.233
RMSEmod ur 1 1 1 0.180 0.401 0.692 1.327 3.026
RMSEmod urs 1 0 1 0.177 0.396 0.694 1.222 2.251
RMSEmod urs 1 1 1 0.180 0.398 0.686 1.314 2.885

RMSEmod/RMSE r 1 0 1 1.553 1.661 1.962 2.098 1.800
RMSEmod/RMSE r 1 1 1 1.600 1.808 2.257 2.720 1.618
RMSEmod/RMSE r 0 1 1 1.587 1.692 2.130 2.795 3.171
RMSEmod/RMSE r 1 d 0 1.563 1.706 2.111 2.392 1.630
RMSEmod/RMSE r 0 d 0 1.575 1.732 2.098 2.308 1.570
RMSEmod/RMSE r 0 d 1 1.567 1.716 2.110 2.376 1.625
RMSEmod/RMSE s 1 1 1 1.569 1.636 1.946 2.851 1.988
RMSEmod/RMSE u 1 1 1 1.577 1.755 1.938 2.137 2.705

RMSEmod/RMSE ur 1 0 1 1.493 1.481 1.622 1.713 1.875
RMSEmod/RMSE ur 1 1 1 1.570 1.694 1.907 1.991 1.260
RMSEmod/RMSE urs 1 0 1 1.482 1.478 1.612 1.622 1.187
RMSEmod/RMSE urs 1 1 1 1.570 1.608 1.542 1.814 1.198

Note: Results for best ranking models in RMSE terms, see table 3.6, in boldface.

In the next section we apply weighted estimation to account for the level shifts in
the innovation variance, which seem to have accompanied the level shifts in the mean of
inflation. We shall see that this weighted estimation provides an adequate remedy for the
overestimation of inflation forecast uncertainty in the 1980s and 1990s.

3.3 Recursive weighted ARFIMAX forecasting

So far we have not considered changes in the innovation variance. It is not unreasonable
to assume that the Volcker-Greenspan regime in the 1980s and 1990s not only reduced
the mean, but also the (innovation) variance of inflation. This was already indicated by
the ARCH tests for the full-sample models in tables 3.2a-3.2b. As we are considering a
level shift in variance, it is more natural to apply a heteroskedasticity test where the null
of homoskedasticity is tested against an innovation variance depending on the regime.
We apply a Breusch-Pagan test, which has a χ2 distribution with 2 degrees of freedom
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under the null. The resulting test statistic of around 24 strongly rejects the null in all the
models examined so far. Figure 3.7 illustrates the weights for the 3 regimes that we used
to model the level shifts in variance. These weights are based on subsample estimates
of the innovation variance. The observations in the first regime receive a weight 1/2,
the second regime a weight 1/3 and the last regime gets weight 1. Our key assumption
is that the inflation rates after 1984 are more important than previous observations to
estimate the current innovation variance. In the weighted estimation we use information
from the full sample and the results can therefore no longer be interpreted as the analysis
of “true” out-of-sample forecasts for the whole period 1984-1999. However, the analysis
indicates that for the latter part of the forecast sample, weighted estimation could have
significantly improved the interval forecasts.

A more extreme solution would have been to use only the observations of the last
regime, but this also would have made the recursive out-of-sample forecasting analysis
of the long memory model practically impossible. In that case, recursive estimates of
the RMSEmods would only be relevant for the last few years of the forecast sample.
However, some eight years of observations from the beginning of the estimation sample
can be deleted. We experimented with recursively deleting the observations from the first
regime. The key parameters remained relatively stable, even when we used only data
from 1970 onward.
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Figure 3.7: Weights used in weighted estimation

The introduction of the different weights has a beneficial influence on the estimated
variance of the parameter estimates and on the (scaled) estimate of the innovation vari-
ance. However, the recursive estimates of the dynamic parameters, not shown here, do
not change significantly by the weighting, although they naturally become more variable
as the most recent observations have the highest weights. The weighted estimation leads
to similar or lower forecast errors. Estimated standard errors are significantly lower and
forecast intervals prove to be more realistic over our forecasting period. Tables 3.8a-3.8b
present the same statistics as provided in tables 3.5 and 3.6, but allowing for weighting.
The main purpose of the weighting, reducing the overall difference between RMSEmods
and RMSEs, is clearly achieved, in particular for the ARFIMAX(0,d,0) model and the
ARMAX(1,1) model. The RMSEmods of the ARIMAX(1,1,1) model for H = 24 still
seem too large.
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Table 3.8a: Simulated cumulative out-of-sample forecasts 1984-1999 for univariate models
and regression models for U.S. core inflation, using weighted estimation

Model H
X p d q 1 3 6 12 24

MFE 1 0 1 0.008 0.025 0.068 0.196 0.582
MFE 1 1 1 0.007 0.023 0.058 0.167 0.482
MFE 0 1 1 0.006 0.018 0.048 0.142 0.426
MFE 0 d 0 0.008 0.030 0.078 0.196 0.478
MFE r 1 0 1 0.002 -0.001 0.010 0.029 0.442
MFE r 1 1 1 0.000 0.014 0.060 0.146 0.924
MFE r 0 1 1 0.001 0.013 0.053 0.129 0.822
MFE r 1 d 0 -0.000 0.005 0.041 0.086 0.775
MFE r 0 d 0 -0.000 0.004 0.033 0.074 0.681
MFE r 0 d 1 -0.000 0.005 0.040 0.084 0.770
MFE s 1 0 1 0.002 0.004 0.010 0.029 0.705
MFE u 1 0 1 0.007 0.019 0.032 0.065 0.221

MFE u 1 1 1 0.017 0.068 0.162 0.274 0.563
MFE ur 0 1 1 0.005 0.043 0.133 0.172 1.301

MFE urs 1 0 1 0.000 -0.010 0.122 0.041 0.871
MFE urs 1 1 1 0.008 0.071 0.210 0.397 1.178

RMSE 1 0 1 0.117 0.242 0.368 0.653 1.525
RMSE 1 1 1 0.114 0.228 0.330 0.541 1.214

RMSE 0 1 1 0.116 0.233 0.342 0.563 1.259
RMSE 0 d 0 0.116 0.241 0.368 0.648 1.417
RMSE r 1 0 1 0.114 0.238 0.366 0.618 1.519
RMSE r 1 1 1 0.113 0.225 0.328 0.519 1.716
RMSE r 0 1 1 0.114 0.230 0.347 0.554 1.741
RMSE r 1 d 0 0.115 0.234 0.349 0.577 1.525
RMSE r 0 d 0 0.114 0.233 0.350 0.582 1.525
RMSE r 0 d 1 0.114 0.234 0.348 0.577 1.523
RMSE s 1 1 1 0.115 0.246 0.344 0.500 1.573
RMSE s 1 d 0 0.118 0.256 0.377 0.623 1.616
RMSE u 1 1 1 0.115 0.229 0.345 0.552 1.246
RMSE urs 1 0 1 0.117 0.260 0.388 0.681 1.723
RMSE urs 1 1 1 0.114 0.255 0.418 0.627 2.049

Note: Best ranking results in boldface, worst ranking results in italics.
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Table 3.8b: Simulated cumulative out-of-sample forecasts 1984-1999 for univariate models
and regression models for U.S. core inflation, using weighted estimation (continued)

Model H
X p d q 1 3 6 12 24

MAPE 1 0 1 0.093 0.196 0.299 0.560 1.363
MAPE 1 1 1 0.091 0.180 0.263 0.432 0.970

MAPE 0 1 1 0.092 0.182 0.270 0.446 0.988
MAPE 0 d 0 0.092 0.196 0.305 0.564 1.285
MAPE r 1 0 1 0.092 0.194 0.296 0.511 1.373
MAPE r 1 1 1 0.090 0.179 0.261 0.418 1.286
MAPE r 0 1 1 0.092 0.182 0.272 0.438 1.308
MAPE r 1 d 0 0.092 0.192 0.283 0.487 1.320
MAPE r 0 d 0 0.091 0.191 0.286 0.491 1.333
MAPE r 0 d 1 0.091 0.191 0.283 0.487 1.317
MAPE s 1 1 1 0.092 0.194 0.279 0.405 1.256
MAPE u 1 1 1 0.091 0.184 0.272 0.454 1.012
MAPE ur 1 0 1 0.095 0.213 0.320 0.551 1.402
MAPE ur 0 1 1 0.092 0.184 0.277 0.459 1.546

MAPE urs 1 0 1 0.095 0.213 0.310 0.561 1.485
MAPE urs 1 1 1 0.091 0.203 0.335 0.526 1.504
MAPE urs 1 d 0 0.095 0.208 0.306 0.504 1.504
MAPE urs 0 d 0 0.095 0.207 0.310 0.512 1.524
MAPE urs 0 d 1 0.095 0.208 0.306 0.505 1.506

Note: Best ranking results in boldface, worst ranking results in italics.
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Table 3.9: Predicted and actual forecast root mean squared error, 1984-1999, of univariate
models and regression models for U.S. core inflation, using weighted estimation

Model H
X p d q 1 3 6 12 24

RMSEmod 1 0 1 0.119 0.252 0.445 0.839 1.482
RMSEmod 1 1 1 0.119 0.263 0.458 0.881 1.931

RMSEmod 0 1 1 0.120 0.251 0.450 0.972 2.199
RMSEmod 0 d 0 0.119 0.268 0.460 0.809 1.444
RMSEmod r 1 0 1 0.115 0.246 0.443 0.823 1.757
RMSEmod r 1 1 1 0.116 0.258 0.456 0.877 1.904
RMSEmod r 0 1 1 0.116 0.245 0.453 0.928 2.172
RMSEmod r 1 d 0 0.115 0.254 0.449 0.804 1.576
RMSEmod r 0 d 0 0.115 0.255 0.448 0.793 1.501
RMSEmod r 0 d 1 0.115 0.254 0.449 0.802 1.573
RMSEmod s 1 1 1 0.117 0.252 0.435 0.845 1.910
RMSEmod u 1 1 1 0.118 0.255 0.429 0.829 1.893

RMSEmod/RMSE 1 0 1 1.017 1.041 1.244 1.285 1.029
RMSEmod/RMSE 1 1 1 1.044 1.154 1.387 1.628 1.591

RMSEmod/RMSE 0 1 1 1.038 1.079 1.314 1.647 1.747
RMSEmod/RMSE 0 d 0 1.026 1.112 1.250 1.248 1.019
RMSEmod/RMSE r 1 0 1 1.006 1.036 1.212 1.331 1.156
RMSEmod/RMSE r 1 1 1 1.024 1.147 1.388 1.688 1.110
RMSEmod/RMSE r 0 1 1 1.018 1.065 1.306 1.675 1.247
RMSEmod/RMSE r 1 d 0 1.003 1.084 1.288 1.393 1.033
RMSEmod/RMSE r 0 d 0 1.011 1.095 1.281 1.363 0.984
RMSEmod/RMSE r 0 d 1 1.004 1.086 1.288 1.390 1.033
RMSEmod/RMSE r 1 1 1 1.018 1.065 1.306 1.675 1.247
RMSEmod/RMSE s 1 1 1 1.012 1.026 1.267 1.691 1.214
RMSEmod/RMSE u 1 1 1 1.024 1.117 1.242 1.500 1.519

Note: Results for best ranking models in RMSE terms, see table 3.8a, in boldface.

3.4 Recursive ARFIMAX forecast tests

In this section we evaluate the statistical performance of the recursive forecast intervals.
We test for the adequacy of unconditional coverage, following Christoffersen (1998). We
expect the test to reject models where the predicted forecast error variance deviates too
much from the actual forecast error variance.

Table 3.10 reports the empirical unconditional coverage probabilities for the best fore-
casting models. After including the weights in the estimation, the 60% unconditional
coverage is approximately correct for the one-step forecasts of all reported models. How-
ever, the ARIMA(1,1,1) and ARIMAX(1,1,1) models lead to forecast intervals which are
often too wide for multi-step forecasts. Note there are only 7 non-overlapping two-year
inflation periods in the evaluation period, so the power of tests based on the coverage
probabilities for H = 24 is not high.
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Table 3.10: Unconditional coverage test of 60% forecast intervals, U.S. core inflation,
using weighted estimation

Model H
X p d q 1 3 6 12 24

1 0 1 0.58 0.75∗ 0.71 0.60 0.29
1 1 1 0.63 0.81∗ 0.90∗ 0.80 0.86
0 1 1 0.61 0.78∗ 0.94∗ 0.87 1.00∗

1 d 0 0.58 0.76∗ 0.77∗ 0.60 0.57
0 d 0 0.59 0.76∗ 0.74 0.60 0.43

r 1 0 1 0.56 0.71 0.71 0.60 0.43
r 1 1 1 0.57 0.78∗ 0.94∗ 0.87∗ 0.71
r 0 1 1 0.56 0.71 0.94∗ 0.87∗ 0.71
r 1 d 0 0.57 0.71 0.77∗ 0.60 0.43
r 0 d 0 0.57 0.71 0.71 0.60 0.43
s 1 1 1 0.57 0.73∗ 0.84∗ 0.87∗ 0.71
u 1 1 1 0.59 0.73∗ 0.84∗ 0.87∗ 0.86

Lc 0.530 0.478 0.425 0.349 0.236
Uc 0.669 0.718 0.766 0.834 0.925
N 191 63 31 15 7

Note: Empirical coverage probabilities which differ significantly (at 95% con-
fidence level) from the 60% theoretical coverage are indicated by an asterisk.
Bottom rows indicate the bounds of the acceptance region. N is the number of
non-overlapping forecast intervals, 1984-1999.

Subsequently we investigate whether there is serial correlation in the scale of the actual
forecast error distribution using the independence test also suggested by Christoffersen
(1998). We expect power for this test against persistent changes in the forecast error
variance over the evaluation period.

The results of the independence test are given in table 3.11. Reported are the likelihood
ratio test statistics, which have a χ2(1) limiting distribution. Since the forecasts are
correlated for horizons H > 1 we use only one out of every H forecast errors in the
independence test. None of the independence tests rejects.

Finally we examine the possibility of improving the forecasts by using combinations of
models in a forecast encompassing framework, see e.g. Harvey, Leybourne and Newbold
(1998) for a recent review and Harvey and Newbold (2000) for the extension to multivari-
ate forecast encompassing. West (2001) discusses forecast encompassing in the context of
forecasts from recursive regressions. The basic idea is to construct a combined forecast
fct as a weighted average of the forecasts of a baseline model 1, f1t and the forecasts of
other non-nested models 2 and 3, say f2t and f3t, that is

fct = (1− λ2 − λ3)f1t + λ2f2t + λ3f3t, 0 ≤ λ1, λ2, λ3 ≤ 1. (3.2)

For testing purposes one rewrites (3.2) as

e1t = c+ λ2(e1t − e2t) + λ3(e1t − e3t) + ut, (3.3)

with eit = yt − fit and ut = yt − fct. The constant c equals zero if all forecasts are
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Table 3.11: Independence test of coverage of 60% forecast intervals, U.S. core inflation,
using weights

Model H
X p d q 1 3 6 12 24

1 0 1 0.40 0.05 . 0.47 .
1 1 1 0.01 0.35 . 0.50 .
0 1 1 0.07 0.07 . 2.14 .
1 d 0 0.40 0.23 . 0.47 .
0 d 0 1.07 0.23 0.10 0.47 .

r 1 0 1 0.95 0.39 0.20 0.30 .
r 1 1 1 0.30 0.07 . 2.14 .
r 0 1 1 0.05 0.03 . 2.14 .
r 1 d 0 0.13 0.39 . 0.30 .
r 0 d 0 0.01 0.39 0.20 0.30 .
s 1 1 1 0.45 0.75 0.39 . 0.59
u 1 1 1 1.07 0.20 . 2.14 .

N 191 63 31 15 7

Note: Likelihood ratio test on independence. which asymptotically is
χ2(1) distributed, see Christoffersen (1998). Included in the test are
only N independent forecasts at a distance of H months. A . indicates
there are not enough relevant observations.

unbiased. This assumption does not always hold, so it is good practice to add a constant
if one employs equation (3.3) as a test regression.

When λ1 and λ2 nearly add up to unity, this indicates that the alternative forecasts
perform better. When all forecast errors are zero mean Gaussian without serial correla-
tion, standard statistical regression theory applies, at least asymptotically. This analysis
provides an easy-to-compute statistical measure of the relative forecasting performance of
the models under scrutiny. The procedure provides an extra measure of the usefulness of
the different explanatory variables, where not only the in-sample fit, but also the stability
of the explanatory power over the period 1984-1999 plays a role.

The first rows of table 3.12 provide bilateral model comparisons, where models with
the best leading indicator, rt−1, are chosen as benchmark model 1. Each row in the
table corresponds to one (multiple) forecast encompassing test. It appears from test nr.
6 that the ARIMAX(1,1,1) model with ut−1 can help to improve the forecasts of the
ARFIMAX(0,d,0) with rt−1, but the p-value of this test is not very low. The last rows of
table 3.12 show that the forecasts of ARFIMAX models with rt−1 cannot be improved by
combining them with corresponding ARFIMAX models with other explanatory variables:
none of the estimated λi’s differs significantly from zero.

3.5 Conclusion

Statistical analysis shows that U.S. postwar inflation is long memory, with an order of
integration of around 0.3, even after allowing for a structural shift in the mean and
variance to capture the high inflation period in the 1970s. Recursive estimation shows
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Table 3.12: Multivariate one-step-ahead forecast encompassing tests

nr. Model 1 Model 2 Model 3 F pF
1 r(0, d, 0) r(1, 0, 1)

0.17 [0.57] 0.32 0.57
2 r(0, d, 0) s(1, 0, 1)

0.16 [0.61] 0.37 0.54
3 r(0, d, 0) u(1, 0, 1)

0.17 [0.59] 0.35 0.55
4 r(0, d, 0) r(1, 1, 1)

0.76 [1.74] 3.01 0.08
5 r(0, d, 0) s(1, 1, 1)

0.40 [1.78] 3.16 0.08
6 r(0, d, 0) u(1, 1, 1)

0.52 [1.93] 3.74 0.05
7 r(0, d, 0) s(0, d, 0)

0.08 [0.30] 0.09 0.76
8 r(0, d, 0) u(0, d, 0)

0.15 [0.49] 0.24 0.62
9 r(1, 0, 1) u(1, 0, 1) s(1, 0, 1)

0.08 [0.20] 0.13 [0.38] 0.22 0.80
10 r(1, 1, 1) u(1, 1, 1) s(1, 1, 1)

0.33 [1.07] 0.18 [0.66] 1.31 0.27
11 r(0, 1, 1) u(0, 1, 1) s(0, 1, 1)

0.22 [0.69] 0.19 [0.70] 0.85 0.43
12 r(1, d, 1) u(1, d, 1) s(1, d, 1)

0.12 [0.28] 0.01 [0.03] 0.07 0.93
13 r(0, d, 0) u(0, d, 0) s(0, d, 0)

0.17 [0.39] −0.02 [−0.06] 0.12 0.88

Note: The columns under model 2 and model 3 give the parameter estimates
of λ2 and λ3 in (3.3), with corresponding t-values in brackets. Models are
indicated by their single leading indicator and the orders p, d, q. Results
compare forecasts of model 2 and model 3 with the baseline model 1. F -
statistics for λ2(= λ3) = 0 and corresponding p-values presented under F
and pF .

that the order of integration has remained quite stable. Statistical analysis of dynamic
regression models for inflation conditioning on lags of unemployment and interest rates
shows a stable effect of short lags of short term interest rates. The errors of the regression
models are still long memory. An ARMAX(1,1) model and an ARIMAX(1,1,1) model
provide a similar in-sample fit as the ARFIMAX(0,d,0) model.

We performed a recursive out-of-sample forecasting exercise for the period 1984-1999
for cumulative inflation forecasting up to a two-year horizon, using univariate models
and long memory regression models. The ARIMA(1,1,1) model performs better than the
ARFIMA(0,d,0) model regarding the precision of point forecasts. The introduction of
conditioning variables improves forecasting precision at short horizons. With regard to
forecast interval estimation, downweighting the observations in the 1970s turns out to
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be essential in order to get realistic intervals for inflation in the 1990s. The empirical
multi-step prediction intervals for the ARIMA(1,1,1) model with or without explanatory
variables are too wide, also when weighting is applied. The multi-step forecast intervals
of the ARFIMAX(0,d,0) model prove to be more realistic.





Chapter 4

Bayesian Sampling Methods

4.1 Introduction

After applying classical statistical methods in chapters 2 and 3, the subsequent chapters
are dedicated to Bayesian approaches to estimating the posterior distributions of model
parameters, and making decisions using the parameter distributions.

The difference between the classical and the Bayesian approach to statistics is a fun-
damental change of paradigm. In the classical analysis, it is assumed that we know the
correct structure of the model, and want to estimate the true value of the model parame-
ters. The important concept here is this ‘true value of parameters’. In classical statistics,
it is assumed that a specific true value of the parameters exists, but that we do not know
it. There is no sense in claiming that a certain parameters lies with probability α between
bounds c1 and c2; instead in classical statistics it should be stated that the region [c1, c2]
contains with probability α the true parameter value. The data and statistics based on
the data like the bounds of a confidence interval are considered to be stochastic, whereas
the parameters are fixed.

From a Bayesian viewpoint, there is no such thing as a true parameter value. All
we have is a collection of data, which from every practical viewpoint is given, fixed, and
therefore not random. Furthermore we may have some prior idea about what value of the
parameters could be expected, summarized in a (possibly non- or little informative) prior
density of the parameters. Combining the prior density with the likelihood of observing
the data a posterior density of the parameters is constructed. This posterior density is
a quantitative, probabilistic description of the knowledge about the parameters in the
model.

The advantage of a Bayesian analysis is that the complete posterior distribution of
the parameters can be used for further analysis: In chapter 5 we are interested in the
optimal hedging decision under uncertainty. As we can construct the complete probability
distribution of the parameters, we can compute the (probability) distribution of the utility
that is derived for a specific hedging decision, and choose the hedging decision which
maximizes expected utility. In contrast, a classical analysis would usually optimize utility
conditional on a vector of parameters (derived e.g. through maximizing the likelihood of
the model), disregarding the parameter uncertainty.

Even though the Bayesian approach has these clear advantages in terms of the manner
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in which estimation and decision-making are natural counterparts, the approach only
became mainstream in the last decade of the previous century. Several reasons can be
recognized for the slow adaption of this alternative statistical framework.

First, and most importantly of all, the paradigm change which is needed when mov-
ing from classical to Bayesian statistics is not done light-heartedly by statisticians and
econometricians. After regarding parameters as unknown, fixed, quantities for centuries,
Bayes (1763) presented a parameter as a random variable, with an associated distribu-
tion. When observing data, we move from a state of relative ignorance1 concerning the
parameter to a state where we are informed, corresponding to a posterior distribution for
the parameter which is concentrated on the region where the parameter is expected to be
found.

This switch, towards viewing parameters as random instead of fixed was just one ob-
stacle for the Bayesian approach to gain ground. A second obstacle was the computational
effort connected to the derivation of posterior distributions. Only in special cases an ana-
lytical solution for the posterior density is available, in other cases higher order integrals
have to be solved numerically.

The second problem was relieved with the advent of Monte Carlo sampling techniques
for calculating integrals. In the econometric literature importance sampling (Kloek and
Van Dijk 1978) was the first available method for using sampling techniques for approxi-
mating densities and integrals. The method itself dates back to Hammersley and Hand-
scomb (1964). In the engineering literature, sampling methods were used decades earlier
than in econometrics. E.g. the article by Metropolis, Rosenbluth, Rosenbluth, Teller and
Teller (1953) introduced a method which is now known under the name of Metropolis-
Hastings (MH for short) sampling, partly named after Hastings (1970) who introduced a
generalized version of the original method in the statistical literature. A special case of
the MH algorithm, the Gibbs sampler, was introduced by Geman and Geman (1984) and
applied to the reconstruction of images.2 Gelfand and Smith (1990) explained the work
of Geman and Geman (1984) and of Tanner and Wong (1987), starting off a further boom
in research on sampling methods in econometrics.

With the advent of ever faster computers, the research into the field of modern sam-
pling methods bloomed, and continues to do so. New sampling methods keep being
introduced, often building forth on older methods (see e.g. Durbin and Koopman (2000),
who apply the importance sampler to improve on a method called the simulation smoother
(De Jong and Shephard 1995)).

In the present chapter, section 4.2 provides a short review of the aforementioned
integration/sampling methods (see e.g Bauwens, Lubrano and Richard 1999, for a more
elaborate description). The exposition of these basic methods is followed by two brief

1We may have some prior ideas on the parameter, therefore it could be said that we initially are in a
state of relative ignorance.

2In the application of the reconstruction of images (or also of the reconstruction of sound) the target
is to retrieve the original image, or the original sound of an old recording. All scratches, missing pieces,
have to be filled in in a manner which seems to be most plausible given the data at hand. This ‘data at
hand’ in this case is the damaged image/recording, the prior information of the researcher can consist of
the manner in which one sound wave can follow from the previous one, or what a picture might roughly
look like. Using the Gibbs sampler, there are techniques to sample the posterior ‘density’ of the picture,
getting rid of implausible scratches in the picture or recording.
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sections indicating lines of proof of convergence of the Monte Carlo methods, and with
some points of attention in practical situations. A range of not-so-standard extensions
of the algorithms is given in section 4.3, most importantly a concise description of the
technique of Metropolis-within-Gibbs (section 4.3.1), the multistep Gibbs sampler (section
4.3.2) and the method of Adaptive Polar Sampling (section 4.3.4).

The chapter continues with a description of the concept of marginal likelihood and the
closely connected posterior odds; this section 4.4 concentrates on aspects of the marginal
likelihood which are specific to the use of large data sets (as in chapter 5). It is followed in
section 4.5 by examples of some of the methods explained here, and concluding remarks
in section 4.6.

4.2 Basic sampling methods

Most of the scientific or more practical research question posed can be be written in the
format “What is the expected value of g(θ)?”, where g(θ) may be an inflation figure,
precipitation, maximum loss for a large investor, or percentage of votes for a political
party, possibly depending on a set of parameters θ. In mathematical terms, the object of
interest is

E(g(θ)) =

∫

θ

g(θ)pθ(θ)d θ. (4.1)

The basis for all Monte Carlo integration methods is the approximation of the integral3

through a sample mean,

E(g(θ)) ≈ 1

N

∑

i

g(θ(i)). (4.3)

In this equation θ(i), i = 1, . . . , N is a sample from the distribution pθ. As it is often not
possible to sample directly from pθ (coined the target distribution in the following), the
algorithms mentioned in section 4.1 come into play.

4.2.1 Importance sampling

In Kloek and Van Dijk (1978) the method of importance sampling is introduced. It is
aimed at calculating integrals of the form (4.1) when a sample θ from the target density
pθ(θ) is not available. An approximating candidate density qθ(θ) is used, which relates to

3When only the kernel of the density pθ(θ) is known, the integral in equation (4.1) is divided by the
integral over the kernel. This would lead to a formula

E(g(θ)) =

∫
θ
g(θ)κθ(θ)d θ∫
θ
κθ(θ)d θ

, (4.2)

and similar straightforward modifications to subsequent formulas in this chapter. For simplicity of nota-
tion, the integrating constant is assumed known.
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the target according to the weight function w(θ) = pθ(θ)/qθ(θ), see figure 4.1. From the
observation that

E(g(θ)) =

∫

θ

g(θ)
pθ(θ)

qθ(θ)
qθ(θ)d θ =

∫

θ

g(θ)w(θ)qθ(θ)d θ, (4.1′)

the approximation is calculated as

E(g(θ)) ≈ 1

N

∑

i

g(θ(i))w(θ(i)). (4.3′)

The sample θ(i), i = 1, . . . , N is drawn not from the target density pθ(θ) but from the
candidate density qθ(θ), adapting for the difference between the two through the use of
weights in (4.3′). The method of integrating through importance sampling works well if
the candidate density qθ(θ) approximates the target closely, i.e. when the weight function
w(θ) is close to 1. In the tails of the density, this is often not attainable; care should
be taken in that case to choose a candidate density with heavier tails than those of the
target density, as the weights w(θ) could get very large in the opposite case. Also, the
expectation of the weight function, E(w(θ)), must be finite.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-4 -2 0 2 4 6 8

PSfrag replacements

p(θ)
q(θ)

θ∗

q(θ∗)
p(θ∗)

Figure 4.1: Sampling using the importance sampler, with target and candidate density

4.2.2 Sampling/Importance Resampling

The method of importance sampling from the previous section delivers not a sample from
the target density, but only a weighted sample. Rubin (1987) introduces the technique of
Sampling/Importance Resampling (SIR), which basically uses the weights of the impor-
tance sample as probabilities of retaining a specific sampled θ(i), i.e.

i. Sample θ(1,∗), . . . , θ(R,∗) from a candidate density q(θ), computing weights w(θ) =
p(θ)/q(θ)

ii. Resample a sample θ(1), . . . , θ(M) of sizeM ¿ R from the parameter vectors sampled
in step i, each with probability pSIR(θ) = w(θ)/

∑
w(θ).
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Only when the candidate density approximates the target well, resulting in probabilities
pSIR(θ) with low variance, can the SIR sampling method be expected to be relatively
efficient. If the probabilities are very different, a large sample R in the first step is
needed, afterwards disregarding a large part of the sampled θ(i,∗) with low weights.

4.2.3 Acceptance-rejection sampling

The importance sampling algorithm results in a sample θ(i) ∼ qθ(θ) from the candidate
density with corresponding weights, which can be used to calculate the integral in (4.1).
In many situations it is convenient to have a sample which comes from the correct target
distribution, such that without applying any weight the approximation in (4.3) can be
used.

For this sampling method, the target density has to be covered by a kernel of the
candidate density, i.e. a constant c has to be found such that

pθ(θ) ≤ c qθ(θ) ∀θ.

Instead of drawing directly from the target density pθ (as the algorithm is only used
in cases where drawing from pθ is impossible or impracticle) a value is drawn from the
candidate, say θ∗. This drawing is accepted with probability

αAR =
pθ(θ)

cqθ(θ)
(4.4)

and rejected otherwise (see figure 4.2 for an example). If a sample of N elements is needed,
sampling candidates and evaluating the acceptance-rejection probability continues until
N elements are accepted. The sample of accepted parameter vectors is a sample from the
correct target density, no further weighting is needed.
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Figure 4.2: Sampling using the acceptance/rejection sampler, with target density and
enveloping candidate kernel

Like the importance sampling algorithm, this method is good in its simplicity. Draw-
backs of this algorithm are that a candidate density is needed together with a multiplica-
tion factor c such that the kernel cqθ(θ) covers the target density. If the factor c is much
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larger than 1, the number of accepted drawings will be low and the algorithm therefore
little efficient. In such a case the importance sampling algorithm would still be able to
use those drawings, though with small weights having little influence on the final value of
the integral.

4.2.4 The Metropolis-Hastings algorithm

The origins of the Metropolis-Hastings algorithm date back to the 1950s, when the algo-
rithm was introduced by Metropolis et al. (1953). Hastings (1970) reintroduced it to the
econometric community, though a clear exposition had to wait until Smith and Roberts
(1993) and later Chib and Greenberg (1995).

