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Conditional Downside Risk and the CAPM 
 

 
ABSTRACT 

The mean-semivariance CAPM strongly outperforms the traditional mean-variance 

CAPM in terms of its ability to explain the cross-section of US stock returns. If 

regular beta is replaced by downside beta, the traditional risk-return relationship is 

restored. The downside betas of low-beta stocks are substantially higher than the 

regular betas, while high-beta stocks involve less systematic downside risk than 

suggested by their regular betas. This pattern is especially pronounced during bad 

states-of-the-world, when the market risk premium is high. In sum, our results 

provide evidence in favor of market portfolio efficiency, provided we account for 

conditional downside risk. 

 
 
A WELL-KNOWN LIMITATION OF THE MEAN-VARIANCE (MV) CAPM is that variance is a 
questionable measure of investment risk. While investors generally dislike deviations 
below the mean and like deviations above the mean, this measure treats downside 
volatility and upside volatility in the same manner. This is a powerful argument for 
replacing variance with measures of downside risk. Hogan and Warren (1974) and Bawa 
and Lindenberg (1977) develop the mean-semivariance (MS) CAPM, which replaces 
variance with semivariance and replaces the regular beta with a downside beta that 
measures the co-movements with the market portfolio in a falling market.  

The MS CAPM preserves all key characteristics of the MV CAPM, including the 
two-fund separation principle, efficiency of the  market portfolio and the linear risk-
return relationship. The only difference is the use of the relevant risk measures – 
variance and regular beta vs. semivariance and downside beta. The importance of this 

difference depends on the shape of the return distribution. For a normal return 
distribution, regular beta and downside beta are identical. However, for skewed 
distributions such as the lognormal, the two models diverge. 

Price, Price and Nantell (1982) show that the historical downside betas of US 
stocks systematically differ from the regular betas. Specifically, the regular beta 
systematically underestimates the downside beta for low-beta stocks and overestimates 
the downside beta for high-beta stocks. This (little known) finding may help to explain 
why low-beta stocks appear systematically underpriced and high-beta stocks appear 
systematically overpriced in empirical tests of the MV CAPM (see for example 
Reinganum (1981) and Fama and French (1992)). 

Surprisingly, despite the theoretical limitations of variance, the empirical 
problems of the MV CAPM and the differences between regular betas and downside 
betas, the MS CAPM thus far has not been subjected to rigorous empirical testing. The 
few studies devoted to testing the model suffer from problems related to the data and the 
methodology. Jahankani (1976) focuses on the relatively small sample period 1951-1969 
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and find no support for the MS model. By contrast, Harlow and Rao (1989) report strong 

evidence in favor of the general mean-lower partial moment (MLPM) CAPM, which 
replaces the regular beta with a general LPM beta.1 However, in the empirical 
methodology they do not actually estimate the LPM beta and the  risk measure that is 
estimated instead is not economically meaningful.2 Thus, we may conclude that the MS 
CAPM thus far has not been subjected to unambiguous testing. 

The purpose of this study is to fill the gap by providing an empirical comparison 
of the MV and MS models. The study has three distinctive features.  First, we pay 
special attention to obtaining economically meaningful results. Specifically, we require 
the pricing kernels to be economically well-behaved in the sense that they obey the basic 
regularity conditions of non-satiation and risk aversion. One approach to achieve this is 
by using nonparametric stochastic dominance tests (see Post (2003)); these tests start 
from the regularity conditions rather than a parameterized model. Interestingly, using 
these tests, Post and Vliet (2004) show that downside risk helps to explain the high 
returns earned by small value winner stocks. This study takes an alternative approach; 
we fix the model parameters independently of the errors, in the spirit of the time-series 
methodology of Gibbons, Ross and Shanken (1989). In this respect, our study differs from 
Ang, Chen and Xing (2004), where the model parameters are fitted rather than fixed 
using a cross-sectional regression methodology. 

Second, we employ data sets that are specially tailored to the analysis of 
downside risk. When analyzing risk, it is particularly important to include periods 
during which investment risks are high and investors are sensitive to risk. For this 
reason, we use an extended sample (1926-2002) that includes the prolonged bear 
markets of the 1930s, 1970s and early 2000s. Further, we will use benchmark portfolios 
that are formed on downside beta. After all, if downside beta drives asset prices, then 
sorting on other stock characteristics may lead to a lack of variation in means and betas 
and erroneous rejections of the MS CAPM. 

Third, we employ unconditional tests as well as conditional tests that account for 
the economic state-of-the-world. The conditional models are particularly relevant given 
the mounting evidence in favor of time-varying risk and time-varying risk aversion. 
Guaranteeing a well-behaved kernel is especially important for conditional tests. Such 
tests frequently calibrate the model parameters to optimize the statistical fit of the 
model (e.g. Jagannathan and Wang (1996) and Lettau and Ludvigson (2001). 
Unfortunately, this approach may yield economically questionable results. Specifically, 
the results of unrestricted conditional tests frequently violate the basic regularity 
conditions of nonsatiation (no arbitrage) and risk aversion. For example, Dittmar (2002), 
Section IIID) shows that the apparent explanatory power of skewness and kurtosis in 
addition to variance can be attributed almost entirely to violations of risk aversion. 

In this paper, we find a strong indication that conditional downside risk drives 
asset prices. If regular beta is replaced by downside beta, the traditional risk-return 
relationship is restored. The conditional and unconditional MS CAPM outperform the 
traditional MV CAPM for the beta decile portfolios. The low (high) beta stocks involve 
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more (less) systematic downside risk than expected based on their regular betas. This 

pattern is especially pronounced during bad states-of-the-world, when the market risk 
premium is high. 

Figure 1 illustrates our main findings with the empirical risk-return relationship 
of ten beta decile portfolios. Later on in this paper we will discuss the empirical and 
methodological details. Panel A shows the  weak relationship between regular betas and 
mean returns; a low annualized mean spread (3.5%) is combined with a high beta spread 
(1.1). Consistent with earlier empirical studies on the MV CAPM ((e.g. Black, Jensen and 
Scholes (1972), Fama and MacBeth (1973), Reinganum (1981) and Fama and French 
(1992)). If the MV CAPM holds, then low (high) beta stocks are seriously over (under) 
priced. As shown in Panel B, the results greatly improve if the regular beta is replaced 
by the downside beta of the MS CAPM. The annualized mean spread increases from 3.5 
percent to 5.5 percent and the beta spread decreases from 1.1 to 0.9. Finally, Panel C 
shows a near perfect fit between means and downside betas during bad states-of-the 
world. The mean spread is consistent with the beta spread and the equity premium 
during bad states. The relation between conditional downside and average returns will 
be formally tested in this paper. 

 
[Insert Figure 1 about here] 

 
The remainder of this study is structured as follows. Section I first formulates the 
competing capital market models in terms of pricing kernels and explains how we will 
select the unknown parameters of the pricing kernels and determine the empirical 
support for the competing models. Section II discusses the data used to test the 
competing models. Next, Section III gives our results. Subsequently, Section IV provides 
a discussion of the results and finally Section V concludes. 
 

 
I.  Competing Asset Pricing Models  

A. Kernels 
MV CAPM and MS CAPM are relatively simple single-period, portfolio-oriented, 
representative-investor models of a perfect capital market. Both models predict that the 
value-weighted market portfolio of risky assets (M) is efficient and that the expected 
return of individual assets is determined solely by their contribution to the risk of the 
market portfolio. In our analysis, it is useful to formulate both capital market models in 
terms of a pricing kernel. 

