

ERIM REPORT SERIES RESEARCH IN MANAGEMENT

ERIM Report Series reference number ERS-2009-022-MKT

Publication May 2009

Number of pages 31

Persistent paper URL http://hdl.handle.net/1765/15910

Email address corresponding author kagie@ese.eur.nl

Address Erasmus Research Institute of Management (ERIM)

 RSM Erasmus University / Erasmus School of Economics

 Erasmus Universiteit Rotterdam

 P.O.Box 1738

 3000 DR Rotterdam, The Netherlands

Phone: + 31 10 408 1182

Fax: + 31 10 408 9640

Email: info@erim.eur.nl

Internet: www.erim.eur.nl

Bibliographic data and classifications of all the ERIM reports are also available on the ERIM website:

www.erim.eur.nl

Determination of Attribute Weights for Recommender

Systems Based on Product Popularity

Martijn Kagie, Michiel van Wezel, and Patrick J.F. Groenen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/18510064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/1765/15910
http://www.erim.eur.nl/

ERASMUS RESEARCH INSTITUTE OF MANAGEMENT

REPORT SERIES

RESEARCH IN MANAGEMENT

ABSTRACT AND KEYWORDS

Abstract In content- and knowledge-based recommender systems often a measure of (dis)similarity

between products is used. Frequently, this measure is based on the attributes of the products.

However, which attributes are important for the users of the system remains an important

question to answer. In this paper, we present two approaches to determine attribute weights in a

dissimilarity measure based on product popularity. We count how many times products are sold

and based on this, we create two models to determine attribute weights: a Poisson regression

model and a novel boosting model minimizing Poisson deviance. We evaluate these two models

in two ways, namely using a clickstream analysis on four different product catalogs and a user

experiment. The clickstream analysis shows that for each product catalog the standard equal

weights model is outperformed by at least one of the weighting models. The user experiment

shows that users seem to have a different notion of product similarity in an experimental context.

Free Keywords recommender systems, attribute weights, poisson regression, boosting, dissimilarity measures,

evaluation

Availability The ERIM Report Series is distributed through the following platforms:

Academic Repository at Erasmus University (DEAR), DEAR ERIM Series Portal

Social Science Research Network (SSRN), SSRN ERIM Series Webpage

Research Papers in Economics (REPEC), REPEC ERIM Series Webpage

Classifications The electronic versions of the papers in the ERIM report Series contain bibliographic metadata
by the following classification systems:

Library of Congress Classification, (LCC) LCC Webpage

Journal of Economic Literature, (JEL), JEL Webpage

ACM Computing Classification System CCS Webpage

Inspec Classification scheme (ICS), ICS Webpage

https://ep.eur.nl/handle/1765/1
http://www.ssrn.com/link/ERIM.html
http://ideas.repec.org/s/dgr/eureri.html
http://lcweb.loc.gov/catdir/cpso/lcco/lcco_h.pdf
http://www.aeaweb.org/journal/jel_class_system.html
http://www.acm.org/class/
http://www.iee.org/Publish/Support/Inspec/Document/Class/index.cfm

Martijn Kagie ∗, Michiel van Wezel, Patrick J.F. Groenen

Econometric Institute, Erasmus University Rotterdam

Determination of Attribute Weights for

Recommender Systems Based on Product

Popularity

Abstract

In content- and knowledge-based recommender systems often a measure of
(dis)similarity between products is used. Frequently, this measure is based on the
attributes of the products. However, which attributes are important for the users
of the system remains an important question to answer. In this paper, we present
two approaches to determine attribute weights in a dissimilarity measure based on
product popularity. We count how many times products are sold and based on this,
we create two models to determine attribute weights: a Poisson regression model
and a novel boosting model minimizing Poisson deviance. We evaluate these two
models in two ways, namely using a clickstream analysis on four different product
catalogs and a user experiment. The clickstream analysis shows that for each prod-
uct catalog the standard equal weights model is outperformed by at least one of the
weighting models. The user experiment shows that users seem to have a different
notion of product similarity in an experimental context.

Key words: Recommender Systems, Attribute Weights, Poisson Regression,
Boosting, Dissimilarity Measures, Evaluation.

1 Introduction

Over the past fifteen years, a very large number of approaches has been pro-
posed which can be used to recommend products from a product catalog to
users. These so-called recommender systems [29] can be subdivided in three
groups [1]: Collaborative, content-based, and hybrid recommenders. Where
collaborative filtering, the most popular method, recommends products based

∗ Corresponding author. Phone: +31 10 4088943. Fax: +31 10 4089031.
Email addresses: kagie@ese.eur.nl (Martijn Kagie), mvanwezel@acm.org

(Michiel van Wezel), groenen@ese.eur.nl (Patrick J.F. Groenen).

on similarity of the user’s taste with the taste of other users, content-based
recommenders use characteristics of products to base their recommendations
on. Hybrid recommenders combine both approaches.

Although collaborative recommendation methods seem to be the most popu-
lar type in practice and in the literature, content-based methods are far more
useful in certain areas of electronic commerce, such as consumer electronics,
real estate, and tourism. In these areas, products can usually be described
by a well-defined set of attributes and it would be wasteful not to use these
attributes when recommending. Moreover, often only very limited choice- or
preference data are available, since customers buy these kinds of products in-
frequently. This makes it impossible to discover and exploit correlation struc-
ture in user preferences, as is typically done by collaborative recommenders.
Furthermore, using attributes alleviates the cold start item problem: since at-
tribute values are known from the start, new products can immediately be
used in the recommendation cycle, whereas collaborative methods have to
wait until sufficient co-preference data has been gathered. Finally, attribute-
based recommendations open the door for explaining to the user why certain
recommendations are given, thus making the recommendation process more
transparent. Various sources (see e.g., [16,36,38]) suggest that users favour
transparent recommendations over nontransparent ones.

Many content-based recommender systems use some type of case-based rea-
soning or nearest neighbor retrieval [24,26,28]. These techniques rely heavily
on some dissimilarity measure between different products for their recommen-
dation strategy. Usually, this dissimilarity measure is based on the attributes of
the products. However, not all attributes of an product are equally important
to the user and, thus, this asymmetry should be reflected in the dissimilar-
ity measure. Therefore, to avoid a mismatch of the system and the perceived
similarity, the dissimilarity measure should use a suitable attribute weighting,
thus avoiding wrong recommendations by the system.

Although weights are generally specified by experts, some work has been done
on recommender systems that automatically learn these weights on a per-
user basis, such as systems based on MAUT-based preference models [19].
For example, Schwab et al. [35] learn user specific weights for binary features
using significance testing assuming normal distributions. When the user selects
items having a specific attribute value more often, that is, there is a significant
effect, this attribute got a higher weight. Arslan et al. [2] use the number of
times an attribute was used in the query of the user to learn these attribute
weights. Branting [3] uses an algorithm that changes weights based on the
set of items recommended and the selection of the user of one of these items.
Finally, Coyle and Cunningham [9] compare the final choice of the user with
the provided recommendations and learn the attribute weights from that.

2

All these approaches assume that the user gives the system time to let it learn
his/her preferences in one or more sessions. However, in many e-commerce
domains, such as durable goods, this is not a realistic assumption, due to the
infrequent purchases and subsequent data sparsity mentioned above. Although
it might be possible to adapt the weighting approaches above to a nonperson-
alized setting so that the use of pooled data solves the data sparsity problem,
these approaches remain incapable of handling mixed data (that is, consisting
of both numerical and categorical values) and missing values, both of which
are usually abundant in electronic commerce product catalogs.

In summary, attribute-based recommendation is relevant because it is useful
in e-commerce domains with sparse preference data and rich attribute data,
and it allows for more transparency in the recommendation process. It gen-
erally employs an attribute-based dissimilarity measure. Since it is likely that
some attributes are more relevant than others in users’ perceptions of product
similarity, the dissimilarity measure used by the recommender should match
the perceived attribute importances. Thus, the quest is to find (1) a way for
determining attribute weights that match similarity perceived by users from
the available catalog and choice data with their many missing values, their
mixed attributes and their sparse observations, and (2) a way to evaluate a
given set of attribute weights.