The algorithm is a true sampling algorithm (like the acceptance-rejection algorithm
of the previous section) in the sense that it results in a sample Θ = (θ(1), θ(2), . . .) which
may be used for evaluating all kinds of objective functions g1(θ), g2(θ) etc. As in the case
of both the acceptance-rejection and importance sampling, the target density q(θ|θ(i))4 is
compared to a candidate density. The algorithm consists of the following steps:

i. Initialize, start with a drawing θ(0), set i = 0.

ii. Generate a candidate draw θ∗ ∼ q(θ|θ(i)).

iii. Calculate the acceptance probability

αMH(θ
(i), θ∗) = min

[
pθ(θ

∗)q(θ(i)|θ∗)
pθ(θ(i))q(θ∗|θ(i))

, 1

]
. (4.5)

iv. With probability αMH(θ
(i), θ∗) set θ(i+1) = θ∗, else retain θ(i+1) = θ(i).

v. Increase i.

vi. Repeat steps ii-v until a sufficiently large sample is collected (see sections 4.2.6-
4.2.7).

Note that this algorithm results in a chain of drawings, where there is correlation between
drawing θ(i+1) and θ(i).5. This chain is a Markov chain, depending only on the state θ(i)

in the previous period. See also section 4.2.6.
Without the intention of being anywhere near exhaustive (see e.g. Geweke (1999) for

a more elaborate exposition), some remarks can be made. When the candidate density
does not depend on the state of the chain, an independence chain results, with transition
probability

αMH(θ
(i), θ∗) = min

[
pθ(θ

∗)q(θ(i))

pθ(θ(i))q(θ∗)
, 1

]
= min

[
w(θ∗)

w(θ(i))
, 1

]
. (4.6)

4The candidate density may depend on the last vector of parameter θ(i) drawn in the chain. This last
vector of parameters is often called the state of the chain.

5There are two sources of correlation. Firstly, when a candidate draw is rejected, the old element
θ(i) is duplicated. Secondly, the candidate density may depend on the previous drawing θ(i), resulting in
correlated draws
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Note how in this case the acceptance probability depends on the weights which were also
used in the Importance Sampler, section 4.2.1. Often such an independence chain, with
e.g. q(θ∗) = t(θ̂, α, ν) a Student-t density with as expectation θ̂ a preliminary estimate of
the mode of the posterior density and variance ν

ν−2
α2 works well on unimodal posterior

densities.
When the candidate density is symmetric (q(θa|θb) = q(θb|θa)), it cancels from the

acceptance probability equation, leaving

αMH(θ
(i), θ∗) = min

[
pθ(θ

∗)

pθ(θ(i))
, 1

]
. (4.7)

This is the original algorithm as proposed in Metropolis et al. (1953). A special case is the
candidate density which only depends on the distance between θ∗ and θ, i.e. q(θ∗|θ) =
q(θ∗ − θ). The resulting chain is known under the name of Random Walk Metropolis
chain. A simple choice is to use θ∗ ∼ N (θ, σ2q ); the variance of the candidate density
can be calibrated to take steps which are reasonably close to θ such that the probability
of accepting the candidate is not too low, but with a stepsize large enough to ensure
sufficient mixing of the chain.

4.2.5 Gibbs sampling

The Gibbs sampler is possibly the sampling technique which is used most frequently. In
the statistical physics literature it was (and still is) known as the heat bath algorithm,
but Geman and Geman (1984) christened it in the mainstream statistical literature as the
Gibbs sampler. It was popularized by Casella and George (1992) among econometricians,
and consists of splitting up the parameter space into blocks of parameters for which it
is possible to specify the full conditionals: Let θ be the parameter vector, and let it be
subdivided into θ = {θ1, . . . , θk}. Then the algorithm proceeds as follows:

i. Initialize, start with a drawing θ(0), set i = 0.

ii. Given the i-th drawing θ(i), the next one is found by simulating

θ
(i+1)
1 ∼ π(θ1|θ(i)2 , . . . , θ(i)k ),

θ
(i+1)
2 ∼ π(θ2|θ(i+1)1 , θ

(i)
3 , . . . , θ

(i)
k ),

...

θ
(i+1)
k ∼ π(θk|θ(i+1)1 , . . . , θ

(i+1)
k−1 ).

iii. Increase i.

iv. Repeat steps ii-iii until convergence (see sections 4.2.6-4.2.7).

Given a starting vector of parameters θ(0) in the support of the density, the algorithm
proceeds by stepwise generating each element of the next θ(i+1) from the full condition-
als as above. The algorithm can be considered to ‘pass through’ intermediate points



64 Chapter 4. Bayesian Sampling Methods

(θ
(i+1)
1 , θ

(i)
2 , . . . , θ

(i)
k ), (θ

(i+1)
1 , θ

(i+1)
2 , θ

(i)
3 , . . . , θ

(i)
k ), . . . , (θ

(i+1)
1 , . . ., θ

(i+1)
k−1 , θ

(i)
k ) towards the

new element θ(i+1).
An important concept connected with the Gibbs sampler is the concept of data aug-

mentation, already introduced by Tanner and Wong (1987). In many situations, the
posterior density p(θ) is hard to sample from, but there is a conditional density p(θ|z)
which is easily analysed. This often occurs in models with missing or unobserved data,
e.g. Tobit or Probit models. If also the distribution of z|θ is of a known form, a Gibbs
chain is easily built sampling from z|θ(i) followed by a draw of θ(i+1) ∼ p(θ|z). Disregard-
ing the values of z sampled during the process, the θ(i) can be shown to have the correct
distribution p(θ) (see Casella and George (1992) for details).

4.2.6 On convergence: Theory

The Markov chain Monte Carlo methods all try to find a transition kernel to move from
one iteration to the next, such that eventually a drawing from the target density results.
This target density then is the invariant density π(y), i.e.

π∗(dy) =

∫

Ω

P (x, dy)π(x) dx.

In this formula, P (x,A) is the transition kernel describing the probability of moving from
a location x ∈ Ω to a location within the set A ⊂ Ω. This equation states that starting
from the invariant density π(x), taking another step P (x, dy) according to the transition
kernel leads to the same invariant distribution π∗ (note that π(x) indicates the invariant
density, π∗(dx) the distribution with the corresponding Lebesgue measure).

For all MCMC methods the transition kernel is constructed as the sum of the proba-
bility of a move and of no move, thus

P (x, dy) = p(x, y)dy + r(x)I(x ∈ dy).
In this function, r(x) = 1 −

∫
Ω
p(x, y)dy is the probability of no move, triggered by the

indicator function I(x ∈ dy). With this notation introduced, Theorem 1 in Tierney (1994)
states

Theorem 1 Assume that P (., .) is π∗-irreducible and has π∗ as its invariant distribution.
Then P is positive recurrent and π∗ is the unique invariant distribution of P . If P is also
aperiodic, then for π∗-almost all x ∈ Ω and all sets A ∈ ω

||P n(x,A)− π∗(A)|| −→ 0.

In this theorem || || denotes a total variance distance measure. The concept of irreducibil-
ity excludes cases where the chain can get caught in a subset B ∈ Ω with zero probability
of reaching a location x 6∈ B in a finite number of steps. Aperiodicity is needed to ensure
that Ω cannot be split up into subsets B1 and B2, B1 ∪B2 = B such that

P n−1(x,B2) = P n(x,B1) =

{
1 if n even

0 otherwise
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Theorem 3 in Tierney (1994), or the second part of Proposition 1 in Chib and Greenberg
(1996), gives the result needed for convergence of quantities as in equation (4.3):

Theorem 2 When the function g is real valued and π∗-integrable, the sample average

1

N

∑
g(θ(i)) −→

∫

θ

g(θ)πθ(θ)d θ

as N →∞.

In general it is easily confirmed if the Metropolis chain fulfills the conditions of The-
orem 1. When the support of the candidate density is at least as large as of the target
density, and the chain is started at an interior point of the support, in most cases the con-
vergence conditions are met. In practice one has to be careful that all parts of the sample
space are visited regularly; if in some region the candidate probability is a lot smaller
than the target probability, elements in this region have to be replicated often, leading to
strong correlation in the sample. See Geweke (1999) for a more precise rendering of the
conditions.

With the Gibbs sampler a practitioner should verify that indeed the target density is
not degenerate. Proper full conditional densities do not guarantee a proper invariant dis-
tribution (see Hobert and Casella 1996). Secondly, strong correlation between elements of
the target density can lead to even stronger correlation in successive elements of the chain,
possibly resulting in a quasi- or total reducibility of the sample space.6 The convergence
of the Gibbs sampler is furthermore hampered by a large number of blocks. Each extra
block introduces an extra full conditional distribution, which in its turn leads to an extra
source of correlation.

4.2.7 On convergence: Practice

Theorem 1 of section 4.2.6 states that eventually the drawing from a Markov chain can
be considered to be a drawing from the invariant distribution. Each subsequent drawing
is also a drawing from the invariant distribution, but a dependent one: There can be a
strong correlation between successive drawings. The following measures can be taken to
counter this correlation:

i. Single chain: In some cases, correlation is not much of a practical problem. As
long as the researcher realizes that the sample of size N is a dependent sample, and
therefore only corresponds in information content to a sample of N1 < N drawings,
results can be sufficiently good. With strong correlation, a larger sample is needed
than in the case when the correlation is relatively weak.

ii. Multiple chains: A range of N different Markov chains of length N2 can be run,
saving only the last drawing of the chain. If the length N2 is large enough for
the chain such that the drawing has converged to the target distribution, the N
parameter vectors at the end of each of the chains are independent.

6Or, more popularly stated: ‘Correlation kills the Gibbs sampler’.
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iii. Interspersed chain: An intermediate position is obtained when one long single
chain of length N × N3 is run, saving only one drawing out of every N3. The N
resulting drawings have lower correlation than the sample from the single chain
itself, and the computational overhead is less than with the multiple-chain method,
as usually N3 ¿ N2 is sufficient to get a considerable reduction in correlation.

For assessing convergence, several statistics have been devised (Geweke 1992, Yu and
Mykland 1998). The basic idea behind most of them is to compare moments of the sampled
parameters at different parts of the chain. The implementation of Yu and Mykland (1998)
is most practical. They propose to consider a plot of the CUSUM path with

CUSUMt =
1

tσθ

t∑

i=1

(θ(i) − µθ), t = 1, . . . , N. (4.8)

The cumulative sum of the drawings is adapted for the empirical mean and standard
deviation of the complete sample. This is not necessary, but can be convenient to compare
the CUSUM plots for different parameters. A plot of CUSUMt against time which diverges
from zero for a prolonged period of time is an indication of bad convergence.

Apart from the CUSUM plot it is often convenient to check convergence by visual
means from a plot of the drawings themselves, of a moving average of e.g. the last 100
drawings, and of the cumulative or running mean of drawings 1, . . . , t.

Geweke (1992) promotes the use of the Relative Numerical Efficiency (RNE) as a
measure for the quality of a correlated sample. It compares the empirical variance of the
sample with a correlation-consistent variance estimator,

RNE =
σ2θ

σ2NW,q

, (4.9)

where σ2θ is a direct estimator of the variance, and σ2NW,q is the Newey-West (Newey and
West 1987) variance estimator taking the correlation up to lags of q% of the size of the
sample into account. Practical values for q can be 4, 8 or even 15%.

4.3 Extensions

In this section several extensions to the basic MCMC algorithms are presented. The aim of
presenting these elaborations is to provide the researcher with ideas on how to implement
an effective sampler for the case at hand. Each extension is presented in a concise manner,
with enough detail for implementation, and references to relevant literature for further
details.

The choice of extensions to the sampling methods made here is limited, to include the
most common algorithms and especially the algorithms which are used in the example
in section 4.5 and in chapter 5. Gilks, Richardson and Spiegelhalter (1996) describe a
range of other sampling methods among which are the Hit-and-Run algorithm (Chen
and Schmeiser 1998) and the class of Adaptive Direction Samplers (Gilks, Roberts and
George 1994). Also not covered below are sampling methods which allow for a sampling
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space which randomly changes in dimension, like the Simulated Tempering (Marinari and
Parisi 1992, Liu and Sabatti 1998) and the Reversible Jump algorithms (Green 1995,
Richardson and Green 1997).

4.3.1 Metropolis-within-Gibbs

The name of this section is, according to some, badly chosen, as is the name of the
Gibbs sampler, in as far as the name seems to imply that the sampler applies a different
algorithm than the Metropolis-Hastings sampler. Effectively, the Gibbs, and also the
algorithm known as Metropolis-within-Gibbs, are special cases of the very flexible and
powerful Hastings sampling methodology.

Chib and Greenberg (1995) present this point most clearly, in an elaboration of a
‘block-at-a-time’ algorithm. It is shown how a chain consisting of two or more full condi-
tional subchains converges to a chain delivering drawings from the joint distribution, i.e.
if

P (x1, dy1|x2) i.d.−→ π∗(dy1|x2)

and

P (x2, dy2|x1) i.d.−→ π∗(dy2|x1)

(with
i.d.−→ signifying ‘has as invariant distribution’), then

P (x1, dy1|x2)× P (x2, dy2|x1) i.d.−→ π∗(dy1, dy2). (4.10)

When both the conditional transition kernels equal the respective conditional distribu-
tions (and therefore equal the invariant conditional distributions, without any need for
convergence in the conditional steps), the pure Gibbs algorithm results. However, when
one (or more) of the transition kernels is of the Metropolis-Hastings type, then an algo-
rithm results which is sometimes called the Metropolis-within-Gibbs. This algorithm is
especially useful when one of the full conditional densities cannot be sampled from di-
rectly, but it is possible to provide an approximating sampler. Note that the conditioning
is always done on the latest available drawing of a block. When e.g. the MH step is used
for sampling a new x2|x1, then the candidate density for the MH step can only use (con-

dition on) the last x
(i)
1 , and not a previous x

(i−1)
1 , even though conditioning on a previous

x
(i−1)
1 can be computationally more efficient when it comes to calculating the acceptance

probability αMH.

4.3.2 Multistep Gibbs samplers revisited

Under the heading of the Gibbs sampler the general case was already presented in section
4.2.5. Though conceptually the bivariate Gibbs sampler is most easily explained, in theory
the number of full conditional densities in the chain is not limited, leading to (highly)
multivariate Gibbs samplers. Similarly, the multistep Gibbs sampler could be introduced
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along the lines of the Metropolis-within-Gibbs sampler, with the Metropolis part replaced
by another Gibbs step: A Gibbs-within-Gibbs sampler ı̀s a multistep Gibbs sampler.

It seems there is nothing new under the sun on this matter. Even so, several practical
issues connected to the implementation of a multivariate Gibbs sampler merit some dis-
cussion. First of all, there is the issue of the amount of preparation which is needed before
the Gibbs sampler can be implemented (but see also section 4.3.3, on the Griddy Gibbs
sampler). With the MH sampler, only the (analytic) posterior density function is needed,
in a closed formula. For Gibbs, a separate full conditional density for each block has to
be derived, including a method of sampling from the corresponding conditional distribu-
tion. In section 4.5 an example is given of a model of which parameters are sampled in a
Gibbs chain. In this model, 5 different conditional densities have to be derived, including
methods to sample from them. Each derivation is prone to errors, therefore using the
Gibbs sampler on highly dimensional problems can become problematic.

A more serious problem is the correlation in the chain. With each conditional distri-
bution of θi|θ−i (with θ−i indicating the parameter vector θ excluding element i) extra
dependence is introduced. In section 4.5.4 an example is given where indeed the correla-
tion is very high, leading to a low quality of the sample drawn using the Gibbs sampler.
Though the example is quite extreme, even in normal cases (see also chapter 5, where
correlations starts to be problematic in a real-world situation) the correlation induced by
a sequence of multiple Gibbs steps can occur.

4.3.3 Griddy Gibbs sampler

For some models the conditional density p(θi|θ−i) is hard to derive or to sample from. In
those cases the Griddy Gibbs sampler (Ritter and Tanner 1992, Bauwens, Lubrano and
Richard 1999, section 3.4.3.2) can offer relief.

The Griddy Gibbs sampler constructs an approximation p̃(θi|θ−i) to the conditional
density numerically, by evaluating the (joint) posterior density on a grid over the support
of values for θi|θ−i (that is, keeping the conditioning parameters θ−i constant). As

p(θi|θ−i) =
p(θi, θ−i)∫
θi
p(θi, θ−i)

, (4.11)

the conditional density of θi|θ−i is proportional to the joint density.

To sample from a general density function p with cumulative distribution function P ,
we can take a drawing u from a uniform distribution, and apply the inverse CDF P −1

to arrive at a drawing θ = P−1(u) from the original distribution. This method can be
used given a numerical approximation P̃ (θi|θ−i) to P (θi|θ−i) to sample a new value of
θi. Figure 4.3 displays a general density function p(θ) in the left panel, together with an
approximation based on a linear spline connecting a number of support points. Using
the linear approximation, the cumulative distribution P̃ (θi|θ−i) in the right panel was
constructed. For a drawing u = 0.62 from the uniform density, the corresponding value
of θ can be read from the x-axis.



4.3. Extensions 69

0

0.05

0.1

0.15

0.2

0.25

0.3

-4 -2 0 2 4 6
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-4 -2 0 2 4 6

PSfrag replacements
p(θ)
p̃(θ)

P (θ)
P̃ (θ)

θθ

u

Figure 4.3: Sampling using the Griddy Gibbs sampler

4.3.4 Adaptive Polar Sampling

The Metropolis-Hastings and Gibbs samplers of sections 4.2.4 and 4.2.5 are flexible enough
to sample from a broad range of posterior densities. In some situations, when e.g. no good
approximating candidate density is available for the MH sampler, or when correlation in
the Gibbs chain is very high, alternative sampling methods can help.

In this section the Adaptive Polar Sampling (APS) algorithm is explained. It was first
presented in Bauwens, Bos and Van Dijk (1999) and builds upon the MIXIN algorithm
(Van Dijk and Kloek 1980, Van Dijk, Kloek and Boender 1985). The idea behind the
algorithm can be compared to the ideas behind the Adaptive Direction Samplers (Gilks
et al. 1994). The algorithm is devised to be able to sample effectively also from multimodal
posterior densities, even when the number and location of the modes is not known a priori;
this is a case where the MH sampler often does not converge. Compared with the Gibbs
sampler, APS is not hampered by strong correlation between the parameters of the model.
Little information is needed except for the posterior density function itself.7

The main idea behind the APS algorithm is to split the problem in two: Sampling
is done in a transformation of the original parameter space to polar coordinates. The
algorithm applies a standard Metropolis algorithm on the directions η of the parameter
vectors, and a univariate numerical procedure on the distances ρ. The idea is explained
in figure 4.4. Panel A displays a bivariate mixture density with two separate modes.
Standard sampling algorithms run into trouble sampling from this density. Conditional
on a (possibly preliminary, very inaccurate) estimate of the location and the scale of the
density the original parameter vector θ = (θ1, θ2) is transformed into the space of (y1, y2),
having mean 0 and a unit covariance matrix (see panel B). Then, a second transformation
to polar coordinates is applied, leading to (η, ρ). The complete transition is indicated as

(η, ρ) = T (θ |µ,Σ) = Ty→η,ρ(y) ◦ Tθ→y(θ |µ,Σ) (4.12)

(the precise definition of the transformation is given in appendix 4.B). Panel C in figure
4.4 plots the marginal density p(η) of the directions which results from the bimodal density,

7A drawback of the algorithm is that the analytic posterior density function is needed. When data
augmentation is necessary to arrive at a tractable posterior density, APS can be used to sample from the
augmented parameter space. However, we have at present little experience with such samplers.
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and also the candidate density q(η) which results from transforming the parameter space
for a bivariate normal density. It is seen that for directions η ∈ [−0.1π, 0.2π] little
probability mass is found for the bimodal density, when compared to the (transformed
normal) candidate density q(η). For other directions, the difference between the density of
η for the bimodal and the normal density is not large. On the other hand, the conditional
density of ρ|η depends strongly on the direction chosen. Panels D and E show two
conditional densities of ρ|η = 0 and ρ|η = 1

4
π, together with the conditional densities

resulting from the transformed normal density, indicated by q(ρ|η). Here the differences
in densities are larger, with the mass of the transformed bimodal density lying further
away from the center of the distribution.

The sampling from directions and distances is based on the observation that the
marginal density of directions η is well behaved compared to the density of the parameters
in the original space. Problematic heavy tales, multimodality, or oddly shaped support
for the parameters translates into an oddly shaped density for the conditional ρ|η, less so
for the marginal density of η. Therefore, Bauwens, Bos and Van Dijk (1999) propose to
sample a candidate direction η∗ from the transformed normal density (corresponding to
the uniform density for η in the bivariate case, as in panel C of figure 4.4). A Metropolis-
Hastings step is applied on η, accepting the candidate draw η∗ instead of the previous η(i)

with probability

α(η(i), η∗) = min

[
p(η∗)q(η(i))

p(η(i))q(η∗)
, 1

]
(4.6′)

= min

[ ∫
ρ
pθ (T

−1(η∗, ρ)) |J(ρ)| ∂ρ
∫
ρ
pθ (T−1(η(i), ρ)) |J(ρ)| ∂ρ

, 1

]
, (4.13)

with J(ρ) indicating the part of the Jacobian of the transformation depending on the
distance parameter ρ.8 Alternatively, the candidate direction η can be given a weight
as in the importance sampler (section 4.2.1). The resulting Adaptive Polar Importance
Sampling (APIS) algorithm does not reject any drawings, but may collect a large number
of sampled parameter vectors with low weights if the candidate density is not very precise
(i.e., especially when the estimates of location and scale are not very accurate).

During the numerical evaluation of the univariate integrals
∫
ρ
pθ (T

−1(η∗, ρ)) |J(ρ)| ∂ρ
and

∫
ρ
pθ
(
T−1(η(i), ρ)

)
|J(ρ)| ∂ρ, information is collected to construct the conditional den-

sity p(ρ|η(i+1)).9 From the conditional distribution (see the method explained in section
4.3.3, on the Griddy Gibbs sampler) we draw a value of ρ, which together with η(i+1)

defines a point θ = T−1(η(i+1), ρ(i+1)) in the original parameter space.
Sampling new values of η and ρ (or, equivalently, of θ) continues until an improved

estimate of the location and scale parameters µ and Σ can be derived from the drawings,
or until the sample is large enough for other purposes. As the sampling of η is compu-
tationally intensive due to the numerical integral over ρ that has to be evaluated, it is
advisable to sample multiple values of ρ for the same direction η. As long as a sufficient

8The transition from (4.6′) to (4.13) is explained in the appendix.
9Note that η(i+1) is either η∗ or η(i), such that the conditional density of ρ|η(i+1) is proportional to

p(η(i+1), ρ) which is merely a transformation from pθ
(
T−1(η∗, ρ)

)
.
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number of different directions η have been sampled to cover the parameter space of the
directions, this does not hamper convergence.

Practical experience tells us that good initial estimates of location and scale are not
needed: Using one or more short initial sets of drawings, the estimates can easily be
updated. During initial rounds, it is advisable to force acceptance in the Metropolis-
Hastings step after a low (e.g. 5) number of rejections, to keep the chain moving. This
leads to a sample which is not from the correct posterior distribution, but which serves
well for improving the estimate of the location and scale parameters. In later rounds,
forced acceptance should not (or only after a large number of rejections) occur. The
structure of the APS algorithm ensures that the final sample converges to a sample from
the posterior density function, irrespective of initial starting values for location and scale
parameters. For an indication of the proof, see Bauwens, Bos and Van Dijk (1999).

4.4 Posterior odds and marginal likelihood

4.4.1 Posterior odds, the Bayes factor, and model choice

When models are estimated in a classical manner, they can be compared on the basis
of the likelihood they attain. The likelihood function is evaluated in the point indicated
by the parameter estimates, often at the location of maximum likelihood. In a Bayesian
framework, there is not one parameter vector characterizing the fit of the model. Instead,
based on the likelihood and the prior, the full posterior distribution of the parameters
is derived (see section 4.2 on sampling the posterior distribution). Characteristic for the
fit of a model M is in this case the expected or marginal likelihood m(Y |M), where the
expectation is taken over the likelihood L(Y ; θ |M) with respect to the prior distribution
π(θ |M) of the parameters,

m(Y |M) =

∫

θ

L(Y ; θ |M)π(θ |M) ∂θ. (4.14)

Based on this marginal likelihood the posterior odds can be calculated, summarizing the
evidence in favour of or against a model, compared to a competing model. The posterior
odds (PO) are

PO =
m(Y |M1)

m(Y |M2)

π(M1)

π(M2)
= Bayes factor× prior odds (4.15)

with m(Y |Mi) the marginal likelihood of data Y assuming model i, and π(Mi) the prior
probability attached to this model. Note that for the posterior odds and the Bayes factor
to exist, the priors specified on the parameters have to be non-degenerate.

The Bayes factor (BF), which is the ratio of the marginal likelihoods of the competing
models, reports the evidence in the data in favour of or against a model. It will be seen
in later sections that the evidence as indicated by the Bayes factor can take on very large
or very small values. Kass and Raftery (1995) propose to use a classification based on
the logarithm of the Bayes factor, and consider the evidence in favour of a model M1 as
compared to model M2 ‘not worth more than a bare mention’ if log(BF)< 1, to consider
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it ‘positive’ if 1 ≤ log(BF) < 3, ‘strong’ when 3 ≤ log(BF) < 5 and ‘very strong’ for even
larger values.

4.4.2 Calculating the marginal likelihood

Methods based on the posterior kernel

Only in very special cases, most notably for the exponential likelihood with conjugate pri-
ors, the marginal likelihood m can be analytically calculated as the integrating constant10

of the posterior, as

p(θ|Y ) =
1

m
L(Y ; θ)π(θ). (4.16)

For other models, numerical solutions have to be found. A good overview is given in Kass
and Raftery (1995). The most important methods are described below.

The brute force method is to do numerical integration using Gaussian quadrature to
integrate the product of likelihood and prior. This method may be labelled a ‘brute force’
method, as it can be very inefficient. Only in lower dimensional problems, Gaussian
quadrature is sufficiently fast. Furthermore, in general the likelihood function is very
peaked, leading to an integrand which only has a positive (not nearly zero) value in a
small area. The strong contrast between the (large) region with virtually zero likelihood
and the (small) region with high likelihood makes it hard to integrate in a numerically
stable way.

A second method (McCulloch and Rossi 1992) calculates the marginal likelihood using
simulation, as an approximation to the expectation of the likelihood with respect to the
prior distribution of the parameters:

m = Eπ(θ)L(Y ; θ) ≈ 1

N

∑
L(Y ; θ(i)) = mPrior (4.17)

with θ(1), .., θ(N) a sample of sizeN from the prior density. This method is not very efficient
either, as the sampled values from the prior may well be in a region with relatively low
likelihood, necessitating the use of a large sample size.

The efficiency of the simulation method can be improved using importance sampling
(IS), i.e. by sampling from a density π∗(θ) with more mass in regions of high likelihood.
Weights have to be used to adapt for the fact that we are not sampling from the correct
distribution, leading to an estimator mIS calculated as

mIS =

∑
wiL(Y ; θ(i))∑

wi

, with weights wi =
π(θ(i))

π∗(θ(i))
. (4.18)

It seems logical to sample from the posterior density π∗(θ) = p(θ|Y ) ∝ L(Y ; θ)π(θ) if that
is possible, as this favours drawings of the parameter vector in regions with high posterior
mass. This leads to

mHM =

∑
m∑
m

L(Y ;θ(i))

=
Nm

m
∑

1
L(Y ;θ(i))

=

(
1

N

∑ 1

L(Y ; θ(i))

)−1
(4.19)

10As we are calculating the marginal likelihood of a specific model M on a fixed data set Y in this
section, dependence of m on these quantities is suppressed in the notation.
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with HM indicating that this estimator uses the harmonic mean (Newton and Raftery
1994). Though this estimator is consistent, the variance var

(
1
/
L(Y ; θ)

)
may be infinite,

especially if L(Y ; θ) has thin tails. In such a case, some sampled parameter vectors θ(i)

can lead to huge contributions 1
/
L(Y ; θ(i)). In several papers methods are sought to

improve on the variance of this measure, leaving intact the consistency of the estimator.
A possibility put forward in Newton and Raftery (1994) is to combine in the importance
sampling density both the prior, with a certain (small) weight δ, and the posterior, with
weight 1 − δ. Then π∗(θ) = δπ(θ) + (1 − δ)p(θ |Y ) is used in calculating mIS in (4.18).
This estimator still is efficient and consistent, and can be shown to satisfy a Gaussian
central limit theorem. A more recent solution to stabilize the harmonic mean estimator
is presented in Satagopan and Newton (2000). They calculate the estimator mSHM as

mSHM =

(
1

N

∑ 1

p(Y |h(θ(i)))

)−1
(4.20)

with h(θ) a function reducing the parameter space. The elements in the harmonic mean
are marginal likelihoods in themselves, with part of the parameter space integrated out.
The transformation h(θ) has to be chosen such that the marginalization to h(θ) is more
easily calculated than the full marginalization (if the full marginalization were available,
that would result in the marginal likelihood straight away). No clear rules for finding
such a transformation are given for general situations.

As the marginal likelihood is the integrating constant of the posterior density, the idea
arises to use an approximating density pApp. The relative difference in height between the
approximating density and the kernel of the posterior is an estimate of the integrating
constant. A range of methods can be derived from this observation, using

mApp =
L(Y ; θ)π(θ)

p(θ |Y )
≈ L(Y ; θ)π(θ)

pApp(θ)
. (4.21)

First, LaPlace’s method approximates the logarithm of the posterior kernel at the mode θ̃,
l(θ̃), using a quadratic expansion. The approximation is found to be a normal distribution

with mean θ̃ and covariance matrix Σ̃ =
(
∂2l(θ)
∂θ∂θ′

)⌋
θ=θ̃

. Substituting the normal density in

(4.21) gives

mLP = (2π)k/2|Σ̃|1/2L(Y ; θ̃)π(θ̃). (4.22)

Conditions for the accuracy of this method are found in Kass, Tierney and Raftery (1990).
Alternatively, when the prior is relatively uninformative, the kernel can be approxi-

mated at the location of the maximum likelihood estimator θ̂ and corresponding covariance
matrix Σ̂. The estimator mLP(ML) is calculated according to (4.22), using the maximum
likelihood estimate instead of the estimate at the posterior mode. Likewise, for symmetric
posterior densities it is often simpler to find the location of the posterior mean or median
from a sample, and calculate mLP(Mean) or mLP(Median) correspondingly.

When a sample from the posterior is available, the posterior density can be approxi-
mated using a kernel smoothing algorithm. When the resulting smoothed posterior density
is made to integrate to one, the marginal likelihood mKern can be calculated comparing



4.4. Posterior odds and marginal likelihood 75

the posterior kernel to the smoothed posterior density estimate in (4.21). For the loca-
tion θ any point could be chosen, though best results are found at a location of high
density, e.g. at the posterior mode θ̃. Note that for higher dimensional models, getting
a sufficiently accurate smoothed density estimate may require a very large sample. In
our experience, results of this method are precise enough for comparisons between models
when the dimension of the parameter vector is less than 10.

A method using the Gibbs sampler

The methods described above work well for small dimensional problems, in general for
methods where the importance sampler or the Metropolis-Hastings algorithm could be
used. In cases where data augmentation is needed to arrive at a tractable likelihood
function, or when the full conditional densities are easier to sample from than using the
IS or MH methods, the Gibbs sampler is used. Chib (1995) describes a method for
consistently estimating the marginal likelihood based on the output of the Gibbs chain.