The investment universe consists of N risky assets with excess returns Nℜ∈r  and 

a riskless asset with a zero excess return.3 The return on the market portfolio is given by 

τΤ≡ rMr , where Nℜ∈τ  denotes the weights of the market portfolio or the relative 

market capitalization of the risky assets. Capital market equilibrium can be 
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characterized using a pricing kernel )( Mrm  that assigns weights to the return of the 

market portfolio. Specifically, in equilibrium, the following equality must hold: 
   

 NMrmE 0=])([ r  (1) 

 
In words, the average risk-adjusted excess return of all assets must equal zero. For 
different specifications of the pricing kernel, this equality is our null hypothesis 
throughout this study.  

The pricing kernel can be seen as the marginal utility function of the 
representative investor and equality (1) as the first-order condition for portfolio 
optimization for the representative investor. In this study, we use this preference-based 
perspective. The shape of the pricing kernel and the restrictions placed on its parameters 
are governed by the properties of a well-behaved utility function. 
 It is useful to reformulate (1) as the following a risk-return trade-off: 
 

 βµ Mµ=  (1’) 

 

where the mean returns ][rE≡µ  equal the market risk premium τµ Τ=Mµ  times the 

market betas 1))]([])([])([)]([])([( −−−≡ MMMMMM rmErrmEErmErmE µrrβ . The betas 

are generalizations of the traditional market betas. Specifically, the betas measure the 
covariance of the assets with the pricing kernel, standardized with the covariance of the 
market portfolio with the pricing kernel. For the UMV model, the generalized beta 
reduces to the traditional beta. 

Different capital market models impose different assumptions about the pricing 
kernel. In our analysis, we will analyze the following four models: 

 

Model Kernel ( )Mrm( ) 

Unconditional mean-variance (UMV) Mrbb 10 +  

Unconditional mean-semivariance (UMS) )0,min(10 Mrbb +  

Conditional mean-variance (CMV) Mrzbbzbb )()( 3210 +++  

Conditional mean-semivariance (CMS) )0,min()()( 3210 Mrzbbzbb +++  

 
In the unconditional mean-variance (UMV) CAPM, the kernel is a linear function of 
market return. The unconditional mean-semivariance model (UMS) deviates from the 
MV models by using a kernel that is a linear function of market return in case of losses 

( 0<Mr ) only; for gains, the kernel is not affected by the market return. In the 

conditional versions of these models (CMV and CMS), the two parameters are a linear 
function of a single conditioning variable z. Then, the shape of the kernel also depends 
on the state of-the-world. The CMS model assumes that investors fear negative stock 
returns during bad states-of-the-world most. In the empirical analysis, we will condition 
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on the dividend yield (D/P) and show that similar results are obtained for other 

conditioning variables, such as the credit spread and the earnings yield (E/P).  
In practice, we cannot directly check the equilibrium condition (1), because the 

return distribution of the assets is unknown. However, we can estimate the return 
distribution using time-series return observations and employ statistical tests to 
determine if the equilibrium condition is violated to a significant degree. Throughout 

the text, we will represent the observations by the matrix )( 1 Trr L≡R , with 
Τ≡ )( 1 Nttt rr Lr . The values of the kernel will be denoted by the vector 

Τ≡ ))()(( 1 MTM rmrm Lm . Finally, we will use τΤ≡ RMr , 

The empirical deviations from the equilibrium equation (1), also known as pricing 
errors or alphas, are defined as 
 

 mΤ−≡ R1ˆ Tα  (2) 

 
The alphas can equivalently be formulated as 
 

 βµα ˆˆˆˆ Mµ−=  (2’) 

 

with  eΤ−≡ R1ˆ Tµ , τµ Τ= ˆˆ Μµ  and 1T ))(ˆ))((ˆ(ˆ −ΤΤΤ −−≡ memrmem MM µµβ R  for the 

sample means and sample betas respectively. 
In practice, the empirical researcher faces two issues: the selection of the 

parameters of the kernel and the statistical inference about the equilibrium condition 
based on the alphas relative to the kernel.  
 
B. Selecting the model parameters 
Some empirical asset pricing studies select the parameters of the pricing kernel so as to 
minimize the alphas. Unfortunately, this approach can yield economically questionable 
parameter values. Most notably, the parameter values may imply arbitrage possibilities 
(a negative kernel) and/or risk seeking (a kernel that increases with market return). 

Arbitrage opportunities are inconsistent with the basic economic concept of 
increasing utility of wealth, or nonsatiation. Risk seeking entails two economic 
problems. First, risk seeking is inconsistent with the basic economic concept of 
diminishing marginal utility of wealth. Second, the interpretation of the test results in 
terms of utility maximizing investors breaks down if we allow for risk seeking. Recall 
that the equilibrium condition (1) can be seen as the first-order condition for portfolio 
optimization. The first-order condition in general is not a necessary condition for a 
global maximum, because minima and local maxima may arise in case of risk seeking. 
For these reasons, a good statistical fit may come at the cost of a poor economic fit. 
Section IIIA will give some striking examples of this problem; when selected to 
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minimize the alphas, the CMV and CMS kernels take negative values and are 

increasing for favorable states-of-the-world. 
The UMV efficiency test of Gibbons, Ross and Shanken (GRS, 1989) circumvents 

this problem by fixing the kernel independently of the alphas. Specifically, this test 
requires a zero alpha for the  market portfolio: 
 

 01 =Τ− mrMT  (3) 

 
Also, the test standardizes the kernel by setting its sample average equal to unity: 
 

 11 =Τ− meT  (4) 

 
Combined, the two restrictions (3) and (4) completely fix the two parameters of the 

UMV kernel. The resulting kernel typically is well-behaved, that is, it obeys nonsatiation 
and risk aversion provided the historical market risk premium takes a moderate and 
positive value. We will use these two restrictions for all models evaluated in this study. 
This means that our UMV alphas are identical to the GRS alphas. As for the UMV 
kernel, imposing (3) and (4) completely fixes the UMS kernel. Provided the historical 
market risk premium is positive, the resulting kernel will be well behaved. For the CMV 
and CMS models, the restrictions (3) and (4) do not suffice to guarantee a well-behaved 
pricing kernel for every value of the conditioning variable z, and further restrictions are 
required. For this purpose, we introduce a “utopia state”, characterized by an extremely 

favorable value for the conditioning variable, say *z . For example, our analysis below 

will condition on the dividend yield (D/P) and will use a zero dividend yield for the utopia 
state. We assume that the representative investor is satiated (the kernel equals zero) 
and risk neutral (the kernel is flat) in the “utopia state”. This boils down to imposing the 
following two restrictions: 
 

 0)( *
10 =+ zbb  (5) 

 

 0)( *
32 =+ zbb  (6) 

 
The four parameters of the conditional models are completely fixed by the four equalities 
(3)-(6). By imposing satiation and risk neutrality for the utopia state, we effectively avoid 
the possibility of a negative and/or increasing kernel for favorable states-of-the-world. 