In this paper, we introduce two methods to determine attribute weights for
dissimilarity in recommender systems. These methods only rely on some mea-
sure of product popularity as ‘target’ attribute, while the ‘input’ attributes
are the product characteristics. We show how these weighting methods can be
used with mixed data and missing values. We then evaluate the weights that
are produced by these methods in two novel ways. The first evaluation method
is based on clickstream analysis and the second one is based on a survey.

The first weighting method we discuss is based on Poisson regression [25,27]
and was introduced in [21]. It uses multiple imputation [32] to handle missing
values and dummy variables to handle categorical attributes. The weights are
determined using t-values of the regression coefficients. The second weighting
method is based on boosting [13] and has some advantages over the Poisson
regression method, since it handles missing values and categorical attributes
in a more natural way. Also, there is a straightforward method to determine
attribute importance for boosting [13] and it is more flexible.

In the first evaluation, we use clickstream logs of four real life electronic com-
merce product catalogs, to see which products are often visited together in
a session. These co-visits give rise to empirical similarities between product
pairs: we assume that products frequently visited together are considered to be
similar by users. Therefore, a dissimilarity measure based on attributes should
also identify these as similar and thus a vector with attribute weights can be

3

evaluated by considering how well the attribute-based similarities match the
observed empirical similarities. To measure this ‘match’, we introduce a mea-
sure called the mean average relative co-occurrence (MARCO).

The second evaluation method is based on a user experiment consisting of
an online survey. In this survey, respondents were given a reference product.
Then, they were asked to indicate which products they considered to be rele-
vant recommendations given the reference product. The weighted dissimilarity
measure should be able to recommend these relevant products. To measure
the amount of overlap between the recommendations by the dissimilarity mea-
sure and the relevant recommendations, we propose the mean average relative
relevance (MARR).

We use the MARCO and MARR measures to evaluate the weights yielded by
both the Poisson regression- and the Boosting based weighting methods. The
performance of both methods is benchmarked against the naive (but often
used) method of weighting each attribute equally.

The remainder of the paper is organized as follows. In the next section, we
introduce the notion of dissimilarity in recommender systems and the dissim-
ilarity measure we use in this paper. Then, in Section 3, we introduce the two
weighting approaches based on product popularity. In Section 4, these two
approaches are applied to four real life electronic commerce product catalogs.
Sections 5 and 6 discuss both evaluation approaches based on clickstream logs
and a survey. Finally, we draw conclusions in Section 7.

2 The Use of Dissimilarities in Recommender Systems

A large group of content-based recommender systems, the so-called case-based
recommender systems [28] or case-based reasoning recommender systems [24]
rely on a dissimilarity measure based on the attributes of the products to
provide recommendations. In general, we can define such a measure as

δij = f

(
K∑
k=1

wkδijk

)
, (1)

where δij is the dissimilarity between product i and j, wk is the attribute
weight for attribute k, δijk is a dissimilarity score measuring the difference
between product i and j on attribute k, and f(·) is a monotone increasing
function. Note that often f(·) is the identity function.

In case-based recommender systems, the use of a dissimilarity measure has the
advantage that it can be used for recommendation in two different situations.

4

First, when a reference product is available (for example, the product the user
is looking at or has selected in some way), recommendation is based on the
dissimilarity between this product and other products. A second way to use a
dissimilarity for recommendation is when the user specifies a search query in
the form of an (incomplete) ideal product specification, we can provide recom-
mendations. These recommendations are based on the dissimilarity between
the ideal product specification and the products in the product catalog.

Although our approach to determine attribute weights can be used with ev-
ery dissimilarity measure that can handle linear weights, it is vital to apply
a good dissimilarity measure, that is, one that is close to the user’s notion of
dissimilarity. In the case of electronic commerce product catalogs, a dissimi-
larity measure should be able to handle missing values and attributes of mixed
type. Often used (dis)similarity measures, like the Euclidean and Hamming
distance, Pearson’s correlation coefficient, and Jaccard’s similarity measure,
lack these abilities. Many dissimilarity measures in the domain of knowledge-
based recommender systems need domain knowledge [8,9,10,26]. We would
like to avoid this, such that the approach is more flexible.

To our knowledge, only two dissimilarity measures previously used in electronic
commerce applications can handle both mixed attribute types and missing
values and do not need any domain knowledge. The first are measures based on
the heterogeneous Euclidean overlap metric (HEOM) [39] as used in [2,30,33].
The second is a modified version of the Gower’s general coefficient of similarity
[14], which has been used in [20,21,22].

HEOM and the adapted Gower coefficient both compute dissimilarity scores
for all attributes separately and finally combine these. The computation of
these scores differ between attribute types. When HEOM is not able to com-
pare two attribute values, because one or both of them is missing, it will treat
them as dissimilar from each other. The adapted Gower coefficient ignores the
attribute and computes the dissimilarity based on the nonmissing dissimilarity
scores, which is, in our opinion, a better approach. Also, the adapted Gower
coefficient has the advantage that the dissimilarity scores are normalized such
that each attribute is equally important in the dissimilarity measure. We will
use this dissimilarity measure in the remainder of this paper. For more details
on the definition of the adapted Gower coefficient, we refer to Appendix A.

3 Determining Attribute Weights

In this section, we will introduce two methods to determine attribute weights
based on product popularity, such as sales or pageviews. The first method is
based on Poisson regression in which we use multiple imputation to handle

5

missing values. Weights are based on the t-values of the Poisson regression
coefficients. We consider a full Poisson regression model and a stepwise model
that has a built-in method for attribute selection.

The second method is based on a new boosting algorithm, PoissonTreeBoost,
that optimizes Poisson deviance. The relative importance measure is used to
determine weights. This method is more flexible than Poisson regression. Also,
it has built-in methods to handle categorical attributes and missing values.

In these two methods, the popularity counts for the I products are used as
dependent/target attribute vector y = (y1, y2 . . . , yI). This target attribute is
due to its nature a count variable being discrete and nonnegative and, there-
fore, different models than ordinary least squares regression models should be
used. As independent variables we use, naturally, the attribute vectors {xi}I1,
that is, xi = (xi1, xi2 . . . , xiK), with K the number of attributes. The counts in
y and the attributes will be used to determine weights {wk}K1 for the product
attributes in some dissimilarity measure.

3.1 Poisson Loglikelihood and Deviance

Models for count data, such as Poisson regression [25,27] which we will use in
Section 3.2, maximize the loglikelihood of the Poisson distribution

logL(y, ŷ) =
I∑
i=1

[−ŷi + yi log ŷi − log yi!] , (2)

where ŷi are the model predictions and yi! is the factorial of yi. An alterna-
tive approach, which is also used by the Poisson regression tree [37] and the
boosting method we discuss in Section 3.3, is minimizing the Poisson deviance,
which is defined as

D(y, ŷ) =−2(logL(y, ŷ)− logL(y,y))

= 2

(
I∑
i=1

[
yi log

(
yi
ŷi

)
− (yi − ŷi)

])
(3)

= 2
I∑
i=1

LPD(yi, ŷi) ,

which equals minus two times the loglikelihood of the model minus the log-
likelihood of a model perfectly fitting the data. In this equation, LPD denotes
the Poisson deviance loss function. Note that D(y, ŷ) has the advantage that
it is a minimization problem and a deviance of zero represents a perfect model
(on the training data).