Again, the starting point for the calculations is the marginal likelihood identity, in a
rewritten version of equation (4.16),

m(Y ) =
L(Y ; θ)π(θ)

p(θ|Y )
. (4.23)

Equation (4.23) holds at every location θ in the parameter space.11 The posterior ker-
nel L(Y ; θ)π(θ) is known in closed form, and through the Gibbs sampler we can generate
drawings θ from the posterior p(θ|Y ) ∝ L(Y ; θ)π(θ). The posterior p(θ|Y ) is the problem-
atic element here, as we do not know the integrating constant (the integrating constant
is m(Y ), exactly the element of interest of the whole exercise). Note how the posterior
can be written as the product of conditional densities, for each of the building blocks θi
of θ = (θ1, .., θk):

p(θ|Y ) = p(θ1|Y )
k∏

i=2

p(θi|θ1, .., θi−1, Y ). (4.24)

When using the Gibbs sampler, not the above conditional densities but only the full
conditional densities are known. Therefore we need the relation

p(θi|θ1, .., θi−1, Y ) =

∫
p(θi|θ1, .., θi−1, θi+1, .., θk, Y )

× p(θi+1, .., θk|θ1, .., θi−1, Y ) ∂θi+1..∂θk

≈ 1

N

∑

j

p(θi|θ1, .., θi−1, θ(j)i+1, .., θ(j)k , Y ), i = 1, .., k − 1. (4.25)

The conditional density can be approximated averaging out over the full conditional den-
sity, with θ

(j)
i+1, .., θ

(j)
k one of N drawings from the density p(θi+1, .., θk|θ1, .., θi−1, Y ). These

11The parameter vector θ can include the elements resulting from data augmentation. Only at the end
of the present section we distinguish between the parameters of interest and the nuisance parameters.
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drawings can be sampled using the original Gibbs sampler, with this difference that el-
ements θ1, .., θi−1 are kept fixed. Note how in this sample θi is sampled, but not used
except for keeping the chain moving.

For each of the conditional densities p(θi|θ1, .., θi−1, Y ), i = 1, .., k − 1 in (4.25) a
separate run of the Gibbs sampler is needed, each sampling from k − i different full
conditional densities. Only the conditional density with i = k is readily available, as it
itself is the full conditional density.

The marginal likelihood identity (4.23) holds regardless of the location θ chosen. How-
ever, results can be expected to be more precise at locations with a higher density. When
the problem at hand is of a high dimension (this often occurs when use was made of data
augmentation, see also the example in section 4.5.5), the mass is dispersed over these
many dimensions. In such a case it is advisable to treat the parameters, say the vector z,
resulting from the data augmentation differently. As equation (4.23) is derived from

p(θ|Y ) =
1

m(Y )
L(Y ; θ)π(θ), (4.16)

we can integrate out the elements z from the parameter vector θ = (θ̃, z) on both sides,
resulting in

m(Y ) =

∫
L(Y ; θ̃, z)π(θ̃, z)∂z∫

p(θ̃, z|Y )∂z
. (4.23′)

Note that both in the numerator and the denominator the integral over z is needed.
In some cases (e.g. the state vector in a Gaussian state space model) this integral is
known analytically. If it is not known, there is often no simple sampling approximation
to it,12 and the computation of the marginal likelihood should be repeated for a number
of high-density vectors z(i), as

m(Y ) =
1

q

q∑

i=1

L(Y ; θ̃, z(i))π(θ̃, z(i))

p(θ̃, z(i)|Y )
. (4.23′′)

This computation can become very time consuming, as for the computation of one
marginal likelihood already k − 1 separate Gibbs chains have to be sampled, leading
to a number of q × (k − 1) separate chains needed for the computation of (4.23′′).

4.4.3 Calculating the Bayes factor

As indicated in section 4.4.1, the Bayes factor is a statistic indicating the evidence in
favour of or against a model, as compared to a second model. The simplest way to
calculate the BF is to compute the marginal likelihoods for both models M1 and M2 and
write

BF =
m(M1)

m(M2)
. (4.26)

12For the integral in the denominator, we can sample z along from the full conditional densities as
in (4.25). For the numerator,

∫
L(Y ; θ̃, z)π(θ̃, z)∂z =

∫
L(Y ; θ̃, z)π(θ|z)π(z) ≈ 1

N

∑L(Y ; θ̃, z)π(θ|z(i)),

with z(i) ∼ π(z) a sample from the prior. See the discussion around the computation of mPrior in (4.17),
for a discussion of the problems concerning such a sampling approximation.
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A second method can be used when we wish to test for a restriction of the parameter
space, e.g. θ = (θ1, θ2) ∈ Θ1 × Θ2, testing for M1 with θ2 = θ̃2 against an unrestricted
model M2. In case the prior of the restricted model equals the restricted version of the
prior of the general model,

π(θ1|M1) = π(θ1, θ2|M2, θ2 = θ̃2) = π(θ1|θ2 = θ̃2,M2),

then it was already shown by Dickey (1971) that

BF =
p(θ̃2|Y )

π(θ̃2)
=

∫
p(θ1, θ̃2|Y )∂θ1

π(θ̃2)
. (4.27)

Dickey attributed the ratio to Savage; nowadays it is known as the Savage-Dickey density
ratio.

In cases when we test between two models which do not correspond in the parametriza-
tion of the priors, i.e. if

π(θ1|M1) 6= π(θ1|θ2 = θ̃2,M2),

then Verdinelli andWasserman (1995) present the generalized Savage-Dickey density ratio.
This generalization is computed as

BF = p(θ̃2|Y ) Eθ1|θ̃2,M2

[
π(θ1|M1)

π(θ1, θ̃2|M2)

]
=
p(θ̃2|Y )

P
π(θ̃2) Eθ1|θ̃2,M2

[
π(θ1|M1)

π(θ1|θ̃2,M2)

]
. (4.28)

This last equation holds if we assume that the prior π(θ1, θ̃2|M2) and the posterior p(θ̃2|Y )
are bounded for almost all θ1 and that the expectation is finite.

4.5 Example: Sampling from a time series model

4.5.1 Introducing the model

In this last section of the chapter on sampling methods, an example is presented on which
a range of the samplers can be applied. The data set used here is a simulated series
similar to the exchange rate data used in chapter 5. The exchange rate data is modelled
to exhibit a very erratic behaviour around a stochastic trend, with the trend component
only weak compared to the strength of the disturbances. Such a series can be simulated
from and modelled with a state space model (Harvey 1989), with exchange rate returns st
distributed around a mean µt. The mean is assumed to follow a random walk (less strict
assumptions will be made in chapter 5). The model is written down using a observation
equation (4.29) and a transition equation (4.30),

st = µt + εt (4.29)

µt = µt−1 + ηt. (4.30)

The disturbances ηt in the transition equation are assumed to be independent and nor-
mally distributed, ηt ∼ N

(
0, σ2η

)
, t = 1, .., T . For the observation disturbances, we either
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assume εt ∼ N (0, σ2ε ), or εt ∼ t(0,
√

(ν − 2)/νσε, ν).
13 Using the last option, we allow for

a heavier tailed disturbance distribution, with ν > 2 the number of degrees of freedom of
the Student-t distribution with expectation 0 and variance σ2ε .

In the example we use values of σε = 1, ση = 0.01, ν = 4 and two different sample
lengths of T = 100 and T = 1000, see also table 4.1.

4.5.2 Likelihood and posterior

When the disturbances εt are normally distributed, the model is entirely linear and Gaus-
sian. In that case, the Kalman filter equations (De Jong 1989, Harvey 1989) lead to
a prediction-error decomposition. This decomposition filters out the prediction errors vt
which are normally distributed with variance Ft, conditional on all observations up to and
including st and the parameters (see appendix 4.A for the Kalman equations). Indicating
the past observations by St = {s1, .., st}, the likelihood is

L(ST ;σε, ση) =
T∏

t=1

(2πFt)
−1/2 exp

(
− v2t
2Ft

)
. (4.31)

This leaves us with a likelihood which we can calculate analytically, though through a
recursive formula.

When the disturbances in the observation equation (4.29) are modelled as Student-
t distributed, the Kalman equations of the appendix do not hold, as the model is no
longer purely Gaussian. This implied that closed-form (possibly recursive) formula for
the likelihood can be found. It is however possible to introduce factors zt such that the
model is conditionally Gaussian:14

εt | zt ∼ N
(
0, (σεzt)

2
)
,

zt ∼ IG-1(αz =
ν

2
, βz =

2

ν − 2
).

13See appendix 4.C for an overview of the notation of the density functions applied here.
14In the present context it is more convenient to work with parameters σε, ση and zt instead of σ2

ε , σ
2
η

and z2
t . This latter choice of parameters would lead to the use of the Inverted Gamma density instead of

the Inverted Gamma-1 density. Otherwise, derivations and results are similar. Appendix 4.C states the
formulation of this and other density functions.
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Table 4.1: Parameters and priors

Parameter Value Prior density Hyperparameters

σε 1 IG-1 αε = 5 βε = 0.2
ση 0.01 IG-1 αη = 5 βη = 20
ν 4 trunc. Cauchy ν > 2
z | ν − IG-1 αz =

ν
2 βz =

2
ν−2

With this setup, the marginal density of εt is Student-t as intended, as we can derive that

p(εt) =

∫
p(εt | z)p(z)dz ∝

∫
z−1 exp

(
− ε2t
2σ2ε z

2

)
z−(2

ν
2
+1) exp

(
−ν − 2

2z2

)
dz

=

∫
z−(2

ν+1
2
+1) exp

(
− 1

z2
ε2 + σ2ε (ν − 2)

2σ2ε

)
dz

∝ βα
∫
fIG-1

(
z;α =

ν + 1

2
, β =

2σ2ε
ε2 + σ2ε (ν − 2)

)
dz

=

(
2σ2ε

ε2 + σ2ε (ν − 2)

) ν+1
2

∝
(
1 +

ε2

σ2ε (ν − 2)

)− ν+1
2

∼ t

(
0,

√
ν − 2

ν
σε, ν

)
.

With the parameter vector augmented to include the elements z1, .., zT the model is Gaus-
sian again, and the likelihood can be written down for both the standard state space model
as for the model with Student-t error terms. Combining the likelihood with a prior we
get the kernel of a posterior density. We choose conjugate prior densities, to simplify
the derivation of the full conditional Gibbs sampling densities at a later stage. For σε
and ση, the conjugate prior density is the Inverted Gamma-1 density. Hyperparameters
α and β are chosen such that the prior expectation of the standard deviations σε and ση
is approximately correct. The standard deviation of the prior density is of similar size as
the expectation and the true value (see table 4.1).

4.5.3 Sampling methods based on the likelihood function

With the likelihood function (and therefore also the posterior) known as a closed formula
in the case of normal errors, we can apply methods like the importance sampler (section
4.2.1) and the Metropolis-Hastings sampler (section 4.2.4). These methods need an ap-
proximating density which is easy to sample from. A choice which often works reasonably
well15 is to use a Student-t density, calibrating the mean and covariance of the candidate
to mimic those of the posterior density in the mode. Output of a standard maximization
routine can be used to find the mode µ̂; the covariance matrix Σ̂ can be approximated

15In cases when the posterior density is known to be unimodal with tails which are not in some
directions much heavier than those of a Student-t density, this method can be expected to give a good
approximation.
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as the inverse of minus the matrix of second derivatives around the mode. The degrees-
of-freedom parameter can be fixed at e.g. ν = 4 if the posterior is expected to be clearly
non-normal, or at higher values if the deviation from normality is not large. A further
improvement is found when one takes the results from a preliminary round of the sampler
based on the estimates µ̂ and Σ̂, and adjusts these estimates to the sample mean and
variance. In the following implementations of the IS and MH samplers, we initially use
the estimated mode and covariance matrix from the optimization routine, and adapt these
three times using increasing sample sizes, before collecting the final sample.
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Figure 4.5: Simulated data from the Local Level model, with T = 100 (left panel) and
T = 1000 (middle), and from the Local Level model with Student-t disturbances εt,
T = 1000 (right)
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Figure 4.6: Posterior from importance sampler, with weights, T = 100

The output of the importance sampler is a series of drawings from the candidate
density with corresponding weights. The closer these weights are to 1 (indicating a perfect
candidate), the better are the results. Figure 4.5 plots, in the left panel, a sample of length
T = 100 from the model described in section 4.5.1. This data set was used as input in
sampling 10000 drawings using the importance sampler, with a Student-t candidate fitted
to the mode of the posterior, with ν = 4 degrees of freedom. The resulting posterior is
plotted in figure 4.6, for the parameters σε and ση. The third panel in the figure shows the
distribution of the weights: The bulk of the weights is close to 1. Only a few observations
are weighted heavily (at a weight of 4), and some other observations receive an almost
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zero weight, leading to a small second mode at zero in the graph of the weights.16
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Figure 4.7: Posterior from Metropolis-Hastings sampler, with data from the Local Level
model, T = 1000

When the sample size is enlarged to include T = 1000 observations (these data are
plotted in the middle panel of figure 4.5), more information on the value of the parameters
is available in the data. The posterior, this time applying a Metropolis-Hastings sampler,
is given in figure 4.7. The posterior densities of both σε and ση are indeed much more
concentrated than in figure 4.6, where a data set of size T = 100 was used with the
importance sampler. Note that the Metropolis-Hastings sampler leads to a correlated
sample from the posterior density, in contrast the importance sampling algorithm. The
bottom panel in the figure shows the correlation in the sample, which in this case is not
large. The acceptance rate of the MH sampler was above 75%, implying that the Markov
chain moved to a new location most of the time.

The adaptive polar sampling algorithm of section 4.3.4 can be applied instead of the
Metropolis-Hastings sampler. For T = 1000 this algorithm was used in gathering 1000
accepted directions, with 10 drawings in each direction. This leads to a sample of a size
comparable to the 10000 (accepted) drawings of the IS and MH samplers. The correlation
of the sample from the APS algorithm is smaller than for the MH-based sample, as can be
seen from figure 4.8 (drawn on the same scale as the correlation plot in figure 4.7). The

16The posteriors are constructed applying a kernel approximation to a histogram of the drawings.
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Figure 4.8: Correlation of drawings from the Adaptive Polar sampler, with data from the
Local Level model, T = 1000

posterior density of the parameters is, of course, equal to the posterior of the Metropolis-
Hastings sampler. Note however that the strongest correlation of the APS algorithm is
not in the space of the parameters themselves, but in the space of the directions η (see
section 4.3.4).

4.5.4 Sampling methods based on the conditional densities

For the Gibbs sampler (see section 4.2.5) the full conditional densities are needed. If we
take the model with Student-t disturbances,17 the augmented likelihood combined with
the prior gives the following posterior kernel:

p(σε, ση, z, ν, µ |S) ∝ L(S;σε, ση, z, ν, µ)π(σε, ση, z, ν) ∝[
T∏

t=1

(σεzt)
−1 exp

(
−1

2

(st − µt)2
σ2ε z

2
t

)
z
−(2 ν2+1)
t exp

(
−ν − 2

2z2t

)]

× σ−(2αε+1)ε exp

(
− 1

σ2εβε

)
× σ−(2αη+1)η exp

(
− 1

σ2ηβη

)
× 1

1 + ν2
. (4.32)

The full conditional densities are proportional to the joint posterior, fixing the condition-
ing parameters at their respective values. Each of the full conditional densities has to be

17For this model, using the Metropolis-Hastings or the importance sampler is not feasible, as the
posterior density is not analytically known without data augmentation. With data augmentation, the
parameter vector of the model includes T elements µt and another T variance factors zt. The resulting
parameter vector is too large to be handled using MH or IS algorithms. The Gibbs sampler on the other
hand can be used on the model with normally distributed disturbances. The sampler is constructed
following the lines exposed here, with elements zt fixed at 1.
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derived before the Gibbs sampler can be used. For the parameter σε this gives

p(σε |ση, z, ν, µ, S) ∝ p(σε, ση, z, ν, µ |S) ∝

σ−(T+2αε+1)ε exp

(
− 1

σ2ε

(∑ (st − µt)2
2z2t

+
1

βε

))

∼ IG-1

(
α =

T

2
+ αε, β =

(∑ (st − µt)2
2z2t

+
1

βε

)−1)
. (4.33)

Likewise, the conditional density of the standard deviation of the transition equation ση
can be shown to be

p(ση |σε, z, ν, µ, S) ∼ IG-1

(
α =

T

2
+ αη, β =

(∑ (µt − µt−1)2
2

+
1

βη

)−1)
. (4.34)

The variance factors zt can be sampled one-at-a-time, using

p(zt |σε, ση, ν, µ, S) ∝ z
−(ν+2)
t exp

(
− 1

z2t

(
(st − µt)2

2σ2ε
+
ν − 2

2

))

∼ IG-1

(
α =

ν + 1

2
, β =

(
(st − µt)2

2σ2ε
+

(ν − 2)

2

)−1)
. (4.35)

The last parameter we need to sample is the degrees-of-freedom parameter ν. Collecting
the factors in (4.32) containing ν we find

p(ν |σε, ση, z, µ, S) ∝
1

1 + ν2
×
∏

t

IG-1

(
zt;α =

ν

2
, β =

2

ν − 2

)
. (4.36)

This conditional density of ν is not of a known functional form for which a direct sampling
method would be possible. Instead, we can use a Metropolis-within-Gibbs step (section
4.3.1). Assume ν(i) is the last degrees-of-freedom parameter sampled. Draw a candidate
ν∗ ∼ N (ν(i), Sν), and calculate

αMH = min

[
p(ν∗|..)q(ν(i))
p(ν(i)|..)q(ν∗) , 1

]
. (4.37)

Note that the integrating constant in equation (4.36) is not needed, as it cancels from the
Metropolis-Hastings acceptance probability in (4.37) anyhow. The parameter Sν can be
used to calibrate the Metropolis step: A small value leads to a high acceptance probability
but slow mixing (or, put differently, strong correlation) between successive values of ν. A
larger value for Sν can lead to lower acceptance rates, but less correlation if a sufficient
number of ν∗ is accepted. A different solution, leading to less correlation but a higher
computational burden, is to numerically construct the cumulative distribution function
and use the Griddy Gibbs sampler for ν (see section 4.3.3).

Having found the conditional densities of the standard parameters σε, ση and ν, and the
variance factors zt which were introduced to attain a conditionally Gaussian model, we are
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left with the state parameter µt which also have to be sampled. One of the first available
methods for sampling the states is presented in Carter and Kohn (1994). In this paper, a
method is described to sample from the conditional density p(µt|yt, µt−1, µt+1, σε, ση, zt).
Note that the past (future) state contains all possible information about the past (future)
of the series; no extra information is contained in the observations yt−1 or yt+1. With an
uninformative prior density the posterior conditional density is normal,18 such that is not
difficult to sample successively σε, ση, µ1, µ2, .., µT from the full conditional densities.
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Figure 4.9: Simulating from a Local Level-Student-t model, with the posteriors of ν and
µ500 and the correlations

The data set used in this example with the Gibbs sampler is displayed in the right
panel of figure 4.5. The data was generated from the Local Level model, this time with
Student-t disturbances εt, with ν = 4 degrees of freedom, and is of length T = 1000.
Using the Gibbs algorithm a sample of size 10000 was generated from the posterior. The
posterior distributions of σε and ση are similar to the ones found using the Metropolis-
Hastings sampler, in figure 4.7. The first two panels of figure 4.9 show the posterior
of the new parameter ν and of the values sampled for the state element µ500, halfway
the sampled data set. These two parameters (and effectively the whole state vector
µ1, .., µT ) exhibit far stronger autocorrelation than found with the MH sampler, compare
the autocorrelation in the top right panel of figure 4.9 with the correlations in figure 4.7.

18See appendix 4.A for the derivation.
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For the parameter ν, the problem of strong autocorrelation is inherent to the setup
of the sampling scheme, and it is connected to the size of the data set at hand. This
can be explained as follows. We iteratively sample from the conditional distributions
of zt|ν (t = 1, .., T ) and ν|z1, .., zT . When sampling a new set of zt’s there is enough
freedom for each of the z’s to move away from the previously sampled value, without
much correlation. However, when the sample size T is large, this vector of zt’s contains
rather precise information on the values of ν originally used in sampling them. Therefore,
a very tight conditional density for ν|z1, .., zT is found for sampling a new value of the
degrees-of-freedom parameter ν. Small steps and strong correlation in ν are the results.
To lower the correlation, several steps can be taken. Three options come to mind:

i. A first option is to improve on the sampling of ν: As the normal candidate used
in the MH step for sampling ν leads to an acceptance rate of around 50%, an
improved sampling method with lower (preferably no) rejection can also reduce
correlation in ν. If the Griddy Gibbs sampler is used, a direct drawing from the
approximate conditional distribution can be made, thus lowering correlation due to
rejected values for ν.

ii. A second, and probably more effective measure would be to find a sampling proce-
dure for drawing a new value of ν and a new vector of z’s jointly, conditional on the
other parameters in the model. In general, it is always better if possible to draw
parameters which are strongly correlated together from their joint distribution, oth-
erwise the correlation between the parameters reflects itself in a strong correlation
between successive drawings in the Gibbs chain.

iii. As it is in this case not simple to sample from the joint density as mentioned in ii,
we can approximate the joint density using a (short) Gibbs chain. If we iterate a
number G of times between drawing a value of ν|z(g−1), σε, ση and z1, .., zT |ν(g), σε, ση
with g = 1, .., G, the final drawing ν(G), z(G) is approximately drawn from the joint
distribution of ν and z, conditional on the (fixed) other parameters. In general
correlation in a Gibbs chain can be lowered by updating highly correlated parameters
more often than others (Zeger and Karim 1991).

The strong correlation found between successive drawings of the state elements µt is
not surprising. Conditional on the state-of-affairs of the previous period, µt−1, and the
next period µt+1, the possible values for the present period state µt are narrowly defined.
Therefore, also the µt’s are strongly correlated over time, and as a consequence also be-
tween successive iterations in the Gibbs chain. As explained in ii, it is better to simulate
elements which are strongly correlated together, from their joint distribution, conditional
on the other parameters. This is exactly what the simulation smoother (De Jong and
Shephard 1995, see appendix 4.A for the derivation) does. In this way, the number of
conditional densities used in sampling is reduced greatly, and correlation between subse-
quent iterations of drawings of µt almost disappears.

Figure 4.10 shows the remaining correlation when the improvements mentioned above
are applied to the sampling algorithm. More precisely, as improvements we sampled
the values for ν|z, σε, ση using the Griddy Gibbs sampler; the sampling of ν|z, σε, ση and
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Figure 4.10: Correlation in the sample when using the improvements for the Gibbs sampler
on the Local Level-Student-t model

z|ν, σε, ση is repeated G = 10 times within each iteration of the Gibbs sampler, continuing
with the last value of ν and the vector z. For µ, the simulation smoother is used. Indeed, it
is seen that there is virtually no correlation left between drawings of µ500. The correlation
in ν is reduced greatly, and also the correlation in σε is not large. Only ση displays a
correlation of 0.6 even at lag 20. This correlation is a result of the choice of parameters:
As ση ¿ σε, little information about the mean process and its variance is available in
the data set. Again, the sampling of ση and of µ could be repeated to further reduce
correlation in ση as well.

4.5.5 Calculating the marginal likelihood of the model

In section 4.4.2 a range of methods for calculating the marginal likelihood of a model was
presented. In the present section the methods are applied, using the data set of length
T = 1000 from the local level model. A first series of methods consisted in computing
a weighted average of likelihood values. Section 4.4.2 started with a formula for mPrior,
where parameter vectors θ are sampled from the prior density, taking the average of the
corresponding likelihood values. Table 4.2, in its upper left cell, reports a value of -1464.99
for the logarithm of the marginal likelihood (henceforth indicated by log-m). This value
is calculated using a sample of 13112 drawings from the prior density.19 To check the
influence of the size of the sample, results were replicated 50 times for sizes of n = 1000.
The second and third rows in table 4.2 (and in subsequent tables in this section) report
the mean and standard deviation of the 50 log-m values calculated.

From these first results we see that marginal likelihood values can easily become ex-
treme: The marginal likelihood values themselves, without taking logarithms, are of size
exp(−1465) ≈ 0 for this combination of model and data set. The log-m values depend
linearly on the number of observations in the data set, exactly like the standard loglike-
lihood is of order T . As a consequence, also the logarithms of the posterior odds depend
linearly on T : For large data sets, small per-observation evidence in favour of a model

19The odd size is chosen to equal the size of the sample from the Metropolis-Hastings algorithm, applied
later in this section.
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may well lead to very large or extremely small posterior odds. We will see an example of
this later in this section.

After this digression, let us return to the calculation of the log-m values. Instead of
sampling from the prior, the posterior sample can be applied, leading to the harmonic
mean estimator log-mHM, reported in the second column in table 4.2. Care has to be taken
in the computation of this and other marginal likelihood measures, as one easily ends up
with ±∞ or 0. The instability of the HM estimator is reflected in the larger standard
deviation of the 50 repetitions of the small-sample computations. The difference in out-
comes of log-mHM and log-mPrior is 1.3, implying that the marginal likelihood according
to the HM estimator is exp(1.3) ≈ 3.7 times larger than the corresponding outcome using
the prior estimator.

An intermediate position is taken by the measure mIS, sampling parameter vectors
from an importance function other than the prior or posterior density. The third column
of table 4.2 reports the outcomes applying a Student-t importance density with ν = 4
degrees-of-freedom, with mode and covariance fitted to the posterior mode. Even though
this importance density has heavier tails than the posterior (needed for improving the
convergence behaviour of m over the behaviour of mHM), we do not seem to gain much
stability; the (average) value of log-m falls in between log-mPrior and log-mHM, but the
variability (in small samples) is 2-3 times larger. We will not pursue the search for a
better importance sampling distribution at this time.

Table 4.2: Logarithms of marginal likelihoods, calculated using the prior, harmonic mean
and importance sampling estimators, log-mPrior, log-mHM and log-mIS

log-mPrior log-mHM log-mIS

log-m −1464.99 −1463.71 −1464.43
µ(log-m) −1465.04 −1463.68 −1464.25
σ(log-m) 0.202 0.295 0.760

Note: Reported are the log-m based on a sample of size
n = 13112. µ(log-m) and σ(log-m) are the mean and
standard deviation of 50 replications of the computation
using sample size n = 1000.

With a LaPlace approximation to the posterior kernel, the location at which the log-m
is computed matters. Table 4.3 reports in the columns the log-mLP evaluated at the mode
of the posterior and the location of maximum likelihood, both found by optimizing the
corresponding function, and at the mean and median of the posterior sample of size
n = 13112 from the MH sampling algorithm. The results correspond closely, as the
posterior is symmetric, and the prior not very informative. As the locations of the mode
and of the maximum likelihood parameter vector are found without using the sample, no
variation over the smaller samples20 occurs (see the third row in the table). The median
is more robust as an estimator of the location, therefore it leads to lower variation in the
log-m value than using the mean as a location estimator.

20The smaller samples of size n = 1000 were drawn randomly-with-replacement from the sample of size
n = 13112 resulting from the MH sampling algorithm.
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Instead of using a normal approximation to the posterior density, a kernel smoothing
density can be fit to the posterior sample.21 Again, at four locations the log-mKern was
computed, with the results reported in table 4.4. Notice that the results for log-mKern

correspond closely to the results found in log-mLP. The variation in the results for the
small samples is larger with log-mKern, as the kernel density smoother needs a rather large
sample size to get a reasonable precision.

Table 4.3: Marginal likelihoods calculated using the LaPlace approximation

Mode ML Mean Median

log-mLP −1465.05 −1466.20 −1465.02 −1465.02
µ(log-m) ′′ ′′ −1465.03 −1465.02
σ(log-m) 0 0 0.044 0.005

Note: See table 4.2 for an explanation of the entries in the table.

Table 4.4: Marginal likelihoods calculated using the kernel approximation

Mode ML Mean Median

log-mKern −1465.01 −1465.08 −1465.03 −1465.03
µ(log-m) −1464.89 −1465.04 −1464.92 −1464.92
σ(log-m) 0.087 0.140 0.080 0.083

Note: See table 4.2 for an explanation of the entries in the table.

The marginal likelihood under the hypothesis that the model is the Local Level model
with Student-t observation disturbances is not so easily calculated, as the likelihood func-
tion and the posterior kernel cannot be evaluated without augmenting the parameter
vector to a high dimension where the methods applied before loose all accuracy. There-
fore, we switch to the method of Chib (1995), to compute the marginal likelihood from
the output of the Gibbs sampler (see the second part of section 4.4.2).

Let σ̃η, σ̃ε and ν̃ be the mean of the posterior density (obtained from the sample from
the posterior), enlarged with a vector z̃ [j]. We calculate the average marginal likelihood
over a range of q different vectors z̃[j], according to

mGibbs =
1

q

q∑

j=1

L(S; σ̃η, σ̃ε, ν̃, z̃[j])π(σ̃η, σ̃ε, ν̃, z̃[j])
p(σ̃η, σ̃ε, ν̃, z̃[j]|S)

. (4.38)

For the denominator, we decompose

p(σ̃η, σ̃ε, ν̃, z̃
[j]|S) = p(σ̃η|σ̃ε, ν̃, z̃[j], S)p(σ̃ε|ν̃, z̃[j], S)p(ν̃|z̃[j], S)p(z̃[j]|S). (4.39)

For each of the conditional densities in (4.39) a separate Gibbs chain is run, estimating

21We apply a Gaussian kernel with automatic bandwidth selection according to Silverman’s (1986)
rule.
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i. p(σ̃η|σ̃ε, ν̃, z̃[j], S) ≈ 1
n

∑
p(σ̃η|µ(i), σ̃ε, ν̃, z̃[j], S) sampling n elements µ(i) and σ

(i)
η

from the chain

µ(i) ∼ µ|σ(i−1)η , σ̃ε, ν̃, z̃
[j], S,

σ(i)η ∼ ση|µ(i), σ̃ε, ν̃, z̃[j], S;

Note that we need to sample σ
(i)
η here alongside with µ(i). This way, the sampled

µ(i) come from the conditional density µ|σ̃ε, ν̃, z̃[j], S, marginal of the value of ση.

ii. p(σ̃ε|ν̃, S) ≈ 1
n

∑
p(σ̃ε|µ(i), σ(i)η , ν̃, z̃[j], S) sampling n elements µ(i), σ

(i)
η and σ

(i)
ε from

the chain

µ(i) ∼ µ|σ(i−1)η , σ(i−1)ε , ν̃, z̃[j], S,

σ(i)η ∼ ση|µ(i), σ(i−1)ε , ν̃, z̃[j], S,

σ(i)ε ∼ σε|µ(i), σ(i)η , ν̃, z̃[j], S;

iii. p(ν̃|z̃[j], S) ≈ 1
n

∑
p(ν̃|µ(i), σ(i)η , σ(i)ε , z̃[j], S) sampling n elements µ(i), σ

(i)
η , σ

(i)
ε and ν(i)

from the chain

µ(i) ∼ µ|σ(i−1)ε , σ(i−1)η , ν(i−1), z̃[j], S,

σ(i)η ∼ ση|µ(i), σ(i−1)ε , ν(i−1), z̃[j], S,

σ(i)ε ∼ σε|µ(i), σ(i)η , ν(i−1), z̃[j], S,
ν(i) ∼ ν|µ(i), σ(i)η , σ(i)ε , z̃[j], S;

iv. p(z̃[j]|S) ≈ 1
n

∑
p(z̃[j]|µ(i), σ(i)η , σ(i)ε , ν(i), S) sampling n elements µ(i), σ

(i)
η , σ

(i)
ε , ν(i) and

z(i) from the chain

µ(i) ∼ µ|σ(i−1)ε , σ(i−1)η , ν(i−1), z̃(i), S,

σ(i)η ∼ ση|µ(i), σ(i−1)ε , ν(i−1), z̃(i), S,

σ(i)ε ∼ σε|µ(i), σ(i)η , ν(i−1), z̃(i), S,
ν(i) ∼ ν|µ(i), σ(i)η , σ(i)ε , z̃(i), S,
z(i) ∼ z|µ(i), σ(i)η , σ(i)ε , ν(i), S.