We stress that our approach of fixing the kernel necessarily leads to a worse 
statistical fit than optimizing the kernel. However, our approach ensures that the 
kernel is economically well behaved, in the sense that arbitrage possibilities and risk 
seeking are excluded. An additional advantage of this approach is that a single kernel 
can be used for different benchmark sets. Thus, we do not explain different benchmark 
sets with different kernels. 
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C. Statistical inference 
We now turn to the issue of statistical inference about the equilibrium condition (1) 

based on the estimated alphas. Under the null, the alphas have means NE 0=]ˆ[α . The 

covariance matrix Ω ]ˆˆ[ Τ≡ ααE  of the alphas can be estimated in a consistent manner by  

 

  )()(ˆ 1 RR ⊗⊗≡ Τ− mmTΩ  (7) 

 
In the spirit of the Generalized Method of Moments, we can use the following test 
statistic to aggregate the individual alphas: 
 

  αα ˆˆˆ 1−Τ≡ ΩTJT  (8) 

 
Assuming that the observations are serially independently and identically distributed 
(IID) random draws, the test statistic obeys an asymptotic chi-squared distribution with 

N-1 degrees of freedom. The “loss” of one degree of freedom occurs due to the restriction 
that the alpha of the market portfolio should equal zero (3). Thus, in case of a single 
risky asset (N=1), the market portfolio is fully efficient and 0=JT  by construction. More 

generally, for N assets, the test statistic behaves as the sum of squares of N-1 
contemporaneously IID random variables. 
 
 
II. Data 

A. Data sources and stock data requirements 
In the empirical analysis we use individual stock returns, index returns, hedge portfolio 
returns and conditional variables. The monthly stock returns (including dividends and 
capital gains) are from the Center for Research in Security Prices (CRSP) at the 
University of Chicago. The one-month US Treasury bill is obtained from Ibbotson. The 
monthly hedge portfolio returns (SMB and HML) are taken from the data library of 
Kenneth French. The dividend and earnings yield are obtained from Robert Schiller’s 
homepage. The credit spread is the difference between the Aaa and Baa corporate bond 
yields and are from the St. Louis Fed. The CRPS total return index is a value-weighted 
average of all US stocks included in this study. We subtract the risk-free rate from 
nominal returns to obtain excess returns. 
 We select ordinary common US stocks listed on the New York Stock Exchange 
(NYSE), American Stock Exchange (AMEX), and NASDAQ markets. We exclude ADRs, 
REITs, closed-end-funds, units of beneficial interest, and foreign stocks. Hence, we only 
include stocks that have a CRSP share type code of 10 or 11. At formation date a stock 
needs to have (1) at least 60 months of data available and (2) market capitalization 
information (defined as price times the number of outstanding shares). Portfolio 
formation takes place at December of each year (except for momentum). For ex ample, to 
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be included at December 1930 a stock must have trading information since January 1926 

and a positive market capitalization for December 1930. A stock is excluded from the 
analysis if there is no more price information available. In case of exclusion, the delisting 
return or partial monthly return provided by CRSP is used for the last observation. 
 

B. Sample period 
When analyzing risk, it is particularly important to include periods during which 
investment risks are high and investors are sensitive to risk. In this respect, the failure 
of the SV model to improve upon the MV model in the analysis of Jahankhani (1976) is 
presumably caused by the focus on a sample period (1951-1969) that excludes the 
important bear markets of the 1930s, 1970s and 2000s. Nowadays, empirical researchers 
often confine themselves to the post-1963 period to avoid biases associated with the 
Compustat database. Still, the CRSP database is free of delisting bias and survivorship 
bias for the total 1926-2002 period, since 1999. Therefore, when CRSP data is used only 
(without Compustat requirements) there is no reason to exclude the pre-1963 period. 
Contrary, because this early period includes the Great Depression and the (recovery of) 
Second World War excluding this period would lead to a loss of useful information.  To 
address these issues, our study will use data from a long sample period (1926-2002). 
Furthermore, we analyze the role of downside risk in different subsamples. 
 
C. Benchmark portfolios 
At the end of December of each year, starting in 1930, all stocks that fulfill our data 
requirements are sorted into decile portfolios. 4 We sort stocks into portfolios based on 
historical 60-month (1) regular beta and (2) downside beta. For each portfolio we 
calculate the value-weighted returns for the following next 12 months, thereby closely 
resembling a buy-and-hold strategy.5 When a stock is delisted or removed from the 
database after formation date, the portfolio return is calculated as the average for the 

remaining stocks in the portfolio during the holding period. 
We will start with an analysis of benchmark portfolios that are formed on regular 

market beta, because the MV CAPM predicts that the regular beta is the relevant 
measure. In fact, if regular beta drives asset prices, then sorting on other stock 
characteristic may lead to a lack of variation in means and erroneous rejections of the 
MV CAPM. Similarly, if the MS CAPM holds, then sorting stocks on downside beta 
maximizes the mean spread and minimizes the probability of erroneous rejections of the 
MS CAPM. To disentangle the effect between regular and downside beta on stock 
returns we also apply a double-sorting routine. Sorting takes place on regular beta first 
(quintiles) and subsequently on downside beta (quintiles), and visa versa. Later on, in 
the discussion, we will also control for size. In this case, we first place stocks in NYSE 
size decile portfolios and then sort on the two risk measures. Thus, we obtain 100 
size/regular-beta and 100 size/downside-beta portfolios. Finally, we will also test the MS 
CAPM relative to ten momentum decile portfolios. Momentum is defined as the past 12-2 
month return performance and rebalancing takes place at the end of each month. The 
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sample period, data requirements, and portfolio return calculation, for all sorts are 

identical to the beta portfolios.  
 
 
III. Results  

A. Pricing Kernels  
Figure 2 shows the conditional and unconditional pricing kernels for the mean-variance 
and mean-semivariance models.  

The shape of the unconditional kernels is determined by the historical market 
risk premium. Since the UMS model explains the market risk premium only with the 
distribution of losses, the degree of risk aversion (for losses) in this model exceeds the 
degree of risk aversion in the UMV model. Specifically, the slope of the UMV kernel is -/-
0.022, while the slope of the UMS kernel in the loss segment is -/-0.049.  

The shape of the conditional kernels is determined by the unconditional historical 
market risk premium and the requirement of satiation and risk neutrality in the utopia 
state. Since the kernels are flat in the utopia state, the slope during the worst states is 
much higher during the conditional models. Specifically, for a dividend yield of 10, the 
slope of the CMV kernel is -/-0.052, while the slope of the CMS kernel in the loss 
segment is -/-0.130. Further, the conditional kernels increase with the dividend yield, 
reflecting that marginal utility during bad states is higher than in during good states. 
Hence, a loss experienced during good states may be assigned a lower weight than a gain 
experienced during bad states. For example, in October 1974, the excess return on the 
market portfolio was 16.1 percent. The stock market strongly recovered from a prolonged 
bear market during which the dividend yield had increased to 5.27. The weight assigned 
to this scenario is 0.87 in the CMV model. By contrast, the October 1987 crash, with an 
excess return of -/-23.1 on the market, followed a prolonged bull market during which the 
dividend yield had fallen to 2.72. The CMV weight assigned to this scenario is 0.99, only 

marginally higher than the weight of 0.87 for the October 1974 gain of 16.1 percent. In 
an unconditional model, such small differences in the weights are possible only in case of 
near-risk-neutrality. However, conditional models recognize that marginal utility is 
higher during bad states than during good states.  
 The fixed kernels are well-behaved, that is, they obey nonsatiation and risk 
aversion over the sample range of the market return and the dividend yield. Imposing 
these regularity conditions is the key motivation for fixing the kernels. Selecting the 
kernel to optimize the statistical fit can result in very ill-behaved kernels; see Section 
IIIA.  
 

[Insert Figure 2 about here] 

 
B. Regular-beta-sorted Portfolios 
Panel A of Table I shows the descriptives and results for the regular-beta portfolios. Low 
(high) beta portfolios have low (high) returns, low (high) variance, negative (positive) 
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skewness and low (high) kurtosis. Especially the pattern in skewness across the 

portfolios is meaningful in addition to the pattern in variance. Consistent with other 
studies employing beta-sorted portfolios low-beta stocks are underpriced and high-beta 
stocks are overpriced in the UMV CAPM. The lowest-beta portfolio and the highest-beta 
portfolio have regular betas of 0.63 and 1.74 respectively, a beta spread of 1.11. Given 
the market risk premium of 0.64 percent, this beta spread is too large compared to the 
mean spread of 0.29 (0.89-/-0.60). 