6

3.2 Poisson Regression

In [21], we introduced one way in which attributes can be determined based
on product popularity, namely using a Poisson regression model, which is a
member of the generalized linear model (GLM) framework [25,27]. To be able
to estimate a Poisson regression model on our data, we set up the matrix
X of predictor variables as follows. Categorical attributes are replaced by
series of dummy variables as is common in the literature on GLMs. Every
categorical attribute is represented by Lk dummies xik`, which are 1 for the
category where the product belongs to and 0 for all other attributes. To avoid
multicollinearity, the last category is not represented by a dummy, so that Lk is
the number of different categories for attribute k minus one. For multi-valued
categorical attributes the same approach is used, only now all categories are
represented by the Lk dummies. For numerical attributes we use the original
value. Hence, xik = xik1 and Lk = 1. We collect all xik` for product i in vector
xi. Also, an intercept term xi0 is incorporated in this vector, which equals 1
for all products, so that X has I rows and (1+

∑K
k=1 Lk) columns. The Poisson

regression model is defined as

yi ≈ exp(x′ib) , (4)

where yi is a dependent count variable (in our case product popularity or sales)
and b is a (1 +

∑K
k=1 Lk) by 1 vector of regression coefficients. Additionally,

yi is assumed to have a Poisson distribution having expectation E(exp(x′ib)).
The regression coefficients can be estimated in this model by adapting the
loglikelihood equation (2) to

logL(b) =
I∑
i=1

[− exp(x′ib) + yix
′
ib− log yi!] , (5)

which is often maximized using an iteratively reweighted least squares pro-
cedure. This algorithm produces both the model parameters bk` and their
standard errors σkl.

A disadvantage of Poisson regression models (and GLMs in general) is that
they lack a built-in way to handle with missing values. In a recent paper,
Ibrahim et al. [18] compared different methods to handle missing values in
combination with GLMs and found that multiple imputation (MI) [32] was
among the best methods to be used in this situation. MI methods create a
number of ‘complete’ data sets in which values for originally missing values are
drawn from a distribution conditionally on the nonmissing values. There are
two methods to create these imputed data sets: Data augmentation [34] and
sampling-importance-resampling [23]. Both lead to results of identical quality,

7

while the latter does this much faster. Therefore, we use that algorithm, which
is available in the Amelia II package [17] for the statistical software environ-
ment R, in our approach. For a more detailed discussion on how regression
coefficients and standard errors are computed using MI, we refer to [21].

The weights to be used in the dissimilarity measure are based on the regression
coefficients bk`. However, we cannot use these coefficients directly as weights
for several reasons. First, all attributes are on different scales and this also
holds for the coefficients. Second, any uncertainty about the coefficient is not
taken into account. Although a coefficient value can be reasonably large, this
does not necessarily mean we are also certain about the value of this coeffi-
cient. Finally, coefficients can also be negative, while weights should always
be positive. The first two problems can be overcome by using the t-value of
bik` which is defined as

tk` =
bk`
σk`

, (6)

while the second can be solved by using the absolute value |tk`|.

However, since we had to use dummy variables for (multi-valued) categorical
attributes, the weight for these attributes is based on the average over the
corresponding t-values. Hence, we can define a ‘pseudo’ t-value vk as

vk =
1

Lk

Lk∑
`=1

|tk`| . (7)

For numerical attributes vk just equals the corresponding absolute t-value.
Finally, we normalize the weights to have a sum of 1

wk =
vk∑K

k′=1 vk′
. (8)

Note that, instead of using t-values other approaches could be taken to deter-
mine weights based on a Poisson regression model. For example, one could first
normalize all attributes and then use the absolute values of b to determine the
weights. Preliminary experimentation did not show improvements over using
(7). Therefore, we do not pursue this approach any further.

Besides a Poisson regression model using all attributes, also a stepwise Poisson
regression model was discussed in [21] to determine attribute weights. Step-
wise models use the statistical significance of the attributes to do attribute
selection. Each time the most insignificant attribute (based on the t-values)
is deleted from the model specification and a new model is estimated until

8

x1<5

x2ϵ{A,C} 10

2 5

Figure 1. Example of a Regression Tree: The root divides the data in two parts
using numerical attribute x1. Instances having a x1 value smaller than 5 turn left,
the other instances right. The instances that have turned right get a y-value of 10,
which is the sample mean of training instances belonging to this node. The instances
that have turned left are again split using categorical attribute x2. When x2 of an
instance belongs to category A or C, this instance turns left.

only significant attributes remain. In our evaluation, we will consider both the
stepwise and the complete Poisson regression approach.

3.3 Boosting Poisson Deviance

Although the procedure based on Poisson regression is simple to use, it has
some drawbacks. Poisson regression models have no integrated way to handle
missing values (while product catalogs, in practice, contain a lot of missing
values), due to which a computational intensive imputation techniques (see
[32]) need to be applied. Furthermore, (multi-valued) categorical attributes
need to be preprocessed prior to be included into the model. Finally, Pois-
son regression models cannot handle interaction effects (without dramatically
increasing the attribute space or using some kernel method) and, therefore,
may possibly miss attributes that are important, but only in combination with
other attributes.

Therefore, we introduce a model that has integrated ways to handle missing
values, categorical attributes, and interactions and is also able to handle a
count variable as target attribute. This method is based on boosting [11,12],
a method to combine a series of base models, which are often decision trees
[7]. First, we briefly introduce these decision trees.

Decision trees are a popular method for both classification and regression,
where trees applied to the latter are often called regression trees. Regression
trees minimize a squared loss function

B = arg min
B

I∑
i=1

LS(yi, B(xi)) = arg min
B

I∑
i=1

(yi −B(xi))
2 , (9)

where B(x) denotes the prediction of tree B for input vector x and LS is the
squared loss function. This function is minimized in such a way that this results

9

in a tree with non-terminal nodes containing split criterions and terminal
nodes with predicted y-values. An example of such a tree is shown in Figure
1. Regression trees have the ability to deal with categorical attributes as is
shown in Figure 1. In addition, regression trees are able to automatically
handle missing values. Different methods exist to handle missing values in
decision trees, see for example [15,31]. A convenient way to handle them is
using surrogate splits [15], introduced by Breiman et al.[7]. We use this method
to handle missing values in our application.

A drawback of decision trees is their instability. The implemented model de-
pends heavily on the data set used for model creation, and a small change
in the data may have large consequences for the model. Ensemble methods,
such as bagging [4], random forests [6], and boosting [11,12], have a stabilizing
effect by averaging over a number of decision trees.

Optimizing a squared loss function works well in most regression problems.
However, when y is a count variable as in our problem, assuming squared loss
is not valid. Therefore, a Poisson regression tree [37] has been introduced that
minimizes Poisson deviance (see (3)). However, Poisson regression trees suffer
from the same problem as ordinary regression trees: instability. Therefore, we
introduce a boosting method minimizing the Poisson deviance.

Boosting is a method to combine multiple models, called base learners, into
a single model. All base learners are of the same type and each subsequent
model tries to minimize the error made by the previous base learners. Boosting
was originally developed for classification problems by Freund and Schapire
[11,12]. Friedman [13] developed a framework called GradientTreeBoost which
can be used to use boosting in combination with all kinds of loss functions,
such as squared, absolute, and Huber loss.

GradientTreeBoost [13] is inspired by gradient based optimization techniques.
Similar to these techniques GradientTreeBoost takes steps in the negative gra-
dient direction. Traditional gradient based model fitting does this by refining
a parameter vector, and thus indirectly improving the outputs of a model
with that parameter vector. In contrast, boosting directly improves the per-
formance of a (composite) model by adding an additional model to it, such
that the fit of the composite model on the training data improves.

Often, the base learners are regression trees. These regression trees are ordi-
nary regression trees minimizing a squared loss function, irrespective of the loss
function that is minimized by the GradientTreeBoost algorithm. In practice,
this means that the base learners are fitted on data sets {xi, ỹi}I1 in which ỹi is
a pseudo target replacing the original target yi. This ỹi is determined by the
negative gradient of the loss function given the current estimate of yi (provided
by the previous base learners) and the real value of yi. GradientTreeBoost al-

10

gorithms have two parameters that need to be set: the number of base learners
N and a learning rate parameter ν which indicates how much the algorithm
should learn from the base learners. Often, these parameters are determined
using cross validation. For a more detailed explanation of GradientTreeBoost,
we refer to [13].