The numerator of the marginal likelihood equation (4.38) can be calculated without fur-
ther detours. With z̃ known the model is Gaussian and the Kalman equations can be used
to compute the likelihood through the prediction-error decomposition (see also appendix
4.A). The functional form of the prior is given, and therefore its computation does not
pose any problem.

In table 4.5 the results are given of applying the algorithm to both the data set
with normal disturbances (in the first two columns) as to the data set with the heavy-
tailed disturbance distribution (in columns three and four). For each data set results are
calculated assuming that the Local Level model is correct (in columns 1 and 3, skipping
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Table 4.5: Marginal likelihoods calculated using the Gibbs’ conditional densities algorithm

Data Local Level Local Level-Student-t
Model LL LLS LL LLS

log-mGibbs −1465.00 −1468.83 −1417.51 −1391.49
µ(log-m) −1465.01 −1469.79 −1417.53 −1393.66
σ(log-m) 0.186 0.959 0.227 2.687

Note: The value for log-mGibbs was calculated using (4.38) with q = 10
and chain length n = 10000. The bottom rows are calculated as
the mean and standard deviation of 100 replications of (4.38) with
q = 1, n = 1000.

the sampling of elements ν and z in the algorithm above) or making the assumption that
Student-t disturbances are part of the model (indicated by the heading LLS). The first
row contains results for the Gibbs output when each subsampler was run for n = 10000
iterations (see below equation (4.39)), evaluating the log-m at the mean of the posterior
sample. When Student-t disturbances are introduced, a value of z for conditioning upon
is sampled from the full conditional posterior density z̃ ∼ p(z|θ̃, Y ), and the calculation
is repeated q = 10 times in equation (4.23′′). For the comparison of the stability of the
marginal likelihood estimate, the computation was repeated n = 100 times for subsampler
chain lengths of n = 1000, with reported µ(log-m) and σ(log-m) as the results.

For the LL data the log-m of the LL model is -1465.00, close to the previous results.
When this result is compared to the outcome assuming the LLS model, of -1468.83, we see
that the data favours the LL model. The difference is not very large, even though the LLS
model has an extra parameter for fitting the data. For the second data set (columns three
and four) we see that the data overwhelmingly favours the LLS model: The logarithm
of the Bayes factor equals the difference in log-m’s. This difference is approximately 26,
indicating the the Local Level-Student-t model is deemed exp(26) times more plausible
than the simpler Local Level model.

From the standard deviations σ(log-m) we see that the marginal likelihood calculation
using the conditional densities method is not very stable. With larger sample sizes in the
subsamplers stability is better.

4.5.6 Sampling setup and details

Throughout the example this section, all computations have been performed using pro-
grams written by the author, in Ox 2.20 (Doornik 1999). Extensive use was made of the
SsfPack package by Koopman, Shephard and Doornik (1999). This section describes the
initializations and other details of the setup that were used in these programs.

Importance sampling

As an importance density, a Student-t with ν = 4 degrees-of-freedom was used. Four
degrees of freedom ensure that the tails of the importance density are heavier than the
tails of the target density at hand. As a first start, a maximization routine is used to find
the mode of the posterior density. The Student-t density is transformed such that its mode
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corresponds to the mode of the posterior; for the covariance, a numerical approximation
to the covariance of the posterior around the mode is used.

Table 4.6: Sampling setup and results

Acceptance
Method DGP T µ ν Burn-in rate Total size max(|ρ20|) Time

IS N 100 - 1 10000 0 4
IS N 1000 - 1 10000 0 18
MH N 1000 1000 0.76 13112 0.014 24
APS N 1000 100 0.96 10460 0.009 3:51
Gibbs t 1000 CPS N 1000 0.55 10000 0.87 3:16
Gibbs t 1000 SS GG-10 1000 0.99 10000 0.50 59:25
log-m N 1000 13112 1:26
log-mGibbs N 1000 SS - 0 10000 1:01
log-mGibbs t 1000 SS - 0 10000 1:01
log-mGibbs N 1000 SS N -10 0 10000 22:30
log-mGibbs t 1000 SS N -10 0 10000 22:25

Note: For the sampling and log-m-computation methods this table reports the acceptance rate,
total sample size, maximum correlation at lag 20 and the duration of the compuation, indicating in
the first columns the DGP, length of the data set, the method for simulating µ (using the method
of Carlin, Polson and Stoffer (1992) or the Simulation Smoother), the sampling candidate for ν
(normal or with a Griddy Gibbs candidate), and the number of replications of sampling z and ν
(either 1 or 10).

With the location and the scale parameters of the candidate set up, a first round
of the importance sampler is run, collecting 1000 parameter vectors with corresponding
weights. These are used to (re)estimate the mean and covariance of the posterior, and the
importance density is adapted accordingly. The sampling and adapting of the location
is done for two more rounds, of lengths of 2000 and 5000 drawings from the parameter
vector, respectively. Then, in a final round, 10000 drawings from the importance density
are gathered and used with their weights in the example.

Table 4.6 reports some key statistics and the computing time. The first line covers the
importance sampling (column 1) on the model with normal disturbances (second column),
of length T = 100. A burn-in period is not necessary, as the correlation in the sample
(column 9) is zero by construction. All drawings are accepted (column 7). The time
needed for this computation is a mere 4 seconds, using Ox 2.20 (see Doornik 1999) on a
computer running a 900 MHz AMD processor using Linux. A similar calculation with a
data set of length T = 1000 took 18 seconds, as reported in the second row of the table.

Metropolis-Hastings sampling

The setup for the candidate density was the same as described above for the importance
density in the IS algorithm, with the difference that sampling was continued until a set of
n = 1000, 2000, 5000 or 10000 accepted drawings were collected. As there is correlation in
the chain, we allowed for 1000 (accepted) drawings as a burn-in period before collecting
the final sample. The final total sample size was 13112 vectors large, corresponding to



92 Chapter 4. Bayesian Sampling Methods

an acceptance rate of 0.76. The maximum correlation after 20 lags was found for the ση
parameter, and was of size ρ20 = 0.014. Essentially the MH sampling algorithm needs
one posterior density evaluation for each drawing; as the final sample is 30% larger than
for the IS algorithm, the computating time is also about 30% longer.

Adaptive polar sampling

The setting was mainly the same as for the MH sampling above. The only extra choice
we have for the APS algorithm is the number of directions to sample. Results reported
here use nη = 50, 100, 250 and 1000 different accepted directions η, leading to a sample
of n/nη = 20, 20, 20 or 10 drawn parameter vectors in each direction throughout the 4
rounds. In the first round, the Metropolis-Hastings step for accepting or rejecting a new
candidate was skipped; as a consequence, the first round does not give a sample from
the correct posterior distribution, but does help to quickly improve on the location and
scale parameters. Later rounds run the full-blown APS algorithm, resulting in a sample
from the correct posterior density. As a burn-in period, 100 accepted directions were
disregarded in the final sample before starting to collect the drawings.

Gibbs sampling

The initialization of the Gibbs sampler consisted in finding starting values for σε, ση, ν
and z. The two standard deviations are initialized at the optimal values when searching
for the mode of the posterior density of the Local Level model, neglecting the effect of
the heavy tailed disturbance density. Likewise, the vector of z, multiplying the standard
deviation σε at each time period, is initially filled with ones, also corresponding to a
normal disturbance density. The initial value of ν was chosen to be 4, the value used in
generating the data with the Student-t disturbances.

In the initial Gibbs sampler, new values of ν were drawn from the full conditional
density using a Metropolis-within-Gibbs step (see section 4.3.1). The candidate density for
ν was normal with a mean equal to the previously drawn ν (i−1) and a standard deviation
of 0.3, resulting in a Random Walk Metropolis chain, see section 4.2.4. The standard
deviation was fixed at this value after some calibration, to give a sufficient number of
accepted drawings with a step size being not too small. This choice of candidate gave an
acceptance rate for ν of 0.55 as reported table 4.6.

The sampler continued first for 1000 iterations to get rid of dependence on the starting
conditions, and then for 10000 iterations more. When sampling from the Local Level-
Student-t model using data generated from the model with normal disturbances, the
parameter ν drifted away to larger and larger values. Theoretically, it should ‘converge’
to ν = ∞, as the disturbances were normally distributed. Therefore, in this case the
sampler did not (nor would it ever) converge, as there is no way that it could. However,
within the 10000 sampled parameter vectors it became very clear that ν was drifting away
indeed. The parameters σε and ση were sampled from their correct distributions, as the
Student-t density with any value ν > 20 is hardly distinguishable from the normal density.

As the correlation in the sample was high, three measures were taken to improve the
mixing of the sampler. In the table these are indicated by the letters SS, for Simula-
tion Smoother, in the column indicating the sampling method of µ, and by the GG-10
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in the next column, indicating that we use the Griddy Gibbs sampler on ν, repeating
the sampling of z and ν 10 times within each iteration of the Gibbs sampler. An adap-
tive integration rule is used to find the integrating constant of the density of ν|z. The
points visited by the integration routine are used as support points for constructing the
approximate density and cumulative distribution function. In order to adjust for the
approximation error in the distribution function, the sampled value ν from the Griddy
Gibbs algorithm was used as candidate drawing in a MH step. The acceptance rate of
0.99 indicates that the computed density function was very accurate.

The timings of the Gibbs sampler, taking about three minutes for the method using
the Carlin et al. (1992) method for simulating µ and a normal candidate density for
sampling ν and one hour when using the Simulation Smoother and Griddy Gibbs sampler
with internal 10-fold replication, indicate clearly the increased computational load. Note
that this increase in duration is entirely caused by the numerical integration inherent in
the Griddy Gibbs algorithm, especially as it is repeated 10 times at each iteration.

Marginal likelihood computations

The calculation of the logarithms of marginal likelihoods using the likelihood function,
log-mHM, log-mPrior, log-mIS, log-mLP and log-mKern can be done rather quickly, they
could all be computed in little more than one minute. The marginal likelihood for the
model with Student-t disturbances had to be calculated using the Chib-method, which
is computationally more intensive. Instead of the Griddy Gibbs method we used the
normal candidate density in a Metropolis step for sampling ν, to lower the time needed.
Calculating the marginal likelihood of the model without Student-t disturbances is done
without a problem, in one minute. Introducing the tν density for the disturbances led to
a duration of more than two minutes for the DGP where the heavy tails were included for
each repetition. As we repeated the calculation of (4.23′′) q = 10 times, the total duration
was more than 22 minutes.

As a separate Gibbs chain has to be sampled for each element of the parameter vector,
computations for the log-mGibbs can easily take a very long time (in section 5.6.2, compu-
tation of the marginal likelihood for some of the models could take 12 hours). As often
the differences in values of log-m between models are large, one could choose to go for less
precision and take smaller sample sizes. With a sample size of n = 1000, computation of
one repetition of (4.23′′) took 14 seconds. This can easily be repeated very often, to get
a more precise estimate of log-mGibbs.

4.6 Concluding remarks

This chapter introduced the basic algorithms for sampling from a Bayesian posterior
density. The sampling algorithms themselves are presented easily enough, but often the
step from theory to implementation is harder. Therefore, the algorithms have been put in
action in an exemplifying application, showing the ins and outs of the different algorithms.

Algorithms as the importance sampler, sampling-importance resampling algorithm,
the acceptance-rejection sampler, the Metropolis-Hastings sampler and the adaptive polar
sampling can all be used when the posterior kernel function can be evaluated easily. For
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the acceptance-rejection sampler, a envelopping density kernel is needed, which in practice
is often hard to find. Other methods have their advantages and their disadvantages.
When correlation in the posterior sample is a problem (e.g. when the continuation of
the analysis, using the posterior sample, is costly), the importance sampler or the SIR
algorithm can be used. Also the APS is a good option here, as it leads to a high quality
sample from the posterior density. When a good candidate density is available, and
the posterior density is well-behaved (not multimodal, relatively thin tails, etc.), the
Metropolis-Hastings algorithm is easily implemented and can be expected to lead to good
results.

For cases where data augmentation is needed to get tractable (conditional) densities,
the Gibbs sampler is the solution, with possible MH steps delivering some of the draws
from the conditional densities. The combination of the Gibbs sampler with the Griddy
Gibbs sampler is quite simple to implement. However, for larger dimensions of the param-
eter vector the correlation in the chain can become very large, as was seen in the example
when we used the original Carlin et al. (1992) approach to sampling from a state space
model. A clever setup of the Gibbs sampler can help in overcoming the strong correlation.

A special field of research is the computation of Bayes factors and of the marginal
likelihood of a model. Several articles on the topic have been summarized here. Though
the theoretical advantages of the methods are known, we do not know of an empirical
comparison of the whole range of methods for computing the marginal likelihoods as in
section 4.5.5. It was found that on the model used here the simpler methods based on a
LaPlace or kernel smoothing approximation to the sample of the posterior density work
well. The conditional densities method has to be used whenever the posterior kernel
cannot be easily evaluated. Results for this method displayed larger variability. Also
the implementation is considerably more difficult than the implementation of the other
methods.
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4.A Sampling and the state space model

Section 4.5 presents a state space model, which is used as a workhorse for explaining all
kinds of different sampling methods. This appendix provides extra background on the
state space model and the algorithms connected to it. Following the notation in Koopman
et al. (1999) closely the Kalman filter is introduced, which lies behind the calculations of
the likelihood and posterior of the model in section 4.5.3. It is followed by methods by
Carlin et al. (1992) and De Jong and Shephard (1995) for sampling from the states, as
they are used in section 4.5.4.

A general linear state space model can be written as

αt+1 = dt + Ttαt +Htεt, α1 ∼ N (a, P ) , (4A.1)

yt = ct + Ztαt +Gtεt, εt ∼ N (0, Ir) . (4A.2)

Equation (4A.1) is known as the transition equation, whereas (4A.2) is often referred to as
the observation equation. Taking both equations together in larger matrices, the system
can be written as

(
αt+1
yt

)
= δt + Φtαt + ut, (4A.3)

ut =

(
Ht

Gt

)
εt ∼ N (0,Ωt) ,

δt =

(
dt
ct

)
, Φt =

(
Tt
Zt

)
, Ωt =

(
HtH

′
t HtG

′
t

GtH
′
t GtG

′
t

)
.

As long as the model is conditionally Gaussian, the first and second moments are suf-
ficient statistics for the densities in the model. The Kalman filter consists of a set of
filtering equations which, based on the observations and the parameter matrices, derive
the expectations and variances of αt+1 |Yt, and also the expectation and variance of the
predictive density of yt+1 |Yt. The Kalman filter equations are

vt = yt − ct − Ztat,
Ft = ZtPtZ

′
t +GtG

′
t,

Kt = (TtPtZ
′
t +HtG

′
t)F

−1
t ,

at+1 = dt + Ttat +Ktvt,

Pt+1 = TtPtT
′
t +HtH

′
t −KtFtK

′
t, t = 1, .., T.

(4A.4)

The recursion starts using a1 = a and P1 = P , the starting values for the initial state
α1 ∼ N (a, P ). Output from the Kalman filter includes vt, the prediction error at time
t given all previous observations and the corresponding variance Ft. These elements
can be used in a prediction-error decomposition of the likelihood of the model, with
L(Y ; θ) =

∏
p(yt |Yt−1, θ) =

∏
p(vt |Yt−1, θ) =

∏
fN (0,Ft)(νt). This is the likelihood

used in section 4.5.3 to construct a closed-form formula for the posterior density of the
parameters in a state space model.

When, in the Gibbs sampler, we need to sample a state αt conditional on the data
and the other states, using Bayes’ theorem we find three relations inferring information
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on αt (Carlin et al. 1992): The relation between yt and αt, the one with αt−1 and the
one with αt+1. If we disregard possible correlation between the disturbances in the tran-
sition equation (4A.1) and those in the observation equation (4A.2)22, we find a posterior
P (αt|yt, αt−1, αt+1) ∝ L(yt|αt)π(αt|αt−1, αt+1) which can be written as

−2 logP (αt|yt, αt−1, αt+1) = c

+ (αt − dt−1 − Tt−1αt−1)′
(
Ht−1H

′
t−1

)−1
(αt − dt−1 − Tt−1αt−1)

+ (yt − ct − Ztαt)′ (GtG
′
t)
−1

(yt − ct − Ztαt)
+ (αt+1 − dt − Ttαt)′ (HtH

′
t)
−1

(αt+1 − dt − Ttαt).

This formula can be manipulated such that it is written in the format (αt−Btbt)
′B−1t (αt−

Btbt), indicating that αt|yt, αt−1, αt+1 ∼ N (Btbt, Bt) with

B−1t =
(
Ht−1H

′
t−1

)−1
+ Z ′t (GtG

′
t)
−1
Zt + T ′t (HtH

′
t)
−1
Tt, (4A.5)

b′t = (dt−1 + Tt−1αt−1)
′
(
Ht−1H

′
t−1

)−1
+ (yt − ct)′ (GtG

′
t)
−1
Zt

+ (αt+1 − dt)′ (HtH
′
t)
−1
Tt. (4A.6)

The example in section 4.3.2 simplifies, as we have Zt = Tt = 1, HtH
′
t = σ2η, GtG

′
t =

σ2ε zt, HtG
′
t = dt = ct = 0. Filling in the matrices leads to µt|yt, µt−1, µt+1 ∼ N (Btbt, Bt)

with bt = (µt−1 + µt+1)/σ
2
η + yt/σ

2
ε zt and B

−1
t = 2/σ2η + 1/σ2ε zt.

Instead of sampling one state element at a time, the simulation smoother (Carter and
Kohn 1994, Frühwirth-Schnatter 1994, De Jong and Shephard 1995) manages to sample a
complete set of vectors ũ1, .., ũT |YT , d,Φ,Ω. Any particular vector ũi = Γui is a selection
of the disturbances ui in equation (4A.3) ensuring that no problems with nonsingularity
occur (for conditions on Γ, see Koopman et al. 1999). In order to sample ũ, the simulation
smoother first needs the output from the Kalman filter. In the notation of Koopman et al.
(1999) again, write Γ∗ for the matrix constructed from Γ, skipping rows with only zeroes.
Then the equations of the simulation smoother are

Ct = Γ∗
(
Ht

Gt

)
(I −G′tF−1t Gt − J ′tNtJt)

(
Ht

Gt

)′
Γ∗′,

Wt = Γ∗
(
Ht

Gt

)
(G′tF

−1
t Gt − J ′tNtJt),

rt−1 = Z ′tF
−1
t vt −W ′

tC
−1
t ξt + Ltrt

Nt−1 = Z ′tF
−1
t Zt +W ′

tC
−1
t Wt + L′tNtLt,

ũt = Γ∗′
(
Γ∗
(
Ht

Gt

)
(G′tF

−1
t vt + J ′trt) + ξt

)
,

Lt = Tt −KtZt, Jt = Ht −KtGt, ξt ∼ N (0, Ct) .

(4A.7)

These equations are successively calculated in a backward recursion, t = T, .., 1, starting

using rn = 0 and Nn = 0. In the example, the matrix Γ =

(
1 0
0 0

)
is chosen to gen-

22In most practical situations, correlation is fixed to be zero for identification of the model. Otherwise,
the correlation is easily introduced in the equations in this appendix.
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erate drawings from the disturbances of the transition equation. The states µt can be
reconstructed using the recursion in the transition equation (4A.1).

4.B Derivations and distributions for APS

In section 4.3.4 the Adaptive Polar sampler was explained. This appendix reports the
exact formula’s for the transformations that are applied, and the resulting distributions.

The transformation to polar coordinates

(η, ρ) = T (θ |µ,Σ) = Ty→η,ρ(y) ◦ Tθ→y(θ |µ,Σ) (4.12)

is comprised of two parts. The standardization uses the Choleski decomposition Σ
1
2 of

the covariance matrix,

y = Tθ→y(θ |µ,Σ) = Σ−
1
2 (θ − µ). (4.12a)

The standardized parameters y are transformed to polar coordinates ρ and η. The signed
distance measure ρ is based on the length d =

√
y′y of y, but also indicates the sign of

the first element of y:

ρ = sgn(y1) d. (4B.8)

The directions ηj are defined recursively by

ηj = arcsin
yn−j+1

ρ
∏j−1

i=1 cos ηi
∈ (−1

2
π,

1

2
π], for j = 1, .., n− 1, (4B.9)

where by convention
∏0

i=1 cos ηi = 1, such that η1 = arcsin yn/ρ. The inverse transforma-
tion T−1y→η,ρ(η, ρ) from polar coordinates to y, is

yj = T−1y,j (η, ρ) = ρ sin ηn−j+1

n−j∏

i=1

cos ηi, j = 1, .., n, (4B.10)

when we define the sinus of the (otherwise undefined, and unused) ηn to be 1. The
Jacobian of the transformation Tη,ρ(θ) from θ to (η, ρ) is

J(η, ρ) = det(Σ)
1
2 × |ρ|n−1 ×

∣∣∣∣∣

n−2∏

i=1

cosn−i−1 ηi

∣∣∣∣∣

= det(Σ)
1
2 × |J(ρ)| × |J(η)|. (4B.11)

In section 4.3.4 the marginal density of η resulting from a normal density in the original
parameter space is used. Here, we present the derivation of the transformed candidate
and target densities. Denote the normal density in the original space by

q(θ) ∝ det(Σ)−
1
2 exp

(
−1

2
(θ − µ)′Σ− 1

2 (θ − µ)
)
,
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and denote by q(η, ρ), q(η) and q(ρ) the joint and marginal densities of η and ρ after the
polar transformation defined by (4B.8)-(4B.9). The following results hold:

q(η, ρ) = |J(η, ρ,Σ)| q(T−1(η, ρ))

∝ det(Σ)
1
2 |ρ|n−1 |

n−2∏

i=1

cosn−i−1 ηi| det(Σ)−
1
2 exp

(
−1

2
(θ − µ)′Σ− 1

2 (θ − µ)
)

= |
n−2∏

i=1

cosn−i−1 ηi| × |ρ|n−1 × exp

(
−1

2
ρ2
)

= |J(η)| × |J(ρ)| × exp

(
−1

2
ρ2
)
,

q(η) ∝ |J(η)|, (4B.12)

q(ρ) ∝ |J(ρ)| exp
(
−1

2
ρ2
)
, (4B.13)

see also equation (4B.11). For the target density, the independence between ρ and η does
not hold in general. The marginal density of η for the target density pθ(θ) is

p(η) =

∫
pθ
(
T−1(η, ρ)

)
|J(η, ρ,Σ)| dρ = |J(η)| |J(Σ)|

∫
pθ
(
T−1(η, ρ)

)
|J(ρ)| dρ. (4B.14)

In the acceptance probability (4.13), the Jacobians of η and Σ cancel, leaving only the
parts under the integral, evaluated over both the candidate direction η∗ and the previous
direction η(i).

4.C Selected density functions

In the course of this chapter, several density functions are applied. Though all density
functions are well known to most researchers, several notations are in use. In order to
create clarity as to the notation applied here, a list of densities is provided.

i. The Normal density:

fN (µ,σ2)(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
,

E(x) = µ, var(x) = σ2, mode(x) = µ.

ii. The Student-t density:

ft(µ,α,ν)(x) = B
(ν
2
,
ν

2

)
(να2)−1/2

(
1 +

1

ν

(
x− µ
α

)2)− ν+1
2

,

E(x) = µ (ν > 1), var(x) = α2
ν

ν − 2
(ν > 2), mode(x) = µ.
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iii. The Inverted Gamma density:

fIG(x|α, β) = [Γ(α)]−1 β−αx−(α+1) exp

(
− 1

xβ

)
,

E(x) =
1

β(α− 1)
(ν > 2), var(x) =

1

β2(α− 1)2(α− 2)
(ν > 4),

mode(x) =
1√

β(α+ 1)
.

iv. The Inverted Gamma-1 density:

fIG-1(x|α, β) = [Γ(α)]−1 β−αx−(2α+1) exp

(
− 1

x2β

)
,

E(x) =
1√
β

Γ
(
α− 1

2

)

Γ(α)
(ν > 1), var(x) =

1

β(α− 1)
− E(x)2 (ν > 2),

mode(x) =
1√

β(α+ 1
2
)
.

v. The Cauchy density:

fC(x) = B

(
1

2
,
1

2

)
1

1 + x2
,

E(x) does not exist, var(x) does not exist mode(x) = 0.





Chapter 5

Daily Hedging of Currency Risk

5.1 Introduction

The Bayesian approach to analysing econometric models which was described in chapter 4
can be applied to about every conceivable model, but the difference between the Bayesian
and the classical methodology is most important when parameter uncertainty plays an
influential role. This is certainly the case when we investigate the exchange rate behaviour
of currencies on a daily basis: The returns on the exchange rate tend to look very much
like pure random noise, though over the months some trending behaviour seems to occur.
Combined with a complete decision framework, in order to decide if the risk involved in
an investment denoted in a foreign currency should be hedged, exchange rate models are
a very interesting field for Bayesian research.

In this chapter, which is an extension of the paper by Bos, Mahieu and Van Dijk
(2000a) and Bos, Mahieu and Van Dijk (2000b), we analyse the risk and return properties
of currency overlay strategies using time series models that describe prominent features
of daily exchange rate data. Our contribution focuses on three issues. First, we introduce
a class of models which describes some major features of the data: local trends in the
level or varying means in the return, time varying volatility in the second moment of
the return, and leptokurtosis of the returns. We integrate models for the analysis of
varying means, varying variances, and heavy tailed distributions. Then we obtain a
flexible general framework which enables us to study the effects and relevance of different
model specifications for hedging decisions. The topics that we investigate in this respect
are unit roots versus persistent but stationary behaviour in expected returns, heavy tailed
distributions, and different ways to model conditional volatility. Second, for inference and
decision analysis we make extensive use of the Bayesian methods based on Markov chain
Monte Carlo (MCMC) simulation, as they were introduced in chapter 4. Third, in the
decision analysis we investigate the payoff and utility derived from an optimal strategy
using alternative models and corresponding results from alternative strategies for some
selected models.

The outline of the chapter is as follows. In section 5.2 we introduce further the
concept of hedging currency risk and present our procedure for executing the currency
overlay strategy. In section 5.3 we present some time series models for describing daily
exchange rate returns. We introduce a state space model for the time varying mean which
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is augmented with a Generalized Autoregressive Conditional Heteroskedastic (GARCH) or
a Stochastic Volatility (SV) model for a time varying variance and further augmented with
a Student-tmodel for the disturbances for extreme observations. State space (or structural
time series) models are nowadays widely used for describing time varying structures, see
e.g. Harvey (1989) or West, Harrison and Migon (1985). In section 5.4 we discuss our
Bayesian methods, see e.g. Smith and Roberts (1993) and Chib and Greenberg (1995). In
the recent literature these methods have been successfully applied for studying separately
the pattern of time varying means (see Carter and Kohn 1994, Koop and Van Dijk 2000)
and the pattern of varying volatilities (see Kim, Shephard and Chib 1998). Results are
presented in section 5.7 using the DM/USD and Yen/USD daily exchange rate series
for the period January 1982 until December 2000. Some concluding remarks are given in
section 5.8. Conditional densities used in MCMC sampling from the posterior distribution
are summarized in table 5.11 in appendix 5.A.

5.2 Currency hedging

When investing abroad, international firms face the decision whether or not to hedge
the risk of a depreciation of the foreign currency compared to the home currency. For
example, when a corporation sells its goods abroad it incurs foreign exchange rate exposure
at the time it wants to repatriate the proceeds of the sales. Another large group of
companies with foreign currency exposure are internationally operating investors, like
banks, pension funds, and insurance companies. The currency exposures arise from the
investment strategies that these institutions follow. For example, when a U.S. dollar-
based investor decides to diversify into Japanese stocks he runs the risk of a Japanese
yen depreciation. Although the portfolio allocation decision could also depend on the risk
and return characteristics of foreign currencies, in practice these two decisions, i.e. the
investment and the hedging decision, are often separated. The approach where currency
hedging decisions are made independently from underlying investment decisions, is called
‘currency overlay management’ in the finance industry. Note that this approach may lead
to suboptimal decisions from a fund’s perspective as a currency overlay strategy ignores
the diversifying characteristics that currencies may have. Continuing the example, when
the investor perceives the risk of the Japanese yen depreciating too large, he may decrease
his holdings of Japanese stocks. However, by applying currency overlay management the
investor tries to manage his Japanese yen currency exposure irrespective of the amount of
wealth invested in Japanese stocks. A major reason for investors to separate the currency
and portfolio decisions is to obtain increased transparency of the investment strategy.

When considering currency overlay management, relevant economic variables are the
exchange rates and the values of the instruments used for hedging the exposures. A com-
mon instrument to hedge foreign currency exposure is the forward contract, which gives
the investor the right (and the obligation) to convert the foreign currency exposure from
one currency to another for a fixed rate at a specified point in time in the future. From
covered interest rate parity we know that the forward exchange rate can be calculated
from the current spot exchange rate and the difference between the short term interest
rates in the home and foreign country, respectively. Other instruments may be considered
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as well, notably foreign currency options. In this paper we focus on hedging with forward
contracts only.

To illustrate the practical importance of currency overlay management one may dis-
tinguish two special cases. First, the decision-maker does not hedge at all. The return
on the currency overlay strategy is then equal to the return on the exchange rate. Sec-
ond, the decision-maker hedges the currency risk completely. Now, the return is equal
to the difference between the interest rates of the home country and that of the foreign
country. A practical example is the case of a German firm with U.S. investments. In
the period 1998-2000, the U.S. Dollar rose almost sixteen percent in DM terms, while
the cumulative difference between the two interest rates was around minus 4.7 percent.
Thus, the decision to hedge or not to hedge relates to a difference in cumulative return for
those three years of approximately twenty percent. Since multinational corporations and
large institutional investors deal with substantial foreign currency exposures that may
involve hundreds of millions of dollars, the specification of an effective strategy for foreign
exchange rate management is an important topic.

After describing the importance of hedging of currency risk, let us introduce the setting
that we investigate in this paper. Let st+1 be the exchange rate return over the time
interval [t, t+1], defined as st+1 ≡ log(St+1/St), with St the exchange rate itself. Let Ft,τ
be the current value of a forward contract with maturity date τ . By covered interest rate
parity it is equal to

Ft,τ = St exp
(
rht,τ − rft,τ

)
, (5.1)

with rht,τ and rft,τ the home and foreign risk-free interest rates with maturity τ , respec-
tively.1 With respect to the specific value of τ we note that in our empirical analysis we
use interest rates with a 30-day maturity, implying that we have 30-day forward rates. A
forward contract, which may have a remaining lifetime of less than 30 days, can be neu-
tralised by taking an opposite forward position. As a consequence, a synthetic one-day
forward contract is created. This approach is common in actual applications of currency
hedging.