Consistent with Price, Price and Nantell (1982), the downside betas of the low-
beta portfolios are higher than the regular betas, while the downside betas of the high-
beta portfolios are smaller than the regular betas. For example, the downside beta of the 
lowest-beta portfolio is 0.66, while the highest-beta portfolio has a downside beta of 1.68. 
The beta spread decreases from 1.11 to 1.02. As a result the alphas are reduced and the 
UMS model increases the overall p-value from 0.14 to 0.25. 

Apart from downside risk, time-variation also helps to explain the returns of the 
beta portfolios. Specifically, the betas of the low (high)-beta stocks increase (decrease) 
during bad times, when the market risk premium is high. This translates into an 
increase of the conditional betas relative to the unconditional betas. For example, the 
conditional market beta of the lowest-beta portfolio is 0.72, an increase of 0.11 relative to 
the unconditional model, while the conditional market beta of the highest-beta portfolio 
is 1.55, a decrease of 0.19. Overall, the conditional model gives a substantially better fit 
than the unconditional model; the p-value increases from 0.14 to 0.83. 

The best fit is obtained with the CMS model, which combines the two 
explanations of downside risk and time-variation. Low beta (high beta) stocks are 
substantially riskier (less risky) than the regular unconditional beta suggests. For 
example, the conditional downside beta of the lowest-beta portfolio is 0.78 (0.63), and of 
the highest-beta portfolio is 1.41 (1.74). The beta spread is sharply reduced from 1.11 to 
0.83. Compared with the UMV model, the alphas show substantial reductions. The 

largest pricing error drops from 0.18 to 0.08 and the lowest pricing error improves from -
/-0.27 to -/-0.06. Overall, the CMS model gives a near-perfect fit, with a p-value of 0.98. 
 In brief, while the UMV model performs poorly for beta-sorted portfolios, 
accounting for downside risk and for time-variation substantially improves the fit. In 
fact, the combined effect is strikingly good. 
 

[Insert Table I about here] 

 
Panel A of Figure 3 further illustrates the role of conditional downside risk. The 

figure shows the regular beta and the downside beta for the lowest-regular-beta portfolio 
and the highest-regular-beta portfolio as a function of the dividend yield, our proxy for 
the state-of-the-world. In the figure, we clearly see a substantial narrowing of the beta 
spread during the bad states (high dividend yield). This narrowing is most pronounced 
for the downside betas.  
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[Insert Figure 3 about here] 

 
C. Downside-beta-sorted Portfolios 
Panel B of Table I shows the results for the downside-beta portfolios. As in Ang, Chen 
and Xing (2004), the variation in (value-weighted) returns of the downside-beta 
portfolios increases relative to the regular-beta portfolios. Specifically, the mean spread 
increases from 0.29 to 0.46 percent per month, while the downside beta spread slightly 
decreases (1.02 vs. 0.97). The UMS pricing errors are closer to zero, which we already 
showed in Panel B of Figure 1. We formally test UMS model, and cannot reject the 
hypothesis of zero pricing errors (p=0.52).  

As for the regular-beta portfolios, time-variation and downside risk lead to 
substantial reductions of the alphas. However, time-variation becomes less important, 
while downside more important. Panel B of Figure 3 illustrates this finding. Due to the 
betas of low-downside-beta stocks being higher than those for the low-regular-beta 
stocks in good states (low dividend yield), there no longer is a clear narrowing of the beta 
spread; the regular-beta spread increases slightly, while the downside-beta spread 
decreases slightly. This illustrates the limited role of time variation for the downside-
beta portfolios. By contrast, the differences between regular beta and downside beta are 
more pronounced, especially during the bad states. Again, the CMS model gives a near -
perfect fit, with a p-value of 0.96. 
 
D. Double-sorted portfolios 
The above results for regular-beta decile portfolios and downside-beta deciles prove 
strong evidence that downside beta, rather than regular beta, drives returns. Still, 
regular beta and downside beta are highly correlated (0.999 and 0.997). To disentangle 
the effect of the two risk measures, we apply a double-sorting routine. We sort stocks 
first into five quintile portfolios based on regular-beta and then, we subdivide each 

regular-beta quintile into five portfolios based on downside beta. In addition, we first 
sort on downside beta and then sort on regular beta. The two resulting datasets of 25 
portfolios isolate the separate effects of downside beta and regular beta on average 
returns.  
 Table II unambiguously shows that downside beta rather than regular beta 
explains average returns. In Panel A we see that average return is positively related 
with downside beta within each regular-beta quintile. In general, the average return of 
low downside-beta portfolios is 0.69 percent compared to 0.90 for the high downside-beta 
portfolios. Thus controlled for regular-beta, the positive relation between mean and 
downside beta remains intact. By contrast, Panel B shows that the positive relation 
between average return and regular beta disappears (becomes flat/negative) within the 
downside-beta quintiles. Controlled for downside beta, the average return of low regular-
beta portfolios is 0.87 percent compared to 0.77 for the high regular-beta portfolios. 
Apparently, the positive relation between regular beta and mean returns in Table I and 
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panel A of Table II is due to the fact that regular beta and downside beta are so highly 

correlated. Separation of the two betas shows that downside beta drives average returns. 
 

[Insert Table II about here] 

E. Further Analysis 
Table III shows how robust the results are for (1) the specific sample period and (2) the 
conditioning variable. The conditional models are not included for the subsamples, 
because splitting the sample greatly reduces the variation in the conditioning variables, 
hence reducing the value added of these models. Panel A shows the split sample results. 
The sample is divided into subsamples of equal length based on time period and dividend 
yield. Clearly, the role of downside risk is most pronounced in the first subsample (1931-
1966) and the bad-state subsample. Both subsamples include the bear market of the 
1930s. This illustrates the importance of including this specific period when analyzing 
downside risk. In the more recent subsample (1967-2002) the UMS and UMV models 
show similar performance for both datasets. For this period, the portfolio-sorting 
variable is more important for model test results than the pricing kernel. The role of 
(downside) risk is more important during bad-times than during good-times. The UMS 
model cannot be rejected relative to the downside-beta sorted portfolios in both time 
periods (p>0.50) and both states of the word (p>0.38). 

We further investigate how the results are affected by the choice for the specific 
conditioning variable (z). The dividend price ratio is possibly affected by a change in 
dividend policy (Fama and French (2002)). Nowadays, firms use share repurchases as a 
way of returning earnings to stockholders, which structurally lowers the dividend yield. 
Therefore we also employ the earnings yield (EY) and Credit Spread (CS) as conditioning 

variables. For the conditional models, the utopia state ( *z ) is characterized by a zero 

value for the earnings yield and the credit spread. Again, the conditional kernels are 
well-behaved to ensure economic meaningful results. In brief, we find that using the 
earnings yield leads to a lesser fit and using the credit spread leads to a better fit. 
Where, the CMV model depends heavily on the choice for the specific conditional 
variable, the CMS model gives a good fit (p>0.83) for all conditioning variables. 
 

[Insert Table III about here] 
 
IV. Discussion 

When discussing our findings with colleagues, we have often encountered various 
questions. Below, we have tried to briefly summarize the most common questions and 
our attempt to answer these questions. 
 