To create a boosting model for a count variable, we use a new member of
GradientTreeBoost family minimizing the Poisson deviance loss function LPD

introduced in (3). The derivation of this method which we call PoissonTree-
Boost is shown in Appendix B.

We introduced the PoissonTreeBoost model as a way to determine weights
for attributes, which can subsequently be used in a dissimilarity measure. To
specify these weights we need a measure that indicates how large the influ-
ence of a certain attribute is on the predictions of the model. For this, we use
an importance measure for GradientTreeBoost introduced by Friedman [13],
which is based on the importance measure developed for CART [7]. Since this
importance measure is applicable to all members of the GradientTreeBoost
family (all implementing different loss functions), it is also valid in our case,
when using the Poisson deviance loss function. It is based on the quantity (how
many times is the attribute used to split) and quality (does it split the data
in two almost equally sized parts) of the splits based on a certain attribute.
For a detailed description of this importance measure, we refer to [13]. For nu-
merical and categorical attributes this procedure works fine. For multi-valued
categorical attributes (which can have multiple values for one attribute), a
binary attribute is incorporated in the boosting model for each category. The
weight is then based on the total importance of all these categories.

4 Determining Weights for Four Real-Life Product Catalogs

In this section, the two approaches to determine attribute weights for our
dissimilarity measure are applied to four product catalogs of an electronic
commerce website. We first give a short description of the product catalogs.
Then, we compare the performance of the PoissonTreeBoost algorithm with
two benchmark models to justify our model choice followed by a description
of the weights resulting from our approach. In Sections 5 and 6, we evaluate
these weights in two ways: The first is based on a clickstream analysis, while
the second is based on a user experiment.

11

Table 1
Description of the product catalogs used in this paper.

Product Catalog MP3 Players Digital Cameras Notebooks Microwave Ovens

Number of Products (I) 228 283 206 221

Number of Outclicks per Product

Mean 109 321 72 23

Median 14 78 16 9

Maximum 5652 7871 1417 295

Number of Attributes

Numerical 16 21 14 14

Categorical 20 12 10 14

Multi-valued categorical 9 7 4 2

Total (K) 45 40 28 30

Missing Values

Percentage Missing 63% 39% 51% 39%

4.1 Data

Both the product catalogs and the clickstream log files were made available
to us by the Dutch internet company ‘Compare Group’ that hosts, among
other European price comparison sites, the Dutch price comparison site http:
//www.vergelijk.nl. The product catalogs used are based on a database
dump of this site (October 2007). The log files are used to count how many
times users clicked on a link to an internet shop to buy a certain product, which
is called an ‘outclick’. We counted the outclicks during two months from July
15 until September 15, 2007. These outclicks are used as product popularity
in this paper, but other measures for product popularity can be used as long
as they are count variables, such as, for example, sales or pageviews. We
have used product catalogs containing four types of products: MP3 players,
Digital Cameras, Notebooks, and Microwave Ovens. Some characteristics of
these catalogs are described in Table 1. As can be seen in this table all these
product catalogs have about the same size, which is a typical size for catalogs
of these kinds of products. All have a reasonable high number of attributes of
which a substantial number are (multi-valued) categorical and a lot of these
attributes contain many missing values.

4.2 Model Performance

In this section we compare the model fits of our regression models, both in-
sample and out-of-sample. It is worth repeating that the aim of this paper is
not to find a well-fitting model but rather to find attribute weights that match
user-perceived attribute importances. This requires a different evaluation than
considering model fit, and we will turn to that in Section 5 and 6. However,

12

Table 2
Performance of the different models on training and test data.

MP3 Players Digital Cameras

Training Test Training Test

Method Deviance MAE Deviance MAE Deviance MAE Deviance MAE

Poisson regression 39.45 44.39 69.20 77.10 116.55 221.57 390.74 416.95

Poisson regression tree 24.02 42.42 83.47 94.68 249.76 299.97 407.71 390.66

PoissonTreeBoost 2.02 14.64 52.16 78.16 33.06 109.47 302.79 328.43

Notebooks Microwave Ovens

Poisson regression 21.57 41.62 35.26 53.18 9.50 16.26 17.67 21.08

Poisson regression tree 50.42 63.46 60.43 68.21 8.16 14.72 14.96 20.51

PoissonTreeBoost 9.14 26.40 56.13 66.34 1.57 6.32 11.84 18.17

it is reasonable to assume that a model that fits the popularity data well
gives rise to an attribute weight vector that closely resembles user-perceived
attribute importances. To investigate this hypothesis, we included the current
section on model performance.

On all of the four product catalogs we have fitted the Poisson regression mod-
els and the PoissonTreeBoost algorithm. For the Poisson regression model, we
use the same procedure as in [21]. To be able to estimate the missing values
by multiple imputation, we delete attributes having more than 50% missing
values and dummies with less than 10 ones. Furthermore, we used 25 imputa-
tions of the data. As with all members of the GradientTreeBoost family, three
parameters need to be set in the PoissonTreeBoost algorithm: the number of
base learners N , the learning rate ν, and the size of the regression trees used.
Following [13], we set the learning rate ν to 0.1. Lowering the learning rate
(and correspondingly increasing the number of base learners) did not lead to
better results. We chose to use decision trees having a maximum depth of 6.
This lead to better results than when using smaller trees, while using larger
trees did not substantially improve results. The number of base learners was
determined using cross validation. Note that, since the GradientTreeBoost al-
gorithm does not depend on multiple imputation, we can use all attributes for
this algorithm.

To test the accuracy of these models, we compared them to each other and
to a single Poisson regression tree model [37]. The Poisson regression tree, for
which we have used the Poisson option of the rpart package, is included to
see whether our models fit the data better than a single tree. For the Poisson
regression model, we only show results for the complete model, since in general
accuracy does not differ much between a complete and a stepwise model.

To determine the in-sample and out-of-sample performance of the three algo-
rithms on the four product catalogs, we divided the data 100 times randomly
in a training (90%) and test set(10%), which is a common way to test model
performance in boosting literature (see e.g. [5]). The in-sample performance

13

Table 3
Weights of the ten most important attributes (out of in total 45 attributes)for the
MP3 player catalog using PoissonTreeBoost and a stepwise and complete Poisson
regression model.

Stepwise Poisson Regr. Complete Poisson Regr. PoissonTreeBoost

Attribute Weight Attribute Weight Attribute Weight

1. Brand .242 Memory Size .125 Color .220

2. Memory Size .176 Brand .119 Audio Formats .186

3. Audio Formats .131 Voice Memo .093 Brand .090

4. Battery Type .106 Height .090 Interfaces .086

5. Width .090 Depth .081 Photo Formats .080

6. Operating System .086 Color .057 Weight .049

7. Color .084 Extendable Memory .052 Price .042

8. Memory Type .084 Operating System .049 Memory Size .035

9. Width .048 Height .030

10. Battery Type .045 Memory Type .026

is averaged over the 100 training sets, while out-of-sample performance is av-
eraged over the test sets. Performance is measured by Deviance

Deviance =
1

I

I∑
i=1

[
yi log

(
yi
ŷi

)
− (yi − ŷi)

]
(10)

and the mean absolute error (MAE).

As can been seen in Table 2, the PoissonTreeBoost algorithm is much better
than the other two algorithms in minimizing both the deviance and MAE on
the training data. On three data sets this also lead to a lower deviance on the
test data, what in two cases is accompanied by a lower MAE than both other
algorithms. Only on the MP3 player data, the MAE of the Poisson regression
model is slightly lower. The product catalog on which the PoissonTreeBoost
algorithm, despite a better in-sample performance, had both a higher out-of-
sample deviance and MAE, is the notebooks catalog. In general, the boosting
approach fits the data better than the Poisson regression model. However,
more evaluation is needed to see whether this also leads to better weights on
the data sets.