Define Ht as the fraction of the underlying exposure that is hedged with (synthetic,
one-day) forward contracts. We refer to this variable as the hedge ratio. At time t we
have an exposure of St. Note that the forward contract does not provide any cash flows at
time t. At time t+1 we have a cash flow of (1−Ht)St+1+HtFt, dropping the subscript τ .
The first part is the fraction of the exposure that we did not hedge, and the second part
refers to the pay-out of the forward contract at time t+1. The continuously compounded
return2 is given as

rt+1 ≡ log

(
(1−Ht)St+1 +HtFt

St

)
. (5.2)

In our empirical work we make use of the exponent of the continuously compounded

1See Solnik (2000) for a comprehensive review of covered interest rate parity.
2We have also checked our results with arithmetic returns. The results changed somewhat. We are

indebted to a referee for bringing up this point.
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return,

exp (rt+1) = (1−Ht) exp(st+1) +Ht exp
(
rht − rft

)
. (5.3)

It is seen that the exponent of the return is a weighted average of the exponents of the
exchange rate return st+1 and the difference between the home and foreign risk free interest
rates. Note that when we set the hedge ratioHt to zero, the return on the currency overlay
part is equal to the return on the exchange rate only. On the other hand, if we set the
hedge ratio equal to one, only the interest rate differential has an impact, whereas changes
in the currency do not affect the return on the currency overlay.3

Given a time series model, to be introduced in the next section, which describes ex-
change rate behaviour, and given all data information up to time t, the currency manager
wants to determine the hedge ratio that applies to the next period. In order to perform
this task he is assumed to specify an objective function that captures his risk and return
attitudes towards foreign currencies over some future time horizon. We assume that the
investor has a standard power utility function with constant relative risk aversion

U(Wt) =
W γ

t − 1

γ
, γ < 1. (5.4)

The parameter γ describes the level of risk aversion and needs to be specified by the
currency manager. The lower γ, the more risk averse the manager is. In the empirical
analysis we present results for several values of γ. The variable Wt represents the wealth
that the investor obtains by executing the currency overlay strategy. Wealth changes
as a result of the hedging strategy only. The value of next period’s wealth is given by
Wt+1 = Wt exp(rt+1). We assume that the currency manager follows a myopic strategy,
i.e. he makes a hedging decision for the next period only, irrespective of possible states
of the world after that period. In that case we can normalize Wt to one, without loss of
generality. The problem that the currency manager needs to solve can be stated as

max
0≤Ht≤1

Est+1|t
U(Wt+1) = max

0≤Ht≤1
Est+1|t




(
exp

(
rt+1(st+1, Ht, r

h
t , r

f
t )
))γ
− 1

γ


 , (5.5)

with Est+1|t
a conditional expectations operator, taken with respect to the predictive den-

sity of tomorrow’s return st+1, p(st+1|t), given the information available at time t. In
the optimization equation (5.5) we have inserted definition (5.3) for the return on the
currency strategy.

In the empirical part of this paper the main focus is on the results of hedging decisions
based on optimization of the power utility function. We briefly compare the results to

3The hedge ratio is restricted to values between 0 and 1. The reason for this is that our prime focus
lies on currency overlay management for investors that have large, relatively static, portfolios of foreign
securities. These investors are generally not interested in taking currency positions that exceed the value
of their underlying securities. Indeed, for corporations that have frequently changing cash flows denoted
in foreign currencies, other ranges for hedge ratios might be appropriate. We leave this as a topic for
further research.



5.3. Time series models for exchange rate returns 105

those obtained from hedging decisions based on Value-at-Risk (VaR), and decisions based
on the Sharpe ratio.

Decision rules based on the VaR concept may be motivated as follows. A currency
manager wants to control the risk of depreciation of foreign currencies. A popular measure
for downside risk, advocated by financial regulatory institutions, is Value-at-Risk. VaR
measures the maximum loss that is expected over a fixed horizon with a prespecified
confidence probability. In our case we define the one-period VaR as

∫ ∞

−VaR

f(rt+1|t)d rt+1 = 1− α, (5.6)

with 1 − α the confidence probability, with α typically ranging from 1% to 10%. The
choice of confidence level is motivated by the risk attitude of the investor in relation to
the horizon over which the VaR is calculated, see Jorion (1997). The currency manager
decides to hedge his currency exposure when the estimated VaR falls above a prespecified
limit risk he is willing to take.

Another popular measure for the relation between expected return and risk is the
Sharpe ratio, which compares the expected return with the standard deviation of the
returns. The Sharpe ratio is given as

Sh =
Est+1|t

(rt+1)√
varst+1|t

(rt+1)
, (5.7)

with varst+1|t
(rt+1) the predictive variance of the return rt+1. As in the case of Value-at-

Risk, the investor makes a decision to hedge by comparing the value of the Sharpe ratio
with a certain prespecified limit. If the Sharpe ratio is higher than this limit, no hedging
is required, and vice versa.

5.3 Time series models for exchange rate returns

Many models have been suggested for describing time series properties of exchange rates
(see e.g. LeBaron 1999). In this paper we concentrate on models that describe prominent
data features of floating daily exchange rates. First, exchange rates may exhibit local trend
behaviour. For several months for instance, a successive decline or successive appreciation
of the exchange rate may occur. This implies a varying mean behaviour of the exchange
rate return st. We model this by the state space model

st = c+ µt + εt, εt ∼ i.i.d.(0, σ2ε,t), (5.8)

µt = ρµt−1 + ηt, ηt ∼ N
(
0, σ2η

)
, t = 1, .., T. (5.9)

Next to the local trend we µt we also allow for a non-zero mean return c, corresponding to
a global trend in the exchange rate.4 The local trend is the unobserved mean component
µt. It is an autoregressive process with disturbances ηt and autoregressive parameter ρ.

4In most situations, there is no basis for assuming the exchange rate to trend in the same direction
over many years. In subsequent sections the parameter c is dropped in most models.
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This model, which we label the Generalized Local Level (GLL) model, is supposed to
pick up the periods of rising or falling exchange rate levels.5 The disturbances ηt are
assumed to be independently and identically normally distributed with constant variance
σ2η. The autoregressive model incorporates as a limiting case the fully integrated mean
return model, when ρ = 1. This model is known as the Local Level (LL) model, see
Harvey (1989, p. 45). Given σ2η > 0, the LL model implies that the logarithm of the
exchange rates log St follows an I(2) process. We expect that, when estimating this I(2)
model on our data, the variance of ηt is small compared to the variance of εt, such that
the I(1) behaviour of log St overwhelms the I(2) effects. One can also take the limit case
where µt disappears, i.e. using σ2η = ρ = µt = 0, which is White Noise (WN) around
a fixed mean c. Though extremely simple, it is a basic model in many financial market
models.

The second main feature of financial series concerns the variance structure. Several
model specifications have been suggested to account for periods of lower and higher vari-
ance in the data. See e.g. Bollerslev (1986), Engle (1982), Engle (1995), Nelson (1990) or
Taylor (1994). Conditioning on the information available at time t− 1 (indicated by the
subscript t|t− 1), we write

εt|t−1 ∼ N
(
0, σ2ε,t

)
. (5.10)

For the variance structure, we distinguish between three cases. First, the simplest option
is to ignore the time dependence of volatility altogether. Then the model is written as

σ2ε,t = σ2ε , (5.11)

in which case a standard (Gaussian, homoskedastic) state space model results.
More flexibility is obtained when a GARCH disturbance process is allowed for. The

variance σ2ε,t of the observation equation (5.8) varies over time according to

σ2ε,t = σ2εht,

ht = δht−1 + ω + α(Eεt−1)
2/σ2ε , (5.12)

δ ≥ 0, α ≥ 0, δ + α < 1, ω ≡ 1− δ − α.

Note that we use one of the approximations of Harvey, Ruiz and Sentana (1992) in the
GARCH equation. As the state µt of the process is not observed, we also do not observe
the precise value of εt−1. Instead, we use Eεt−1 = st − c − Eµt with expectations taken
conditional upon all information available at time t.6 The restrictions on the parameters
are sufficient to ensure strict positiveness of σ2ε,t and the existence of a finite value for

5Theoretically the interest rate differential should be introduced as the expectation of st, as the
uncovered interest rate parity (UIP) prescribes. However, empirically the UIP does not hold when using
high frequency exchange rate data. The interest rate differential will be introduced later in the evaluation
of the returns.

6There exist several alternative operationalizations of the GARCH equation (5.12). The option we
use here is conceptually simplest. Other options are to include the disturbance εt in the state of the
state space model (leading to a model which is no longer conditionally Gaussian), or to use output of
the Kalman filtering equations to compute E(ε2t−1) and use this instead of (Eεt−1)

2. This last option is
expected to stay slightly closer to the original GARCH model than the choice we use in the following.
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the unconditional expectation E(σ2ε,t) = σ2ε or equivalently E(ht) = 1 (see Kleibergen and
Van Dijk 1993).

The third choice for the variance process is to allow for Stochastic Volatility (SV, see
Jacquier, Polson and Rossi 1994). The variance of the disturbances in the observation
equation evolves according to

σ2ε,t = σ2ε exp(ht),

ht = φht−1 + ξt, (5.13)

ξt ∼ N
(
0, σ2ξ

)
.

The parameter σ2ε governs the overall variance of the process, with deviations modelled
through ht. Aguilar, Huerta, Prado and West (1999) propose a dynamic factor model
with stochastic volatility which is similar to the one proposed here.

A third feature of financial time series is that the histograms of the returns exhibit
heavier tails than the normal density, even after correcting for the time varying volatility.
To model this, we replace equation (5.10) by

εt|t−1 ∼ t

(
0,

√
ν − 2

ν
σε,t, ν

)
, ν > 2, (5.14)

where t indicates the Student-t density, with expectation 0, variance σ2ε,t and ν degrees of
freedom (see appendix 4.C for the notation used).

White noise N (µ, σ2)(A)

µt σε,t p(εt)

LL(B)/GLL(C) GARCH SV Student-t

GLL-GARCH(D) GLL-SV(E) GLL-Student-t(F)

GLL-GARCH-Student-t(G) GLL-SV-Student-t(H)

Figure 5.1: Hierarchy of models

Figure 5.1 summarizes the models that are used in subsequent sections. The basic
model is the White Noise (WN) model, with normally distributed returns around a mean
µ = c. Then there are three directions of generalization: time dependence of the mean
µt, time dependence of the variance σ2ε,t, or the shape of the density of the innovations εt.
More specifically, the third line in the figure indicates the models that we consider. Note
that the Local Level (LL) model is a special case of the Generalized Local Level (GLL)
model, with ρ = 1. The GLL is combined with the three generalizations (GARCH, SV
and Student-t), such that a broad range of competing models is obtained. When the GLL
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model is combined with both the Student-t elements and either the GARCH or the SV
component, a further generalization is found. These two models are indicated in the fifth
line of the figure. The models are indicated by the letters A-H in the figure and in text
and tables in subsequent sections.

5.4 Bayesian inference and decision

5.4.1 Prior structure

Inference and decision analysis is performed within a Bayesian framework. In table 5.1 we
present the priors on the parameters of the models that are used. We make use of proper
priors which are expected to be weakly informative compared to the information in the
likelihood. Given proper priors, we can compute marginal likelihoods in order to compare
alternative models. Conjugate priors are used for all parameters, except parameters δ, α
and ν. This facilitates the computations. Hyperparameters are chosen such that little
information is put in the priors.

The first parameter encountered in the models is the global mean return c. It is
expected a priori to be zero, or not much larger. A normal prior with standard deviation
σ0 = 0.02 will do perfectly well.

The autoregressive parameter ρ of the unobserved mean process µt is crucial in the
analysis. It governs the amount of predictability in the series (together with the ratio of
the variances in observation and transition equations (5.8) and (5.9), and, if included, the
global mean c). Given the fact that trends in exchange rates may last for several months,
we deem a large value of ρ in the unit interval a priori more plausible than a small value.
As an intermediate position between a strongly informative and an uninformative prior,
we choose a normal prior density with mean 0.8 and a rather large standard deviation of
0.2.7 More information is available on the variance process in series like the one at hand.
Therefore, the choice of prior for the AR parameter φ in the SV process is less influential.
Again, a normal prior is used, now with mean 0.5 and standard deviation 0.3.

Table 5.1: Description of priors used

Parameter Prior Hyper-parameters Used in model

c N (µ0, σ
2
0) µ0 = 0, σ0 = 0.02 A

σε IG-1(αε, βε) αε = 2.5, βε = 4/3 A, B, C, D, E, F, G, H
ρ N (µρ, σ

2
ρ) µρ = 0.8, σρ = 0.2 C, D, E, F, G, H

ση IG-1(αη, βη) αη = 2.25, βη = 100 B, C, D, E, F, G, H
δ, α Uniform at stationary region D, G

φ N
(
µφ, σ

2
φ

)
µφ = 0.5, σφ = 0.3 E, H

σξ IG-1(αξ, βξ) αξ = 2.5, βξ = 4/3 E, H
ν Truncated Cauchy, ν > 2 F, G, H

7Note that we did not restrict ρ ∈ [0, 1]. Other priors, including a uniform prior between 0 and 1,
were used. Results were similar to the results presented here.
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The priors for the parameters governing the standard deviations are all Inverted
Gamma-1 (see appendix 4.C, or Bauwens, Lubrano and Richard 1999) distributions. The
hyperparameters are chosen based on similar series, with expectation of 0.5, 0.008 and 0.5
for σ2ε , σ

2
η and σ2ξ respectively. In Bauwens and Lubrano (1998) it is proven that a prior

for the degrees-of-freedom parameter ν with too heavy tails (e.g. π(ν) ∝ 1 or π(ν) ∝ 1/ν)
can ruin the properness of the posterior. The truncated Cauchy prior used here ensures
that these problems do not occur.

The GARCH parameters δ and α are bounded by the stationarity condition to be
positive and smaller than 1 in sum. On the stationarity region, we assume a uniform
prior.

5.4.2 Constructing a posterior sample

In chapter 4 the basic methodology of constructing a posterior sample was explained.
ModelsA-C, and also modelD when the approximation of using Eεt−1 instead of εt−1 itself
in the GARCH equation is used, allow using the Metropolis-Hastings sampling method,
as in the example with Gaussian disturbances in section 4.5. For models E-H, the GLL-
Stochastic Volatility, GLL-Student-t, GLL-GARCH-Student-t and the GLL-Stochastic
Volatility-Student-t models, we need to apply a data augmentation scheme to obtain
conditional normality and include the unobserved variables into the state. Appendix 5.A
describes a Gibbs sampling scheme as in Kim et al. (1998) that can be applied on these
models.

In following sections, results for all models are based on outcomes of the Gibbs sampler.
Using the Metropolis-Hastings sampler for models A-D would take less computational
effort, but the results of the hedging exercise are the same.

5.4.3 Evaluating the marginal likelihood

In order to judge the fit of the models to the data, the marginal likelihood of each of the
models may be calculated. The marginal likelihood m for model M is defined as

m(M) =

∫
L(data; θ,M)π(θ|M)dθ (5.15)

and may be computed using Bayes’ rule as

m(M) =
L(data; θ,M)π(θ|M)

p(θ|data,M)
. (5.16)

In this equation, p(θ|data,M) is the posterior density of modelM evaluated at the location
indicated by the vector of parameters θ, and L(data; θ,M) and π(θ|M) are the likelihood
and prior, respectively (see e.g. Gelfand and Smith 1990).

In section 4.4 it is explained how the marginal likelihood can be calculated both in
situations where the likelihood function is available in closed form (here: for models A-
C, and also D with the approximation mentioned before), and when data augmentation
is needed to get a tractable model. In section 5.6.2 the results for models A-D are
calculated using both the methods of Kass and Raftery (1995) and Chib (1995), to judge
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the accuracy and comparability of the approximation methods. For models E-H, only
the Gibbs results are reported.

The method of Chib was uses the conditional densities as described in appendix 5.A.
In some cases a Metropolis-Hastings step was applied within the Gibbs chain, as the
full conditional density could not easily be sampled from. In such a case, it is also not
easily possible to evaluate the conditional density p(θi|θ1, .., θi−1, θi+1, .., θk), including the
integrating constant. For this evaluation a LaPlace approximation is used.

5.4.4 Predictive analysis

The decision whether to hedge or not is based on the unconditional predictive density
p(st+1|t) of tomorrow’s returns on the exchange rate st+1, given all available information.
The conditional density p(st+1|t|θ), given the vector of parameters θ, is easily derived.
The unconditional predictive density follows by marginalization with respect to θ,

p(st+1|t) =

∫

θ∈Θ

p(st+1|t|θ)p(θ|st, st−1, .., s1) dθ, (5.17)

see e.g. Geweke (1989) and Barberis (2000). Marginalization is done with respect to the
posterior density of θ|st, st−1, .., s1. On-line modelling and prediction requires that the
posterior of the parameters is reestimated for every day in the evaluation period. However,
for computational reasons we refrain from doing this and use only N drawings θ(1), .., θ(N)

from the posterior of θ|sT , .., s1, with sT , .., s1 the observations from the estimation sample
(T < t). When the estimation sample is large compared to the evaluation sample, this
approximation gives, under standard regularity conditions, a sufficient level of accuracy.
The integral in (5.17) is approximated using

p(st+1|t) ≈
1

N

N∑

i=1

p(st+1|t, θ
(i)) (5.18)

at a fine grid of possible values st+1. The resulting predictive density is used for the
decision analysis.

5.4.5 Decision analysis

The investor optimizes the expected utility, with respect to the predictive density for the
exchange rate returns. We numerically solve

Ht = argmax
Ht

Est+1|t
U(Wt+1) =

= argmax
Ht

∫

st+1

exp
(
rt+1(Ht, st+1, r

h, rf )
)γ − 1

γ
p(st+1|t) dst+1, (5.19)

see equation (5.5). Optimal hedge ratios are computed using a grid search for every day
in the evaluation period.

In section 5.2, two other decision strategies were presented. For the Value-at-Risk
(VaR), we evaluate for each day what the 5% VaR is according to the model at hand.
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The investor should decide if the VaR is acceptable for him, or that he deems the risk too
high. For reasons of comparison, we specify the VaR cut-off level in such a way that the
average hedge ratio corresponds to the average hedge ratio found when fully optimizing
the utility function.

The final strategy was based on the Sharpe ratio, measuring the expected return the
investor could get for one unit extra of variance. If expected return is higher than a
cut-off level, one chooses not to hedge. In the other case, full hedging is chosen. Again,
the cut-off level is calibrated to a level leading to comparable hedging results with the
fully optimized case.

5.5 Exchange rate data and the interest rate

5.5.1 Stylized facts

Our data set consists of daily observations on the DMark/US Dollar (DM/USD) and the
Yen/US Dollar (Yen/USD) exchange rate for the period January 1, 1982 until December
29, 2000 which gives a total of 4,956 observations. For the same period we have the
1-month Eurocurrency interest rates for the German DMark, the Japanese Yen and the
US Dollar.8 Of this data set, the first 16 years are used in constructing a sample from the
posterior density. The years 1998, 1999 and 2000 are only used in computing the optimal
hedge decision.

In the upper panel of figure 5.2 the time series are presented in levels (on the left)
and in first differences of the logarithms (on the right) for the whole period. In the levels
one may observe the changing trend which implies a changing mean in the exchange rate
returns. The autocorrelation functions of both returns and squared returns (in the lower
panels) exhibit patterns frequently found in high frequency financial return data. As
for the returns, it is seen that there is no clear serial correlation pattern, corroborating
the widely held view that financial return series are unpredictable. However, the local
trends in the levels of the exchange rates may prove useful for practical currency overlay
strategies. The phenomenon of local trends is, at a longer horizon, similar to the data
feature of long swings in the dollar as observed by Engel and Hamilton (1990). We note
that we use a state space model while these authors use a Markov switching process for
describing exchange rate returns over longer periods.

The squared returns show a clear pattern. The slowly decaying autocorrelation has
prompted many researchers to develop models for describing time varying volatilities.
Note that the slow decay of the autocorrelation of the squared returns is more smooth for
the DM/USD data than for the Yen/USD squared returns.

Figure 5.3 shows the time series of German, Japanese and U.S. interest rates. The
maturity of the interest rates is 30 days. Compared to the exchange rate, the interest
rates are much less volatile. Additionally, these series and the difference between the two
(which is used in the hedging decision) are very persistent. Note that in the hedging

8Source: DATASTREAM, series DMARKER/USDOLLR, JAPAYEN/USDOLLR, ECWGM1M, ECJAP1M and
ECUSD1M for the daily DM/USD and Yen/USD exchange rates and German, Japanese and U.S. 1-month
Eurocurrency middle interest rates, respectively.
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Figure 5.2: DM/USD and Yen/USD exchange rates, January 1, 1982 until December 29,
2000. Panels contain data in levels (top left), in percentage returns (top right), and the
autocorrelation function of the returns and the squared returns (bottom).
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decision we transformed the series to daily interest rates, see the remark in section 5.2.

5.5.2 Data in the evaluation period

After estimating the posterior densities of the model parameters over the period 1/1/1982–
31/12/1997, in section 5.7 the evaluation of the hedging decision is described. In this
section, data over the period 1/1/1998–29/12/2000 is used. The risk manager of the firm
tries to decide between running the exchange rate risk, or to hedge this risk resulting
in getting the interest rate differential ∆r(H/F)= rH − rF between the home and foreign
countries as a return. As this period is of special interest, figure 5.4 displays the cumulative
returns over this period of the DM/USD and Yen/USD exchange rates, and the cumulative
interest rate differentials over the same period.
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Figure 5.4: Cumulative returns on the DM/USD and Yen/USD exchange rates, and
cumulative DM/USD and Yen/USD interest rate differentials, over the evaluation period
1/1/1998–29/12/2000
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Figure 5.5: The interest rate differentials over the evaluation period

For Japan, one large drop in the exchange rate in October 1998 springs to the eye,
with a second volatile period in June of the same year. Furthermore, the Yen slowly
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depreciates, coincidently ending up at a cumulative loss equal to the cumulative interest
rate differential. The interest rate differential between Japan and the U.S. is around 6%
(on a yearly basis), indicating that hedging the exchange rate risk is only sensible if the
expected loss on a certain day is higher than this 6%.9

The exchange rate between Germany and the U.S. promises to make a more interesting
case for evaluating the hedging decision: After a year with hardly any movement for nine
months and short periods with sharp losses and (less sudden) gains, the second year seems
to deliver an almost steady rise of the value of the Dollar. In 2000, more fluctuation is seen,
with higher volatility than before. The interest rate differential is small in size compared
to the return on the exchange rate; a good hedging strategy should work reasonably well
in each of these periods of relative calm, steady growth and erroneous appreciations and
depreciations.

In the hedging decision, a choice is made between the (uncertain) return on the ex-
change rate and the (certain, at the time of taking the decision) interest rate differential.
This difference between the interest rates is drawn in figure 5.5. The changes from one
calendar year to the other are clearly influential for the interest rate differential, whatever
the reason might be. The differential between U.S. and Japanese interest rates is huge,
at 5–6.5%: This differential acts as a clear incentive either to buy dollars, or in our case
not to hedge the Yen against depreciation of the dollar. In section 5.7 we will indeed
establish that it is hard to find periods with enough evidence to take a sure loss of 5%
on a yearly basis by hedging the Yen/USD currency risk, or vice versa to run the risk
of a Yen depreciation expressed in dollar terms when a sure 5% return can be made by
hedging this risk.

5.6 Convergence of MCMC and posterior results

5.6.1 The posterior distribution

For all the models A-H the Gibbs sampler was used. In our implementation we ran
the sampler for a burn-in period of 50,000 iterations, and continued for another 500,000
iterations for constructing a sample. As high correlation is to be expected in a Gibbs
chain, we use only one out of every 50 drawings, resulting in a final sample of 10,000
elements. As data we used the first 16 years of the data set, leaving the years 1998–2000
for evaluating the hedging decision. Separate runs of the Gibbs sampler were run for the
DM/USD and Yen/USD data, and for each of the models A-H.

The correlation in a Gibbs chain with a larger number of parameters, when they are
sampled in multiple blocks, can be quite high (see Kim et al. 1998). Already with a
Local Level model, when the ratio between the variance parameters is not close to 1,
strong correlation can result. This problem is aggravated by the inclusion of second order
parameters in e.g. the stochastic volatility equation. Figure 5.6 shows the autocorrelation
function of the drawings for the GLL-Stochastic Volatility model, sampling over the data

9The argument made here is a slight simplification, as the complete utility function has to be taken
into account. However, in section 5.7 we find that indeed there is not much use in hedging the Yen/USD
exchange rate, and vice versa that there is not much sense in running the risk of the USD/Yen exchange
rate with such a (positive) interest rate differential to be gained at no risk.
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concerning the DMark/US Dollar exchange rate. It is seen that only after about 30
drawings, correlation dies out.10
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Figure 5.6: Autocorrelation function of drawings from the parameters of the GLL-
Stochastic Volatility model, for the DM/USD data

The correlation in the sample influences the amount of information available in the
posterior. A measure of the effective size of the posterior is the relative numerical efficiency
(RNE, see Geweke (1992) and section 4.2.7). We calculated both the direct variance of the
posterior, and compared it with a correlation-consistent estimate of the variance. Using
the Newey-West variance estimator (Newey and West 1987), adjusting for correlation
with lags up to 30 periods, we find values for the RNE of mostly around 30% for most
parameters and models, with a minimum of around 10% for the parameter σε in case of the
GLL-GARCH-Student-t model on Yen/USD data. For this model, some extra attention
for the (joint) sampling of parameters σε, δ and α could help in lowering correlation and
increasing the RNE, see also the discussion on improving sample quality with the Gibbs
sampler in section 4.5.4.

The main characteristics of the posteriors are summarized in tables 5.2a and 5.2b for
the data on the German/US Dollar exchange rate and in tables 5.3a and 5.3b for the
model using Yen/US Dollar data. For each model and for each parameter, the mean,
standard deviation (in parentheses), mode (on the second line) and the bounds of the
95% highest posterior density region11 (between square brackets) are reported. The last
rows of the tables indicate two implementations of the signal-to-noise ratio. The first of
these two, labelled S/N, is calculated as the ratio between the unconditional variance of

the signal µt,
σ2
η

1−ρ2
, and of the noise εt. The second is the measure qH = σ2η/σ

2
ε , which is the

signal-to-noise ratio as defined by Harvey (1989, p. 68) in the case of the (non-stationary)
Local Level model.12

10Note that the correlation only dies out after 30 drawings in the remaining chain, which resulted from
skipping 49 out of 50 drawings of the original chain. The original chain therefore indeed had very strong
correlation.

11All 95% HPD regions were continuous.
12By construction the S/N ratio is zero for the White Noise model, and infinite for the Local Level

model.
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Table 5.2a: Posterior results for the DM/USD exchange rate returns

Parameter WN LL GLL

c× 100 −0.29 (0.93)
−0.34 [-2.20,1.45]

ρ 0.71 (0.13)
0.77 [0.45,0.92]

ση × 10 0.23 (0.02) 0.65 (0.19)
0.23 [0.19,0.28] 0.56 [0.32,1.03]

σε 0.68 (0.01) 0.67 (0.01) 0.67 (0.01)
0.68 [0.66,0.69] 0.67 [0.66,0.69] 0.67 [0.65,0.69]

S/N × 100 0 ∞ 2.14
qH× 100 0 0.12 1.02

Note: For each parameter the mean and standard deviation (between
parentheses) are reported on the first row. The second row contains the
posterior mode and the 95% highest posterior density region, between
brackets. S/N and qH are two implementations of the signal-to-noise
ratio.

Concerning the posteriors for the models using the DM/USD data the following re-
marks can be made. From table 5.2a it is seen that the posteriors of the two parameters
of the White Noise model are very tight, with the mean and standard deviation centered
at the corresponding moments of the dataset. Also the LL model, which is sparsely pa-
rameterized, results in tight posteriors, with a parameter ση governing the variance of
the varying mean process sampled at a value of 0.023. The standard deviation of the
observation disturbance, σε, is 30-fold larger at 0.67. Note that the variance of the signal
µt is 0 for the WN model, and infinite for the I(1) process in the LL model.

More interesting in table 5.2a are the posteriors for the GLL model. The density of
the observation standard deviation σε hardly changes, but there is more movement in the
mean process, indicated by the larger ση. Both parameters ρ and ση have a mode not
very close to the mean, indicating skewness of the posterior densities. The signal-to-noise
ratio is low at 0.0214. This corresponds with the findings of very little autocorrelation in
the series, as seen from bottom-left panel of figure 5.2.

The skewness of the posterior of ρ and ση can also be observed for other models. In
figure 5.7 the marginal posteriors of the parameters of the GLL-Stochastic Volatility model
are plotted, together with the priors and the 95% HPD regions. Apart from the skewness
of parameters ρ and ση, it is seen that the posteriors are somewhat more concentrated
than the priors. The HPD region for the parameter ρ is wide, especially in view of the
fact that the data set used in sampling comprises almost 4,200 datapoints. We note that
ρ = 0 (WN) and ρ = 1 (LL) are not in the HPD interval, for all the models where ρ is
not fixed.

The contrast between the posterior of ρ and of the GARCH parameters (both in the
GLL-GARCH and the GLL-GARCH-Student-t model) is large. Both δ and α are esti-
mated quite precisely, with tight and almost symmetric posterior densities. A similar
effect is found for the parameters φ and σξ in the GLL-SV model, which are also em-
pirically well identified. Including the Student-t disturbances in the GARCH model does
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Table 5.2b: Posterior results for the DM/USD exchange rate returns (continued)

GLL- GLL-GARCH- GLL-SV-
Parameter GARCH GLL-SV GLL-Student-t Student-t Student-t

ρ 0.84 (0.07) 0.72 (0.13) 0.67 (0.14) 0.79 (0.11) 0.66 (0.14)
0.87 [0.70,0.94] 0.79 [0.47,0.92] 0.74 [0.40,0.91] 0.85 [0.56,0.95] 0.73 [0.38,0.90]

ση × 10 0.61 (0.14) 0.59 (0.16) 0.55 (0.13) 0.52 (0.11) 0.57 (0.15)
0.57 [0.35,0.90] 0.54 [0.32,0.90] 0.50 [0.32,0.81] 0.49 [0.32,0.75] 0.52 [0.31,0.88]

σε 0.67 (0.02) 0.60 (0.02) 0.69 (0.02) 0.74 (0.05) 0.61 (0.02)
0.67 [0.63,0.72] 0.59 [0.56,0.63] 0.69 [0.66,0.73] 0.73 [0.65,0.85] 0.61 [0.57,0.66]

δ 0.90 (0.01) 0.92 (0.01)
0.90 [0.88,0.92] 0.92 [0.90,0.93]

α× 10 0.67 (0.07) 0.65 (0.07)
0.66 [0.53,0.82] 0.64 [0.51,0.79]

ν 4.30 (0.33) 5.20 (0.42) 8.48 (1.56)
4.22 [3.66,4.97] 5.11 [4.39,6.05] 7.84 [5.83,11.67]

φ 0.92 (0.02) 0.95 (0.01)
0.92 [0.89,0.95] 0.95 [0.92,0.96]

σξ 0.29 (0.03) 0.23 (0.02)
0.28 [0.23,0.35] 0.22 [0.19,0.27]

S/N × 100 3.07 2.30 1.32 1.55 1.78
qH× 100 0.87 1.06 0.66 0.53 0.94

Note: See table 5.2a for an explanation of the entries in the table.

not alter the posterior of the GARCH parameters δ, α greatly. Only the standard devi-
ations ση and σε change, as the Student-t disturbance takes up part of the tails of the
density. The resulting change in the S/N ratio is interesting: Due to the heavy tails of
the Student-t density in the GLL-GARCH-Student-t model, the S/N ratio is only 0.0155,
which is small compared to the value of 0.0307 for the GLL-GARCH model. A similarly
small value of the S/N ratio is found for the GLL-Student-t model. The inclusion of
Student-t disturbances into the Stochastic Volatility model seems to be less supported by
the data than their combination with the GARCH model. Where the pure GLL-Student-t
model has ν = 4.3 degrees-of-freedom, which increases to ν = 5.2 for the GARCH model,
the combination GLL-SV-Student-t leads to a posterior mean of ν = 8.5 and a 95% HPD
region stretching out to ν = 11.7. Though such a value of ν does not yet indicate normal
disturbances, it also does not imply the heavy tails of a t(4) density. A side effect of
including the Student-tailed disturbance density with the Stochastic Volatility model is
that the correlation structure of the mean process is slightly less clear: This model has
the widest HPD region for ρ, and lowest posterior mean and mode.