A. In your study, you have fixed the kernel to impose the regularity conditions of 
nonsatiation and risk aversion. Do fitted kernels really exhibit strong violations of the 
regularity conditions? 
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Yes. To illustrate the need to impose economic structure, Figure 4 shows the kernels that 

are obtained if the parameters are selected to optimize the statistical fit (JT). The 
kernels take negative values (violating nonsatiation) and are positively sloped (violating 
risk aversion) for a large fraction of the observations. Such kernels are economically 
irrelevant. A statistically good fit for such kernels doesn’t mean that we have found a 
good economic explanation – it only means that we have found a good statistical 
description. 

[Insert Figure 4 about here] 

 
B. The difference between variance and semi-variance is especially important for skewed 
return distributions. Does the mean-variance-skewness model of Kraus and Litzenberger 
(1976) give the same results as the mean-semivariance model?  
 
No. The three-moment (3M) CAPM of Kraus and Litzenberger replaces the traditional 
linear pricing kernel with a quadratic pricing kernel. Unfortunately, the explanatory 
power of skewness is very limited if we require the kernel to obey risk aversion (see for 
example Dittmar (2002), Section IIID). Specifically, it follows from the theoretical 
analysis of Tsiang (1972) that a linear kernel gives a good approximation for any 
continuously differentiable and decreasing kernel over the typical sample range of asset 
returns, and that a quadratic kernel is unlikely to improve the fit. Interestingly, this 
argument does not apply to semi -variance, because this risk measure is associated with 
a two-piece linear kernel that is not continuously differentiable. 

Figure 5 illustrates this point using our data set of regular -beta portfolios. Panel 

A shows the cubic kernel 2
210)( MMM rbrbbrm ++=  with the parameters selected to 

optimize the fit (JT) under conditions (3) and (4). The resulting kernel clearly is ill-
behaved, as it severely violates risk aversion. Simkowitz and Beedles (1978) already 
made the point that with risk seeking there is no need for diversification (hold the 
market portfolio). Panel B shows the results that are found if we require the kernel to 
obey nonsatiation and risk aversion over the sample range of market return. The 
resulting kernel comes very close to UMV CAPM kernel. Clearly, a cubic kernel is not 
sufficiently flexible to capture downside risk aversion if the kernel is required to also be 
economically well behaved. Indeed, the 3M CAPM gives a worse fit than the UMS CAPM 
(JT=12.5 vs. JT=11.3), even though the model has one additional parameter that is 
calibrated to optimize the fit. 

 
 [Insert Figure 5 about here] 
 
 
C. The MS CAPM uses semi-variance, which is the second-order lower partial moment 
(LPM) with the riskless rate for the target rate of return. Since there exist few prior 
arguments for selecting the order or the target rate, it would be interesting to see the 
results for other LPMs. 
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The general mean-LPM (MLPM) CAPM can be represented by the pricing kernel 
1

10 )min()( −−+= k
MM crbbrm  with c for the target rate of return and k for the relevant 

order of the LPM norm. The MS CAPM model is the special case with c=0 and k=2; the 
MV CAPM is the special case with c>max{rM} and k=2. Table IV shows the JT statistic 
for various combinations of c and k. For the regular-beta portfolios, the best fit is 
obtained for c=-/-10 and k=2, that is, the variance below a return level of -/-10 percent. 
This suggests that tail risk rather than downside risk even better captures the returns of 
the regular-beta portfolios. By contrast, for the downside-beta portfolios, the semi-
variance (c=0, k=2) is the optimal LPM. In brief, the beta portfolios are best described by 
a MLPM CAPM with a low target rate, but the MS CAPM gives the best fit for the 
downside-beta portfolios. 
 
 [Insert Table IV about here] 

 
D. The risk of stocks is related to market capitalization (ME). Fama and French (1992) 
convincingly show that the MV CAPM fails within different size deciles. Does the MS 

CAPM do any better in this respect? 
 
Yes. Figure 6 shows how the risk-return relation is recovered within the different size 
deciles. In Panel A of the figure we observe how the risk-return relation is flat within the 
smallest and largest size deciles. Although Fama and French (1992) employ a shorter 
sample (1941-1990) and exclude the 1930s, we find similar results in our extended 
sample (1931-2002). Panel B shows how the beta spread decreases and the mean spread 
increases when regular beta is replaced by downside beta as the relevant risk measure. 
This pattern is most pronounced within the smallest size deciles. Finally, panel C shows 
a further improvement in the risk-return relationship during bad-states of the world. As 
can be clearly seen from the figures, a residual size effect remains. We emphasize that 
the MV and MS models assume a perfect capital market and ignore transaction/trading 
costs. Therefore we do not address the empirical issues typical for the small market 
segment. Still, the CMS model cannot be rejected within the smallest (p=0.57) and 
largest (p=0.96) size deciles. Again, we find that downside risk drives asset prices, both 
within the small and the large market segment. 
 
 [Insert Figure 6 about here] 
 
 
E. The most successful competitor of the MV CAPM is the three-factor model (TFM) of 
Fama and French (1993). Maybe you also pick up distress risk. How does this model 
perform relative to the MS CAPM in explaining beta portfolio returns? 
 
Not so good. To answer this question, the three-factor model can be represented by the 
kernel hmlbsmbbrbb M 3210 +++ , where SMB and HML stand for "small (cap) minus big" 
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and "high (book/market) minus low". We fix the model parameters following the 

multifactor generalization of the GRS methodology by Fama (1996). Table V compares 
the fit of the three-factor model with that of the conditional downside risk model. As in 
Equation (2), the multi-factor betas can be reduced to a single kernel beta (also see 
Cochrane (2001), Section 8.4). The high-beta portfolios have higher TFM betas than 
UMV betas, thus leading to larger pricing errors. In fact, the TFM model exhibits a 
rather weak performance relative to the beta portfolios (p=0.01 and p=0.10). Thus, 
distress risk does not help to explain the underpricing/overpricing of low/high beta 
stocks. For beta portfolios, the CMS model does better than the TFM. 
 We are aware of the fact that the three-factor model certainly helps to explain 
average returns of stocks within the smallest market segment, most notably small value 
stocks. However, there are two reasons why we focus on the regular -beta portfolios and 
downside-beta portfolios in our analysis of the MV and MS models. First, the risk of 
erroneously rejecting a model due to sampling error increases if we analyze portfolios 
that are formed on stocks characteristics that are only weakly correlated with the 
characteristics that are priced according the model. Second, the MS and MV models 
assume a perfect capital market and we do not expect our models to completely explain 
the returns of all possible investment strategies. This is especially true for small cap 
investing, or strategies that involve a high turnover and correspondingly high 
transactions costs, such as momentum strategies (Lesmond, Schill and Zhou (2004)).  
 

[Insert Table V about here] 

 
F. Your study focuses on explaining the beta-effect. All this is very interesting. However, 
the ‘anomaly-du-jour’ is the momentum effect (Jegadeesh and Titman (2001)).  Does the 
MS model fare any better in explaining the returns of momentum strategies than the MV 
model?  

 
Yes. Momentum profits are related to conditional downside risk. Momentum portfolios 
are an interesting test case for comparing the MV and MS models, because the returns 
to momentum strategies generally are characterized by asymmetry (and hence the 
regular betas and downside betas can be expected to differ substantially). For this 
reason, we applied all five tests (UMV, UMS, CMV, CMS, and TFM) to ten momentum 
decile portfolios. Table VI reports the results. The momentum-effect is strongly present; 
the portfolio of past losers has the lowest mean (0.01% per month) and the highest UMV 
beta (1.57), while the portfolio of past winners has the highest mean (1.33% per month) 
and one of the lowest UMV betas (1.00). Interestingly, downside risk and conditioning 
lead to substantial improvements in the fit. Most notably, in the CMS model, which 
combines the two explanations, the beta of the loser portfolio falls from 1.57 to 1.15, 
while the beta of the winner portfolio rises from 1.00 to 1.20. Apparently, past losers 
involve less downside risk in bad states than suggested by their unconditional regular 
betas and for past winners the opposite is true. While the improvements are not large 
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enough to rationalize the entire momentum effect and both models have to be rejected, 

the sizeable reductions of the alphas again confirm our conclusion that the MS CAPM 
strongly outperforms the MV CAPM – especially during bad states. 
 