4.3 Determined Weights

Table 3 shows the ten attributes getting the highest weights for the MP3 player
catalog according to the three methods: stepwise Poisson regression, complete
Poisson regression, and PoissonTreeBoost. Although some attributes are con-
sidered to be important by all three methods (Brand, Memory Size, and Color
are in all three top 10’s), there are quite some differences between the weights

14

determined by the different methods. There is high correlation between many
attributes in the data and the methods then have a preference for different
attributes. For instance, boosting is somewhat biased to categorical attributes
having a lot of values, since they have a higher probability to provide a good
split in a tree. For the other three product catalogs similar patterns exist. In
general, the difference in weights seems to be the largest between PoissonTree-
Boost and both Poisson regression models.

5 Clickstream Evaluation

Remember that our aim was to find a weighted attribute-based dissimilar-
ity measure which matches perceived (subjective) dissimilarities as closely as
possible. The performance evaluation in Section 4.2 is no proper evaluation
of the degree in which this aim was achieved because it merely considers
goodness-of-fit. So, it is clear that we need an evaluation method that takes
user perceptions into account. We performed two such evaluations: one using
a clickstream analysis and another one based on a user experiment. We first
describe the clickstream evaluation, while the user evaluation is deferred to
Section 6.

Both evaluation methods are based on evaluation of top P recommendations
of products given that the user is looking at another product (which we will
call the reference product) in the product catalog. Such a list could one de-
scribe as: “When you are interested in this product, you would maybe also like
these products”. In the clicktream analysis, we determine good recommenda-
tions as products that are relatively often visited together in a session with
the reference product. Then, we determine the overall quality of a top P of
recommendations as the average of the relative co-occurrence of the products
in this top P with the reference product. Finally, we average over all reference
products, that are all products in the product catalog, to determine the overall
quality of the recommendations. These top P ’s are determined in this eval-
uation using the different weighting schemes discussed earlier. However, this
evaluation approach can be used to evaluate all kind of dissimilarity measures
and other types of recommendations algorithms.

5.1 Mean Average Relative Co-Occurrence

In more detail, we looked for sessions in the clickstream log in which two
or more products out of one of the four product catalogs were visited. We
defined a visit of a product as a visit of the details page of a product. Since
people generally look for a relative specific type of product, products that a

15

user visits during a session are probably considered to be similar by the user.
Generalizing this, we can assume that products that are visited together in
many sessions should be products that are considered to be similar by users in
general. Therefore, we counted in the clickstream log for each pair of products
in the catalog how often they co-occurred in sessions, which resulted in a
product co-occurrence matrix C.

Consider the following hypothetical co-occurrence matrix

C =

20 10 2 7

10 17 3 6

2 3 6 4

7 6 4 10

, (11)

where on the diagonal the total occurrence of a product is reported. We nor-
malized this matrix by dividing each row i by the number of times product i
was visited in a session (sessions in which only one product was visited were not
taken into account), such that position ij in the matrix contains the relative
occurrence of product j given that product i was visited in a session. Hence,
we create a relative co-occurrence matrix R having elements rij = cij/cii. For
the example, this results in the following matrix

R =

1.00 0.50 0.10 0.35

0.59 1.00 0.18 0.35

0.33 0.50 1.00 0.67

0.70 0.60 0.40 1.00

. (12)

Since we assume that a high relative co-occurrence of two products implies
that these two products are considered to be similar by users, we can use this
matrix to evaluate a dissimilarity measure in the following way. First, we use
the dissimilarity measure that we want to evaluate to compute a dissimilarity
matrix between the products in the catalog and we transform the dissimilarity
values into their row-wise ranks. For instance, assume that this yields

D =

0 1 3 2

1 0 2 3

3 2 0 1

2 3 1 0

. (13)

16

In this example, d4 indicates that for product 4, the most similar product is
product 3, followed by product 1 and product 2. Hence, a case-based recom-
mender based on the distance measure used to construct d would recommend
products in this order to a user that bought, or has otherwise shown interest
in, product 4.

Supposedly, the recommendation of the top ranked product 3 is good if this
product has a high session co-occurrence with product 4, as indicated by the
value in matrix R. In general, under the assumption that relative co-occurrence
is a good measure for perceived similarity, a high average value of the relative
co-occurrences for the top-ranked recommendations for all reference products
is desirable. (The average is over all reference products.)

Since this average depends on the ranks in matrix D, and these depend
on the dissimilarity measure used, the average value can be used to evalu-
ate dissimilarity measures. We term this measure it MARCO, which is an
acronym for Mean Average Relative Co-Occurrence. Instead of taking the av-
erage over all top-1-ranked recommendations, one can also take the average
over all recommendations with rank P and lower. In this case, the average
relative co-occurrence is computed over all best, 2-nd best, . . ., P -th best rec-
ommendations for each reference product. We call the corresponding measure
MARCOP .

In the example, the value for MARCO1 is

MARCO1 =
.50 + .59 + .67 + .40

4
= .54 . (14)

and the value for MARCO2 is

MARCO2 =
(.50 + .35) + (.59 + .18) + (.67 + .50) + (.40 + .70)

8
(15)

= .49 .

Expressed as an equation, MARCOP is

MARCOP =
1

I × P

I∑
i=1

P+1∑
p=2

r
i,rankindex(i,p)

(16)

=
1

I × P

I∑
i=1

cii P+1∑
p=2

c
i,rankindex(i,p)

where rankindex(i, p) is the index of the p-th most similar product for reference

17

a. MP3 Players b. Digital Cameras

c. Notebooks d. Microwave Ovens

Figure 2. Mean average relative co-occurrence (MARCO) for top 1 until 10 for the
different weighting methods.

product i. Note that 1 ≤ P ≤ I − 1, and in the summation p starts at 2 so
that relative co-occurrences of products with themselves are omitted.

Note that the MARCO is always between 0 and 1, where higher values indi-
cate a higher recommendation quality. An optimal MARCO value could be
obtained by directly use co-occurrences to provide recommendations. How-
ever, co-occurrences cannot be used when recommending new products or
recommending products given a search query, which are situations in which
(weighted) dissimilarity measures based on product attributes can be used.
Additionally, although we use co-occurrences here as measure of evaluation,
they may not be present in other systems in which a measure of popularity is
present.

18

Table 4
p-Values of one-sided paired t-tests testing whether a weighting scheme performs
better than using equal weights on a product catalog.

Product Catalog Stepwise Poisson Regr. Complete Poisson Regr. PoissonTreeBoost

MP3 Player 0.000 0.002 1.000

Digital Camera 0.999 0.000 0.645

Notebook 0.054 0.079 0.000

Microwave Oven 0.000 0.854 0.051

5.2 Evaluation Results

We applied this approach on the four product catalogs described earlier and
tested four dissimilarity weighting methods: equal weights, PoissonTreeBoost,
and stepwise and complete Poisson regression. The approaches were applied
to the adapted Gower coefficient measure (see Appendix A). The MARCO for
different top P ’s from top 1 up to top 10 for four product catalogs is shown in
Figure 2. As can be seen in Figure 2a, both Poisson model based dissimilarity
measures generally perform better than the dissimilarity with equal weights
on the MP3 player catalog, while the boosting approach does worse. In fact,
the complete Poisson regression model is overall the best model followed by
stepwise Poisson regression for this data set. Also for the digital camera cat-
alog of which the MARCO plot is shown in Figure 2b, the complete Poisson
model based dissimilarity measure does best. However for this data set, there
is not much difference between using equal weights or weights determined by
boosting and the stepwise Poisson regression performs worse than all other
methods. The MARCO plot for the notebook catalog is shown in Figure 2c.
For the top 3 and higher all weighting methods perform better than the equal
weights approach. On this catalog boosting performs best, followed by both
Poisson regression approaches. Equal weights only perform well when recom-
mending a very small number of products. Finally, the plot for the microwave
oven catalog is shown in Figure 2d. For this catalog the stepwise Poisson re-
gression method is generally the best performing method followed by boosting
both performing better than the method using equal weights. The complete
Poisson regression model based dissimilarity measure performs worst on these
data.