The returns on the Yen/USD exchange rate are rather similar in distribution to the
DM/USD returns. The standard deviation σε takes on values of around 0.65 as before.
More interesting are the different results for the parameter ρ: For the GLL model more
correlation between successive states is found than before, with a posterior mode for ρ of
0.89 even to the right of the prior mode of 0.8 (see table 5.1). The same effect occurs with
the GLL-GARCH model, but for the other models on the Yen/USD data, lower values of
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Table 5.3a: Posterior results for the Yen/USD exchange rate returns

Parameter WN LL GLL

c× 100 0.08 (0.90)
0.11 [-1.65,1.88]

ρ 0.82 (0.10)
0.89 [0.61,0.95]

ση × 10 0.24 (0.02) 0.60 (0.17)
0.24 [0.20,0.29] 0.53 [0.32,0.95]

σε 0.65 (0.01) 0.64 (0.01) 0.64 (0.01)
0.65 [0.63,0.66] 0.64 [0.63,0.66] 0.64 [0.62,0.65]

S/N × 100 0 ∞ 3.13
qH× 100 0 0.15 0.97

Note: See table 5.2a for an explanation of the entries in the table.

Table 5.3b: Posterior results for the Yen/USD exchange rate returns (continued)

GLL-GARCH- GLL-SV-
Parameter GLL-GARCH GLL-SV GLL-Student-t Student-t Student-t

ρ 0.88 (0.05) 0.57 (0.17) 0.70 (0.16) 0.70 (0.16) 0.55 (0.16)
0.90 [0.78,0.96] 0.55 [0.26,0.89] 0.85 [0.38,0.96] 0.84 [0.39,0.95] 0.56 [0.24,0.86]

ση × 10 0.54 (0.11) 0.47 (0.10) 0.48 (0.11) 0.46 (0.09) 0.49 (0.11)
0.51 [0.35,0.77] 0.44 [0.29,0.68] 0.44 [0.30,0.70] 0.41 [0.30,0.64] 0.44 [0.30,0.72]

σε 0.64 (0.02) 0.53 (0.01) 0.69 (0.02) 0.78 (0.07) 0.58 (0.02)
0.64 [0.61,0.68] 0.52 [0.50,0.55] 0.68 [0.64,0.73] 0.76 [0.65,0.92] 0.59 [0.54,0.63]

δ 0.90 (0.01) 0.92 (0.01)
0.90 [0.87,0.92] 0.92 [0.90,0.94]

α× 10 0.62 (0.08) 0.60 (0.08)
0.62 [0.47,0.77] 0.59 [0.45,0.76]

ν 3.50 (0.23) 4.00 (0.24) 5.80 (0.73)
3.49 [3.05,3.99] 3.95 [3.54,4.48] 5.65 [4.45,7.23]

φ 0.72 (0.06) 0.92 (0.02)
0.73 [0.61,0.83] 0.92 [0.88,0.95]

σξ 0.65 (0.07) 0.29 (0.03)
0.64 [0.50,0.80] 0.28 [0.22,0.36]

S/N × 100 3.45 1.37 1.20 0.86 1.14
qH× 100 0.74 0.85 0.52 0.37 0.74

Note: See table 5.2a for an explanation of the entries in the table.
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Figure 5.7: Prior, posterior and HPD region of the parameters in the GLL-Stochastic
Volatility model, for the DM/USD exchange rate returns

ρ are found than in the case of the DM/USD data. The findings on ρ translate to results
for the signal-to-noise ratio S/N. For the GLL and GLL-GARCH models the Japanese
data appears to give a clearer signal of where the exchange rate is going. For the other
models, even less signal is found than in the case of the exchange rates between Germany
and the United States.

Comparing results for the models with varying variance, there is a striking difference
between posterior densities for the GARCH parameters and for the SV parameters. Where
the GARCH parameters δ and α are tightly estimated, for the SV parameters φ and
σξ wide HPD regions are found. Also the correlation parameter δ takes on a value of
0.9, indicating strong GARCH effect, whereas the SV model ends up with a parameter
φ = 0.72, with a large standard deviation σξ of 0.65. In order to check whether indeed
the Gibbs sampling chain has converged, figure 5.8 depicts the successive drawings in the
chain for the parameter φ of the GLL-SV model on the Yen/USD data, together with
the running mean and the mean of a moving window of the last 100 sampled parameter
values. From the plot, no problems with convergence are apparent. This plot is typical
for results for other parameters of this model, and also of the other models.

Including Student-t disturbances with the SV model helps getting a more precise
estimate of the parameter φ. Note that the degrees-of-freedom parameter is ν ≈ 3.5, 4.0
and 5.8 for the models F-H with the Yen/USD data, comparing to values of ν ≈ 4.3, 5.2
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Figure 5.8: Successive drawings of the parameter φ for the GLL-Stochastic Volatility
model for Yen/USD returns, with the running mean and the mean of a moving window
of the last 100 sampled parameter values

and 8.5 for the DM/USD data. This indicates that the Yen/USD returns exhibit heavier
tails than the DM/USD returns.

5.6.2 Marginal likelihood

For models A-D, both the methods based on the posterior kernel function of section
4.4.2 as the methods using the Gibbs’ conditional densities (section 4.4.2 can be used
for computing the marginal likelihood. Models E-H need data augmentation to get to a
tractable model, and therefore do not allow for application of the kernel methods. Table
5.4 reports the marginal loglikelihoods (ML) for the models A-H, both for the DM/USD
(first two columns) and for the Yen/USD returns (columns three and four). In columns
one and three the results using the kernel method for models A-D are given, calculated
using the LaPlace approximation to the posterior kernel at the location of the posterior
mode.

Comparing the results for the first three models, we see that the Local Level model for
exchange rate returns is not favoured by the data. Between models A and C there is not
much of a difference. Even though the 95%-HPD region of ρ for the Generalized Local
Level model does not include 0, which would imply that the GLL model would simplify
to the White Noise model A, the marginal likelihoods are very close. Based on the data,
there is no clear reason to prefer one model above the other.

The modelling steps on the varying variance structure (allowing for GARCH or SV in
the GLL model) lead to a substantial improvement in the marginal likelihood over the
more basic WN or GLL models. For the DM/USD exchange rate, the data seems to be
best modelled using a Stochastic Volatility framework. The GLL-Student-t model is also
quite an improvement over the WN and GLL models, with a gain in ML of 160 points,
getting close to the GLL-GARCH model. When the GARCH and Student-t blocks are
combined in model G, the resulting marginal loglikelihood of -4040 is close to the value
found for the GLL-SV model, -4033. Including a Student-t disturbance distribution with
the GLL-SV model is indicated as not supported by the data, as the ML value drops



5.6. Convergence of MCMC and posterior results 121

Table 5.4: Marginal loglikelihoods

DM/USD returns Yen/USD returns
Model LaPlace Gibbs LaPlace Gibbs

A WN −4306.12 −4306.43 −4116.70 −4117.01
B LL −4347.04 −4346.83 −4148.55 −4148.45
C GLL −4306.07 −4305.81 −4114.57 −4114.24
D GLL-GARCH −4139.37 −4140.34 −3981.39 −3982.34
E GLL-SV −4032.85 −4248.57
F GLL-Student-t −4146.75 −3876.23
G GLL-GARCH-Student-t −4040.37 −3779.72
H GLL-SV-Student-t −4037.84 −3844.35
Note: Reported are the marginal loglikelihoods calculated using the LaPlace
method at the location of the posterior mode (columns 1 and 3, only available
for models A-D) and using the Gibbs’ conditional densities method.

5 points. This corresponds to the findings from the posterior density for ν in model H
(section 5.6.1), where the 95%-HPD region ranged from 5.8 to 11.7 as opposed to a range
of 3.7 to 5.0 for the GLL-Student-t model.

For the Yen/USD data, the correlation structure of the second moment of the data is
not so strong, and the Student-t model has the best ML of models D-F. Combining it
with the GARCH structure for the variance leads to a further improvement to a marginal
loglikelihood of -3780. The Stochastic Volatility model does not fit this data set well, it
performs even worse than the basic White Noise, Local Level or Generalized Local Level
models. Combining Student-t disturbances with Stochastic Volatility behaviour is better
than models A-C, the GLL-SV-Student-t model ends up according to the ML score as
second best behind the model combining GARCH and Student-t disturbances.

5.6.3 Predictive density of the models

The hedging decision taken by the investor is based solely on the information contained
in the predictive density p(st+1|t) corresponding to the model. We can distinguish two
elements which are of importance for the predictive power of a model.

On the one hand, an investor would like to see strong predictive power in the first
moment, in order to know what tomorrow’s return will be. Predictive power in this sense
is lacking in the WN model (as tomorrow’s predictive return equals the global mean c of
the series), and strong for the LL model, predicting tomorrow’s return with today’s µt,
which follows a random walk. The GLL-based models take up positions in between. Their
signal-to-noise ratios S/N (see tables 5.2a-5.3b) provide an indication of the predictive
power we can expect.

On the other hand the uncertainty of the prediction is important. If the model is able
to distinguish between tranquil periods and periods of larger fluctuations, the investor
can take measures accordingly. On this aspect, the GARCH and SV models are expected
to behave better.

It is instructive to look at the predictive densities in detail. Figure 5.9 contains
the predictive density of the GLL-SV model on the DM/USD returns, which had the
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Figure 5.9: Predictive mean, standard deviation, together with observations and the
full density (top left to bottom right) for the GLL-SV model on DM/USD returns, in
percentage changes, over the period 1/1/98-29/12/00

best marginal loglikelihood score for this data set. Using the Yen/USD data, the GLL-
GARCH-Student-t model was preferred by the marginal likelihood criterion. It results in
a predictive density as in figure 5.11.

For the German data, the following remarks can be made. The top-left panel of figure
5.9 displays the mean E(st+1|t) of the predictive density p(st+1|t). In our models E(st+1|t)
equals the prediction of the unobserved state µt+1. On average, the mean prediction is
around zero, but with clear distinctions from period to period. Around September 1998,
the continuing decline in the exchange rate (refer back to figure 5.4 for a plot of the
exchange rate returns in the evaluation period) has its effect on the predictive mean,
whereas in most months in 1999 E(st+1|t) is positive. Throughout the year 2000, the
prediction still is positive on the average, though with slightly less conviction than in
1999. Note that on the axis, the changes are indicated as daily percentages; though the
changes from day to day are noticeable, the predictions show a maximum daily change of
0.04%.

In the top-right panel of figure 5.9, the standard deviation of the prediction is given.
Around September 1998, when the predicted change in exchange rate becomes negative,
the standard deviation jumps up. From that moment onwards the volatility remains high,
until January 1999, where the stochastic volatility component indicates that the variance
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Figure 5.10: Exchange rates over the evaluation period 1/1/98-29/12/00

of the series diminishes again to the levels of mid-1998. Throughout 1999, the volatility
does not change much, but the model indicates that the year 2000 was definitely riskier
than previous years, as the volatility has a higher base-value and reaches its peak in
this year 2000. The jumps in the standard deviation only occur in models D, E, G and
H, which allow for GARCH or Stochastic Volatility. For the other models the standard
deviation is constant.

The bottom-left panel of the figure indicates the uncertainty involved in predicting
tomorrow’s appreciation or depreciation. In the graph we plotted the mean prediction
from the top-left panel plus and minus one standard deviation, together with the actual
exchange rate returns. From the graph we see that the predictions are very small compared
to the actual returns. The bottom-right panel depicts the shape of the predictive densities
p(st+1|t) for (a selection of) the days of the evaluation period. It is seen that the spread
of the density changes considerably, the location hardly moves. For models A-C and F,
the corresponding plot shows less variation over time as the variance is fixed.

Figure 5.11 shows the predictive density for the GLL-GARCH-Student-t model on
the Yen/USD returns. The most striking element of these panels is the big increase in
volatility in June and especially October 1998, connected to the large drops of 4.3 and
6.6% in the exchange rate in single days. For the remainder of the evaluation period,
the volatility does not change much; with these plots in mind it is not so strange that
the GLL-SV model without Student-t disturbances did not give tight posterior densities
for the volatility parameters φ and ξ, see table 5.3b. It is more amazing that for the
GLL-GARCH model tight posterior densities for δ and α were found.

The amount of predictability of the first moment is reflected in the scale of the y-axis
of the first panel of figures 5.9 and 5.11. Both for the GLL-SV model on the German data
as for the GLL-GARCH-Student-t model on Japanese data, a range of approximately
[−0.03%, 0.04%] is found. By definition, the White Noise model does not change its
prediction, and thus has zero range. With the Yen/USD data, the Local Level model
reacts most strongly to jumps in the exchange rate, leading to projections of tomorrow’s
returns ranging from -0.55% to +0.29%. The GARCH model claims to have quite some
predictive power, resulting in a range for E(st+1|t) of [−0.12%, 0.12%]. The other models
show less extreme predictions, with the SV-based models not predicting a change larger
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Figure 5.11: Predictive mean, standard deviation, together with observations and the full
density (top left to bottom right) for the GLL-GARCH-Student-t model on Yen/USD
returns, in percentage changes, over the period 1/1/98-29/12/00

than 0.011% in absolute value.

The German data leads to predictions with a maximum of |E(st+1)| = 0.24 for the LL
model, returns of ±0.1% for the GARCH model and a range of [−0.04%, 0.05%] for the
other models.

In the present section, and in sections 5.5 and 5.6.1 we described results for the
DM/USD and Yen/USD exchange rates. As the models we use (see section 5.3) are
symmetric apart for the sign of the constant applied in the White Noise models, we can
also use the predictive densities presented here to construct a hedging strategy for the
USD/DM and USD/Yen data. In the following section we investigate whether the pre-
dictive densities provide sufficient information for constructing effective currency overlay
strategies, for the four different situations of hedging the DM/USD, Yen/USD, USD/DM
or Yen/USD exchange rates.
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5.7 Hedging results

5.7.1 On the setup

After the description of the data and the interest rate differential over the evaluation
period in section 5.5, the posterior density of the model parameters in section 5.6.1, and
the computation of the predictive density of the exchange rate returns in section 5.6.3, we
continue in the present section with describing the hedging decisions and resulting utility
and returns.

We analyse the hedging decision for four situations:

i. A Germany-based investor with investments denoted in the USD currency
(DM/USD for short, with results to be discussed in table 5.5)

ii. The inverse situation, of an American firm investing in Germany (USD/DM,
table 5.6)

iii. Hedging a dollar currency risk from Japan (Yen/USD, table 5.7)

iv. And the inverse: Hedging against depreciation of the yen vis-a-vis the dollar
(USD/Yen, table 5.8)

These four positions for which hedging can be used are evaluated over the period 1998-
2000. Results in this chapter are reported for the whole three-year period and for each of
the years separately. Numerical results are presented for a risk-tolerant investor, with a
log-utility function (corresponding to a power utility function 5.4 with γ = 0) and for a
risk-averse risk manager, with risk tolerance parameter γ = −10. Other positions of risk
tolerance are discussed briefly, in section 5.7.5.

5.7.2 Naive hedging strategies

Before we continue with a description of the model based hedging decisions, we first
concentrate on three naive hedging strategies. Obviously, the investor can choose to
hedge nothing, with as a resulting return the return on the exchange rate. Alternatively,
the risk can be hedged over the complete period, taking hedging position Ht = 1, t =
1, . . . , T , with the cumulative interest rate differential as the result of this scheme. A
third straightforward hedging scheme can be denoted as the Random Walk scheme: Hedge
tomorrows return if today a depreciation occurred, i.e.

Ht+1 =

{
1 if St < St−1,
0 else.

(5.20)

The returns from the first two schemes could be derived from figure 5.4 with the cumulative
return of the exchange rate and the cumulative interest rate differential. In the first three
rows of tables 5.5-5.8 numerical results are presented. For the complete three-year period,
the cumulative return on the DM/USD exchange rate was 14.73% (fifth column, labelled
r). A risk-tolerant investor values profits as much as losses, and therefore utility is equal
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to the return at 14.73%.13 When the manager does not tolerate such risks, we see in the
first row of the second panel of table 5.5 that the utility of this scheme drops to -0.14:
As the return of 14.73% comes with large shocks, with a larger penalty for sudden (large)
depreciations, the utility derived from the no-hedge scheme is not high. Note that in table
5.6 the home and foreign countries are switched, such that the no-hedge case leads to a
loss of 14.73%. The derived utility for the risk-intolerant investor was -29.27%.

Other columns in the table indicate the average hedge position H, the number of
times an extreme position of Ht = 0 or Ht = 1 is taken, and also the average switch in
position |∆H| that is made. For the no-hedge and the full-hedge scheme these statistics
are of little interest, as we can see that the full 782 days the same extreme position is
taken, leading to an average change in position of zero. For the investor who is not taking
any risks, hedging fully throughout the evaluation period, the value of the risk tolerance
parameter γ does not make much of a difference for the derived utility. The daily interest
rate differential is fairly small; Only for the USD/Yen case, in panel 2 of table 5.8, a
utility of 11.73 is found compared to a return of 11.74%.

While for the DM/USD exchange rate the uncovered interest rate parity does not seem
to hold over the evaluation period, for the Yen/USD exchange rate it seems to be valid
approximately. By coincidence, for the three year period the return on the exchange rate,
-12.97%, and the cumulative interest rate, -11.74%, are close. Breaking up the evaluation
period in separate years (columns 7 and further in the tables) we see that this only occurs
for the complete period.

The Random Walk hedging scheme can be expected to work if there is some positive
correlation to be exploited. This scheme is nice for comparison with the model based
schemes, but it does not have much practical importance: As the exchange rate is jumping
up and down (see also the next section) almost every other day, the RW scheme changes
its position often, on the average every 2.2 (DM/USD) or 2.0 (Yen/USD) days.14 No
firm would be willing to change its entire hedging position so often and so randomly.
For simplicity we are assuming that the firm does not incur transaction costs. For large
firms this is an acceptable approximation, but only as long as the position is not changing
frequently.

The RW method of hedging is superior in returns and utility to the no-hedge strategy
in two out of three years. Though the RW strategy manages to stay out of the market
on some days of depreciation, the risk is still considerable, as can be seen from the large
penalty on the utility when the risk tolerance parameter is changed from 0 to -10.

5.7.3 Variability of the hedging decision

The model-based strategies change the hedging position less often than the RW hedge
strategy, see column 4 of the rows labelled WN - GLL-SV-Student-t in tables 5.5–5.8.
For the risk-tolerant case, in the top panel of the tables, it is often optimal to choose a

13The table reports the sum of the continuously compounded returns as in (5.2). The three-year
increase of the DM/USD rate of almost 16% mentioned in section 5.2 is retrieved by computing r̃ =
exp(r/100)× 100. This manner of presenting the results is chosen for comparison to the utilities, which
are multiplied by 100.

14The average duration before the complete position is switched can be calculated as D = 1/|∆H|.
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Table 5.5: Hedging results for a German firm with exposures in the U.S. Dollar, DM/USD

Model H H = 0 H = 1 |∆H| r U H |∆H| r U H |∆H| r U H |∆H| r U
γ = 0 1998–2000 1998 1999 2000

No hedge 0.00 782 0 0.000 14.73 14.73 0.00 0.000 −7.65 −7.65 0.00 0.000 15.83 15.83 0.00 0.000 6.55 6.55
Full hedge 1.00 0 782 0.000 −4.75 −4.75 1.00 0.000 −1.47 −1.47 1.00 0.000 −1.72 −1.72 1.00 0.000 −1.55 −1.55
RW Hedge 0.45 431 351 0.452 26.38 26.38 0.50 0.515 −3.60 −3.60 0.42 0.427 11.17 11.17 0.42 0.413 18.81 18.81
WN 0.02 612 0 0.005 14.62 14.62 0.01 0.007 −8.35 −8.35 0.01 0.004 15.47 15.47 0.02 0.005 7.50 7.50
LL 0.32 530 244 0.057 18.92 18.92 0.54 0.085 −6.16 −6.16 0.21 0.042 12.68 12.68 0.20 0.044 12.40 12.40
GLL 0.27 532 176 0.168 21.23 21.23 0.32 0.193 −3.21 −3.21 0.20 0.135 12.79 12.79 0.30 0.174 11.65 11.65
GLLGA 0.36 486 256 0.157 15.68 15.68 0.45 0.156 −2.80 −2.80 0.26 0.150 10.24 10.24 0.35 0.165 8.24 8.24
GLLSV 0.28 533 182 0.175 21.54 21.54 0.37 0.207 −1.94 −1.94 0.19 0.139 13.04 13.04 0.26 0.180 10.45 10.45
GLLT 0.21 575 129 0.180 19.31 19.31 0.28 0.244 −4.82 −4.82 0.14 0.140 12.03 12.03 0.21 0.156 12.10 12.10
GLLGAT 0.27 548 185 0.154 18.82 18.82 0.39 0.180 −2.81 −2.81 0.18 0.148 10.31 10.31 0.24 0.136 11.32 11.32
GLLSVT 0.23 558 136 0.185 19.27 19.27 0.31 0.248 −3.26 −3.26 0.16 0.143 12.73 12.73 0.21 0.167 9.79 9.79

γ = −10 1998–2000 1998 1999 2000

No hedge 0.00 782 0 0.000 14.73 −0.14 0.00 0.000 −7.65 −11.51 0.00 0.000 15.83 11.75 0.00 0.000 6.55 −0.38
Full hedge 1.00 0 782 0.000 −4.75 −4.75 1.00 0.000 −1.47 −1.48 1.00 0.000 −1.72 −1.72 1.00 0.000 −1.55 −1.55
RW Hedge 0.45 431 351 0.452 26.38 18.41 0.50 0.515 −3.60 −5.33 0.42 0.427 11.17 8.70 0.42 0.413 18.81 15.05
WN 0.89 0 0 0.003 −2.38 −2.56 0.90 0.005 −2.17 −2.21 0.88 0.003 0.21 0.15 0.89 0.002 −0.41 −0.49
LL 0.41 377 244 0.066 13.83 5.24 0.68 0.097 −7.97 −8.88 0.28 0.050 11.52 8.77 0.26 0.051 10.28 5.35
GLL 0.77 0 183 0.104 4.16 2.92 0.83 0.088 −2.58 −2.73 0.74 0.108 1.48 1.12 0.73 0.115 5.26 4.53
GLLGA 0.58 150 260 0.154 5.99 1.32 0.66 0.151 −3.93 −4.67 0.47 0.180 3.95 2.16 0.61 0.134 5.97 3.83
GLLSV 0.66 43 184 0.152 8.75 7.01 0.68 0.167 −1.80 −2.21 0.57 0.178 5.58 4.82 0.74 0.112 4.97 4.40
GLLT 0.76 0 132 0.105 3.86 2.72 0.82 0.098 −2.52 −2.67 0.73 0.111 1.73 1.34 0.74 0.107 4.65 4.05
GLLGAT 0.60 82 188 0.157 9.29 5.44 0.67 0.164 −3.29 −3.96 0.48 0.180 5.52 3.87 0.64 0.127 7.06 5.53
GLLSVT 0.70 16 139 0.141 7.07 5.71 0.71 0.164 −1.73 −2.05 0.63 0.162 4.78 4.16 0.77 0.096 4.02 3.60

Note: Reported are the average hedge ratio H, the number of occurrences of no-hedging H = 0 or full-hedging H = 1 and the average change
in hedging position, |∆H|, together with the cumulative hedged currency return r (as a percentage) and corresponding cumulative utility
(times 100). Results are reported for the entire evaluation period 1998–2000 and for the three years separately. The top panel report the
results for a risk-tolerant, the bottom panel for a risk-averse investor.
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Table 5.6: Hedging results for a U.S. firm with exposures in the German DMark, USD/DM

Model H H = 0 H = 1 |∆H| r U H |∆H| r U H |∆H| r U H |∆H| r U
γ = 0 1998–2000 1998 1999 2000

No hedge 0.00 782 0 0.000 −14.73 −14.73 0.00 0.000 7.65 7.65 0.00 0.000 −15.83 −15.83 0.00 0.000 −6.55 −6.55
Full hedge 1.00 0 782 0.000 4.75 4.75 1.00 0.000 1.47 1.47 1.00 0.000 1.72 1.72 1.00 0.000 1.55 1.55
RW Hedge 0.57 337 445 0.448 14.55 14.55 0.52 0.504 4.98 4.98 0.59 0.427 −2.94 −2.94 0.59 0.417 12.51 12.51
WN 0.98 0 612 0.005 4.64 4.64 0.99 0.007 0.78 0.78 0.99 0.004 1.36 1.36 0.98 0.005 2.50 2.50
LL 0.68 244 530 0.057 8.94 8.94 0.46 0.085 2.97 2.97 0.79 0.042 −1.43 −1.43 0.80 0.044 7.40 7.40
GLL 0.73 176 532 0.168 11.25 11.25 0.68 0.193 5.92 5.92 0.80 0.135 −1.32 −1.32 0.70 0.174 6.65 6.65
GLLGA 0.64 256 486 0.157 5.70 5.70 0.55 0.156 6.33 6.33 0.74 0.150 −3.87 −3.87 0.65 0.165 3.24 3.24
GLLSV 0.72 182 533 0.175 11.56 11.56 0.63 0.207 7.19 7.19 0.81 0.139 −1.07 −1.07 0.74 0.180 5.45 5.45
GLLT 0.79 129 575 0.180 9.33 9.33 0.72 0.244 4.31 4.31 0.86 0.140 −2.08 −2.08 0.79 0.156 7.11 7.11
GLLGAT 0.73 185 548 0.154 8.84 8.84 0.61 0.180 6.32 6.32 0.82 0.148 −3.80 −3.80 0.76 0.136 6.32 6.32
GLLSVT 0.77 136 558 0.185 9.29 9.29 0.69 0.248 5.87 5.87 0.84 0.143 −1.38 −1.38 0.79 0.167 4.79 4.79

γ = −10 1998–2000 1998 1999 2000

No hedge 0.00 782 0 0.000 −14.73 −29.27 0.00 0.000 7.65 3.87 0.00 0.000 −15.83 −19.84 0.00 0.000 −6.55 −13.31
Full hedge 1.00 0 782 0.000 4.75 4.75 1.00 0.000 1.47 1.47 1.00 0.000 1.72 1.72 1.00 0.000 1.55 1.55
RW Hedge 0.57 337 445 0.448 14.55 8.26 0.52 0.504 4.98 3.12 0.59 0.427 −2.94 −4.53 0.59 0.417 12.51 9.67
WN 1.00 0 683 0.000 4.72 4.72 1.00 0.000 1.39 1.39 1.00 0.001 1.70 1.70 1.00 0.001 1.63 1.63
LL 0.78 106 531 0.052 9.09 6.10 0.62 0.079 3.61 2.05 0.86 0.042 −0.94 −1.41 0.84 0.035 6.43 5.46
GLL 0.93 0 534 0.053 6.57 6.21 0.93 0.059 1.87 1.74 0.96 0.034 1.29 1.25 0.91 0.064 3.41 3.22
GLLGA 0.82 43 487 0.096 10.46 8.44 0.73 0.134 5.24 4.21 0.87 0.080 0.56 0.18 0.85 0.073 4.66 4.04
GLLSV 0.92 4 536 0.068 4.40 4.17 0.86 0.117 1.37 1.22 0.95 0.046 0.97 0.92 0.95 0.040 2.07 2.02
GLLT 0.96 0 579 0.035 5.16 5.05 0.95 0.048 1.35 1.30 0.98 0.021 1.24 1.23 0.96 0.035 2.57 2.51
GLLGAT 0.91 3 552 0.070 5.29 4.78 0.85 0.114 1.57 1.32 0.93 0.054 0.43 0.32 0.94 0.040 3.30 3.15
GLLSVT 0.95 1 564 0.051 4.70 4.58 0.91 0.090 1.40 1.33 0.96 0.034 1.23 1.21 0.97 0.027 2.06 2.04

Note: See table 5.5 for an explanation of the entries in the table.
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Table 5.7: Hedging results for a Japanese firm with exposure to the U.S. Dollar, Yen/USD

Model H H = 0 H = 1 |∆H| r U H |∆H| r U H |∆H| r U H |∆H| r U
γ = 0 1998–2000 1998 1999 2000

No hedge 0.00 782 0 0.000 −12.97 −12.97 0.00 0.000 −14.21 −14.21 0.00 0.000 −9.71 −9.71 0.00 0.000 10.95 10.95
Full hedge 1.00 0 782 0.000 −11.74 −11.74 1.00 0.000 −3.66 −3.66 1.00 0.000 −3.66 −3.66 1.00 0.000 −4.42 −4.42
RW Hedge 0.51 387 395 0.501 6.06 6.06 0.51 0.477 7.67 7.67 0.53 0.512 −4.85 −4.85 0.47 0.514 3.24 3.24
WN 0.00 782 0 0.000 −12.97 −12.97 0.00 0.000 −14.21 −14.21 0.00 0.000 −9.71 −9.71 0.00 0.000 10.95 10.95
LL 0.43 440 335 0.059 3.57 3.57 0.43 0.028 4.47 4.47 0.61 0.056 −3.90 −3.90 0.26 0.093 3.00 3.00
GLL 0.31 527 224 0.155 −8.30 −8.30 0.36 0.161 −3.14 −3.14 0.39 0.186 −10.91 −10.91 0.18 0.119 5.76 5.76
GLLGA 0.33 495 237 0.136 −5.44 −5.44 0.33 0.109 0.25 0.25 0.42 0.179 −10.07 −10.07 0.24 0.120 4.37 4.37
GLLSV 0.00 777 0 0.001 −12.16 −12.16 0.00 0.002 −13.40 −13.40 0.00 0.001 −9.71 −9.71 0.00 0.000 10.95 10.95
GLLT 0.11 669 68 0.103 −6.69 −6.69 0.14 0.106 −1.94 −1.94 0.18 0.174 −13.62 −13.62 0.02 0.029 8.88 8.88
GLLGAT 0.06 695 24 0.063 −18.56 −18.56 0.05 0.053 −14.48 −14.48 0.12 0.119 −13.50 −13.50 0.01 0.014 9.42 9.42
GLLSVT 0.00 778 0 0.000 −12.87 −12.87 0.00 0.001 −14.11 −14.11 0.00 0.000 −9.71 −9.71 0.00 0.000 10.95 10.95

γ = −10 1998–2000 1998 1999 2000

No hedge 0.00 782 0 0.000 −12.97 −43.14 0.00 0.000 −14.21 −31.52 0.00 0.000 −9.71 −17.53 0.00 0.000 10.95 5.91
Full hedge 1.00 0 782 0.000 −11.74 −11.74 1.00 0.000 −3.66 −3.66 1.00 0.000 −3.66 −3.66 1.00 0.000 −4.42 −4.42
RW Hedge 0.51 387 395 0.501 6.06 −5.04 0.51 0.477 7.67 2.63 0.53 0.512 −4.85 −8.87 0.47 0.514 3.24 1.20
WN 0.61 0 0 0.004 −10.98 −15.16 0.63 0.007 −7.16 −9.39 0.63 0.003 −6.02 −7.06 0.57 0.003 2.21 1.29
LL 0.52 303 335 0.075 −5.49 −15.32 0.47 0.048 0.04 −5.53 0.69 0.074 −6.26 −8.03 0.39 0.105 0.73 −1.76
GLL 0.56 114 224 0.166 −8.54 −16.10 0.55 0.175 −4.90 −9.11 0.66 0.159 −6.24 −8.00 0.46 0.164 2.60 1.01
GLLGA 0.60 149 240 0.114 −1.69 −7.59 0.64 0.091 −0.07 −2.95 0.73 0.116 −5.98 −7.18 0.43 0.135 4.36 2.55
GLLSV 0.65 0 0 0.075 −4.64 −6.57 0.73 0.054 −1.62 −2.26 0.70 0.072 −4.79 −5.30 0.52 0.097 1.77 0.99
GLLT 0.60 4 70 0.143 −4.46 −9.59 0.60 0.146 −1.05 −3.81 0.70 0.139 −4.79 −6.01 0.51 0.145 1.38 0.23
GLLGAT 0.65 19 24 0.098 −4.91 −7.87 0.74 0.061 −0.92 −2.03 0.75 0.092 −5.91 −6.53 0.47 0.140 1.93 0.69
GLLSVT 0.68 0 0 0.062 −5.03 −6.75 0.77 0.037 −1.89 −2.38 0.73 0.057 −5.04 −5.49 0.53 0.093 1.90 1.12