 [Insert Table VI about here] 
 
 
G. How do your results compare with those of Ang, Chen and Xing (ACX, 2004)? 
 
As our study, ACX conclude that downside risk is important to explain the  cross-section 
of stock returns. However, the underlying empirical evidence actually is very different. 
The data and methodology of ACX differ fundamentally from ours. In fact, using our 
data and methodology, we find no evidence favoring the UMS model over the UMV 

model in the ACX sample (1963-2001). This confirms our finding that the role of 
downside risk in the second half of the 20th century is limited (see Table II). The 
different conclusion of ACX relies on them using (1) equal-weighted portfolio returns and 
(2) the Fama and MacBeth (1973) cross-sectional methodology. Using equal-weighted 
portfolio returns rather than value-weighted returns has the effect of placing greater 
weight on the  small cap segment. As illustrated in Figure 6 above, downside risk is 
relatively more important for the small caps than for the large caps. The cross-sectional 
methodology further inflates the of downside risk by allowing a high intercept (far above 
the historical riskless rate) and a low slope (far below the historical equity premium). 
These two factors explain why the evidence of ACX disappears in our approach that uses 
value-weighted returns and fixes the model parameters in the spirit of the GRS time-
series methodology. In contrast to ACX, our case for the  MS CAPM rests of the pattern of 
downside risk in the earlier years and the bad states-of-the-world. This pattern occurs 
also for the large caps and if the intercept and slope are fixed. 
 
 
V. Conclusions 

Surprisingly, despite the theoretical limitations of variance, the differences between 
regular beta and downside beta, and the empirical problems of the mean-variance (MV) 
CAPM, the mean-semivariance (MS) CAPM has not been subjected to rigorous empirical 
testing thus far. In an extended sample (1926-2002) we employ unconditional MV and 
MS tests as well as conditional tests that account for the economic state-of-the-world.  

We find that the MS CAPM strongly outperforms the traditional MV CAPM in 
terms of its ability to explain the cross-section of US stock returns. Especially during 
bad-states of the world we find a near-perfect relation between risk and return. 

Downside beta is both theoretically and empirically a better risk measure than regular 
beta. Further, conditional downside risk (1) explains average returns within the size 
deciles, (2) is not related to distress risk and (3) can partly explain the momentum effect. 
In sum, our results provide evidence in favor of market portfolio efficiency, provided we 
account for conditional downside risk.  
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Panel A: Regular-beta portfolios 

  Low 2 3 4 5 6 7 8 9 High  JT p 

               
Mean 0.60 0.62 0.67 0.63 0.85 0.72 0.77 0.77 0.85 0.89    
Stdev 4.26 4.64 5.23 5.49 6.34 6.77 7.19 8.22 9.15 10.39    
Skewness -0.15 0.40 0.55 0.56 0.81 0.77 0.77 1.45 1.48 1.19    

S
ta

ts
. 

Kurtosis 6.1 8.0 9.4 8.9 10.2 10.4 10.5 14.4 14.7 11.0    
               

UMV 0.18 0.11 0.07 0.00 0.12 -0.07 -0.07 -0.18 -0.19 -0.27  13.5 0.14 
UMS 0.16 0.11 0.08 0.01 0.14 -0.05 -0.06 -0.13 -0.13 -0.23  11.3 0.25 
CMV 0.12 0.05 0.08 0.03 0.06 -0.04 -0.06 -0.13 -0.11 -0.15  5.0 0.83 A

lp
ha

s 

CMS 0.08 0.05 0.08 0.04 0.07 -0.01 -0.04 -0.03 0.02 -0.06  2.4 0.98 
               

UMV 0.63 0.77 0.89 0.95 1.10 1.18 1.26 1.42 1.56 1.74    
UMS 0.66 0.77 0.88 0.93 1.07 1.15 1.23 1.35 1.48 1.68    
CMV 0.72 0.85 0.88 0.91 1.19 1.14 1.24 1.35 1.44 1.55    B

et
as

 

CMS 0.78 0.85 0.88 0.89 1.17 1.09 1.21 1.19 1.25 1.41    
               

 

Panel B: Downside-beta portfolios 

  Low 2 3 4 5 6 7 8 9 High  JT p 

               
Mean 0.56 0.65 0.67 0.76 0.83 0.72 0.79 0.83 0.84 1.01    
Stdev 4.30 4.70 5.16 5.82 6.55 7.13 7.28 8.26 9.79 10.84    
Skewness -0.35 0.30 0.04 0.92 0.80 1.66 0.87 1.55 1.97 1.41    S

ta
ts

. 

Kurtosis 5.0 6.7 6.3 12.1 10.2 17.5 10.3 15.4 19.6 12.0    
               

UMV 0.11 0.12 0.07 0.08 0.06 -0.10 -0.05 -0.11 -0.27 -0.17  13.7 0.13 
UMS 0.08 0.11 0.06 0.10 0.08 -0.05 -0.03 -0.06 -0.19 -0.12  8.1 0.52 
CMV 0.11 0.06 0.08 0.08 0.07 -0.08 0.00 -0.06 -0.24 -0.04  9.9 0.36 A

lp
ha

s 

CMS 0.05 0.05 0.05 0.11 0.10 0.01 0.04 0.05 -0.06 0.06  3.1 0.96 
               

UMV 0.67 0.80 0.90 1.02 1.15 1.24 1.26 1.42 1.66 1.76    
UMS 0.72 0.81 0.92 0.99 1.12 1.16 1.22 1.35 1.54 1.69    
CMV 0.67 0.88 0.88 1.02 1.14 1.19 1.19 1.35 1.61 1.57    B

et
as

 

CMS 0.77 0.90 0.93 0.98 1.09 1.06 1.12 1.17 1.33 1.42    
               

 

Table I 
Descriptives, alphas and betas for beta portfolios 

This table shows descriptive statistics for the monthly excess returns of the ten regular-beta portfolios (N=10) 
and the ten downside-beta portfolios. The sample period is from January 1926 to December 2002 of which the 
first five years are used for beta estimation. Portfolio returns cover the January 1931 to December 2002 period 
(T=864 months). In December of each year stocks are sorted in ten decile portfolios based on historical betas. 
The portfolios are constructed such that each portfolio contains an equal number of stocks. In Panel A and B, 
the results for the regular-beta and downside-beta portfolios are showed respectively. The alphas (α̂ ) and 
betas (β̂ ) for each of the following four models are shown: (1) unconditional mean-variance CAPM, (2) 
conditional mean-variance CAPM, (3) unconditional mean-semivariance CAPM, and finally the (4) conditional 
mean-semivariance CAPM. The last two columns show the test results for the joint hypothesis that the alphas 
equal zero. The optimally weighted alphas (JT) are chi-squared distributed with 9 (N-1) degrees of freedom. 
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Panel A: Regular beta / Downside beta 

      Downside be ta  

  Low 2 3 4 High  Avg. 
         