We also tested whether methods performed significantly better than using
equal weights over all products in a catalog. To do so, we used a one sided
paired t-test on the average relative co-occurrence of top 10’s testing whether
the model based method performs better than the equal weighted dissimilarity
measure. The p-values of these tests are given in Table 4. On all product cata-
logs there is at least one method performing significantly better (at a 0.05 sig-
nificance level) than the equal weighted dissimilarity. However, which method
this is, is different among the product catalogs. Hence, although weighting
of dissimilarity based on product popularity may improve recommendations

19

Figure 3. Screenshot of the online survey.

which method should be used changes among product catalogs.

6 User Experiment

We also evaluated the different weighting methods in an user experiment in the
form of an online survey. In this survey, we collected data on which products
users found to be relevant recommendations when they were looking at another
product. These results could then be used to evaluate the different weighting
methods.

6.1 Online Survey

People were asked to participate in this experiment via the Vergelijk.nl
newsletter. In total, 70 people completed the survey. This experiment consisted
of an online survey having three parts. In the first part, we asked participant
to do the following. We gave them a randomly selected product, which they
should treat as a reference product of which they wanted to see the details.
Then, we also provided six other randomly selected products that served as
potentially relevant products with respect to the reference product. The re-
spondents were asked to select those products they thought to be a relevant
recommendation for the reference product. A screenshot of this task is shown

20

Table 5
Relative weights of the different weighting schemes used in the experiment.

Attribute Equal Weights PoissonTreeBoost Poisson regression Average User Importance

Color 0.143 0.265 0.145 0.121

Brand 0.143 0.237 0.128 0.124

Price 0.143 0.191 0.238 0.167

Type 0.143 0.129 0.259 0.128

Volume 0.143 0.102 0.120 0.158

Max. Power 0.143 0.048 0.059 0.164

Model 0.143 0.030 0.051 0.139

in Figure 3. We repeated this procedure twice for each reference product. Ev-
ery respondent had to perform this task for three reference products. Thus,
per reference product, a maximum of twelve relevant products can be chosen
by a respondent. Subsequently, we asked the respondents directly how impor-
tant they judged the different attributes of the products on a five point scale.
To avoid any order effect, the order in which the attributes were listed was
also randomized per respondent.

For this experiment, we used the microwave oven catalog. However, to make
the exercise manageable for the participants, we only selected seven attributes,
that were, the seven attributes having the least number of missing values:
Brand, Price, Color, Type, Volume, Max. Power, and Model. Only these seven
attributes are shown to the participant. We also constrained the product cat-
alog used in the experiment to the 25 most popular microwave ovens that did
not have any missing value on one of these seven attributes. This was done, so
that we could obtain relatively many observations for all considered products
for the first part of the experiment.

The four weighting approaches were applied to only these seven attributes,
which also means that the weights were determined using models only having
these seven attributes as input. The four weighting schemes we evaluate are:
equal weights for the seven attributes, PoissonTreeBoost, a complete Poisson
regression model, and one using the average importance stated by the respon-
dents (normalized to have sum of one). The weights of these four methods are
shown in Table 5. The last column contains average weights specified by the
users themselves in the survey.

6.2 Mean Average Relative Relevance

To evaluate the different weighting schemes, we used a similar approach as
taken in the clickstream analysis in Section 5. We again evaluate top P ’s given
a reference product. Only now, we define a good recommendation as a product
that is considered to be a relevant recommendation by the respondents given

21

Figure 4. Mean average relative relevance (MARR) of four weighting schemes.

the reference product.

Therefore, we first counted how many times each product j was considered to
be relevant given a reference product i and store this in a matrix A. Contrary
to the co-occurrence matrix used in the previous section, this matrix is not
symmetric. Another difference with the co-occurrence matrix in the previous
section is that the number of times a combination of a reference product and
a potential relevant product is presented to a respondent is random. There-
fore, we also counted how often each product j was shown to a respondent
given reference product i and store this in a matrix B. By dividing these two
numbers (that is aij/bij), we get the relative relevance of products j given
reference product i. By doing this for all products, a 25 × 25 matrix R is
obtained. Then, a 25× 25 dissimilarity matrix ∆ is computed for each of the
four weighting schemes using the weights shown in Table 5 using the adapted
Gower coefficient described in Appendix A. Note that Table 5 contains relative
weights that sum to one. Similar to as was done in the clickstream evaluation,
we use the rankorders in a row i of ∆ to order the relative relevances in ri.
Based on this ordering, we can compute top the average relative relevance for
different top P ’s using R and average this over all 25 products in a similar
way as in (16). To acknowledge the difference in constructing R, we will refer
to this measure as the mean average relative relevance (MARR), defined as

MARRP =
1

I × P

I∑
i=1

P+1∑
p=2

r
i,rankindex(i,p)

(17)

=
1

I × P

I∑
i=1

P+1∑
p=2

a
i,rankindex(i,p)

b
i,rankindex(i,p)

where rankindex(i, p) is the index of the p-th most similar product for reference
product i.

22

6.3 Evaluation Results

Figure 4 shows the MARR for the four weighting schemes on the user experi-
ment data. As can be seen in this plot, both model-based weighting schemes
did not perform well in this experiment, since they did worse than the equal
weighted dissimilarity measure. The dissimilarity measure using the weights
based on the average importance according to users only performs slightly
better than the equal weights.

It seems that respondents acted differently than in the clickstream evaluation.
The limited number of attributes used in the experiment may have been a
factor why the performance of the model based methods is quite poor. One
thing the weighting methods can do quite well is giving very unimportant
attributes very low or zero weights. However, these seven attributes were all
considered relatively important attributes by the users, since they were have
a mean value higher than 3 on a 5 point scale.

7 Summary, Conclusions & Discussion

Finding accurate attribute weights for case-based recommender systems is
relevant because it may help to increase both accuracy and transparency
of recommendations. In this paper, we have attempted to find methods for
both identifying attribute weights, as well as for evaluating a set of attribute
weights.

We have presented two methods to determine attribute weights, both meth-
ods modeling product popularity as a function of attribute values. The first
method was based on a Poisson regression model, while the second method
was based on a new boosting algorithm minimizing Poisson deviance. The lat-
ter model has the advantage that it has built-in methods to handle categorical
attributes and missing values, which are common in e-commerce data. Also, it
fits the data better, since it is more flexible and also able to handle interaction
effects.

The methods and their resulting attribute weights were evaluated in a number
of ways. The first evaluation used was aimed at model performance in terms of
goodness-of-fit. In this evaluation, we used data from four real life commercial
product catalogs with a corresponding clickstream log, and we evaluated how
well the Poisson regression and boosting models could predict the number of
‘outclicks’ on a product. The latter model performed better in general, both
in- and out-of-sample.

23

The second and third evaluations were aimed at determining how well dissim-
ilarity measures using the resulting attribute weights matched user-perceived
product dissimilarities. To this end, we extracted attribute weights from the
the Poisson and Boosting models. We used those weights in the adapted
Gower coefficient, and we developed two methods for determining how well
the weighted Gower coefficient matches the user perceived similarities.

The first of these analyses was based on clickstream data. We developed a
new measure, called MARCO, for assessing the quality of the weights in the
Gower coefficient. Surprisingly, the only catalog on which the boosting based
weights significantly outperformed the other models was the notebook catalog,
which was also the only catalog on which the out-of-sample performance of
boosting was worse than of Poisson regression. Hence, prediction performance
of a method seems not to be a good predictor of whether a method provides
good weights. Reasons for this might be the correlation between attributes
and the bias of models for certain types of attributes.

Furthermore, in the evaluation on clickstream data, there was at least one
model-based weighting scheme for each product catalog that was significantly
better than using equal weights. This implies that attribute weighting based
on product popularity improves recommendations. However, at this stage,
it is not clear which model should be used in which situation and this is a
topic for future research. Also, it may be the case that there exists another
model based on product popularity that could improve recommendations on
all product catalogs.