Note: See table 5.5 for an explanation of the entries in the table.
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Table 5.8: Hedging results for a U.S. firm with exposure to the Japanese Yen, USD/Yen

Model H H = 0 H = 1 |∆H| r U H |∆H| r U H |∆H| r U H |∆H| r U
γ = 0 1998–2000 1998 1999 2000

No hedge 0.00 782 0 0.000 12.97 12.97 0.00 0.000 14.21 14.21 0.00 0.000 9.71 9.71 0.00 0.000 −10.95 −10.95
Full hedge 1.00 0 782 0.000 11.74 11.74 1.00 0.000 3.66 3.66 1.00 0.000 3.66 3.66 1.00 0.000 4.42 4.42
RW Hedge 0.51 386 396 0.497 31.89 31.89 0.50 0.481 26.54 26.54 0.48 0.512 8.66 8.66 0.54 0.502 −3.31 −3.31
WN 1.00 0 782 0.000 11.74 11.74 1.00 0.000 3.66 3.66 1.00 0.000 3.66 3.66 1.00 0.000 4.42 4.42
LL 0.57 335 440 0.059 28.28 28.28 0.57 0.028 22.34 22.34 0.39 0.056 9.47 9.47 0.74 0.093 −3.53 −3.53
GLL 0.69 224 527 0.155 16.41 16.41 0.64 0.161 14.73 14.73 0.61 0.186 2.46 2.46 0.82 0.119 −0.78 −0.78
GLLGA 0.67 237 495 0.136 19.27 19.27 0.67 0.109 18.12 18.12 0.58 0.179 3.30 3.30 0.76 0.120 −2.16 −2.16
GLLSV 1.00 0 777 0.001 12.55 12.55 1.00 0.002 4.47 4.47 1.00 0.001 3.66 3.66 1.00 0.000 4.42 4.42
GLLT 0.89 68 669 0.103 18.02 18.02 0.86 0.106 15.93 15.93 0.82 0.174 −0.25 −0.25 0.98 0.029 2.35 2.35
GLLGAT 0.94 24 695 0.063 6.15 6.15 0.95 0.053 3.39 3.39 0.88 0.119 −0.13 −0.13 0.99 0.014 2.89 2.89
GLLSVT 1.00 0 778 0.000 11.84 11.84 1.00 0.001 3.76 3.76 1.00 0.000 3.66 3.66 1.00 0.000 4.42 4.42

γ = −10 1998–2000 1998 1999 2000

No hedge 0.00 782 0 0.000 12.97 −15.58 0.00 0.000 14.21 −1.61 0.00 0.000 9.71 1.97 0.00 0.000 −10.95 −15.94
Full hedge 1.00 0 782 0.000 11.74 11.73 1.00 0.000 3.66 3.66 1.00 0.000 3.66 3.65 1.00 0.000 4.42 4.41
RW Hedge 0.51 386 396 0.497 31.89 14.79 0.50 0.481 26.54 16.05 0.48 0.512 8.66 4.94 0.54 0.502 −3.31 −6.21
WN 1.00 0 782 0.000 11.74 11.73 1.00 0.000 3.66 3.66 1.00 0.000 3.66 3.65 1.00 0.000 4.42 4.41
LL 0.63 236 440 0.056 24.32 9.46 0.61 0.045 16.97 7.78 0.43 0.050 9.63 5.05 0.85 0.075 −2.28 −3.37
GLL 0.84 37 527 0.099 15.98 8.14 0.79 0.115 13.10 6.86 0.80 0.124 1.93 0.65 0.94 0.056 0.95 0.63
GLLGA 0.86 24 497 0.077 9.08 6.47 0.91 0.046 5.69 5.00 0.78 0.104 3.78 2.46 0.89 0.079 −0.39 −0.99
GLLSV 1.00 0 778 0.000 11.82 11.81 1.00 0.000 3.74 3.74 1.00 0.000 3.66 3.65 1.00 0.000 4.42 4.41
GLLT 0.98 0 670 0.019 11.22 11.06 0.98 0.022 4.41 4.29 0.97 0.033 2.59 2.56 1.00 0.003 4.22 4.21
GLLGAT 0.99 0 703 0.008 10.93 10.90 1.00 0.006 3.57 3.56 0.98 0.017 3.09 3.07 1.00 0.001 4.28 4.27
GLLSVT 1.00 0 782 0.000 11.74 11.73 1.00 0.000 3.66 3.66 1.00 0.000 3.66 3.65 1.00 0.000 4.42 4.41

Note: See table 5.5 for an explanation of the entries in the table.
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boundary solution H = 0 or H = 1.15,16 Whenever the model indicates that the return
on the exchange rate is expected to be larger than the interest rate differential, the risk-
tolerant investor chooses not to hedge. This effect is also apparent from figures 5.12–5.13,
which display the optimal hedge decision through time for the RW strategy (top panel) and
the model-based strategies. Figure 5.12 shows the results for the risk-tolerant investor
(γ = 0) hedging the DM/USD exchange rate, while figure 5.13 displays the decisions
for the Yen/USD case with γ = −10. The wild behaviour of the RW hedge decision is
immediately apparent from the figures; other hedging decisions are clearly more consistent
over time.

The hedge decision of the White Noise model is only guided by the interest rate
differential, as the predictive density does not change over time. For the DM/USD case,
only during a period at the end of 1998, and a single day in November 2000, the (negative)
interest rate differential is close enough to zero that the model decides to hedge. On other
days, hedging would lead to a sure negative return, and therefore no hedging is deemed
optimal. For the Yen/USD data, the difference between the interest rates is between -5%
and -6.5% on a yearly basis. Unless there is strong evidence of a possible depreciation, the
models will not hedge. In table 5.7 it can be seen that for γ = 0 the WN, GLL-SV and
GLL-SV-Student-t models the result is that the decision H = 0 is taken on (almost) all
days, with returns and utilities equal to the unhedged returns and utilities. With γ = −10,
the investor chooses more safety, and average hedging in figure 5.13 is higher, with the
WN hedging ratio closely following the movements of the interest rate differential.

The other models show more variation in the optimal decisions. The Local Level
model is quite extreme in its position: Once it chooses (not) to hedge, it continues to do
so for a longer period of time. The GLL model showed smaller predictions E(st+1|t) (see
the last paragraphs of section 5.6.3), and therefore changes its mind more often about the
optimal hedging decision. Modelling the variance of the process more elaborately through
(combinations of) GARCH, SV, or Student-t processes helps in recognizing periods of
better prospects from periods with a higher probability of depreciation. For the German
data in figure 5.12 the GLL-GARCH, -SV, -GARCH-Student-t and -SV-Student-t all
coincide in recognizing the earlier part of 1998 as a period of adverse risk, together with
the months around January 1999 and a short stretch of time in October 1999. At the
higher level of risk aversion of γ = −10 (figure with the hedging decisions not included, the
second half of 2000 is also recognized as a period where the increased variance outweighs
the possibility of making a slightly higher return; with γ = −10, the average hedging ratio
goes up during the last months of 2000.

For Japan, with γ = 0 only the Local Level model delivers a signal strong enough to
hedge over longer periods of time, while the other models keep switching their position.
For a risk-averse investor, the penalty of the -5% interest rate differential connected to
hedging the currency risk is not so much of a problem, and the average hedge ratio is
higher than before. The second half of 1998 and of 1999 is recognized as a volatile period
with high risk of depreciations by most models. Note how the GLL-SV model is not

15See also footnote 3 on page 104, concerning the restriction of H ∈ [0, 1].
16Note how the hedge decision for γ = 0 for the DM/USD data is exactly opposite to the decision

for the USD/DM data, and likewise for the data on the Japanese exchange rate. For γ = 0, the utility
function is symmetric as well as the models.
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Figure 5.12: Hedging decisions through time for the DM/USD data, for γ = 0

taking much risk in the first years; only when the predicted volatility settles down to
lower values, the GLL-SV model starts to hedge less (refer back to the second panel of
figure 5.11 for the predictive standard deviation of the GLL-GARCH-Student-t model;
the predictive standard deviation of the GLL-SV is similar).

5.7.4 Returns and utilities of model-based strategies

While it is interesting to see the variability of the hedging decisions over time, the most
important result of the hedging strategy is the return, both financially, as the cumulative
return of the strategy r and non-financially, as the cumulative utility U . These statistics
are reported in tables 5.5–5.8 as well.

First look back at table 5.5 concerning the DM/USD data. As mentioned before, the
three years in the evaluation period are rather different. This is seen e.g. from the fact
that of the deterministic hedging strategies the full hedge strategy resulted in the best
utility in the first year, followed in the second year by the no-hedge strategy while both
are surpassed in the last year by the RW strategy. The deterministic outcomes fluctuate
strongly throughout the years, and are therefore nice for comparison, but cannot be
considered as serious strategies to be implemented by firms for covering their currency
exposure.

From the model based strategies, over the complete period the SV model comes out
first as a basis for providing hedging decisions, with utilities of 21.54 and 7.01 for the
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Figure 5.13: Hedging decisions through time for the Yen/USD data, for γ = −10

risk-tolerant and -intolerant case, respectively. For the risk-tolerant case, in both 1998
and 1999, its returns are close to the maximum returns of the deterministic strategies,
whereas in 2000 the full hedge and the no hedge strategies are left behind. In this last
year of exchange rates staggering wildly upwards, the RW strategy has a better return,
as it does not care at all about risk. With the higher volatility during this period, the
model based strategies tend to hedge more than in the previous period, missing out on
some exchange rate appreciation. With γ = −10 the SV model is still best on average,
with a 3-year utility of 7.01. Though best over the three years together, in each of the
separate years it only ranks second or fourth.

The investor who faces the opposite hedging decision, hedging the DMark exchange
rate from the United States, would be ex post best off using the SV model when he is
risk-tolerant, or the GLL-GARCH model if he is more risk-averse. In the latter case, the
GLL-SV model displays over time a more consistent behaviour than the GLL-GARCH
model, with the consequence that the SV based hedging decision proves to be rather
conservative, especially during the increase in the USD/DM exchange rate in September
1998, July 1999 and December 2000. On the other hand, the strategy based on the GLL-
GARCH model is on-the-whole more aggressive than the other strategies: In the months
mentioned, GLL-GARCH-based gains are larger, but also the losses can be considerable,
e.g. at the end of March 2000 the GLL-GARCH strategy is the only one loosing almost
2% of the return over just 4 days.

In section 5.6.2 we saw that with the Yen/USD returns it was harder to get a good
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fit to the data. The GLL-GARCH-Student-t model, with the highest marginal likelihood,
displayed a mediocre signal-to-noise ratio of 0.86%. The model with second-best ML score
resulted in a slightly higher S/N ratio, though with a parameter estimate of ρ = 0.55 little
predictive power of the first moment can be expected. Together with the high interest
rate differential, a sensible hedging strategy may be hard to find.

By construction, the theoretical S/N ratio of the Local Level model is infinite. This
model indeed displayed the largest range of prediction of tomorrow’s exchange rate. When
risk is not a problem, the LL model might be considered as the basis for the hedging
decision. As the signal is rather strong here, this model leads to a hedging decision which
switches little and manages to make the best out of the situation. Notice how on average
the amount of hedging H by the RW strategy and by the strategy based on the LL model
are rather similar, but the amount of switching the hedge position |∆H| definitely is not:
When the LL model chooses to hedge, it continues to do so for on average 17 days, whereas
the RW strategy keeps switching every other day.

In section 5.6.1 on the posterior distribution of the parameters, and in section 5.6.2 on
the marginal likelihood, we found that the GARCH model fitted the model a lot better
than the GLL-SV model. Indeed, with γ = 0 the SV model is hardly hedging at all, and
the return is close to the unhedged return. The GARCH is second to the LL model over
the complete evaluation period in attained utility. Ex post the GARCH model seems to
have been rather careful over the year 2000, hedging on average 24% while the exchange
rate appreciated over the year.

With γ = −10, results are harder to interpret. The SV model delivers hedging deci-
sions which appear to be best, according to its utility, even though the model itself had
very little explanatory power. The hedging decision for this model is driven mainly by
the interest rate differential. Note that the GARCH model over 1998–2000 has a higher
return than the SV model; this return however is penalized for the larger variation in the
returns from day to day, resulting in a lower utility. The combination of a high interest
rate differential and stronger risk aversion makes a strategy of doing as little as possible
optimal.

The last setting considered is the situation of the U.S. investor with exposure in Japan,
see table 5.8. In the risk-tolerant case, both SV models choose to hedge virtually all the
time, as they judge the (in this situation, positive) interest rate differential attractive
enough. If the investor is less risk-tolerant, there is even more incentive to hedge, and
returns stay close to the cumulative return of the interest rate differential. Again, the LL
model squeezes out enough of a signal to get some excess return over both the exchange
rate return and the cumulative interest rate differential. In 1998, where there is a lot
of variability in the exchange rate but also larger gains to be made, it hedges 57% on
average. In the more tranquil period of 1999 this percentage is lowered and increased
again over 2000, as in the last year a negative trending of the exchange rate is found.
For the GARCH model the signal is weaker, leading to a more volatile hedging decision
(|∆H| = 0.136 instead of 0.059 for the LL model), but the model is still able to get a good
return. The GLL-Student-t model follows closely. These effects can also be recognized
in figure 5.14, where the cumulative utilities over the three years are plotted of the three
naive and the Local Level and GLL-GARCH strategies.

With γ = −10, the LL model essentially takes the same decisions. However, this time
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Figure 5.14: Cumulative utilities over the years 1998, 1999 and 2000, for the naive strate-
gies and the strategies building on the Local Level and GLL-GARCH models, for the
Yen/USD data with γ = 0. Indicated between parentheses is the ordering of the utilities
at the end of the year.
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the return of 24.3% is only valued at a cumulative utility of 9.5, as days with large gains
are countered by other days with equally large losses, resulting in a negative impact on
total utility. The GLL-GARCH is more conservative, resulting in smaller profits but a
utility which is not much different. At γ = −10 the models which do not (or hardly)
take any risk lead to the highest utility, (approximately) equal to the utility of full-hedge
strategy.

5.7.5 Value-at-Risk and the Sharpe ratio

In sections 5.2 and 5.4.5 two alternative hedging strategies were presented, using the
outcome of the model estimation but not going through a full utility optimization. Table
5.9 reports results for the USD/DM data. Results are given for the total evaluation period
and split out per year. The first column in each panel copies results from table 5.6 for
comparison, on the naive and utility-optimizing hedging strategies. Second and third
columns report the cumulative utility for the Value-at-Risk and Sharpe strategies.

Table 5.9: Cumulative utilities for alternative hedging strategies, for the USD/DM data

Model UOpt UVaR USh UOpt UVaR USh UOpt UVaR USh UOpt UVaR USh
γ = 0 1998–2000 1998 1999 2000

No hedge −14.73 7.65 −15.83 −6.55
Full hedge 4.75 1.47 1.72 1.55
RW Hedge 14.55 4.98 −2.94 12.51
WN 4.64 7.78 7.78 0.78 −0.97 −0.97 1.36 1.72 1.72 2.50 7.03 7.03
LL 8.94 4.32 4.32 2.97 2.28 2.28 −1.43 3.38 3.38 7.40 −1.34 −1.34
GLL 11.25 −0.51 −0.51 5.92 7.25 7.25 −1.32 1.79 1.79 6.65 −9.55 −9.55
GLLGA 5.70 −2.02 −3.29 6.33 −2.33 5.50 −3.87 3.24 −3.15 3.24 −2.93 −5.64
GLLSV 11.56 19.21 −5.80 7.19 9.13 3.68 −1.07 6.69 −2.33 5.45 3.40 −7.16
GLLT 9.33 −3.79 −4.31 4.31 2.62 2.62 −2.08 2.18 1.66 7.11 −8.59 −8.59
GLLGAT 8.84 4.94 −3.59 6.32 −1.67 5.34 −3.80 2.85 −0.96 6.32 3.76 −7.97
GLLSVT 9.29 18.67 1.54 5.87 6.53 3.72 −1.38 6.85 0.14 4.79 5.29 −2.32
γ = −10 1998–2000 1998 1999 2000

No hedge −29.27 3.87 −19.84 −13.31
Full hedge 4.75 1.47 1.72 1.55
RW Hedge 8.26 3.12 −4.53 9.67
WN 4.72 4.79 4.79 1.39 1.52 1.52 1.70 1.72 1.72 1.63 1.55 1.55
LL 6.10 2.45 2.45 2.05 2.23 2.23 −1.41 1.76 1.76 5.46 −1.54 −1.54
GLL 6.21 −1.94 −2.37 1.74 1.42 1.42 1.25 0.76 1.29 3.22 −4.12 −5.08
GLLGA 8.44 4.14 3.46 4.21 2.19 2.13 0.18 1.39 3.38 4.04 0.55 −2.05
GLLSV 4.17 13.29 1.28 1.22 2.11 1.05 0.92 3.55 0.25 2.02 7.62 −0.02
GLLT 5.05 4.19 5.67 1.30 1.22 1.22 1.23 1.97 1.97 2.51 0.99 2.47
GLLGAT 4.78 4.44 1.68 1.32 1.21 1.37 0.32 2.80 0.72 3.15 0.43 −0.41
GLLSVT 4.58 15.12 4.23 1.33 −0.68 1.43 1.21 1.72 1.59 2.04 14.08 1.22

Note: Reported are the utilities of the deterministic strategies, followed by utilities based on estimat-
ing the exchange rate models. Reported are UOpt, the utility following from optimizing the utility
function (from table 5.6) and results UVaR and USh from the Value-at-Risk and Sharpe decision
strategy.
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The results are ambiguous. For both SV models (which display best marginal like-
lihood scores on this data set), the VaR strategy outperforms over the three years the
utility-optimizing strategy. With γ = 0, the gains are made in 1998 and 1999, with a per-
formance not as good as the utility-based strategy in 2000. For the risk-averse case, the
reverse is true: Clear outperformance in 2000, little difference in earlier years. Striking is
also the difference in results between the GLL-SV and GLL-GARCH-Student-t models:
Though the marginal likelihoods of the models are close, and the hedging results after
utility optimization are similar, the VaR strategy yields 14.27 resp. 8.85 points higher
utility for the GLL-SV model than for the GLL-GARCH-Student-t model.

For the DM/USD and Yen/USD data sets (results not reported), all VaR and Sharpe
results over the complete period were either close to the optimal results, or far worse (e.g.
the utility of the GLL-SV model on DM/USD data with a risk-averse investor dropped
from 7.01 to -28.96 for the VaR strategy and -12.16 for the Sharpe strategy). For USD/Yen
data, UVaR results were better for both GARCH-models, and slightly better for both the
SV models, compared to the utility-optimizing results. With γ = 0, the utility of the
Sharpe strategy even surpassed the utility of the VaR hedging methodology.

The background of these odd results for the VaR and Sharpe decision framework is
unclear. One possible explanation is our choice of calibrating the cut-off level of maximum
Value-at-Risk and the limiting level of the Sharpe ratio in such a way that the average
hedging percentage equalled the utility-optimizing result. This topic is left for further
research.

5.7.6 Other viewpoints on the results

In the previous section, the main classification of results was according to the utility
attained by the hedging strategies based on the different models. Though important, the
utility is not the only statistic the applied manager looks at.17 This section focuses on the
influence of the value of the risk-aversion parameter γ on the results, it briefly investigates
the maximum losses and gains which are incurred for each of the strategies, and compares
the utility to the frequency and size of change of the hedging position.

To start with the influence of γ, figure 5.15 depicts the level of utility attained for
γ ∈ [−20, 0.5], for the deterministic hedging strategies and for the GLL-GARCH and the
GLL-SV based strategies. The data used in this graph are for the DM/USD exchange
rate. The top-left panel of the figure displays the results for all years together, whereas
the other panels show the behaviour of the cumulative utility for different values of γ
throughout the evaluation period.

The value of the risk aversion parameter does not influence the utility attained by the
full-hedge strategy, as with this strategy there is no risk. The RW strategy is deterministic
as well, and therefore attains the same return irrespective of the value of γ. The lower the
risk aversion parameter, the lower also the utility of the RW strategy, as the actual risks
are valued more negatively. A similar effect occurs with the model based strategies: Lower
values of γ are connected with lower values of the utility. Again, we see how different
the three years in the evaluation period have been: In 1998, it was hardly possible to do

17It is not even clear that each fund manager hás an explicit, unidimensional utility function to be
maximized, taking the risks into account.
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Figure 5.15: Cumulative utility attained throughout the evaluation period for a range of
risk-tolerance parameters, using DM/USD data

better than to hedge fully. The model-based strategies, which indeed hedge considerably
for low values of γ but only around 40% for γ = 0, reach a similar utility for all values
of γ, not running into large losses over this year. In 1999, the exchange rate went up in
a manner that the RW strategy could not improve on. If the investor is willing to take
the risk, a similar return can be obtained using the models, but for a more risk-averse
investor, naturally the returns get closer to the return of the fully hedged case. In 2000,
the RW strategy ex post is proved to be most successful, but still the models reach higher
utility levels than could be arrived at by betting only on exchange rate appreciation.

From these plots, the model based hedging strategies show to be a valid alternative
to the naive hedging strategies, curbing the risks of years with larger depreciation, while
not neglecting opportunities of possible gain from the exchange rate.

Finally, table 5.10 reports for the case of the risk-averse investor in the U.S. with
investments in Germany, what the maximum losses and gains over a three month period
have been (columns 1 and 2), for each of the naive and model based strategies. The last
two columns report the cumulative utility of the strategy and the utility divided by the
amount of changing the position, |∆H|, that was needed. Again we see that the LL model
is rather extreme, leading to a maximum loss of 5.5%, even larger than the maximum loss
of the RW strategy. The other model-based strategies are well able to cover the down-side
risk. Differences with the RW case are huge when the amount of switching position is
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Table 5.10: Losses and gains for the USD/DM data, for γ = −10
Model 3M-L 3M-G U U/|∆H|
No hedge −12.85 12.86 −29.27
Full hedge 0.31 0.49 4.75
RW Hedge −4.82 9.18 8.26 0.024
WN 0.24 0.49 4.72 12.076
LL −5.46 9.02 6.10 0.150
GLL −0.62 3.14 6.21 0.151
GLLGA −2.39 7.20 8.44 0.112
GLLSV −0.55 1.54 4.17 0.078
GLLT −0.16 1.83 5.05 0.186
GLLGAT −0.87 2.73 4.78 0.088
GLLSVT −0.32 1.28 4.58 0.115

Note: Reported are the maximum losses and gains over a
three month period, and the utility U , both in total and
expressed as the utility attained per unit change of position,
U/|∆H|. Data concerns the USD/DM exchange rate with
γ = −10 over the period 1998–2000.

taken into account. The utility of the RW strategy shrivels to a tiny 0.024 utility for each
time the hedging position is changed. The model-based strategies have utilities of around
0.8-0.15 for each complete turnover of the hedging position. Therefore, when transaction
costs come into play, as they do in practice when there is a frequent change in position,
the RW strategy has to be discarded as not profitable.

5.8 Concluding remarks

During the past twenty years many models have been developed for the description of
financial time series. Time varying variances are one of the most outstanding features of
financial time series, and, as a consequence, much attention has been paid to modelling
the variance of these series. However, many decision problems in finance depend on the
full probability density of financial returns. In this paper we focused on currency overlay
strategies for hedging foreign exchange rate exposure for an international investor. We
investigated a wide range of competing models that describe the most prominent features
of the exchange rates between Germany and the U.S. and Japan and the U.S.

Special attention has been given to describe the mean of exchange rate returns. The
motivation for investigating models that integrate time varying means and variances
springs from observing exchange rate time series. Besides the feature of time varying
variances, there is some evidence that these series exhibit local trend behaviour, i.e. pro-
longed periods of exchange rate appreciation or depreciation. Capturing this feature may
lead to better risk and return characteristics of hedging strategies. When estimating our
models we use Bayesian estimation methods.

In section 5.7 we presented the results of various hedging strategies for four different
currency positions. The returns and utilities of adopting naive or model-based hedging
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strategies were analysed over the period 1998–2000. The character of the fluctuations
of the DM/USD and Yen/USD exchange rates were found to be quite different. The
exchange rate of the dollar with the DMark was best modelled using a GLL-Stochastic
Volatility model, whereas in the case of the Yen/USD exchange rate the heavy tails of
the Student-t density, possibly combined with a GARCH process for the varying variance,
were most important.

For the DM/USD rate, modelling time varying features, and using a power utility
objective function, pays off in terms of risk-adjusted returns for a moderately risk averse
currency overlay manager. Ex post, in each of the years one of the deterministic hedging
strategies (no hedge, full hedge or a Random Walk hedge) performed better, but ex
ante there is no way to choose between these naive strategies. Hedging the Japanese
yen against the dollar and vice versa proved more difficult. Among practicioners it is
known what we found in sections 5.6.1-5.6.2 on the posterior densities and the marginal
likelihoods: This exchange rate is hard to model. As the interest rate differential between
the U.S. and Japan was large over the evaluation period, it either hardly made sense
to hedge (for the Yen/USD case) or to take the risk of a depreciation when a risk-free
return of 5-6% on a yearly basis could be gained (USD/Yen). A risk-tolerant currency
overlay manager can choose to hedge according to the optimal decision based on the Local
Level model: Though the model is not best at fitting the data according to its marginal
likelihood, it magnifies any signal encountered in the data and hedges accordingly with
good returns. A risk-averse investor in this market is better off adapting a strategy based
on the GLL-GARCH or GLL-Student-t model.

Other findings in this chapter are that, first, for decreasing risk tolerance the decision
to use one model or the other is less relevant, as in the limit of γ → −∞ all models choose
to hedge all the time. Secondly, when modelling is worthwhile, it appears that there is
not one model that is uniformly superior for all criteria. The marginal likelihood score of
a model is however a good indicator of the model’s hedging performance. Thirdly, using
these models to construct predictive densities only to compute a hedging decision based
on the Value-at-Risk or the Sharpe ratio is not useful, at least not in the present setup.
The utilities attained by these strategies fluctuate strongly over the years, the models,
and the exchange rates used. In the USD/DM case, the GLL-SV based VaR hedging
strategy appears to perform better than the utility optimizing strategy, but in other cases
both the VaR and Sharpe strategies tend to be worse. Fourth, care has to be taken with
the interpretation of the results. Even though the evaluation period included three years
quite distinct in behaviour of the exchange rates, results still can be strongly influenced
by large shocks on a small number days. As returns of 1% or more are not uncommon,
with extremes reaching exchange rate returns of 5% in a single day, an incorrect decision
on the wrong day can spoil the final outcome of a hedging strategy.

The topic of integrating models for risk and return into a framework for financial
decision making can be extended in several ways. First, the AR(1) structure that we
applied in this paper for the unobserved time varying mean describes the local trend
behaviour of the exchange rate levels, but other models may be investigated as well. For
instance, a finite mixture model or the RiskMetrics model (see JP Morgan 1997) are
obvious candidate models for comparison.

Secondly, the models could be extended with information from other economic vari-
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ables. Within the exchange rate literature much attention has been given to the uncovered
interest rate parity and/or the purchasing power parity as building blocks for predicting
exchange rates. References to this field include Mark (1995), Bansal (1997), Bansal and
Dahlquist (2000) and Evans and Lewis (1995).

Thirdly, the final hedging results can depend strongly on a few days with large absolute
returns. The consequences of decision making may be investigated over longer periods, or
comparing subperiods in greater detail. Results may be contrasted to simulation results,
where the data generating process is known and the effect of changing the hedge strategy
is more purely observed.

Fourth, one may perform the hedge decision for several currencies simultaneously.
An obvious advantage of this approach is that hedging costs could become lower due to
diversification. Crucial input for making hedge decisions in this way is the availability of
multivariate time series models for exchange rate returns; work in this field has been done
by Aguilar and West (2000). Another possibility is to incorporate the currency hedging
decision in portfolio choice models. This approach steps away from the currency overlay
principle that we pursued in this paper, and integrates the hedging decision into the
international allocation problem. Bayesian references on portfolio choice include Jorion
(1985), Jorion (1986), Geweke and Zhou (1996), McCulloch and Rossi (1990), McCulloch
and Rossi (1991), and Kandel, McCulloch and Stambaugh (1995).

Fifth, the alternative hedging strategies using the Value-at-Risk and the Sharpe ratio
need to be investigated further. What is the reason for the results differing so strongly
between years and between exchange rates?

Finally, it is of interest to extend the decision framework and allow for currency options
as an instrument in the decision process. One may allow for the hedging parameter to be
outside the unit interval. Hence, managers may use currencies as an investment in their
own right.
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5.A Gibbs sampling with data augmentation

In this chapter a sample from the posterior distribution of the parameters was needed.
For the smaller models, a Metropolis-Hastings algorithm could have been applied, but the
choice was made to sample from all models using a Gibbs sampling procedure with data
augmentation. Details on the Gibbs sampling algorithm in general are given in section
4.2.5 and the references mentioned there. The example in section 4.5 presents a Local
Level model with Student-t errors, and clarifies on the specific sampling procedure for
this model. In this appendix, we elaborate on the methods used to attain conditional
normality in the SV model, and list the full conditional distributions for the parameters.

For reference, the basic model presented in section 5.3 is

st = c+ µt + σεεt, εt ∼ N (0, ht) , (5.8′)

µt = ρµt−1 + σηηt, ηt ∼ N (0, 1) , t = 1, .., T. (5.9′)

For ease of notation we introduce a varying variance component ht in the observation
equation (5.8′). By construction, ht has expectation 1, such that the unconditional vari-
ance of the observation equation is σ2ε .

The mean return c is only used in conjunction with the White Noise model; for this
model, the varying mean process if fixed at zero (µt = ρ = ση = 0), and the variance is
constant (ht = 1). The LL and GLL models keep the variance constant as well. Model B,
the LL model, incorporates a Random Walk mean process µt, obtained by setting ρ = 1.
The GLL-based models allow ρ to take on other values. The parameter is not a priori
limited to the range [0, 1]. With model D, the GARCH variance is approximated (see
Harvey et al. 1992) using

hGARCHt = (1− δ − α) + δhGARCHt−1 + α (Eεt−1)
2 . (5A.1)

With pure GARCH models, without the state space component, the true lagged dis-
turbance εt−1 can be filled in instead of the filtered disturbance Eεt−1 used here. The
approximated GARCH variance is expected to be smoother than the pure GARCH vari-
ance, though the effect is small.

For the Stochastic Volatility model we use ht = exp(hSVt ), with

hSVt = φhSVt−1 + σξξt, ξt ∼ N (0, 1) . (5.13′)

The Student-t disturbances are included using data augmentation (see section 4.5.2), by
sampling using ht = z2t , zt ∼ IG-1 (α = ν/2, β = 2/(ν − 2)). The GLL-GARCH-Student-t
is a combination of models D and F, with ht = z2t × hGARCHt . Likewise, the GLL-SV-
Student-t model puts ht = z2t × hSVt .