Low 0.57 0.64 0.56 0.79 0.75  0.66 

2 0.54 0.72 0.76 0.79 0.77  0.72 

3 0.70 0.75 0.85 0.96 0.96  0.84 

4 0.86 0.75 0.73 0.87 0.97  0.84 R
eg

. b
et

a 

High 0.77 0.88 0.77 1.04 1.04  0.90 
         
 Avg. 0.69 0.75 0.74 0.89 0.90  0.79 

 

Panel B: Downside beta / Regular beta 

      Regular  beta  

  Low 2 3 4 High  Avg. 
         

Low 0.56 0.66 0.62 0.60 0.64  0.61 

2 0.73 0.75 0.78 0.73 0.65  0.73 

3 0.93 0.81 0.87 0.82 0.72  0.83 

4 0.99 0.91 0.78 0.83 0.83  0.87 D
ow

n.
 b

et
a 

High 1.14 0.74 0.96 0.90 1.00  0.95 
         
 Avg. 0.87 0.77 0.80 0.78 0.77  0.80 

 

Table II 
Double-sorted beta portfolios  

This table shows the average monthly excess returns of 25 regular-beta/downside-beta portfolios and 
25 downside-beta/regular-beta portfolios. The sample period (T=864 months), data requirements, and 
sorting frequency are identical to the beta portfolios. The portfolios are constructed such that each 
portfolio contains an equal number of stocks. The last column and row show the average returns 
across the portfolios. In Panel A, the stocks are sorted into five regular-beta quintile portfolios first 
and then into five downside-beta quintile portfolios. In Panel B the stocks are sorted into five 
downside-beta quintile portfolios first and then into five regular-beta portfolios.  
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Panel A: Split samples 

Sample 1931-2002  1931-1966  1967-2002  Bad state  Good state 

 JT p  JT p  JT p  JT p  JT p 

               
Regular Beta portfolios 

UMV 13.5 0.14  7.7 0.56  13.3 0.15  3.23 0.95  18.5 0.03 

UMS 11.3 0.25  4.4 0.88  13.5 0.14  1.52 1.00  19.3 0.02 
 

Downside Beta portfolios 

UMV 13.7 0.13  12.6 0.18  8.7 0.47  14.2 0.12  9.3 0.41 

UMS 8.1 0.52  7.5 0.56  8.3 0.50  6.3 0.71  9.6 0.38 

               

Panel B: Other conditional variables 

Variable DY  EY  CS     

 JT p  JT p  JT p       

               
Regular Beta portfolios 

CMV 5.0 0.83  11.6 0.24  4.3 0.89       

CMS 2.4 0.98  6.6 0.68  3.8 0.92       

               
Downside-beta portfolios 
CMV 9.9 0.36  16.3 0.06  4.9 0.85       

CMS 3.1 0.96  4.6 0.87  2.3 0.99       

               

Table III 
Robustness analysis 

This table shows the split sample results for the regular-beta and downside-beta sorted portfolios, as 
well as results for different conditional variables. The total sample is divided into subsamples of equal 
length (T=432 months) based on time period and dividend yield. In Panel A results are shown for the 
unconditional mean-variance (UMV) and mean-semivariance (UMS) models. Panel B shows the 
results for the conditional mean variance (CMV) and mean semivariance (CMS) if dividend yield is 
replaced with the one-month lagged earnings yield (EY) and credit spread (CS). The optimally 
weighted alphas (JT) and levels of significance (p) are reported for the different models. 
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    A: Regular beta  B: Downside beta 

           
Order (k)  1 2 3 4  1 2 3 4 

           
-15  9.0 9.2 10.4 12.6  8.3 8.8 10.3 12.0 

-10  8.8 7.7 9.1 10.3  11.4 9.0 9.3 10.2 

-5  11.1 9.0 8.5 9.1  8.1 8.6 9.1 9.5 

0  13.9 11.3 9.5 9.0  8.1 8.1 8.6 9.1 

5  13.5 12.1 10.6 9.6  13.5 8.5 8.4 8.7 

10  13.4 12.4 11.3 10.3  25.9 9.6 8.7 8.6 

T
h

re
sh

ol
d 

(c
) 

 

15  16.7 12.5 11.6 10.8  26.8 10.7 9.1 8.7 

        
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Table IV 
Sensitivity LPM model  

This table shows the models results for different LPM norms. The general MLPM CAPM is 
represented by the pricing kernel 1

10 )min()( −−+= k
MM crbbrm . The thresholds (c) vary from -15 

percent to +15 percent with 5 percent steps.  We let the LPM order (k) vary from 1 (=expected loss, for 
c=0) to 4. Each cell contains the optimally weighted alphas (JT) and the values in italics correspond 
with the outcomes of the UMS model. Panel A and B show the results for regular-beta and downside-
beta portfolios separately. 
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Panel A: Regular-beta portfolios 

 Low 2 3 4 5 6 7 8 9 High  JT p 

              
CMS 0.08 0.05 0.08 0.04 0.07 -0.01 -0.04 -0.03 0.02 -0.06  2.4 0.98 α̂  
TFM 0.15 0.11 0.05 -0.02 0.07 -0.13 -0.12 -0.27 -0.30 -0.39  16.0 0.10 
CMS 0.78 0.85 0.88 0.89 1.17 1.09 1.21 1.19 1.25 1.41    

β̂  TFM 0.68 0.78 0.94 1.00 1.19 1.29 1.35 1.59 1.76 1.94    
              

Panel B: Downside-beta portfolios 

 Low 2 3 4 5 6 7 8 9 High  JT p 

              
CMS 0.05 0.05 0.05 0.11 0.10 0.01 0.04 0.05 -0.06 0.06  3.1 0.96 α̂  
TFM 0.03 0.07 0.04 -0.12 0.02 -0.06 -0.10 0.01 -0.11 -0.26  14.9 0.01 
CMS 0.77 0.90 0.93 0.98 1.09 1.06 1.12 1.17 1.33 1.42    

β̂  
TFM 0.81 0.89 0.90 1.15 1.10 1.28 1.46 1.53 1.86 2.14    

              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table V 
Three-factor model and conditional downside risk 

This table shows the alphas (α̂ ) and betas (β̂ ) for the conditional mean-semivariance (CMS) model and 
the Fama and French three-factor model (TFM). The data are described in Table I. The last two columns 
show the test results for the joint hypothesis that the alphas equal zero. Panel A shows the results for the 
regular-beta portfolios and Panel B shows the results for the downside-beta portfolios. The optimally 
weighted alphas (JT) are chi-squared distributed with 9 (N-1) degrees of freedom. 
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Momentum Portfolios 

  Loser 2 3 4 5 6 7  8   9 Winner  JT p 

               
Mean 0.01 0.41 0.44 0.62 0.57 0.60 0.72 0.92 0.94 1.33    
Stdev 10.20 8.61 7.25 6.62 6.32 5.98 5.69 5.68 5.96 6.70    
Skewness 1.92 2.03 1.66 1.41 1.34 0.66 0.01 0.40 -0.17 -0.28    

S
ta

ts
. 