The second evaluation approach we used was a user experiment in the form of
an online survey. Surprisingly, in this evaluation, the model-based weighting
approaches performed worse than using equal weights, implying that users
choose products differently in an experimental setup than on a real website.
On one hand this result can be driven by the fact that the website setup leads
users to certain products. On the other hand people may compare products in
a different way during an experiment than they would do in real life. Another
reason why the weighting models did not perform well in the user experiment,
is that the number of attributes used was limited to only seven relative impor-
tant attributes. The true contribution of the weighting methods may be the
mere selection of these important attributes and not so much the difference in
weights between these important attributes.

We see several directions in which this research can be extended or used.
First of all, our results are inconclusive with respect to the single best method
for determining attribute weights. Improving upon the proposed evaluation
method, e.g. by deriving new features from the clickstream data, may alleviate
this problem.

24

Both the clickstream analysis and the user experiment framework are set
up in such a way that they can be used for evaluation of various types of
(dis)similarity measures and weighting schemes. Such evaluations may poten-
tially lead to a combination of a dissimilarity measure and weighting scheme
that outperforms other approaches in both evaluations.

Also, we would like to study the use of the attribute weights in our previous
work on map based recommender systems [20,22]. We hope that the usability
of these systems will benefit from attribute weights. Finally, we think that
the PoissonTreeBoost model can be a competitive alternative for Poisson re-
gression models in different application fields. We believe that the weighting
approaches combined with the dissimilarity measure can be a powerful addi-
tion for recommender systems.

Acknowledgements

We thank Compare Group for making their product catalog and clickstream
data available to us and for distributing our survey via the Vergelijk.nl newslet-
ter.

A Adapted Gower Coefficient

In the adapted Gower coefficient framework [20,21,22], the dissimilarity δij
between products i and j is defined as the square root of the weighted average
of nonmissing dissimilarity scores δijk on the K attributes

δij =

√√√√∑K
k=1wkmikmjkδijk∑K
k=1wkmikmjk

, (A.1)

in which the wk’s are the weights for the different dissimilarity scores and,
hence, for the different attributes. The binary indicator mik has a value of
1 when attribute k is nonmissing for product i. The weights wk specify how
important the different attributes are in the computation of the dissimilarity
measure and, hence, in the application. In Section 3, we discuss two methods
to determine these weights.

The computation of the dissimilarity scores δijk in (A.1) is dependent on the
type of the attribute. For numerical attributes, the dissimilarity score δijk is

25

the normalized absolute distance

δNijk =
|xik − xjk|(∑

i<jmikmjk

)−1∑
i<jmikmjk|xik − xjk|

, (A.2)

where xik is the attribute value of product i for attribute k. For categorical
attributes, the dissimilarity score δijk is defined as

δCijk =
1(xik 6= xjk)(∑

i<jmikmjk

)−1∑
i<jmikmjk1(xik 6= xjk)

, (A.3)

where 1() is the indicator function returning a value of 1 when the condition
is true and 0 otherwise.

However, in many product catalogs, as will also be the case in the catalogs
used in this paper, a third type of attributes exists, which we call multi-
valued categorical attributes. Where a product can have only one value for
a categorical attribute such as, for example, its brand, it can have multiple
values for a multi-valued categorical attribute. For instance, an MP3 player
can have an attribute called ‘supported audio formats’, which can contain the
values MP3 and WMA at the same time.

In recommender systems, the products are often compared to a query and
not to each other. When a user, for example, queries for an MP3 player that
supports the audio formats MP3 and WMA, it does not matter for this user
that a product also supports other audio formats, but when MP3 or WMA
is not supported it does matter. Therefore, we use the following dissimilarity
score for multi-valued categorical attributes in our framework

δMijk =

∑S
s=1 1(xiks 6∈ xjk)(∑

i 6=jmikmjk

)−1∑
i 6=jmikmjk(

∑S
s=1 1(xiks 6∈ xjk))

, (A.4)

where xiks denotes one of the in total S values product xi has for attribute
xik. Note that we normalize over all dissimilarities where i 6= j, since the
dissimilarity score is not symmetric anymore.

B Derivation of PoissonTreeBoost

The PoissonTreeBoost algorithm can be derived by applying the Gradient-
TreeBoost [13] framework to optimize the Poisson deviance loss function in

26

(3) . Boosting estimates target values as a sum of the predictions of the base
learners

FN(x) = F0 +
N∑
n=1

Bn(x) . (B.1)

The initial estimate F0 can be determined by

F0(x) = arg min
ρ

I∑
i=1

L(yi, ρ)

= arg min
ρ

(
I∑
i=1

[
yi log

(
yi
ρ

)
− (yi − ρ)

])
(B.2)

=
1

I

I∑
i=1

yi ,

which implies that F0 should equal the mean values of y. Then, we have to
determine pseudo targets ỹi on which a base learner, that is, a regression tree,
should be fitted by determining the negative gradient direction

ỹi =−
∂L(yi, Fn−1(xi))

∂Fn−1(xi)

=−
∂
[
yi log

(
yi

Fn−1(xi)

)
− (yi − Fn−1(xi))

]
∂Fn−1(xi)

(B.3)

=
yi

Fn−1(xi)
− 1 .

On these pseudo targets we train an ordinary regression tree using a squared
loss function. Finally, we have to replace the values of the terminal nodes by

γpn = arg min
γ

∑
xi∈Rpn

L(yi, Fn−1(xi) + γ) (B.4)

= arg min
γ

∑
xi∈Rpn

(
yi log

(
yi

Fn−1(xi) + γ

)
− (yi − (Fn−1(xi) + γ))

)
.

Unfortunately, this minimum can often not be found analytically and therefore
a line search in each node needs to be performed. Finally, we add our new base
learner, a regression tree with terminal nodes Rpn, which have values γpn, to
the boosting model

Fn(x) = Fn−1(x) + ν
P∑
p=1

γpn1(x ∈ Rpn) . (B.5)

27

procedure PoissonTreeBoost({xi, yi}I1, N, ν)
F0(x) = 1

I

∑I
i=1 yi

for n = 1 to N do{
ỹi = yi

Fn−1(xi)
− 1

}I
1

Train tree Bn having terminal nodes {Rpn} using {xi; ỹi}I1
γpn = arg minγ

∑
xi∈Rpn

(
yi log

(
yi

Fn−1(xi)+γ

)
− (yi − (Fn−1(xi) + γ))

)
Fn(x) = Fn−1(x) + ν

∑P
p=1 γpn1(x ∈ Rpn)

end for
end procedure

Figure B.1. PoissonTreeBoost algorithm

Note that there is also a shrinkage parameter ν incorporated in the Gra-
dientTreeBoost framework which is known as the learning rate. Setting the
learning rate smaller than 1 implies that the results of a base learner are only
partially incorporated in the model. Setting the learning rate ν very small,
that is ν ≤ 0.1 leads to the best results [13,15]. The algorithm is summarized
in Figure B.1.

References

[1] G. Adomavicius, A. Tuzhilin, Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions, IEEE
Transactions on Knowledge and Data Engineering 17 (2005) 734–749.

[2] B. Arslan, F. Ricci, N. Mirzadeh, A. Venturini, A dynamic approach to feature
weighting, Management Information Systems 6 (2002) 999–1008.

[3] L. K. Branting, Learning feature weights from customer return-set selections,
Knowledge and Information Systems 6 (2004) 188–202.

[4] L. Breiman, Bagging predictors, Machine Learning 24 (1996) 123–140.

[5] L. Breiman, Arcing classifiers, Annals of Statistics 26 (2) (1998) 801–824.

[6] L. Breiman, Random forests, Machine Learning 45 (2001) 5–32.

[7] L. Breiman, J. H. Friedman, R. Olshen, C. Stone, Classification and Regression
Trees, Chapman & Hall, New York, 1983.

[8] R. Burke, Knowledge based recommender systems, in: J. E. Daily, A. Kent,
H. Lancour (eds.), Encyclopedia of Library and Information Science, vol. 69,
Supplement 32, Marcel Dekker, New York, 2000.

[9] L. Coyle, P. Cunningham, Improving recommendation rankings by learning
personal feature weights, in: Advances in Case-Based Reasoning; 7th European
Conference, ECCBR 2004. Proceedings., vol. 3155 of Lecture Notes in Computer
Science, Springer, Heidelberg, 2004, pp. 560–572.