Most of the conditional densities can be derived in a straightforward manner, following
the lines in section 4.5. All the sampling densities are reported in table 5.11. The only
step which is less intuitive is the sampling of hSVt in models E and H.

For the SV model, the observation equation (5.8′) can be written as

st = µt + σε

√
exp(hSVt )εt (5A.2)
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which is clearly nonlinear in hSVt . In Harvey, Ruiz and Shephard (1994) the equation is
linearized by taking squares and logarithms,

log(st − µt)2 − log σ2ε = hSVt + log ε2t . (5A.3)

Write y∗t = log(st−µt)2−log σ2ε and vt = log ε2t ∼ f(vt). The first way to operationalize the
SV model, in Harvey et al. (1994), was to use quasi-maximum likelihood, approximating
the density f(vt) using a normal density. In Kim et al. (1998) (and more recently in
Chib, Nardari and Shephard 2000), in a Bayesian paper, the density is approximated
more precisely using a mixture of 7 normal densities, i.e.

f(vt) ≈
7∑

i=1

Ist=ifN (vt;µst , σ2st). (5A.4)

To further improve on this approximation, they use an importance sampling step to get rid
of small discrepancies between f(vt) and the mixture. In the underlying chapter we used
the mixture of normal densities without afterwards calculating the importance weights,
as this would have meant a rather large calculational effort on top of a sampling scheme
which already is computationally intensive, with little improvement expected from such
effort.

Augmenting the sample space with the vector of indices st into the mixture density,
normality is regained. To sample from these indices, the discrete density p(st = i|y∗t , ht)
is evaluated for i = 1, .., 7. Drawing from the discrete density is straightforward.

Afterwards, conditional on the st, the system

y∗t = hSVt + vt(st), (5A.5)

hSVt = φhSVt−1 + σξξt (5A.6)

is a Gaussian state space model along the lines of (5.8′)-(5.9′), and the simulation smoother
(De Jong and Shephard 1995) can be used to sample a new vector of hSVt .

The full conditional posterior densities which are needed in the Gibbs sampling al-
gorithm are given without derivation in table 5.11. For the GARCH parameters σε, δ, α
and for the degrees-of-freedom parameter ν no closed form expression of the conditional
density is available. Therefore, we use in these steps a Metropolis-within-Gibbs sampler
(see Koop and Van Dijk 2000, Zeger and Karim 1991, and section 4.3.1). Note that the
priors in table 5.1 in section 5.4.1 have been applied.
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Table 5.11: Conditional posterior densities

Parameter In model Full conditional density

c A N
(
ĉσ2
c+µcσ̂

2
c

σ2
c+σ̂

2
c
, σ̂2

cσ
2
c

σ2
ρ+σ̂

2
ρ

)
with ρ̂ and σ̂2ρ the least squares estimate of

ρ with corresponding variance.
µ B, C, D, E,

F, G, H
Use the simulation smoother, see De Jong and Shephard (1995).

ρ C, D, E, F,
G, H

N
(
ρ̂σ2

ρ+µρσ̂
2
ρ

σ2
ρ+σ̂

2
ρ
,
σ̂2
ρσ

2
ρ

σ2
ρ+σ̂

2
ρ

)
with ρ̂ and σ̂2ρ the least squares estimate of

ρ with corresponding variance.

σε B, C, E, F,
H

IG-1
(
α = T

2 + αε, β = 2
/(∑ (yt−µt)2

ht
+ 2

βε

))
.

σε, δ, α D, G Use MH sampling. The conditional posterior is proportional to
the likelihood from the Kalman filter equations and the prior.

ση B, C, D, E,
F, G, H

IG-1
(
α = T

2 + αη, β = 2
/(∑

(µt − ρµt−1)
2 + 2

βη

))
.

φ E, H N
(
φ̂σ2

φ+µφσ̂
2
φ

σ2
φ
+σ̂2

φ

,
σ̂2
φσ

2
φ

σ2
φ
+σ̂2

φ

)
with φ̂ and σ̂2φ the least squares estimate of

φ with corresponding variance.

σξ E, H IG-1
(
α = T

2 + αξ, β = 2
/(∑(

hSVt − φhSVt−1
)2

+ 2
βξ

))
.

st E, H The indices into the mixture in the distribution of ln ε2t are dis-
cretely distributed.

ht,SV E, H From the simulation smoother on the transformed model (5A.5)-
(5A.6).

zt F, G, H IG-1
(
α = ν+1

2 , β = 2
/(

(ν − 2) + (yt−µt)2

σ2
εht

))
.

ν F, G, H The posterior is not of a known form. It is proportional to∏
t IG-1

(
zt;α = ν

2 , β = 2
ν−2

)
× Cauchy(ν;µ = 0; s = 1). Apply

a MH step to sample a new value of ν.
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Conclusions

6.1 General remarks

Analysing time series can be hard, as empirical series hardly ever fit straight into a
standard class of models. Knowledge of the theory behind time series is a prerequisite for
attaining fruitful results. Knowledge however is a necessary, not a sufficient condition for
good research. There are too many different ways of approaching an empirical problem
to allow a researcher to try them all, it is more of an art that is needed for making the
right modelling decision at the right occasion.

This thesis intends to combine the art of choice with the knowledge of the advanced
methods of time series analysis. It presents results for models on inflation and exchange
rates. In both cases, a large toolbox containing fractionally integrated models, state space
models, advanced Bayesian sampling methods and elaborate evaluation of estimation
results and of the consequences for optimal decision making was needed.

The following sections describe briefly the conclusions that are drawn in this thesis.
Section 6.2 summarizes the findings for the modelling of the inflation rate series in chap-
ters 2 and 3. In section 6.3 results for the chapter on Bayesian simulation methods are
described. A final section of the thesis, section 6.4, looks back at chapter 5, on hedging
the exchange rate.

The end of the thesis definitely does not signify that research on these topics has
come to an end. Each of the sections describes some possibilities for future research on
improving the models and the methods.

6.2 Inflation rates

Chapters 2 and 3 look into the estimation and prediction of inflation rate series. Inflation
is the key example in the literature of a series with long memory characteristics: Even
after 40 months, the effect of a shock has not yet died out, a clear indication of fractional
integration.1

1Such an autocorrelation function can partly be mimicked using a very high AR coefficient, partly
offset by a large negative MA root. However, with inflation the fit of ARIMA models improved much by
allowing for fractional integration.
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The first of the two chapters investigates the matter of fractional integration of the
inflation in G7 countries more profoundly. It was known beforehand that a number of
mean shifts may spuriously lead to concluding that a series is non-stationary. Similarly
a break in the series can increase the evidence for fractional integration. This effect is
indeed found in a simulation exercise. The Wald and Lagrange Multiplier tests can be
used for testing the significance of the breaks. We find in the simulation that the Lagrange
Multiplier test has power for detecting a level shift, though some size distortion occurs.

For the G7 countries, we estimate the ARFIMA model including zero, two or four level
shifts around the oil crises. Inclusion of the level shifts is significant for Canada, France,
Italy, the United Kingdom and the United States. Inflation rates in Japan and Germany
do not seem to react in the same way, or at the same time, to the oil crises. Two shifts, at
1973:07 and 1982:07, suffice to take out the largest change in the mean inflation, adding
two extra shifts for the period in between the two oil crises does not alter results strongly.
Allowing for the mean shifts lowers the amount of fractional integration found in the data,
leading to an insignificant parameter d for Canada and Japan. For other countries, the
degree of integration decreases considerably.

Chapter 3 looks into the effect of the degree of integration on U.S. core inflation
forecasts. For short horizons, predicting not more than 3 months ahead, the difference
between short memory ARMA(1,1), non-stationary ARIMA(1,1,1) and fractionally inte-
grated ARFIMA(1,d,1) models is small. At longer horizons, the effect of the degree of inte-
gration on the width of the forecast intervals becomes more important. The ARIMA(1,1,1)
model delivers a confidence interval for the prediction which is too wide. The results for
the ARFIMA(0,d,0) model are more realistic.

The models make use of explanatory variables to improve on the forecasts. It is found
that for short horizons, the forecast precision is slightly improved by using the short term
interest rate as a leading indicator for inflation. For longer horizons, none of the examined
variables contains clear predictive power for the inflation rate.

In the recursive estimation of the parameters of the models we find a robust, constant
estimate of d for the ARFIMA(0,d,0), with and without explanatory variables. For the
ARMA(1,1) and ARIMA(1,1,1) models the estimates for the ARMA parameters φ and θ
change considerably when the sample is enlarged from 1960:04-1984:01 to 1960:04-1999:11.
For all the models we find an indication that the variance of the residuals in the later
part of the sample was lower than in the months before January 1984. Downweighting
earlier observations, which essentially corresponds to changing the variance, improves the
results for the tests of correct unconditional coverage of the forecast intervals.

In the discussion of chapters 2 and 3 we touched upon the following points open for
improvement:

i. Endogenous timing: It is claimed in chapter 2 that fixing breakdates exogenously
gives a sufficient approximation to the timing of the moment the mean of inflation
shifted. Would an endogenous selection of breakpoints, or even a smooth transition
mechanism for moving between regimes, lead to further lowering of the degree of
integration? Preliminary results, by ourselves and by other authors (Hsu 2000), give
the impression that the analysis in chapter 2 is quite close to being ‘optimal’, in the
sense that the data does not contain much more information for selecting jointly the
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timing, the size, and the shift-mechanism of the breaks, together with estimating
the degree of integration.

ii. Endogenous weighting: Similarly, chapter 3 uses an exogenous weighting scheme
for downweighting past observations. For the research question of the chapter,
‘What model delivers reasonable prediction intervals for future inflation?’, the pre-
cise weighting scheme did not matter much. Further analysis on this topic is however
needed.

6.3 Bayesian simulation methods

While chapters 2 and 3 have a classical statistical background, in chapters 4 and 5 the
switch to Bayesian methods is made. Chapter 4 lays the groundwork for chapter 5 by
reviewing a range of sampling methods, clearly describing the links between the meth-
ods. Section 4.3.4 presents the newly devised Adaptive Polar Sampling (APS) method
(Bauwens et al. 2000). On the example in section 4.5 the APS algorithm delivers a sam-
ple with very little correlation, though this comes at the cost of a computing time which
was higher than for the Metropolis-Hastings algorithm, of the same order as the Gibbs
sampling algorithm.

Section 4.4 summarizes a collection of methods for computing the Bayesian marginal
likelihood of a model. This marginal likelihood is the basis for comparisons between two
models using the posterior odds. The different methods are compared for their accuracy
in the example in section 4.5. For the model considered, with a relatively low number
of parameters, the simple method based on comparing the LaPlace or kernel-smoothed
approximation of the posterior density to the height of the posterior kernel works well
for computing the marginal likelihood. The chapter provides quantitative indications of
the accuracy of the computational methods, opposed to the comparisons available only
in qualitative terms in the literature until now.

The theory of sampling methods has matured tremendously over the last decade.
With many methods available, the researcher can pick at will a simulation method which
is convenient for the problem at hand. Chapter 4, and especially section 4.5, intend
to provide a comparison between the algorithms on the basis of their ease of use, their
efficiency and their accuracy. Improvement can be made on many fields. In connection
to this chapter, two interesting paths for continuing research are:

i. Efficiency: In section 4.3.4 the Adaptive Polar Sampler is introduced. In the ex-
ample at the end of the chapter it delivers a sample of the posterior density of low
correlation, though at the cost of a relatively large computational effort. Research
continues on models where APS has a comparative advantage over e.g. Metropolis-
Hastings. This is expected to be the case especially for multimodal posterior densi-
ties or models with parameter vectors of a moderately large dimension.

A different line of research is to combine the one-dimensional numerical quadrature
of APS with n − 1 dimensional importance sampling, instead of the Metropolis-
Hastings step which is used at present. Such a combination, called the APIS algo-
rithm, may lead to slightly higher efficiency.
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ii. Accuracy: Marginal likelihood calculations are no longer as exotic as they used to
be about five years ago. For the low dimensional model in the example in section
4.5, using LaPlace or kernel approximations leads to quick, simple and quite precise
marginal likelihood computations. A further comparison of the behaviour of the
computational methods on more elaborate models is interesting.

6.4 Hedging currency risk

Chapter 5 is the most elaborate chapter of this thesis. It uses the Bayesian methodology of
chapter 4 to construct optimal hedging decisions for currency exposure under (parameter
and other) uncertainty. The hedging decisions are taken by optimizing a power utility
function, using as input the predictive density of tomorrow’s exchange rate return and
the difference between the home and the foreign interest rates. Predictions of the future
exchange rate are made on the basis of eight models. These eight models each capture
a different combination of the aspects of returns on exchange rates, such as the time
variation in the trending of the value of the currency, the variation in volatility, and the
fatness of the tails of the disturbances. Parameters in the models are estimated using
Bayesian sampling methods.

All this work is done in order to hedge the currency risk of a large investor, with
exposure to risk due to investments denoted in a foreign currency. With the posterior
density of the parameters we optimize the expected utility over possible hedging decisions,
ranging from not hedging at all to hedging the currency exposure fully.

The two extreme hedging positions have their respective returns and utilities. When
the investor chooses never to hedge, he hands over his fate to the prevailing winds at the
sea of exchange rates; with the other extreme, not taking any risk, he obtains a return
equal to the interest rate differential between the home and foreign countries. Ex post, at
the end of a period (e.g. a year), it is easy to see which strategy would have worked better,
but ex ante it is of course unknown if the home currency will appreciate or depreciate.

Model-based decisions are given in the chapter for the DM/USD and the Yen/USD
exchange rates, and vice versa for the USD/DM and USD/Yen rates. The returns of the
DM rate with respect to the dollar are best modelled using a Generalized Local Level
model with Stochastic Volatility (GLL-SV). The most important characteristic of these
exchange rate returns is the predictability of the variability of the returns over time,
with some extra gain made by including local trending behaviour of the exchange rate.
Japanese Yen rates are harder to predict. Marginal likelihoods (section 5.6.2) indicate
that the heavy tails of a Student-t density for the disturbances are most important,
with a further improvement for GARCH-type varying variance. Using the Student-t
density implies that the variance of the predictive density is constant. Therefore the
predictive density cannot discriminate between periods of low and high risk, and model-
based hedging decisions for the Yen/USD currency are expected to add less value for an
investor than using the utility-optimizing hedging strategy on the DM/USD exchange
rate returns.

The analysis of the resulting returns and utilities of the hedging decisions in section
5.7 confirms the results of the marginal likelihood computations. Over the years, with the
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GLL-SV model for DM/USD (and also, but less convincingly so, for USD/DM2) exchange
rate, consistent hedging decisions are taken. The model chooses to hedge in periods of
increased risk and downward trending exchange rates. The Yen/USD exchange rate is
found to be harder to model. The model which fits the data best according to the marginal
likelihood criterion displayes a signal-to-noise ratio of S/N= 0.86%, whereas in the case of
the DM/USD data the size of the variance of the signal is 2.3% of the variance of the noise.
Furthermore, the interest rate differential between the U.S. and Japan was large (around
6% on a yearly basis) during the evaluation period, leading to a strong incentive to either
hedge completely or not at all, depending on the direction of the currency exposure.
A risk-tolerant investor can choose to hedge according to decisions based on the Local
Level model. This model is not best according to the marginal likelihood, but has by
construction the largest (theoretically infinitely large) signal-to-noise ratio, and therefore
is one of the few models which takes a decision to go against the interest rate differential
on a larger number of days. For a risk averse investor, a model like the GLL-SV leads to
a higher utility over the three years. When a U.S. based investment firm is considering
to hedge exposure in Japan, it is almost always better to hedge, as the interest rate
differential gives a risk-free return of 6% per year.

The details of the analysis are provided for both a risk-tolerant (with risk-tolerance
parameter γ = 0) as for a risk-averse (γ = −10) investor. For other values of the risk-
tolerance parameter only graphical results on the cumulative utility are presented. The
value of γ influences the final utilities and returns strongly, even more than the precise
choice of the model. For an extremely risk-averse investor (γ → −∞), results tend to
the results derived from the deterministic strategy of hedging continuously. For values of
the parameter γ closer to zero, investors have the incentive to take more risk, resulting in
hedging results being more similar between models as well. For intermediate values of γ,
the power of the models for supporting a hedging decision are best appreciated.

Chapter 5 also considers alternative hedging strategies. A ‘Random Walk’ strategy,
hedging tomorrow’s return whenever the exchange rate is going down, leads to reasonable
returns but excessive changes in the hedging position. Strategies based on a limiting
Value-at-Risk or on the Sharpe ratio between expected return and the predicted stan-
dard deviation of the return did not lead to stable utilities throughout the years of the
evaluation period for the models at hand.

The chapter intends to answer the most elaborate set of research questions in this the-
sis, searching for a good model for exchange rate returns, simulating from the posterior
densities of the models, computing the marginal likelihood for model comparison, evalu-
ating the predictive densities, optimizing a utility function over the hedging decision and
judging the results for four different currency positions. While answering these questions,
many others are left unanswered. The list below presents an incomplete set of open roads
for a continuation of research concerning chapter 5.

i. Limiting risk: The hedging strategies based on Value-at-Risk and on the Sharpe
ratio lead to erratic results over the years of the evaluation period. This seems to be
caused by our method of calibrating the limiting risk. A better method of choosing

2Note that the models we use are symmetric, but the utility function (for a risk tolerance parameter
γ 6= 0) and the resulting hedging decision are not.
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the limits has to be introduced.

ii. Multivariate analysis: The models used for the exchange rate returns are uni-
variate. Multivariate (factor) models could strengthen the signal, possibly leading
to better hedging decisions. Multivariate models also allow for evaluating the utility
attached to a decision concerning a portfolio of investment options, instead of the
univariate decision of choosing the optimal hedging ratio.

iii. Updating: At present we do not update the posterior density of the parameters
of the exchange rate return model as new observations become available. When the
evaluation period is short, this is of little consequence. With an evaluation period
of three years, a slight modification of the results can be expected if the posterior
sample is updated at e.g. the end of each year.

iv. GARCH: In the GARCH models as described in section 5.3 we use the expectation
of the residuals (Harvey et al. 1992) for updating the variance instead of the true
residuals, as in the original framework of Engle (1982). The precise implication
of this change needs further research, though preliminary results indicate that the
difference has little influence on the outcomes of the hedging decisions.
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Nederlandse samenvatting
(Summary in Dutch)

Inleiding

Eén van de onderwerpen binnen de Econometrie is het zoeken naar de structuur die
schuil gaat achter macroeconomische reeksen. Dit proefschrift gaat in op twee van der-
gelijke reeksen, namelijk inflatie en wisselkoers reeksen. Uiteraard zijn dergelijke reeksen
al vele malen geanalyseerd, met wisselend resultaat. In dit proefschrift wordt gepoogd
op nieuwe wijze de data te analyseren, waarbij speciaal aandacht is voor modellen met
tijdsvariërende parameters. Uit de gereedschapskist van de econometrie worden diverse
technieken tevoorschijn gehaald die de beste (lees: meest gedetailleerde, waarheidsgetrou-
we) beschrijving beloven te leveren van de structuren die aan de inflatie en wisselkoers
reeksen ten grondslag liggen.

Hierna worden de diverse hoofdstukken, met hun conclusies, kort beschreven.

Inflatie

Hoofdstuk 2, gebaseerd op Bos, Franses en Ooms (1999), beschrijft een model voor de
inflatie in de G7 landen (Canada, Frankrijk, Duitsland, Italië, Japan, Verenigd Koninkrijk
en de Verenigde Staten). Onder economen en econometristen zijn de meningen verdeeld of
de inflatie (en ook andere) reeksen wel of niet stationair zijn rondom een vast gemiddelde.
Niet-stationariteit van een reeks wil zeggen dat de reeks geen gemiddelde heeft maar alle
kanten uit kan lopen (zie bijvoorbeeld Nelson en Plosser (1982), waar deze discussie over
het detecteren van zogenoemde eenheidswortels begonnen is).

Een tussenweg die veel helpt bij het modelleren van inflatie is het toelaten van fractio-
nele integratie (FI). Deze fractionele integratie wordt bereikt door in het AutoRegressive
Integrated Moving Average (ARIMA) model van Box et al. (1994), dat geschreven kan
worden als

Φ(L)(1− L)dyt = Θ(L)εt,

Φ(L) = 1− φ1L− · · · − φpLp,
Θ(L) = 1 + θ1L+ · · ·+ θqL

q,

εt ∼ i.i.d.(0, σ2ε )

(1.1′)

toe te laten dat de parameter d, die de mate van integratie modelleert, ook niet-gehele
waarden aanneemt (zie de introductie, sectie 1.2 en hoofdstukken 2 en 3 voor een nadere
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uitleg van het ARFIMA model). Het resulterende ARFIMA model wordt ook een lang-
geheugen model genoemd, aangezien het effect van een schok in de reeks bij deze modellen
slechts zeer langzaam wegebt. Figuur 3.1 op pagina 33 bijvoorbeeld toont in het middelste
paneel de autocorrelatie van de U.S. core inflatie; te zien valt hoe de correlatie slechts
langzaam uitdooft.

In inflatie reeksen zijn er enkele waarnemingen die achteraf een zeer langdurig effect
gehad blijken te hebben, namelijk de waarnemingen rondom het begin en einde van de
oliecrises. Hoofdstuk 2 onderzoekt, eerst in een simulatie, wat het effect is van een ver-
anderend gemiddelde van de reeks op de schatting van de parameter d, die de graad van
integratie weergeeft. Vervolgens wordt voor de maandelijkse inflatie reeksen van de G7
landen een variërend gemiddelde toegelaten in het model. Uit de simulatie blijkt dat het
veronachtzamen van een verandering in het gemiddelde een te hoge schatting voor d ople-
vert. Voor de G7 landen vinden we dat de mate van integratie sterk daalt, zo sterk dat bij
Canada en Japan er geen significante fractionele integratie meer overblijft (d̂ ≈ 0). Om
dit effect te bereiken zijn in principe twee breuken in het gemiddelde, in juli 1973 en juli
1982, voldoende. Het blijkt vrij weinig uit te maken voor de parameter d om twee extra
veranderingen van het gemiddelde, tussen de twee oliecrises in, in juli 1976 en januari
1979, toe te staan.

Het daaropvolgende hoofdstuk, hoofdstuk 3, bouwt voort op deze resultaten (gepubli-
ceerd als Bos, Franses en Ooms 2001). Het schatten van modellen voor inflatie op zichzelf
kan een interessante exercitie zijn, maar voor een beleidsmaker wordt het pas echt van
belang zodra er een voorspelling voor de toekomstige inflatie uit voortkomt. Nu blijkt
dat de keuze voor een stationair model met d = 0, een gëıntegreerd/niet-stationair model
met d = 1 of een fractioneel gëıntegreerd model met een geschatte d̂ veel uitmaakt voor
de onzekerheid van de voorspelling. Deze voorspelonzekerheid komt tot uitdrukking in
de breedte van het voorspelinterval. Vooral als er meer dan enkele maanden, tot bij-
voorbeeld twee jaar vooruit voorspeld wordt, heeft de parameter d een grote invloed op
de breedte van het voorspelinterval. Hoe groter de waarde voor d, des te breder is het
voorspelinterval; voor het gëıntegreerde ARIMA(1,1,1) model worden deze intervallen tè
groot geschat.

Het bepalen van voorspelintervallen voor Amerikaanse basisinflatie (i.e., inflatie ex-
clusief het effect van veranderingen in voedsel- en energieprijzen) wordt uitgevoerd voor
een reeks van modellen. Zowel kort-geheugen ARMA(1,1), gëıntegreerde ARIMA(1,1,1)
en lang-geheugen ARFIMA(1,d,1) modellen passeren de revue. Daarbij worden diverse
verklarende variabelen als de korte rente, de werkloosheid en/of het verschil tussen de
lange en korte rente opgenomen (de modellen worden dan aangeduid als ARFIMAX mo-
dellen, met de X voor eXplanatory, voor de verklarende variabele). Op korte termijn, bij
een voorspelling tot ongeveer 3/6 maanden vooruit, dragen de verklarende variabelen bij
aan de precisie van de voorspelling. Op langere termijn blijkt dit effect niet sterk of zelfs
afwezig te zijn.

Uit de schatting blijkt dat de geschatte residuele variantie van de modellen veel gro-
ter, tot een factor 2.7 keer groter aan toe, te zijn dan de werkelijke variantie van de
residuen over de evaluatie periode 1984:01-1999:11. Tijdens het regime van de centrale
bank-presidenten Volcker en Greenspan fluctueert de inflatie duidelijk minder dan tij-
dens de oliecrises, en ook iets minder dan in de jaren zestig. In secties 3.3 en 3.4 wordt
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gecorrigeerd voor de variërende variantie, door drie verschillende variantieregimes te ver-
onderstellen. Waarnemingen uit voorbije perioden worden minder zwaar meegewogen,
zodat deze minder invloed op de schattingsresultaten zullen hebben. Het effect van deze
aanpassing is dat de residuele variantie inderdaad beter geschat wordt, alhoewel voor-
al het ARFIMA(X)(1,1,1) model nog steeds een te groot voorspelinterval oplevert bij
langere-termijn voorspellingen.

Bayesiaanse simulatietechnieken

Hoofdstuk 2 en 3 gebruiken de klassieke benadering van de statistiek, waarbij er van uit
wordt gegaan dat iedere parameter in het model een zekere ware waarde heeft. Deze
waarde wordt vervolgens via de methode van maximale aannemelijkheid geschat. In
hoofdstuk 5 (zie onder) is de onzekerheid van de parameters groter dan in hoofdstukken
2 en 3. Hierdoor is ook de onnauwkeurigheid bij het schatten van de parameters van
belang voor de uitkomsten. In zo’n geval is de Bayesiaanse statistiek beter geschikt voor
de analyse dan de klassieke statistiek.

In de Bayesiaanse benadering van de statistiek is iedere parameter onzeker, en heeft
bijgevolg een kansverdeling. Voordat er gegevens tot onze beschikking staan wordt deze
kansverdeling de prior- of vóór-verdeling genoemd. De prior-verdeling omschrijft onze
kennis aangaande de parameter die we vooraf, uit de structuur van het model of uit eerdere
soortgelijke onderzoeken hebben. Na het waarnemen kan de prior-verdeling aangepast
worden tot de posterior- of na-verdeling.

Deze beknopte inleiding brengt ons tot het onderwerp van hoofdstuk 4: de Bayesiaanse
simulatietechnieken. Voor slechts enkele modellen is het mogelijk om analytisch de na-
verdeling te bepalen op grond van de vóór-verdeling en de data. In andere gevallen
zullen numerieke technieken gebruikt moeten worden. De simulatietechnieken die in dit
hoofdstuk besproken worden dienen om de verdeling van de parameters te bepalen. Ook
omvat het hoofdstuk een onderdeel (sectie 4.4) waarin het concept van de marginale
aannemelijkheid (marginal likelihood) wordt uitgelegd. Deze marginale aannemelijkheid,
in het hoofdstuk aangeduid als logaritme met log-m, kan dienen om modellen te vergelijken
wat betreft hun aanpassing aan de data. Het berekenen van de log-m is in veel gevallen een
lastig karwei. Diverse berekeningsmethoden zoals deze bekend, maar niet veel gebruikt,
zijn, worden besproken en vergeleken in sectie 4.4.

Het laatste deel van het hoofdstuk past de diverse simulatietechnieken toe op een een-
voudig model, dat in uitgebreide vorm in hoofdstuk 5 weer op zal duiken. In het voorbeeld
worden diverse eigenschappen van de technieken, zoals correlatie tussen de trekkingen en
duur van de berekeningen, becommentarieerd. De marginale aannemelijkheid wordt op
vele manieren berekend, voor twee varianten van het model, en de numerieke precisie
van de berekeningsmethoden wordt geëvalueerd. Eenvoudige berekeningsmethoden van
de marginale aannemelijkheid op basis van een LaPlace of kernel benadering van de na-
verdeling blijken een goede precisie op te leveren.
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Wisselkoers risico

Het laatste toegepaste hoofdstuk van dit proefschrift gaat in op het afdekken van wissel-
koers risico. Het uitgangspunt van hoofdstuk 5 is een grote investeerder met een belang
in het buitenland, dat al naar gelang de veranderingen in de wisselkoers meer of minder
waard kan worden. Zo werd over de periode 1/1/1998–31/12/2000 de dollar bijna 16%
meer waard ten opzichte van de Duitse mark. Deze waardestijging was echter opgebouwd
uit een daling van 7.4% in het eerste jaar en stijgingen van 17.1 en 6.8% in de laatste twee
jaren, wat laat zien dat deze waardevermeerdering bepaald niet risicoloos was.

Het kan aantrekkelijk zijn om het wisselkoers risico af te dekken. Een gangbaar instru-
ment hiervoor is het forward contract, waarbij, kort gezegd, de onzekere koersverandering
ingewisseld wordt voor het zekere verschil tussen de rentestanden in de beide landen.
Het onderliggende hoofdstuk, dat deels is gebaseerd op het artikel van Bos, Mahieu en
Van Dijk (2000a), introduceert state space (of toestands-ruimte) modellen die zo goed
mogelijk de trendmatige bewegingen in de trend en de variantie van de wisselkoersen pro-
beren te volgen en voorspellen. Aan de hand van deze modellen, acht in getal, wordt een
voorspelverdeling voor de wisselkoers één dag vooruit bepaald, die als invoer dient voor
een optimalisatie proces waarbij een power nutsfunctie geoptimaliseerd wordt.

Deze analyse wordt uitgevoerd op de wisselkoersen tussen de Duitse mark en de dollar,
en tussen de Japanse yen en de dollar (in beide richtingen, zowel voor de DM/USD en
Yen/USD als voor de USD/DM en USD/Yen koersrisico’s). Uit de bepalingen van de
marginale aannemelijkheid blijkt een model met variërend gemiddelde en stochastisch
variërende variantie het beste te voldoen voor de wisselkoers tussen DMark en dollar. Voor
de yen/dollar reeks blijkt het lastiger te zijn een goed model te vinden; het belangrijkste
is om rekening te houden met uitbijters door het opnemen van een Student-t verdeling
voor de storingsterm. Daarnaast helpen het variërend gemiddelde en een GARCH proces
voor de variantie ook om een betere aanpassing van het model aan de data te krijgen.

De resultaten zijn het sterkst voor de wisselkoers tussen de mark en de dollar. Deze
reeks levert een optimaal model op met meer voorspellende kracht dan het model voor de
yen/dollar data. De modellen die het best scoorden op de marginale aannemelijkheid blij-
ken ook goed te werken bij het afdekken van de koersrisico’s, alhoewel voor de yen/dollar
en dollar/yen analyse blijkt dat een risicomanager die vrij tolerant is ten opzichte van
risico ook kan kiezen een zogenoemd Local Level model te hanteren, omdat dit model iets
beter in staat is een signaal te filteren uit de wisselkoers data.

De modelresultaten worden vergeleken met resultaten van drie deterministische stra-
tegiën, te weten:

i. Dek het risico nooit af,

ii. Dek continu af,

iii. Dek het risico voor de dag van morgen af als er vandaag een koersdaling plaats
vond.

In ieder van de jaren uit de evaluatie periode 1998-2000 blijkt één van deze regels een
hoger nut op te leveren dan de model-gebaseerde strategiën. Echter, van te voren is met
geen mogelijkheid te voorspellen wèlke deterministische strategie het beste zal werken.
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Er kan geconcludeerd worden dat de modellen met variërend gemiddelde en variërende
variantie inderdaad helpen om het risico te beperken, en om tegelijkertijd niet te veel van
het mogelijke rendement van koersstijgingen te missen.
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