Kurtosis 16.2 21.1 18.4 14.9 16.7 11.1 6.7 6.3 4.4 2.2    
               

UMV -1.03 -0.51 -0.36 -0.13 -0.15 -0.09 0.05 0.27 0.27 0.66  61.5 0.00 
UMS -0.95 -0.43 -0.30 -0.09 -0.12 -0.09 0.04 0.27 0.23 0.59  49.2 0.00 
CMV -0.94 -0.52 -0.30 -0.15 -0.17 -0.15 0.04 0.31 0.34 0.65  48.8 0.00 
CMS -0.75 -0.36 -0.17 -0.07 -0.10 -0.15 0.01 0.29 0.25 0.53  29.4 0.00 A

lp
ha

s 

FF -1.21 -0.63 -0.42 -0.18 -0.20 -0.11 0.07 0.29 0.31 0.72  73.7 0.00 
               

UMV 1.57 1.38 1.20 1.12 1.09 1.04 0.99 0.98 1.00 1.00    
UMS 1.44 1.27 1.12 1.06 1.04 1.04 1.02 0.98 1.05 1.11    
CMV 1.43 1.40 1.12 1.15 1.11 1.13 1.01 0.92 0.90 1.01    
CMS 1.15 1.16 0.93 1.04 1.00 1.13 1.06 0.94 1.03 1.20    B

et
as

  

FF 1.87 1.59 1.32 1.22 1.17 1.09 0.99 0.97 0.97 0.93    
               

Table VI 
Momentum and conditional downside risk 

This table shows descriptive statistics for the monthly excess returns of the ten momentum portfolios 
(N=10). The sample period (T=864 months) and data requirements are identical to the beta portfolios. 
Each month stocks are sorted in ten portfolios based on 12-month price momentum (cumulative past 12-1 
month returns). The portfolios are constructed such that each portfolio contains an equal number of 
stocks. The alphas (α̂ ) and betas ( β̂ ) for each of the following five models are shown: (1) unconditional 
mean-variance CAPM, (2) conditional mean-variance CAPM, (3) unconditional mean-semivariance 
CAPM, (4) conditional mean-semivariance CAPM and finally (5) Fama and French three-factor model. 
The last two columns show the test results for the joint hypothesis that the alphas equal zero. The 
optimally weighted alphas (JT) are chi-squared distributed with 9 (N-1) degrees of freedom. 
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Figure 1: Risk-return relationship of beta portfolios 1931-2002. This figure shows the mean-beta 
relation of ten stock portfolios (clear dots) and the value-weighted stock market portfolio (filled square). The 
straight line through the origin and the market portfolio represents the equilibrium condition. The dotted 
line shows the best fit (OLS). Panel A shows the traditionally weak relationship between regular beta and 
mean returns.  Panel B shows the corresponding relationship when regular beta is replaced with downside 
beta. Finally, Panel C shows that downside beta and mean return come very close to the equilibrium 
relationship during bad states-of-the-world (defined here as states with a dividend yield below its median 
value). For a detailed description of the data and the portfolio formation procedure, see Section II. 
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B: Downside beta portfolios
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          A: Fixed UMV CAPM     B: Fixed UMS CAPM 

 

 
 
           C: Fixed CMV CAPM     C: Fixed CMS CAPM  

Figure 2: Fixed pricing kernels. The figure shows unconditional and conditional pricing kernels for the 
MV CAPM and MS CAPM in the full sample (January 1931 - December 2002). The unconditional kernels are 
found by solving the equalities (3) and (4) for the known parameters. The conditional kernels are obtained by 
using the one-month lagged dividend yield as the conditional variable and solving the equalities (3)-(6) for 
the known parameters.  
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Figure 3: Conditional MV and MS betas. This figure shows the regular beta (black) and the downside 
beta (grey) of the lowest-beta portfolio and the highest-beta portfolio. We use a rolling 120-months period (1-
month steps) after sorting the data based on the one-month-lagged dividend yield. Panel A shows the results 
for the regular-beta portfolios and Panel B shows the results for the downside-beta portfolios. 
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B: Downside-beta portfolios
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 A: Fitted CMV CAPM  B: Fitted CMS CAPM 

 

 
 
 
 
 
 
 

 

 
 
 
 
 
 

Figure 4: Fitted conditional pricing kernels. The figure shows the fitted CMV and CMS pricing kernels 
for the full sample (January 1931 - December 2002) and with the one-month lagged dividend yield as the 
conditioning variable. The fitted kernels are determined by maximizing the empirical fit (JT) relative to the 
ten regular beta-sorted portfolio, while maintaining conditions (3) and (4). 
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          A: Unrestricted U3M CAPM         B: Restricted U3M CAPM 

 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Quadratic pricing kernels. The figure shows the unconditional cubic pricing kernels for the 
three-moment (3M) CAPM using the full sample (January 1931 - December 2002). The kernel in Panel A is 
determined by maximizing the empirical fit (JT) relative to the ten beta-sorted portfolios, while maintaining 
conditions (3)-(4). Panel B shows the results obtained if we add the restrictions of nonsatiation and risk 
aversion for the sample range of market return and the dividend yield. 
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C: Size/downside-beta portfolios
bad states
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A: Size/regular-beta portfolios
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B: Size/downside-beta portfolios
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Figure 6: Risk-return relationship of size/beta portfolios 1931-2002. This figure shows the mean-beta 
relation of 100 double size/beta-sorted stock portfolios (clear dots). The smallest and largest decile portfolios  
(filled dots) and the value-weighted stock market portfolio (filled square) are labeled separately. All stocks 
included in this study are sorted based on NYSE size decile breakpoints first and then into ten beta 
portfolios. The straight line through the origin and the market portfolio represents the equilibrium 
condition. The dotted lines give the best fit (OLS) for (1) all portfolios and (2) the portfolios within the largest 
and smallest size deciles. Panel A shows how mean and beta are not related within the different size deciles.  
Panel B shows the corresponding relationship when regular beta is replaced with downside beta. Finally, 
Panel C shows that within the NYSE size deciles, mean and downside beta are positively related during bad 
states-of-the-world (defined here as states with a dividend yield below its median value). 
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Footnotes 

                                                 
1 The downside beta is the special case of the second-order LPM beta with the riskless rate as target rate of 
return. 
2 Using the notation developed in the main text, Harlow and Rao (1989, Eq. 10) use the following regression 
model to estimate the downside beta (second-order LPM beta with a zero excess return as the target rate): 
 

ri=αi+βi(min(rM,0)+E[max(rM,0)])+γ i(max(rM,0)-E[max(rM,0)])+ε i 
 
It is straightforward to show that 

iβ  is not the downside beta of Harlow and Rao (1989, Eq. 9): 

 
βDown ,i ≡ E[ri min(rM,0)]E[rM min(rM,0)]-1 

 
and that 

iβ  is not an economically meaningful risk measure. This can be demonstrated by means of the 

following example with four states-of-the-world:  
 

State Prob. Market Stock i 50/50 
1 25% -10% -5% -7.5% 
2 25% -5% -10% -7.5% 
3 25% 10% 10% 10% 
4 25% 10% 10% 10% 

 
In this case, 1−=iβ , reflecting the perfect negative correlation when the market falls. This suggests that we 

can construct a riskless portfolio by investing 50% in the market portfolio and 50% in Stock i. However, the 
resulting 50/50 portfolio is not riskless, because there is a perfect positive correlation when the market rises. 
Indeed, in this case, the true downside beta equals 83.0, =iDownβ . The flaw in the argumentation of Harlow 

and Rao occurs in their Footnote 15, where the necessary condition [ ] [ ]Mii rrE β=  is mistakenly treated as a 

sufficient condition. 
3 Throughout the text, we will use Nℜ  for an N-dimensional Euclidean space. Further, to distinguish between 

vectors and scalars, we use a bold font for vectors and a regular font for scalars. Finally, all vectors are column 
vectors and we use Τr  for the transpose of r . 
4 The results are not affected by the sorting frequency. When sorting takes place on a monthly basis (instead 
of in December of each year) we find similar portfolio characteristics and model test results. 
5 We prefer value-weighted returns equal-weighted returns because using equal-weighted returns one 
implicitly assumes continuous portfolio updating and hence involves a lot of trading/transaction costs. 
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