28

[10] L. Coyle, D. Doyle, P. Cunningham, Representing similarity for CBR in XML,
in: Advances in Case-Based Reasoning; 7th International Conference, ECCBR
2004. Proceedings., vol. 3155 of Lecture Notes in Computer Science, Springer,
Heidelberg, 2004, pp. 119–127.

[11] Y. Freund, R. E. Schapire, Experiments with a new boosting algorithm, in:
L. Saitta (ed.), Proceedings of the 13th International Conference on Machine
Learning, Morgan Kaufmann, San Francisco, 1996, pp. 148–156.

[12] Y. Freund, R. E. Schapire, A decision-theoretic generalization of on-line learning
and an application to boosting, Journal of Computer and System Sciences 55 (1)
(1997) 119–139.

[13] J. H. Friedman, Greedy function aproximation: A gradient boosting machine,
Annals of Statistics 29 (5) (2001) 1189–1232.

[14] J. C. Gower, A general coefficient of similarity and some of its properties,
Biometrics 27 (1971) 857 – 874.

[15] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning,
Springer Series in Statistics, Springer, New York, 2001.

[16] J. L. Herlocker, J. A. Konstan, J. Riedl, Explaining collaborative filtering
recommendations, in: Proceedings of the 2000 ACM conference on Computer
supported cooperative work, ACM Press, New York, 2000, pp. 241–250.

[17] J. Honaker, G. King, M. Blackwell, Amelia II: A Program for Missing Data,
r package version 1.1-27, available at http://gking.harvard.edu/amelia
(2008).

[18] J. G. Ibrahim, M.-H. Chen, S. R. Lipsitz, A. H. Herring, Missing-data methods
for generalized linear models: A comparative review, Journal of the American
Statistical Association 100 (469) (2005) 332–346.

[19] A. Jameson, R. Schäfer, J. Simons, T. Weis, Adaptive provision of evaluation-
oriented information: Tasks and techniques, in: Proceedings of the 15th
International Joint Conference on Artificial Intelligence, Morgan Kaufmann,
San Mateo, 1995, pp. 1886–1893.

[20] M. Kagie, M. Van Wezel, P. J. F. Groenen, Online shopping using a two
dimensional product map, in: G. Psaila, R. Wagner (eds.), E-Commerce and
Web Technologies; 8th International Conference, EC-Web 2007. Proceedings.,
vol. 4655 of Lecture Notes in Computer Science, Springer, Heidelberg, 2007, pp.
89–98.

[21] M. Kagie, M. Van Wezel, P. J. F. Groenen, Choosing attribute weights for item
dissimilarity using clickstream data with an application to a product catalog
map, in: Proceedings of the 2nd ACM Conference on Recommender Systems,
ACM Press, New York, 2008, pp. 195–202.

[22] M. Kagie, M. Van Wezel, P. J. F. Groenen, A graphical shopping interface based
on product attributes, Decision Support Systems 46 (1) (2008) 265–276.

29

[23] G. King, J. Honaker, A. Joseph, K. Scheve, Analyzing incomplete political
science data: An alternative algorithm for multiple imputation, American
Political Science Review 95 (1) (2001) 49–69.

[24] F. Lorenzi, F. Ricci, Case-based recommender systems: A unifying view,
in: B. Mobasher, S. S. Anand (eds.), Intelligent Techniques for Web
Personalization, vol. 3169 of Lecture Notes in Computer Science, Springer,
Heidelberg, 2005, pp. 89–113.

[25] P. McCullagh, J. A. Nelder, Generalized Linear Models, vol. 37 of Monographs
on Statistics and Applied Probability, 2nd ed., Chapman & Hall, Boca Raton,
1989.

[26] D. McSherry, A generalised approach to similarity-based retrieval in
recommender systems, Artificial Intelligence Review 18 (2002) 309–341.

[27] J. A. Nelder, R. W. M. Wedderburn, Generalized linear models, Journal of the
Royal Statistical Society. Series A (General) 135 (3) (1972) 370–384.

[28] D. O’Sullivan, B. Smyth, D. Wilson, Understanding case-based
recommendation: A similarity knowledge perspective, International Journal on
Artificial Intelligence Tools 14 (1–2) (2005) 215–232.

[29] P. Resnick, H. R. Varian, Recommender systems, Communications of the ACM
40 (3) (1997) 56–58.

[30] F. Ricci, F. Del Missier, Supporting travel decision making throug personalized
recommendation, in: Designing Personalized User Experiences in eCommerce,
vol. 5 of Human-Computer Interaction Series, chap. 4, Springer, Netherlands,
2004, pp. 231–251.

[31] D. B. Ripley, Pattern Recognition and Neural Networks, Cambridge University
Press, Cambridge, 1996.

[32] D. B. Rubin, Multiple Imputation for Nonresponse in Surveys, Wiley, New
York, 1987.

[33] J. Sandvig, R. Burke, Aacorn: A CBR recommender for academic advising,
Tech. Rep. TR05-15, DePaul University (2005).

[34] J. L. Schafer, M. K. Olsen, Multiple imputation for multivariate missing-data
problems: A data analyst’s perspective, Multivariate Behavioral Research 33 (4)
(1998) 545–571.

[35] I. Schwab, W. Pohl, I. Koychev, Learning to recommend from positive
evidence, in: Proceedings of the 5th International Conference on Intelligent
User Interfaces, ACM Press, 2000, pp. 241–246.

[36] R. Sinha, K. Swearingen, The role of transparency in recommender systems,
in: CHI ’02 extended abstracts on Human factors in computing systems, ACM
Press, New York, 2002, pp. 830–831.

30

[37] T. M. Therneau, E. J. Atkinson, An introduction to recursive partitioning using
the RPART routines, Tech. Rep. 61, Mayo Foundation (1997).

[38] N. Tintarev, J. Masthoff, A survey of explanations in recommender systems, in:
V. Oria, A. Elmagarmid, F. Lochovsky, Y. Saygin (eds.), Proceedings of the 23rd
International Conference on Data Engineering Workshops, IEEE Computer
Society, Los Alamitos, 2007, pp. 801–810.

[39] D. R. Wilson, T. R. Martinez, Improved heterogeneous distance functions,
Journal of Artificial Intelligence Research 6 (1997) 1–34.

31

Publications in the Report Series Research in Management

ERIM Research Program: “Marketing”

2009

Map Based Visualization of Product Catalogs
Martijn Kagie, Michiel van Wezel, and Patrick J.F. Groenen
ERS-2009-010-MKT
http://hdl.handle.net/1765/15142

Embedding the Organizational Culture Profile into Schwartz’s Universal Value Theory using Multidimensional Scaling with
Regional Restrictions
Ingwer Borg, Patrick J.F. Groenen, Karen A. Jehn, Wolfgang Bilsky, and Shalom H. Schwartz
ERS-2009-017-MKT
http://hdl.handle.net/1765/15404

Determination of Attribute Weights for Recommender Systems Based on Product Popularity
Martijn Kagie, Michiel van Wezel, and Patrick J.F. Groenen
ERS-2009-022-MKT
http://hdl.handle.net/1765/15910

An Empirical Comparison of Dissimilarity Measures for Recommender Systems
Martijn Kagie, Michiel van Wezel, and Patrick J.F. Groenen
ERS-2009-023-MKT
http://hdl.handle.net/1765/15911

 A complete overview of the ERIM Report Series Research in Management:

https://ep.eur.nl/handle/1765/1

 ERIM Research Programs:

 LIS Business Processes, Logistics and Information Systems
 ORG Organizing for Performance
 MKT Marketing
 F&A Finance and Accounting
 STR Strategy and Entrepreneurship

http://hdl.handle.net/1765/15142
http://hdl.handle.net/1765/15404
http://hdl.handle.net/1765/15910
http://hdl.handle.net/1765/15911
https://ep.eur.nl/handle/1765/1

